Filling in for
“Record Selection Insights from the Study of Epsilon and Inelastic Displacements: Use with Deterministic Code Applications”
(C. Allin Cornell)

Nicolas Luco
Research Structural Engineer
U.S. Geological Survey (Golden, CO)

COSMOS Technical Session
Millbrae, CA
18 November 2005
Most appropriate definition of target?

1) Building code design response spectrum (+ M, R, etc.)?
2) Uniform Hazard Response Spectrum (UHRS)?
3) Sa(T1), deaggregated M, R, etc. ?
4) Sa(T1), deaggregated M, R, and ε, etc.?
5) Inelastic Spectral Displacement?

Different targets can lead to different recommendations for selection/scaling, some easier to apply than others.

Last year the focus was bias associated with scaling for Option #3, this year it’s #4, next year #5?

Same experiments need to be repeated for Option #1 (i.e., bias in nonlinear dynamic structural analysis induced by code procedures?)
Intra-Bin Scaling for Nonlinear Oscillator

"Near-Source" Bin, $T = 1s$, $R = 4$

Scaled/Unscaled $S_d (T, \zeta = 5\%, R, \alpha = 2\%)$

$SF = 0.1$
$SF = 2$

$Bias = 1.3$
$Bias = 0.4$

$Bias = a SF^b$
$a = 1.00$
$b = 0.38$
Intra-Bin Scaling for Nonlinear Oscillator

31 "Near-Source" Recordings

\[S_a(T, \zeta = 5\%) \theta \]

Period, \(T\) [sec]
Intra-bin scaling results in term of θ_{max} for a Three-Story Frame Model (from Tothong & Cornell)
Does Using *Only* Higher Epsilon Records Reduce Inter-bin Scaling Bias?
(from Baker & Cornell)

Magnitude 7+/− Random Set Wide M, R Range Set; Epsilon > 1.5 Only

1 Sec Bilinear Oscillator, R factor = 4
Consideration of Spectral Shape

- Considering not only the target $S_a(T_1)$ but also the “target spectral shape” …

Target $S_a = 2.0g$
Consideration of Spectral Shape

- and distinguishing the scaled earthquake records with spectral shapes “most similar” to the target ...
Consideration of Spectral Shape

- Little bias is induced, even at relatively large scale factors:

"Near-Source" Bin, $T=1s$, $R=4$
Consideration of Spectral Shape

- Little bias is induced, even at relatively large scale factors:
Setting M_w, R_{close}, $S_a(T_1)$, and Spectral Shape

2) The M_w and R_{close} that contribute most to the occurrence probability of the target $S_a(T_1)$ can then be found via “banded deaggregation” (a new USGS website):

Prob. Seismic Hazard Deaggregation
Monterey 121.90° W, 36.6 N.
0.3-s or 3.3-Hz SA 0.6 to 0.7 g

$M_w=7.9$, $R_{close}=42\text{km}$

Binning: DeltaR 10. km; deltaM=0.2; deltaa=0.25

2005 version USGS PSHA
3) With the “target” M_w and R_{close}, the median spectral shape can be estimated via an empirical ground motion prediction equation:

San Andreas Scenario: $M_w = 7.9$, $R_{close} = 42$ km
Setting M_w, R_{close}, $S_a(T_1)$, and Spectral Shape

2) The M_w and R_{close} that contribute most to the occurrence probability of the target $S_a(T_1)$ can then be found via “banded deaggregation” (a new USGS website):

- $M_w = 7.9$, $R_{close} = 42\text{km}$, $\epsilon = 1.1$

Prob. Seismic Hazard Deaggregation
Monterey 121.90° W, 36.6 N.
0.3-s or 3.3-Hz SA 0.6 to 0.7 g

Binning: DeltaR 10 km; deltaM=0.2; deltae=0.25

2005 version USGS PSHA
4) With M_w, R_{close}, and $\varepsilon(T_1)$, the expected spectral shape that passes through $S_a(T_1)$ can be calculated:

\[
E[S_a(T) \mid \varepsilon(T_1)] = E[S_a(T)] + \rho[\varepsilon(T_1), \varepsilon(T)] \cdot \sigma[S_a(T)] \cdot \varepsilon(T_1)
\]

From, for example, Baker & Cornell (2005)
In short, it can be important to consider $\varepsilon(T_1)$ in addition to M_w and R_{close} in quantifying the expected (or target) spectral shape:

![Graph showing Spectral Acceleration, $S_a(T)$ vs. Period, T for San Andreas and San Gregorio Scenarios. The graph includes two lines: one for San Andreas (Median) and one for San Andreas (Expected).]
2) The M_w and R_{close} that contribute most to the occurrence probability of the target $S_a(T_1)$ can then be found via “banded deaggregation” (a new USGS website):

Prob. Seismic Hazard Deaggregation
Monterey 121.90° W, 36.6 N.
0.3-s or 3.3-Hz SA 0.6 to 0.7 g
Mean Return Time of Occurrence O(1540) yrs

Cond. Mode $(R,M,e_g) = 42.1$ km, 7.9 1.08 (from peak R,M bin)

Binning: DeltaR 10. km; deltaM=0.2; deltae=0.25
In short, it can be important to consider $\varepsilon(T_1)$ in addition to M_w and R_{close} in quantifying the expected (or target) spectral shape:
More questions (without answers) …

- What about MDOF structures, and real multi-component ground motions? … vector hazard?
- Can we use “risk deaggregation” to defined target ground motion scenarios, even for building code applications?
Additional Slides …
Intra-Bin Scaling for Nonlinear Oscillator

Example …

- **Ground motion scenario**
 - $M_w = 6.5 - 6.9$, $R_{close} = 0 - 16$ km
 - Forward-directivity conditions
 - Strike-normal component
 - NEHRP C or D site classification
 - Shallow crustal event
 - Target $S_a = 2.0g$

- **Structure**
 - SDOF oscillator (e.g., bridge bent, 1-story building)
 - $T = 1$ sec, $\zeta = 5\%$
 - $R = 4$ (i.e., $F_y = \text{Target } S_a \times m / 4$)
 - Bilinear hysteretic behavior with $\alpha = 2\%$

"Near-Source" Scenario
Intra-Bin Scaling for Nonlinear Oscillator

Target $S_a = 2.0g$
Intra-Bin Scaling for Nonlinear Oscillator

31 "Near-Source" Recordings

\[S_a(T, \zeta = 5\%) \] vs. Period, \(T \) [sec]
Intra-Bin Scaling for Nonlinear Oscillator

"Near-Source" Bin, $T = 1s$, $R = 4$

Scaled/Unscaled S_d ($T, \zeta = 5\%$, $R, \alpha = 2\%$)
Intra-Bin Scaling for Nonlinear Oscillator

31 "Near-Source" Recordings

$S_a (T, \zeta = 5\%) [g]$ vs $T [sec]$

Target $S_a = 0.07g$
Intra-Bin Scaling for Nonlinear Oscillator

31 "Near-Source" Recordings

\[S_a (T, \zeta = 5\%) \]

\[S_a \] vs. Period, \(T \) [sec]
Intra-Bin Scaling for Nonlinear Oscillator

"Near-Source" Bin, $T = 1s$, $R = 4$
Intra-Bin Scaling for Nonlinear Oscillator

"Near-Source" Bin, $T = 1\text{s}$, $R = 4$

Scaled / Unscaled S_d ($T, \zeta = 5\%, R, \alpha = 2\%$)

- $SF = 0.1$
- $SF = 2$

Bias = 1.3

Bias = 0.4

$Bias = a SF^b$

$a = 1.00$

$b = 0.38$