A Measure of Equity for Public Transit Connectivity

Abstract
An equitable transit system can cater to the needs of captive riders and maximize the transit service coverage. Often transit equity is not considered in planning, leading to the underutilization of transit and encouraging travelers to be auto dependent. In this paper, the authors propose a methodology to estimate transit equity using a number of attributes such as frequency, speed, capacity, built environment etc. in a multimodal transit network. We propose a methodology to measure transit equity from a graph theoretical approach for all levels of transit service coverage integrating routes, schedules, socio-economic, demographic and spatial activity patterns. The objective of using equity is to quantify and evaluate transit service in terms of prioritizing transit locations for funding; conforming with federal regulations; providing service delivery strategies, especially for areas with large multi-jurisdictional, multi-modal transit networks; providing an indicator of multi-level transit capacity for planning purposes and assessing the effectiveness and efficiency for node/stop prioritization while choosing transit as a mode of travel. The methodology uses a stylized connectivity measure with a Gini index for equity estimation at different levels such as stop, line, zone and area. An example problem is presented to demonstrate the proposed methodology. The approach is then applied to the Washington-Baltimore region in the United States. The results show the existing transit service coverage at different locations. The proposed approach can be utilized as a tool for transit service planning.

Key words: transit equity, graph theory, capacity, frequency, multimodal transit

1. Introduction
Transportation service planning is a complex and multifaceted task. In addition to planning for access based on transit coverage, service frequency, stop location and daily operations other consideration such as transit equity should be considered. However, due to the complexity of transit networks and the scale of urban areas the networks typically
serve, limited research has been conducted on developing a tool to measure equity as it relates to the distribution of transit access in a region.

The importance of transit service equity first emerged with the Civil Rights Act of 1964. Title VI of the act established the directive that all federal agencies must equitably distribute federal resources in such a way to maintain quality of services so that resources are provided in the most equitable and least discriminatory manner possible (Colopy, 1994). As federal agencies, both the United States Department of Transportation (USDOT) and the Federal Transit Authority (FTA) are required to conform to equity standards. The directive for equity in transit was further solidified by Executive Order 12898 signed by President Clinton in 1994 mandating all federal agencies to address issues of equity. This mandate was implemented broadly for transportation issues with the Transportation Equity Act for the 21st Century (TEA-21).

This combination of legislation has led to the requirement for all federal, state and local transit agencies receiving federal funds to establish policies and standards that equitably distribute transit service based on a minimum five-criteria basis including vehicle loads, vehicle assignment, vehicle headway, distribution of transit amenities, and transit access (Pucher, 1982). Any organization that receives federal funding (in this case from FTA) is required to equitably distribute services. This requirement exists to mitigate instances of either disparate impact (unintentional) or disparate treatment (intentional).

Transit agencies and service providers in urbanized areas with a population of 200,000 or more where a major service change or fare change has been proposed must conduct equity analysis (Thompson, 1998). However, the method of analysis is generally left to the agencies to establish. Because of the great variation in analysis, the possibility
of subjectivity, and the lack of established required variables, it is possible that changes in services could cause undetected disparate impacts. To aid in establishing a scientifically robust and analytically objective framework, we propose a method to quantify the quality of service at each transit node in a network, combined with a tool to measure the inequity (concentration of quality service) at several geographic scales which combines required equity-related transit service measures into a single service and equity index.

The remainder of this paper is organized into six sections. The first section presents a review of the related literature followed by a presentation of the methodological framework developed to analyze the issue of transit connectivity, access and equity in the second section. The third section provides a sample problem to illustrate the methodology. The fourth section describes the case study area. Results of the method application are presented in the fifth section followed by conclusions, policy implications and suggestions for further research in the sixth section.

2. Related literature

Equity is a multi-disciplinary term that has been used in a variety of ways. A multitude of issues have been examined under the context of equity in the literature. In geography, equity has been used as a framework to examine the distribution of opportunities to access economic activity (Keeble et al., 1982) or the distribution of particular services (Truelove, 1993) among the population. In medicine equity has been used to measure the
segmentation of population and its implications on health care services (Bloom, 2001). In the same field, disparate impacts of the location of health care facilities among the population have been measured (Rosero-Bixby, 2004). Beckett and Koenig (2005) apply equity to the field of sociology in general, while Kokko et al. (1999) assess how equal the application of such measures have been in the literature. In economics, Atkinson (1975) formulates the classic application of equity in the context of income distribution, and in political science it has commonly been used for welfare analysis (Maniquet and Sprumont, 2005).

Despite several federal mandates, there is generally no accepted standard framework for measuring equity in transport. Litman (2002) surveyed the available data and existing studies for transportation equity in general. Golub (2010) used a utility function to model welfare impacts for service change scenarios. Delmelle & Casas (2012) measured the distribution of transit access among different population groups in Cali, Colombia; finding the addition of a BRT trunk line increased the equitable distribution of access to services. Bureau & Glachant (2011) measured the distributional effects of changes in transit fares and speed, finding fare reductions result the greatest transit equity for low income groups in Paris.

Equity is divided into two types, horizontal and Vertical (Kakwani, 1984; Berliant and Strauss, 1985; Repetti and McDaniel, 1993). Horizontal equity is concerned with the proportional distribution of an attribute among similar members of a population. Vertical equity focuses on the distribution of an attribute among specific groups (Mooney, 1996). Most work in the area of equity has concentrated on social exclusion, thus, focusing on issues of horizontal equity. Only in a few papers has equity in the sense that it has been
used in the rest of the literature, been applied to transit (Delbosc and Currie, 2011).

Delbosc measured equity as it relates to the distribution of transit service frequency in Melbourne Australia. The results show an overall Gini coefficient of .68, indicting that roughly 70% of the population shares just 19% of the transit service.

This paper takes a unique approach to measuring transit connectivity and accessibility to high quality transit service in a region, providing a framework for planners and policy-makers to objectively measure equity. We first construct an index of transit connectivity that incorporates a graph theoretic approach to determine the performance of large-scale multimodal transit networks. The purpose of the index is to quantify measures of connectivity within a transportation network at the node level. The connectivity index is constructed with an assessment of service quality that incorporates the unique characteristics of each transit line and stop including frequency, speed, distance, capacity, required transfers and activity density of the underlying land use served by a transit node. The result of the index is a measure of transit service quality at each stop, along every transit line. This nodal connectivity index is then applied to a functional form of the Gini coefficient, a variant of the Lorenz Curve, to measure the distribution of quality transit access in the region. The Gini coefficient measures the rank distribution along a linear Lorenz equity line, which represents the cumulative population share of a given attribute (Marshall & Olkin 1979). This paper applies the methodology to several transit service areas in the Washington-DC metro area to measure transit equity across the region.

3. Methodology
In this section we describe the methodology for measuring transit service connectivity and equity. In the first part we show the method for calculating transit connectivity. In the second part, we show how this is used to measure transit equity.

3.1 Connectivity

The common treatment of transit connectivity or service level in the literature is generally limited to transit frequency at a stop. This formulation does not provide valuable information about the opportunities accessible by transit, the time it takes to reach those opportunities, or the ability to transfer to different routes and modes to reach a broader array of activities. This information is critical in determining the true quality of transit provision at a given stop. To address these shortcomings, this paper adopts a more comprehensive connectivity measure, first developed by (Mishra et al., 2012). The measure uses frequency, speed, distance, capacity, required transfers and activity density of the underlying land use served by a transit node, for all modes including buses, light rail, bus rapid transit, and other similar transit facilities.

The connecting power of a transit line is a function of the inbound and outbound powers, as the connecting power may vary depending on the direction of travel. The inbound and outbound connecting power of a transit line can be defined as follows.

\[
P^i_{l,n} = \alpha(C_l \times \frac{60}{F_l} \times H_l) \times \beta V_l \times \gamma D^o_{i,n} \times \phi A_{i,n} \times \psi T_{l,n}
\]

\[
P^o_{l,n} = \alpha(C_l \times \frac{60}{F_l} \times H_l) \times \beta V_l \times \gamma D^o_{i,n} \times \phi A_{i,n} \times \psi T_{l,n}
\]
operation of line l, is the speed of line l, and is the distance of line l from node n to the destination. The parameter is the scaling factor coefficient for capacity which is the reciprocal of the average capacity of the system multiplied by the average number of daily operations of each line, is the scaling factor coefficient for speed represented by the reciprocal of the average speed on each line, and is the scaling factor coefficient for distance which is the reciprocal of the average network route distance.

The density measurement represents the development pattern based on both land use and transportation characteristics. The literature defines the level of development a number of ways, but for simplification purposes we have considered it to be the ratio of households and employment in a zone to the unit area. Mathematically, activity density is defined as:

$$A_{l,n} = \frac{H_{l,n} + E_{l,n}}{\Theta_{l,n}}$$

(3)

The connectivity index measures the aggregate connecting power of all lines that are accessible to a given node. However not all lines are equal; nodes with access to many low quality routes may attain a connectivity index score equal to a node with only a couple very high quality transit lines. This means that while both nodes are able to provide good access, the node with the fewest lines provides the most access with the lowest need to transfer. To scale the index scores based on the quality of individual lines, that is, scaling for the least number of transfers needed to reach the highest number and quality of destinations, the node scores are adjusted by the number of transit lines incident upon the node.
This equation adds the number to transit lines “l” at node “n”, and is the scaling factor for the number of transit lines. The transfer scale is simply the sum of the connectivity index scores for each of the transit lines that cross a node divided by the count of the number of lines that are incident upon the node. The transfer scaled index is defined as:

\[T_{l,n} = \frac{\sum P_{l,n}^t}{\Theta_l^n} \]

(4)

3.2. Transit Catchment and Accessibility

This paper seeks to measure the distribution of transit access among the population and for groups within the population. To determine accessibility to stops near a household for inclusion into the connectivity index, we define a half-mile catchment around each housing unit. However, the distance from the housing unit to the transit stop is important. A stop located half a mile from the zone provides less connectivity than a zone that is located just a tenth of a mile away. We thus formulate a distance decay function to pro-rate the connectivity of transit nodes within a half-mile (Euclidian distance) of each unit based on its distance from the centroid of the residential parcel.

Equation (5) represents the connectivity calculation for a station within the half-mile catchment area. Where, is the pro-rated connectivity and is defined as

\[T_{l,n} = \frac{\sum P_{l,n}^t}{\Theta_l^n} \]

(5)

where, \(a\) and \(b\) are the parameters of pro-rated connectivity and \(w\) is the walk time to travel from housing unit \(h\) to node transit stop \(n\). The parameters for \(a\) and \(b\) are from Kim and Kwon (2005) and estimated based empirical data.
Fig. 1 provides a simple example of the half-mile catchment area and the calculation of the prorated connectivity. In this case, the Y value is used to reduce the connectivity of each node. Transit nodes that are outside the catchment area have a Y value of 0.

The sum of the connecting power of each node in the catchment area is scaled by the number of transit nodes within the catchment area of each zone. Thus, a zone in a heavily dense transit area is made comparable to a zone in a less dense area. The following equation shows the connectivity index of a zone.

\[(6)\]

This service quality index improves upon others, in that it uses not just service supply but the quality of access provided to all destinations. This measure represents a significant improvement over many service indexes while maintaining tractability and practicality.

3.3 Inequality Index

Inequity is a measure of geographic concentration of a certain phenomenon. A common use of such an index is the distribution of income among populations. For instance many studies look at the cumulative proportion of the population of a county (or among counties) and determine the cumulative proportion of income held at each level. The most common measure for this inequity is the Gini index. The index measure the difference
between an a perfect equity line (a straight line where in the above example, 0% of
income is held by %0 percent of the population and 100% of the income is held by 100%
of the population), and a Lorenz curve which measure the real distribution. When there is
no difference between the perfect equity line and the Lorenz curve, the index value is 1,
representing perfect equity. The index ranges from a value of 0 for perfect inequity to 1.

The same principle can be applied to the distribution of quality transit. In this case
it becomes the cumulative proportion of population and the cumulative proportion of
transit connectivity immediately accessible to that population. The resulting GINI index
values allow the distributions of transit access to be compared across a variety of
locations.

In Fig. 2 a graph of the perfect equity line and a sample Lorenz Curve is shown.
The 45-degree angle is the perfect equity line, showing an equal distribution of a
cumulative attribute among the population. The line below the equity line is the Lorenz
curve, which represents the level of inequity. The Gini index is essentially the ratio of the
dark shaded area (between the two lines) to the whole shaded area.

Finding the difference between Lorenz curves and calculating the resulting Gini
index is a mathematically complex task, which can be solved by integration. However,
the difference between the two curves can be approximated based on the difference
between each interval using the following formula (Brown, 1994):

\[G_\alpha = 1 - \sum_{k=1}^{n} (X_k - X_{k-1})(Y_k - Y_{k-1}) \]

(7)
Where G is the Gini index value for a population or sample, c_k is the cumulative proportion of the population endowed with attribute k (in this case transit connectivity) for $k = 0, \ldots, n$, and d_k is the cumulative proportion of attribute k.

4. Example Problem

In this section, the methodology is described with the help of an example problem. The example network shown in Fig. 3 (a) consists of (1) 25 stops, (2) 12 lines and (3) five zones with half-mile catchments. Fig. 3 (b) shows each zone with the transit stops located in the zone and the distance in miles to stops that are within the half-mile catchment area.

The characteristics of each zone, transit line and stop such as population, density, operating speed, frequency, capacity and number of operations are given in Table 1. Each zone is attributed with a density measure, which is the ratio between the total population and employment for the zone and corresponding area.

4.1 Connectivity

Table 2 shows the connectivity index results for the sample problem at the node level, while Table 3 shows the results at the zone level. The index results show that the centrally located zones, with higher speed transit lines and easier access to opportunities
(areas with high activity density) have the highest connectivity while outlying nodes have lower connectivity scores. Zone A has the highest zonal connectivity score due to its multimodal transit network coverage, while zone E has the lowest score because it is connected by only one node and two bus lines.

4.2 Inequality Index

The connectivity for each of the five zones is applied to the population distribution from the example problem. Table 4 shows the results of the index when applied to the example. The total GINI concentration ratio is .26789, which indicates that about 55% of the population shares 30% of the quality transit.

Fig. 4 shows the Lorenz curve of connectivity distribution compared to the perfect equity line. As the results of the GINI index indicated, the Lorenz curve is nearly coterminous with the perfect equity line but with a noticeable gap which represents the disparity between the availability of transit service and the location of population.

5. Case Study

The proposed framework is applied to a comprehensive transit network in the Washington-Baltimore region. The complete transit network is adapted from Maryland State Highway Administration data. The transit database consists of two of largest transit
systems in the country, Washington Metropolitan Area Transit Authority (WMATA), and Maryland Transit Administration (MTA). WMATA is a tri-jurisdictional government agency that operates transit service in the Washington, D.C. metropolitan area, including the Metrorail (rapid transit), Metrobus (fixed bus route) and MetroAccess (paratransit), and is jointly funded by the District of Columbia, together with jurisdictions in suburban Maryland and northern Virginia. There is approximately $300 million spent in the WMATA capital, operating and maintenance cost of which $150 million per year of federal funds available that are required to be matched by $50 million in annual contributions from DC, Northern Virginia and suburban Maryland, each for ten years. The use of federal funds by the agency means it is subject to federal equity standards. Additionally, the suburb of Prince George’s County is served by ‘TheBus’, a county-wide public transit system that provides 23 bus routes that generally service the WMATA metro stations.

WMATA has the second highest rail ridership in the US with over 950,000 passengers per day. This is second only to New York. The WMATA Metro provides an extensive heavy rail system with 106.3 route miles. The WMATA bus system also serves an extensive ridership of over 418,000 unlinked daily trips. TheBus has an average monthly ridership of over 340,000 unlinked passenger trips. Fig. 5(a) shows the transit network that serves Prince Georges County.

MTA is a state-operated mass transit administration in Maryland. MTA operates a comprehensive transit system throughout the Baltimore-Washington Metropolitan Area. There are 77 bus lines serving Baltimore's public transportation needs. The system has a daily ridership of nearly 300,000 passengers along with other services that include the
Light Rail, Metro Subway, and MARC Train. The Baltimore Metro subway is the 11th most heavily used system in the US with nearly 56,000 daily riders. Nearly half the population of Baltimore lack access to a car, thus the MTA is an important part of the regional transit picture. The system has many connections to other transit agencies of Central Maryland: WMATA, Charm City Circulator, Howard Transit, Connect-A-Ride, Annapolis Transit, Rabbit Transit, Ride-On, and TransIT. Fig. 5(b) shows MTA network around Camden in station downtown Baltimore. Both the WMATA Metro rail system and the Baltimore transit system are connected by the MARC commuter rail system. This system has a daily ridership of over 31,000. In the next section, results of the proposed methodology are discussed (APTA 2011). The complete methodology is integrated in a Geographic Information System (GIS) user interface using ArcInfo (ESRI 2010).

6. Results

This section presents the results of the methods described in the previous sections as they are applied to the large-scale multimodal network spanning the Washington DC and Baltimore region. The analysis of transit equity in the region focuses on five Maryland locations and the District of Columbia. Figure 6 shows the location of each area included in the analysis and the transit lines that serve each location.

First, transit connectivity was calculated for each zone within an analysis location using equations (1) through (6). Figure 7(a) shows the connectivity of each zone for every analysis location. In the figure, areas that are a shade of green have high levels of connectivity under the definition from the earlier sections of this paper. Areas that are
orange have very low connectivity and red areas have no transit connectivity. The map clearly outlines the major transit service areas in the Baltimore-Washington region; where service tends to be concentrated in the urban core and radiates out with lower degrees of connectivity.

<<Fig. 7a about here>>

Figures 7(b) and 7(c) show the connectivity for each zone within the Prince George’s and Baltimore analysis areas. In Princes George’s County connectivity is best around the DC border (left side cut out), with some level of service throughout the county. In Baltimore, connectivity is generally concentrated around the central part of the city, though the northeast has some higher levels of connectivity as well. This area is the primary location of most metro and other rail service, with several good bus line connections.

<<Fig. 7b and 7c about here>>

Fig. 8 (a) shows the percent of total analysis location households that are in each zone. For this paper, households will be the proxy for population. In the analysis, connectivity equity is analyzed in the context of its distribution among households.

<<Fig. 8a about here>>

Figs 8(b) and 8(c) show Prince George’s County and Baltimore household distributions, respectively. In Prince George’s, households tend to be concentrated more near the DC border. In Baltimore the distribution of the households tends be away from
the central city. There is a significant percent of households in the northwest areas of the
city and to the southwest of the harbor.

Comparing the household distribution maps in conjunction with the connectivity
maps gives an indication of the likely transit equity outcome. In Prince George’s the
connectivity of the transit service is spread around the DC border, interspersed among the
population. In Baltimore, much of the high quality transit connectivity is in the central
parts of the city, while the majority of households are located outside of the city center.

<<Fig. 8b and 8c about here>>

Table 5 provides a summary of the inequality index results for five locations in
Maryland and Washington DC. The results of this index are not meant to be evaluative in
terms of transit performance or distributive equality. There are many reasons that transit
agencies may desire either concentrated transit connectivity or a more diffuse level of
service. These scores set out a tool to evaluate specific program goals; as such, this paper
does not attempt to determine whether higher Gini Index scores are good or bad.

Baltimore City and Washington DC rank the highest in terms of transit
connectivity inequality. The rankings on a GINI index such as this range from 0 for
perfect equity to 1 for perfect inequity. Baltimore comes the closest to perfectly
inequitable transit distribution with a score of .69. Prince George’s County has the lowest
inequity with a score of .48. While both Baltimore and DC have high inequity scores, the
level of overall connectivity is quite high; indicating that there is high quality transit
service in a centralized area, with less connectivity near households. In Prince George’s,
transit connectivity is much lower overall. However, the connectivity that does exist in
the network is located in proximity to more households.

Fig. 9 provides a map of the transit equity results for each of the analysis locations.

DC and Baltimore stand out with high Gini Index scores due to the concentrated nature of
connectivity in both cities. The typically suburban locations that surround the central
cities have lower Gini Index scores, due to the decentralized nature of their transit
networks in comparison to the highly centralized nature of transit in CBDs.

6. Summary and Conclusion

This paper analyzes a methodology for transit equity estimation. Often equity measures
are ignored in transit planning despite federal mandates. A graph theoretic approach
considering equity and transit connectivity is presented. Equity in this context is a
measure of the distribution of transit service coverage to household and employment
locations. Connectivity defines the level of coordination of the transit routes, coverage,
schedule, speed, operational capacity, urban form characteristics, and is an influential
element of the image of any transit network. A Gini index is incorporated to the graph
theoretic approach to estimate transit equity. Two spectrums of the index can vary
between 0 and 1. An equity value of “0” represents a perfectly equitable distribution of
service and “1” represents a perfectly inequitable distribution. While these two extreme
values for the inequity index generally do not occur among any population, it is desirable
in many cases that inequality value remain as close to zero as possible.
Analyzing transit equity is a complex task due to the intricacy of many interacting factors embedded in a multimodal transit network encompassing various public transportation modes with different characteristics, such as buses, express buses, subways, light rail, metro rail, commuter and regional rail. In addition, multimodal transit networks, like highway networks consist of nodes and links. However, links in a multimodal transit network have different characteristics from those in a highway network as links in a multimodal transit network are part of a transit line that serve a sequence of transit stops (nodes) and a stop can be served by different transit lines; multiple links may exist between nodes in a multimodal transit network. The indicator development process is further complicated as connectivity varies by urban form with differences among geographical, land use, highway and trip pattern characteristics between regions. The performance indicator should include all the aforementioned complexities and should be quantified to measure transit equity of the multimodal transportation network.

An example problem is presented to demonstrate the concept developed in the methodology and the advantage of the proposed methodology. Finally, the methodology is applied to the Washington-Baltimore region. Equity is estimated for six counties. Maximum equity is achieved for Prince George’s County and minimum for Baltimore City. The higher inequity value for Baltimore City reflects the spatial distribution of employment, with the greatest concentration in a Central Business District served by high levels of transit connectivity, whereas the surrounding area is not well connected by transit. In contrast, Prince George’s County transit inequity is low, which shows that a CBD type of employment location is not a part of this county, but rather the spatial
The distribution of job locations and the transit system is fairly even throughout most of the county. The proposed estimates are not designed to assert whether the existing transit systems are equitable or not, but to establish a framework to measure equity before and after proposed transit system changes. There are many cases where it may be perfectly desirable to have a lower initial transit equity value simply because of the built environment and existing CBD style development. However, as federal policy dictates, changes in transit service should not reduce the equitable distribution of transit service. This paper provides a generalized and tractable method to determine if planned service changes comport with federal equity requirements.

In addition, the proposed tool can be used by transit agencies to measure the distribution of transit service among specific populations to provide better access to captive riders. Transit equity is essential to connect households to jobs and the major activity centers. The contribution of the paper is three fold: first to develop a methodology for transit equity estimation; second, applying the methodology to demonstrate the proposed approach in a simplified example problem; third, examining the multi-modal transit network equity in Washington-Baltimore region. Future research should include additional required equity analysis items like fair prices to enhance the service indicator metrics.

References

Fig. 1 Zonal transit catchment

\[Y = 1.3189 \exp(-0.0872x) \]

- Zone
- Transit Station/Stop
- Catchment Area
Fig. 2 GINI index example

Fig. 3(a). Example of transit system and zones
Fig. 3(b). Walking time to transit nodes in each zonal catchment

Fig. 4. Lorenz Curve and GINI Index
Fig. 5(a). Transit Routes in Prince George’s County

Fig. 6(b). Transit Routes in Baltimore

Fig. 6 Locations of equity analysis and transit lines
Fig. 7(a) Connectivity index at the zone level

Fig. 7(b) Connectivity index for Prince George’s

Fig. 7(c) Connectivity index for Baltimore
Fig. 8(a) Percent households in zones for locations

Fig. 8(b) Percent households Prince George’s

Fig. 8(c) Percent households Baltimore
Fig. 9 Transit equity by location
Table 1 Example Problem Characteristics

<table>
<thead>
<tr>
<th>Line</th>
<th>Mode</th>
<th>Distance</th>
<th>Speed</th>
<th>Frequency</th>
<th>Operations</th>
<th>Capacity</th>
<th>Population</th>
<th>Employment</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bus</td>
<td>20</td>
<td>10</td>
<td>30</td>
<td>24</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Bus</td>
<td>20</td>
<td>10</td>
<td>30</td>
<td>24</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Bus</td>
<td>26.15</td>
<td>18</td>
<td>15</td>
<td>48</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rail</td>
<td>14</td>
<td>35</td>
<td>5</td>
<td>144</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Bus</td>
<td>26.15</td>
<td>18</td>
<td>15</td>
<td>48</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Bus</td>
<td>20</td>
<td>10</td>
<td>30</td>
<td>24</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Bus</td>
<td>16</td>
<td>10</td>
<td>30</td>
<td>24</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Bus</td>
<td>16</td>
<td>10</td>
<td>30</td>
<td>24</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Rail</td>
<td>16</td>
<td>30</td>
<td>10</td>
<td>72</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Rail</td>
<td>16</td>
<td>30</td>
<td>10</td>
<td>72</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Bus</td>
<td>4</td>
<td>10</td>
<td>30</td>
<td>24</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Bus</td>
<td>6</td>
<td>10</td>
<td>30</td>
<td>24</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zone</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>60</td>
<td>15</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>25</td>
<td>125</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>40</td>
<td>20</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>50</td>
<td>55</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>35</td>
<td>10</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Sample Problem Connectivity Results - Nodes

<table>
<thead>
<tr>
<th>Node</th>
<th>(P^o_{ln})</th>
<th>(P^i_{ln})</th>
<th>(T^o_{ln})</th>
<th>(A^o_{ln})</th>
<th>(T^i_{ln})</th>
<th>(P^i_{ln})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8892</td>
<td>0.8892</td>
<td>0.8892</td>
<td>0.6528</td>
<td>6</td>
<td>0.1482</td>
</tr>
<tr>
<td>2</td>
<td>0.1806</td>
<td>0.1806</td>
<td>0.1806</td>
<td>0.6528</td>
<td>4</td>
<td>0.0452</td>
</tr>
<tr>
<td>3</td>
<td>9.9799</td>
<td>9.9799</td>
<td>9.9799</td>
<td>1.4688</td>
<td>4</td>
<td>2.4950</td>
</tr>
<tr>
<td>4</td>
<td>6.6533</td>
<td>6.6533</td>
<td>6.6533</td>
<td>0.9792</td>
<td>4</td>
<td>1.6633</td>
</tr>
<tr>
<td>5</td>
<td>1.2133</td>
<td>1.2133</td>
<td>1.2133</td>
<td>0.9792</td>
<td>4</td>
<td>0.3033</td>
</tr>
<tr>
<td>6</td>
<td>0.9860</td>
<td>0.9860</td>
<td>0.9860</td>
<td>0.8160</td>
<td>4</td>
<td>0.2465</td>
</tr>
<tr>
<td>7</td>
<td>0.1355</td>
<td>0.1355</td>
<td>0.1355</td>
<td>0.4896</td>
<td>4</td>
<td>0.0339</td>
</tr>
<tr>
<td>8</td>
<td>0.2258</td>
<td>0.2258</td>
<td>0.2258</td>
<td>0.8160</td>
<td>4</td>
<td>0.0564</td>
</tr>
<tr>
<td>9</td>
<td>11.5741</td>
<td>11.5741</td>
<td>11.5741</td>
<td>1.4688</td>
<td>6</td>
<td>1.9290</td>
</tr>
<tr>
<td>10</td>
<td>7.7621</td>
<td>7.7621</td>
<td>7.7621</td>
<td>1.1424</td>
<td>4</td>
<td>1.9405</td>
</tr>
<tr>
<td>11</td>
<td>1.4507</td>
<td>1.4507</td>
<td>1.4507</td>
<td>1.1424</td>
<td>6</td>
<td>0.2418</td>
</tr>
<tr>
<td>12</td>
<td>0.1756</td>
<td>0.1756</td>
<td>0.1756</td>
<td>1.1424</td>
<td>2</td>
<td>0.0878</td>
</tr>
<tr>
<td>13</td>
<td>17.8624</td>
<td>17.8624</td>
<td>17.8624</td>
<td>1.3056</td>
<td>4</td>
<td>4.4656</td>
</tr>
<tr>
<td>14</td>
<td>17.8624</td>
<td>17.8624</td>
<td>17.8624</td>
<td>1.3056</td>
<td>4</td>
<td>4.4656</td>
</tr>
<tr>
<td>15</td>
<td>29.6687</td>
<td>29.6687</td>
<td>29.6687</td>
<td>1.4688</td>
<td>4</td>
<td>7.4172</td>
</tr>
<tr>
<td>16</td>
<td>36.5831</td>
<td>36.5831</td>
<td>36.5831</td>
<td>1.6320</td>
<td>10</td>
<td>3.6583</td>
</tr>
<tr>
<td>17</td>
<td>0.0753</td>
<td>0.0753</td>
<td>0.0753</td>
<td>0.9792</td>
<td>4</td>
<td>0.0188</td>
</tr>
<tr>
<td>18</td>
<td>0.0452</td>
<td>0.0452</td>
<td>0.0452</td>
<td>0.9792</td>
<td>2</td>
<td>0.0226</td>
</tr>
<tr>
<td>19</td>
<td>8.8264</td>
<td>8.8264</td>
<td>8.8264</td>
<td>1.1424</td>
<td>4</td>
<td>2.2066</td>
</tr>
<tr>
<td>20</td>
<td>0.7888</td>
<td>0.7888</td>
<td>0.7888</td>
<td>0.6528</td>
<td>4</td>
<td>0.1972</td>
</tr>
<tr>
<td>21</td>
<td>0.4446</td>
<td>0.4446</td>
<td>0.4446</td>
<td>0.3264</td>
<td>6</td>
<td>0.0741</td>
</tr>
<tr>
<td>22</td>
<td>0.1806</td>
<td>0.1806</td>
<td>0.1806</td>
<td>0.6528</td>
<td>4</td>
<td>0.0452</td>
</tr>
<tr>
<td>23</td>
<td>7.7621</td>
<td>7.7621</td>
<td>7.7621</td>
<td>1.1424</td>
<td>4</td>
<td>1.9405</td>
</tr>
<tr>
<td>24</td>
<td>3.3266</td>
<td>3.3266</td>
<td>3.3266</td>
<td>0.4896</td>
<td>4</td>
<td>0.8317</td>
</tr>
<tr>
<td>25</td>
<td>0.6067</td>
<td>0.6067</td>
<td>0.6067</td>
<td>0.4896</td>
<td>4</td>
<td>0.1517</td>
</tr>
</tbody>
</table>

Table 3: Sample Problem Connectivity Results – Zones

<table>
<thead>
<tr>
<th>Zone</th>
<th>(\rho_{n_{1,n}})</th>
<th>(S_{\omega})</th>
<th>(\sum \rho^t_{ln})</th>
<th>(\theta_{zu})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>60</td>
<td>42</td>
<td>8.6230</td>
<td>12.3186</td>
</tr>
<tr>
<td>B</td>
<td>25</td>
<td>42</td>
<td>7.7041</td>
<td>4.5858</td>
</tr>
<tr>
<td>C</td>
<td>40</td>
<td>42</td>
<td>2.8654</td>
<td>2.7290</td>
</tr>
<tr>
<td>D</td>
<td>50</td>
<td>42</td>
<td>0.5276</td>
<td>0.6280</td>
</tr>
<tr>
<td>E</td>
<td>35</td>
<td>42</td>
<td>0.2000</td>
<td>0.1667</td>
</tr>
</tbody>
</table>
Table 4 Inequality Index of the Connectivity Distribution

<table>
<thead>
<tr>
<th>Zone</th>
<th>connectivity (Y)</th>
<th>Proportion population (X)</th>
<th>Cumulative Proportion connectivity (Y)</th>
<th>Cumulative Proportion population (X)</th>
<th>Y_k-Y_{k-1}</th>
<th>X_k-X_{k-1}</th>
<th>(Y_k-Y_{k-1})(X_k-X_{k-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>0.1666918</td>
<td>0.008159932</td>
<td>0.16666667</td>
<td>0.00816</td>
<td>0.16667</td>
<td>0.00136</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.62804695</td>
<td>0.030744288</td>
<td>0.23809524</td>
<td>0.04706</td>
<td>0.23810</td>
<td>0.01121</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.7289928</td>
<td>0.133590238</td>
<td>0.19047619</td>
<td>0.21140</td>
<td>0.19048</td>
<td>0.04027</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>4.58575336</td>
<td>0.224482777</td>
<td>0.11904762</td>
<td>0.39698</td>
<td>0.11905</td>
<td>0.06779</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>12.3186006</td>
<td>0.603022764</td>
<td>0.28571429</td>
<td>1.39698</td>
<td>0.28571</td>
<td>0.39914</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Gini’s Concentration Ratio</td>
</tr>
</tbody>
</table>

0.51976

Table 5 Transit inequality index by location

<table>
<thead>
<tr>
<th>Location</th>
<th>Households</th>
<th>Connectivity</th>
<th>Gini’s Concentration Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prince George’s county, MD</td>
<td>298,412</td>
<td>0.03</td>
<td>0.48</td>
</tr>
<tr>
<td>Frederick, MD</td>
<td>80,687</td>
<td>0.00</td>
<td>0.51</td>
</tr>
<tr>
<td>Baltimore County, MD</td>
<td>316,330</td>
<td>0.23</td>
<td>0.51</td>
</tr>
<tr>
<td>Montgomery County, MD</td>
<td>352,228</td>
<td>0.08</td>
<td>0.64</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>259,709</td>
<td>1.61</td>
<td>0.68</td>
</tr>
<tr>
<td>Baltimore City, MD</td>
<td>255,347</td>
<td>1.17</td>
<td>0.69</td>
</tr>
<tr>
<td>Maryland</td>
<td>2,128,042</td>
<td>0.18</td>
<td>0.83</td>
</tr>
</tbody>
</table>