Option Explicit
Dim numelements As Integer

Public Function ToDegree(Angle As Single) As Single
 ToDegree = Angle / 3.14159 * 180#
End Function

Public Function GetAngle(dx As Single, dy As Single) As Single
 If dx >= 0# Then
 If dy > 0# Then
 GetAngle = Atn(dx / dy)
 Else
 GetAngle = 3.14159 - Atn(Abs(dx) / Abs(dy))
 End If
 Else
 If dy <= 0# Then
 GetAngle = 3.14159 + Atn(Abs(dx) / Abs(dy))
 Else
 GetAngle = 2 * 3.14159 - Atn(Abs(dx) / Abs(dy))
 End If
 End If
End Function

Public Sub DegMinSec(decang As Single, degang As Single, minang As Single, secang As Single)
 degang = Int(decang)
 decang = decang - degang
 minang = Int(decang * 60#)
 decang = decang * 60# - minang
 secang = decang * 60#
End Sub

Public Function ToRad(Angle As Single) As Single
 ToRad = Angle / 180 * 3.14159
End Function

Public Sub Traverse()
 Dim Azimuth(1 To 6) As Single, Distance(1 To 6) As Single
 Dim index As Integer
 Dim X0 As Single, Y0 As Single
 Dim x(1 To 6) As Single, y(1 To 6) As Single
 Dim deltax(1 To 6) As Single, deltay(1 To 6) As Single
 Dim Length(1 To 6), Perimeter As Single, Angle(1 To 6) As Single
 Dim AngleDeg(1 To 6) As Single
 Dim AngleMin(1 To 6) As Single
 Dim AngleSec(1 To 6) As Single
 Dim Bearing(1 To 6) As Single
 Dim NorthSouth(1 To 6) As String, EastWest(1 To 6) As String
 Dim area As Single
 X0 = 1000#
 Y0 = 1000#
 numelements = 6
 For index = 1 To numelements
 Azimuth(index) = ActiveCell.Offset(index - 1, 0).Value
 Distance(index) = ActiveCell.Offset(index - 1, 1).Value
 x(index) = Distance(index) * Sin(ToRad(Azimuth(index))) + X0
 y(index) = Distance(index) * Cos(ToRad(Azimuth(index))) + Y0
 ActiveCell.Offset(index - 1, 2).Value = x(index)
 ActiveCell.Offset(index - 1, 3).Value = y(index)
 Next index
 Perimeter = 0#
 For index = 1 To numelements - 1
 deltax(index) = x(index + 1) - x(index)
 deltay(index) = y(index + 1) - y(index)
 Length(index) = (deltax(index) ^ 2 + deltay(index) ^ 2) ^ (1 / 2)
 Perimeter = Perimeter + Length(index)
 Next index
 deltax(numelements) = x(1) - x(6)
 deltay(numelements) = y(1) - y(numelements)
 Length(numelements) = (deltax(numelements) ^ 2 + deltay(numelements) ^ 2) ^ (1 / 2)
 Perimeter = Perimeter + Length(numelements)
 Range("A1").Value = Perimeter
 For index = 1 To numelements
 ActiveCell.Offset(index - 1, 4).Value = ToRad(Azimuth(index))
 Next index
End Sub
ActiveCell.Offset(index - 1, 4).Value = Length(index)
Angle(index) = ToDegree(GetAngle(deltax(index), deltay(index)))
Call AzimuthToBearing(Angle(index), Bearing(index), NorthSouth(index), EastWest(index))
Call DegMinSec(Bearing(index), AngleDeg(index), AngleMin(index), AngleSec(index))
ActiveCell.Offset(index - 1, 6).Value = NorthSouth(index)
ActiveCell.Offset(index - 1, 7).Value = AngleDeg(index)
ActiveCell.Offset(index - 1, 8).Value = AngleMin(index)
ActiveCell.Offset(index - 1, 9).Value = AngleSec(index)
ActiveCell.Offset(index - 1, 10).Value = EastWest(index)
Next index
Call CalcArea(deltax, y, area)
Range("A2").Value = area
End Sub

Public Sub AzimuthToBearing(Az As Single, Br As Single, NS As String, EW As String)
Select Case Az
Case Is = 0#
 NS = "N"
 EW = ""
 Br = 0#
Case Is < 90#
 NS = "N"
 EW = "E"
 Br = Az
Case Is = 90#
 NS = ""
 EW = "E"
 Br = 0#
Case Is < 180#
 NS = "S"
 EW = "E"
 Br = 180# - Az
Case Is = 180#
 NS = "S"
 EW = ""
 Br = 0#
Case Is < 270#
 NS = "S"
 EW = "W"
 Br = Az - 180#
Case Is = 270#
 NS = ""
 EW = "W"
 Br = 0#
Case Is < 360#
 NS = "N"
 EW = "W"
 Br = 360# - Az
Case Else
 NS = "N"
 EW = ""
 Br = 0#
End Select
End Sub

Public Sub CalcArea(dx() As Single, y() As Single, area As Single)
Dim index As Integer, incarea As Single
area = 0#
For index = 1 To numelements - 1
 incarea = (y(index) + y(index + 1)) / 2 * dx(index)
 If dx(index) > 0# Then
 area = area + incarea
 Else
 area = area - incarea
 End If
Next index
incarea = (y(1) + y(numelements)) / 2# * dx(numelements)
If dx(numelements) > 0# Then
 area = area + incarea
Else
 area = area - incarea
Else
Module1 - 3

 carea = carea - incarea
 End If

End Sub