Option Explicit

Public Function ToDegree(Angle As Single) As Single
ToDegree = Angle / 3.14159 * 180#
End Function

Public Function GetAngle(dx As Single, dy As Single) As Single
If dx >= 0# Then
 If dy > 0# Then
 GetAngle = Atn(dx / dy)
 Else
 GetAngle = 3.14159 - Atn(Abs(dx) / Abs(dy))
 End If
Else
 If dy <= 0# Then
 GetAngle = 3.14159 + Atn(Abs(dx) / Abs(dy))
 Else
 GetAngle = 2 * 3.14159 - Atn(Abs(dx) / Abs(dy))
 End If
End If
End Function

Public Sub DegMinSec(decang As Single, degang As Single, minang As Single, secang As Single)
 degang = Int(decang)
 decang = decang - degang
 minang = Int(decang * 60#)
 decang = decang * 60# - minang
 secang = decang * 60#
End Sub

Public Function ToRad(Angle As Single) As Single
ToRad = Angle / 180 * 3.14159
End Function

Public Sub Traverse()
 Dim Azimuth(1 To 6) As Single, Distance(1 To 6) As Single
 Dim Index As Integer
 Dim X0 As Single, Y0 As Single
 Dim x(1 To 6) As Single, y(1 To 6) As Single
 Dim deltax(1 To 6) As Single, deltay(1 To 6) As Single
 Dim Length(1 To 6), Perimeter As Single, Angle(1 To 6) As Single
 Dim AngleDeg(1 To 6) As Single
 Dim AngleMin(1 To 6) As Single
 Dim AngleSec(1 To 6) As Single
 Dim Bearing(1 To 6) As Single
 Dim NorthSouth(1 To 6) As String, EastWest(1 To 6) As String
 X0 = 1000#
 Y0 = 1000#
 For Index = 1 To 6
 Azimuth(Index) = ActiveCell.Offset(Index - 1, 0).Value
 Distance(Index) = ActiveCell.Offset(Index - 1, 1).Value
 x(Index) = Distance(Index) * Sin(ToRad(Azimuth(Index))) + X0
 y(Index) = Distance(Index) * Cos(ToRad(Azimuth(Index))) + Y0
 ActiveCell.Offset(Index - 1, 2).Value = x(Index)
 ActiveCell.Offset(Index - 1, 3).Value = y(Index)
 Next Index
 Perimeter = 0#
 For Index = 1 To 5
 deltax(Index) = x(Index + 1) - x(Index)
 deltay(Index) = y(Index + 1) - y(Index)
 Length(Index) = (deltax(Index) ^ 2 + deltay(Index) ^ 2) ^ (1 / 2)
 Perimeter = Perimeter + Length(Index)
 Next Index
 deltax(6) = x(1) - x(6)
 deltay(6) = y(1) - y(6)
 Length(6) = (deltax(6) ^ 2 + deltay(6) ^ 2) ^ (1 / 2)
 Perimeter = Perimeter + Length(6)
 Range("A1").Value = Perimeter
 For Index = 1 To 6
 ActiveCell.Offset(Index - 1, 5).Value = Length(Index)
 Angle(Index) = ToDegree(GetAngle(deltax(Index), deltay(Index)))
 Call AzimuthToBearing(Angle(Index), Bearing(Index), NorthSouth(Index), EastWest(Index))
 Next Index
End Sub
Module1 - 2

Call DegMinSec(Bearing(Index), AngleDeg(Index), AngleMin(Index), AngleSec(Index))
ActiveCell.Offset(Index - 1, 6).Value = NorthSouth(Index)
ActiveCell.Offset(Index - 1, 7).Value = AngleDeg(Index)
ActiveCell.Offset(Index - 1, 8).Value = AngleMin(Index)
ActiveCell.Offset(Index - 1, 9).Value = AngleSec(Index)
ActiveCell.Offset(Index - 1, 10).Value = EastWest(Index)
Next Index
End Sub

Public Sub AzimuthToBearing(Az As Single, Br As Single, NS As String, EW As String)
 Select Case Az
 Case Is = 0#
 NS = "N"
 EW = ""
 Br = 0#
 Case Is < 90#
 NS = "N"
 EW = "E"
 Br = Az
 Case Is = 90#
 NS = ""
 EW = "E"
 Br = 0#
 Case Is < 180#
 NS = "S"
 EW = "E"
 Br = 180# - Az
 Case Is = 180#
 NS = "S"
 EW = ""
 Br = 0#
 Case Is < 270#
 NS = "S"
 EW = "W"
 Br = Az - 180#
 Case Is = 270#
 NS = ""
 EW = "W"
 Br = 0#
 Case Is < 360#
 NS = "N"
 EW = "W"
 Br = 360# - Az
 Case Else
 NS = "N"
 EW = ""
 Br = 0#
 End Select
End Sub