\[\ln(D_{0.05-t}) = \ln\left[\left(\frac{\Delta \sigma(M)}{10^{1.5M+16.05}} \right)^{-1/3} \frac{4.9 \times 10^6}{\beta} + Sc_1 + c_2(r - r_e) \right] + \ln\left(\frac{D_{0.05-t}}{D_{0.05-0.75}} \right) \quad \text{for } r > r_e \]

\[\ln(D_{0.05-t}) = \ln\left[\left(\frac{\Delta \sigma(M)}{10^{1.5M+16.05}} \right)^{-1/3} \frac{4.9 \times 10^6}{\beta} \right] + \ln\left(\frac{D_{0.05-t}}{D_{0.05-0.75}} \right) \quad \text{for } r < r_e \]

where: \(D_{0.05-t} = \) Arias Duration (sec) from 0.05 to 1 Normalized Arias Intensity (typically, \(I = 0.95 \))

\(\Delta \sigma = \exp\{b_1 + b_2(M-6)\} \)

\(M = \) Moment Magnitude

\(b_1 = 5.204 \)

\(b_2 = 0.851 \)

\(\beta = 3.2 \)

\(S = 0 \) for rock sites, or \(S = 1 \) for soil sites

\(c_1 = 0.805 \)

\(c_2 = 0.063 \)

\(r = \) closest distance to the effective fault rupture plane in km

\(r_e = 10 \) km

\[\ln\left(\frac{D_{0.05-t}}{D_{0.05-0.75}} \right) = a_1 + a_2 \ln\left(\frac{1-0.05}{1-I} \right) + a_3 \left(\ln\left(\frac{1-0.05}{1-I} \right) \right)^2 \]

\(a_1 = -0.532 \)

\(a_2 = 0.552 \)

\(a_3 = -0.0262 \)

SE = standard error = 0.493 for \(I = 0.95 \)