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EXECUTIVE SUMMARY

Public Transit is a critical component of Tennessee Department of Transport’s (TDOT) Long-
Range Transportation Plan. The demographic data and trends in the state of Tennessee point to
a potential increase in need for public transit services in cities and rural communities. The role of
TDOT in providing the mobility and accessibility options to the residents, especially captive riders,
is critical for the future quality of life and economic competitiveness of Tennessee. Also, the trend
of increased percentages of household income spent on transportation and increased commuting
distances are going to be major contributing factors behind increased transit demand in the future.
This study aims to identify potential demand for transit services, in urban and rural areas, in the
context of “captive ridership” and develop a methodology that will assist TDOT to monitor such
transit needs and examine the provision of transit services in a cost-effective manner. This
research will be crucial in identifying areas in needs of service, developing a methodology to
address the accessibility and mobility issues and formulating a cost-effective plan to provide
transit services. The results can be potentially tied to the Tennessee statewide mobility report.

First, transit connectivity of urban areas is determined. The three major cities considered are
Knoxville, Memphis, and Nashville. Transit connectivity is a multidimensional problem involving
various service quality factors that include walking distance, in-vehicle travel time, waiting time,
number of destinations served and number of transfers to reach destinations. Further adding to
this complexity is (usually) the high number of available routes with distinct characteristics within
a network. Based on network graph properties, this paper proposes connectivity indices at stop,
route, and zonal level by considering various factors such as speed, frequency, operational
capacity, fare, route origins and destination, and urban form characteristics that serves the transit
system. The connectivity indices are applied to three metropolitan cities (Knoxville, Memphis, and
Nashville) of Tennessee by using open access Generalized Transit Feed Service (GTFS) data.
The models and data processes developed in this paper can be used to (i) determine the
performance transit system with no additional data purchase, (i) use of transit performance
measures along with other data sources (such as vehicle ownership, income etc.) to assess future
service needs, (iii) use of geographic information systems capabilities to disseminate transit
performance measures for potential future users, and to further induce demand, and (iv) seamless
re-estimation of transit performance measures both in alternate dimensions of time and space.
Further, the transit connectivity measure is used to determine equity by various socio-economic
factors such as household income, vehicle ownership, employment, and population. Transit
connectivity equity is estimated by the GINI index. All three cities have both strengths and
weaknesses in serving the captive riders when various socioeconomic factors are considered.
For instance, Knoxville provides more equitable transit service when household income is
considered, while Memphis based on population, and Nashville based on vehicle ownership.

Second, mobility and transit access of rural areas are determined using demand response transit
(DRT) service data using count data models. A hybrid dataset was prepared that include DTR
trips at zip-code level along with various socio-economic and demographic data. A set of count
models were developed including Poisson, negative binomial, zero inflated Poisson, zero inflated
negative binomial, hurdle Poisson, hurdle negative binomial, and zero-inflated negative binomial
mixed effect. DRT trip forecasting model is validated with 20% of the data not used for model
training. Further, elasticity of variables is determined to assess the importance of various factors’
influence on rural transit and mobility needs.

viii



CHAPTER 1: INTRODUCTION

Past studies have shown that the needs for transit services among vulnerable groups are higher
than average (Grengs, 2002). Income is directly related to such service needs, as lower
household income indicates higher potential to limited or zero car ownership, which in turn,
suggests higher need for transit (captive demand). In this context, federal and state agencies are
urged to focus on providing access to transit resources for such individuals, which frequently
belong to vulnerable population groups (e.g., minority or low-income citizens). Major public and
private facilities that provide personal and professional services are commonly located within
urban boundaries. Employment centers, educational institutions, medical facilities, as well as
retail and entertainment venues are some examples. Captive riders have fewer travel choices
and increased transportation barriers to such locations and the challenge is to determine: (i) the
number of people in a given geographic area likely to require passenger transportation services
as well as (ii) the number of trips likely to be made by those persons if they had minimal limitations
on their personal mobility.

1.1 Urban Transit

Many measures of transit service and accessibility have been put forth in the literature, but few
offer a metric to measure the quality of service and performance of a large multi-modal regional
transit system. The literature that does purport to offer such insight requires significant amounts
of data not only about the transit system, but also of the complete demographics of the service
area (Modarres, 2003). Other methods require a full transportation demand and transit
assignment models, tools that are prohibitively expensive for many localities (Lam & Schuler,
1982).

Measuring transit system performance and the level of service at many different levels is vital to
funding decisions (Dajani & Gilbert, 1978). Agencies with the objective to improve the transit
system using external funds must make the case that the project will be a worthwhile improvement
to the system. At the same time, agencies interested in investigating the potential effect of
removing a stop, group of stops or transit line from service must know the potential effect it will
have on the performance of the system. In the absence of complex transportation demand
models, this information is nearly impossible to obtain (Baughan et al. 2009). A methodology that
reduces the need for large amount of data, yet provides essential information on system
performance is critical to the decision-making process. A simple, yet comprehensive, measure
will be the determination of transit connectivity index. Beyond Transit Oriented Development
(TOD) style plans, the connectivity index provides a way for planners to measure passenger
acceptance rates and accessibility for a single node based on its access within an entire multi-
modal regional transportation network.

A transit network represents complex interactions of nodes (stops), and links (routes) with unique
characteristics serving various origins and destinations. Headway, frequency, speed, and
capacity are critical terms that define the characteristics of a stop or transit route. The evaluation
of transit supply and demand requires a systematic representation of all the network elements
(e.g., stop, route features) and service level (e.g., headway, capacity, fare) characteristics. A
number of performance measures are available in the literature including degree centrality,
eigenvector centrality, closeness centrality, betweenness centrality, etc. However, such
measures only consider network level characteristics and often ignore service level
characteristics. This study proposes a transit connectivity measure that captures basic graph
theoretic properties of the network and in addition uses a connecting power of individual stops
serving each route in the system. Further connectivity measure is proposed at stop, route and



zone level to provide a both micro and macro level performance of the transit system. Equity of
transit connectivity is analyzed by GINI index. Equity of transit connectivity is determined using
various socioeconomic data including household income, vehicle ownership, employment, and
population groups. Both the transit connectivity and equity measures were computed using open
access General Transit Feed Specification (GTFS) data, and census data. Transit connectivity
and equity of three metropolitan cities (Knoxville, Memphis and Nashville) in Tennessee (TN) are
analyzed and the findings are discussed.

1.2 Sub-urban and rural Transit

In rural areas, captive riders need to travel towards (sub)urban areas for financial, health,
shopping and other needs. Such travel needs are crucial and unavoidable in most cases. This is
because sub(urban) areas contain major public and private facilities for personal and professional
services. With greater transit needs and fewer travel choices per capita, public transit is an
important mode of transportation for rural residents who do not own or operate a car, albeit they
do not have immediate access to private transportation or they are bound to use public
transportation in order to meet their travel needs. In rural areas, travel demand density is lower
and more dispersed, diminishing the effectiveness of traditional forms of fixed route bus-based
public transport systems. Because of the low population density and dispersed origins and
destinations, rural transit services usually have a very low fare box recovery rate, which results in
abandonment of fixed route public transports after short period of operation. Alternatively, demand
response transit (DRT) systems in rural areas can be more cost-effective by reducing frequencies
and providing smaller vehicles. DRT service can adapt the changes in demand by either shifting
its timetable and/or altering its route. The fare charged is very low or free depending on passenger
socioeconomic characteristics and the route being served. In many places, DRT remains an
effective service which may only be available for specific groups of users like the elderly and/or
mobility impaired. However, certainly there are other user groups who need DRT for non-
discretionary trips.

Planning a new service demands the assessment of the ‘user needs’. Davison et al.(2014)
showed DRT as the most cost effective way of ensuring the transit of rural communities without
a conventional bus service. Enoch et al. (2006) evaluated DRT service in the rural area, but did
not focus on demand distribution. This indicates a need of study to identify what destinations are
essential for rural residents, as well as how the frequently rural residents will access these
services.

In this research effort, the objectives are to identify transit demand in rural areas, exploring socio-
economic and demographics patterns on DRT, and develop a method to assist state Departments
of Transportation (DOTs) and transit providers to identify where transit connections and
investments should be made. In this context, the authors have assembled a comprehensive
dataset for analyzing DRT trip frequency, and developed count models to explore the effects of
potential factors on DRT trip frequency.

The methodology is based on census data and data collected from travel agencies providing
demand-response service in rural area of Tennessee. The census data record demographic
characteristics, household attributes, etc. The travel data record comprises of trip attributes such
as origin and destination region, ZIP Code, County, and trip purpose. Details of these travel diaries
along with the demographic characteristics such as age, gender, relationship in household,
vehicle ownership, employment type, household size and structure, and household income are
available for predicting the travel demand patterns for new modes of transportation.

1.3 Objectives and Report Organization
The primary objectives of this project are to:



e provide an extensive review of current and past literature from other public and private
sources on providing transit services to sub-urban and rural areas

o develop a methodology to address the accessibility and mobility issues in rural and
suburban areas

¢ determine the urban locations (or destinations such as schools, hospitals, shopping
malls, etc.) which are essential for rural residents and are visited frequently

o formulate a cost-effective plan to provide transit services to the suburban and rural
residents by coordinating the regional transit services

¢ develop a needs assessment matrix that TDOT can utilize for long-term planning and to
provide desired level of accessibility and mobility to the captive riders.

The rest of the report is organized as follows. Chapter 2 presents the literature review urban transit
connectivity and rural transit mobility access. Chapter 3 discusses data requirement found in the
literature and briefly introduces the reader to the data sources used in this research. Chapter 4
presents methodology and analyses result of urban area transit connectivity. Chapter 5 describes
methodology for modeling DRT trips. Chapter 6 concludes the report with summary of findings
and proposes scope of future research.



CHAPTER 2: LITERATURE REVIEW

The relevant studies on accessibility and mobility issues and captive ridership in urban, suburban,
and rural areas are discussed in this chapter.

2.1 Connectivity in Urban Transit Networks

Measures of transit connectivity are significant in transportation planning, in the context of overall
system performance, as well as for distinct system parts evaluation. Such measures provide a
consistent basis for rationalizing public spending through identifying the critical (in terms of
connectivity and general mobility) parts of the transit network, and for developing service
strategies (Sarker, Mishra, Welch, Golias, & Torrens, 2015). From a different perspective, an
agency might be interested in evaluating the potential effect on the overall performance of the
transit system, when removing a single or multiple stops or even a whole transit line from a
network and so forth. Thus, measuring system performance at various levels (e.g., node, link or
line) is vital for supporting such decisions. TDOT has been strongly motivated to improve the
quality of life throughout the State, by improving connectivity of its transit system and the mobility
options, aiming to provide viable alternatives to the single occupancy vehicles (SOV). In this
direction, TDOT’s Transportation Demand Management (TDM) Programs aim to “increase travel
by alternative modes and at alternative times to reduce total trips, reduce congestion, and
decrease the use of single-occupant modes” ( Tennessee Department of Transportation (TDOT),
2015). In the following paragraphs of this section, we present pertinent literature that is related to
service provision to urban, suburban, and rural areas as well as methods for evaluating
connectivity of transit networks in the context of providing the decision maker with investment
decision tools.

2.1.1 Critical Transit Network Elements Assessment

The authors have reviewed literature on accessibility and mobility issues and captive ridership in
urban, suburban, and rural areas. The review includes published journal articles, past research in
Tennessee, as well as in other states in order to decide which data is the most appropriate for the
specific study needs and to provide a methodological framework that will allow transit agency
officials and decision makers to easily identify critical investment locations. As past research
indicated, destinations of interest are well connected while origins in certain cases are not. The
cornerstone of this study has been to combine transit network connectivity performance measures
(of various levels like node, link, etc.) with socioeconomic data (such as household income, car
ownership, etc.) in order to locate critical areas with low connectivity and increased captive
ridership, that may serve as potential generators of transit demand. Past literature on transit
network performance can be grouped into two main categories: (i) rural/intercity transit related
studies and (ii) urban transit related studies. A concise review of past work is presented for both
categories in the following paragraphs.

Yang and Cherry (2012), examined the characteristics of intercity bus riders (trips between 30
and 170 miles) and proposed methods for service gap identification and network investment
(expansion) prioritization. The study concluded that while bus stations are well connected to
destinations, they are poorly connected to demand locations. Yang (2013), studied the rural transit
rider characteristics and proposed an Intercity Bus (ICB) system evaluation method as well as
route design directions for Deviated Fixed Route Transit (DFRT) services for the State of
Tennessee. The study found that DFRT and DRT passengers are likely to be female, of minority
races, of low personal/household income and low or zero car ownership, etc. The author also
proposed a methodology for locating high ICB demand areas and for ICB proper stop design,
suggesting that stops should be located in areas with high population density (since those were



identified as high demand areas). The study also proposed a methodology for cost
effective/optimum design rural DFRT network. Yang et al.(2016), presented a methodology to
model trip generation and proposed an optimal (DFRT) route(Yang et al., 2016). To fit the data,
they developed a zero-inflated negative binomial regression model that was later used to estimate
trip generations in other parts of the state. They then proposed a methodology to identify all
possible DFRT routes and selected the optimum ones by generating an operating cost per
passenger dataset for routes of different length in order to cost-effective routes. The modeling
framework was applied throughout the state of Tennessee.

In 2010, Park and Kang (2010) developed a quantitative model for multimodal urban transit
network connectivity evaluation. Selecting length, speed, and capacity as measures of a transit
line’s efficiency, they then defined its connecting power as the product of those measures for
Centrality and Connectivity are available in the literature (Ahmed et al., 2005; Bell, Atkinson, &
Carlson, 1999; Bonacich, 2007; Bonacich & Lloyd, 2001; Carrington, Scott, & Wasserman, 2005;
Estrada & Rodriguez-Velazquez, 2005; Freeman, 1978; Garroway, Bowman, Carr, & Wilson,
2008; Guimera, Mossa, Turtschi, & Amaral, 2005; Junker, Koschitzki, & Schreiber, 2006; Liu,
Bollen, Nelson, & Van de Sompel, 2005; Martinez, Dimitriadis, Rubia, Gbmez, & De La Fuente,
2003; Moore, Eng, & Daniel, 2003; Newman, 2004; Ruhnau, 2000) . Degree of centrality, as
defined for social networks, was then appropriately modified to suit transit networks. The study
finally derived connectivity indices for transit stops and from them, a connectivity index of the
transit line under study as well as of the area of a multimodal transit network. This approach was
the first to correlate transit characteristics with a connectivity index (Park & Gang, 2010). Welch
and Mishra (2013) proposed a methodology to quantify and evaluate transit equity (i.e., provision
of transit services in the fairest and least possible discriminatory manner and according to the
relevant directives of 1964 Civil Rights Act). The proposed estimates were designed to offer a
“before & after” evaluation of equity, as in cases where an agency is interested in making changes
to the transit system. They further introduced an Inequality Index, as a measure of the distribution
of transit services quality among the population. The proposed methodology could be useful for
transit and relevant transportation agencies, to measure the distribution of transit services among
specific population groups in order to provide better access to groups that need transit services
the most (i.e., captive riders). From a graph theoretical approach, transit networks have different
characteristics than road networks. While a link in a road network is a physical segment that
connects adjacent nodes, a link in a multi-modal network is a part of a transit line that serves a
sequence of transit stops (nodes) and since a stop can be served by multiple transit lines, multiple
transit links (Welch & Mishra, 2013) may cross each stop. Mishra, Welch, and Jha (2012),
proposed a graph theoretical approach to evaluate connectivity and assess and prioritize potential
locations for transit service funding (Mishra, Welch, & Jha, 2012). The proposed approach aimed
to determine the performance of large scale, multi-modal, transit networks and suggested a
methodology that formulates connectivity indices as evaluation measures for nodal, line, transfer
center, and regional level. Those indices incorporate unique transit line qualities (as opposed to
the connectivity indices derived for social networks) and accessibility measures in order to provide
a more solid evaluation for transit systems. In a similar concept publication, Mishra et al., (2015)
presented a visualization tool for stops, routes and transfer zones connectivity of a multimodal
transit network (Mishra et al., 2015). This approach was extended by Sarker et al. (2015) to
evaluate transit connectivity through a unique connectivity index, using GTFS data. Table 1
presents formulations on centrality measures in social networks and transportation found in the
relevant published literature.

Chakraborty and Mishra, (2013) indicated that land use, socioeconomic variables, and transit
ridership are strongly connected. They found that land use type, transit accessibility, income, and
density are strongly significant predictors of transit ridership even if their coefficients may vary



across urban, suburban, and rural areas. In their study, they developed a framework to assist
decision making at higher planning (i.e., State level), which, according to the authors, is the only
option in capturing and eliminating possible interdependencies, due to local interests and biases.
The key measure of the approach is transit ridership, which, under different agency
choices/scenarios, is then projected in future. Using two scenarios (Business as usual and high
energy prices) the study shows how a state agency can consider multiple choices in making
decisions.

The TCRP Report 161 (Vanasse Hangen Brustlin et al., 2013), provides planners with a
methodological framework for assessing the need for public transit services within a geographic
area, as well as the potential annual demand of such a transit service. The methods described in
TCRP 161 (Vanasse Hangen Brustlin et al., 2013) are applicable for rural counties assessment
(and in cases where the area under study is not currently served by passenger transportation),
and are not intended for specifying the needs and potential demand of individual routes or
neighborhoods. In 2015 and from a similar perspective RSG prepared for Federal Transit
Administration (FTA) a software package called STOPS (i.e., Simplified Trips-On-Project
Software). STOPS is a series of programs developed to estimate transit ridership through a set
of estimation procedures which skip the process of time-demanding and complex Regional Travel
Demand Forecasting Modeling. While similar to regional models, STOPS is much simpler as it
estimates total origin-to destination data from census data rather than trip generation and
destination modeling procedures, does not require detailed transit network development in the
planning environment as transit levels of service are derived form timetable information, the model
is self-calibrated to represent current conditions (RSG, 2015).

2.1.2 Transportation Equity

An equitable transit system can cater to the needs of captive riders and maximize transit service
coverage and all federal agencies must distribute federal resources equitably in such a way as to
provide services in the fairest and least discriminatory manner. Typically, two definitions of equity
are in use: vertical and horizontal. In the context of transit vertical equity (perhaps the broadest
definition), indicates that those paying the most should receive the most benefit. On the other
hand, horizontal equity is concerned with the equal treatment of those with equal means. Equity
is difficult to quantify in many transportation applications, but emerging methods aim to include
equity explicitly (and qualitatively) in the transportation planning process (Bills, Sall, & Walker,
2012; Joshi & Lambert, 2007).

2.2 Demand Responsive Transit Service in Rural Areas

Over the decades, DRT has developed as one of the most effective methods to provide
transportation services to captive riders in rural areas. Many relevant studies in this area examine
the effectiveness of DRT and explore the social and economic factors affecting transit trips.
Bakker (1999) explained paratransit (DRT) as a “transportation option that falls between private
car and conventional public bus services. It is usually considered to be an option only for less
developed countries and for niches like elderly and disabled people”. Ambrosino et al. (2004)
described DRT as an “intermediate form of transport, somewhere between the bus and taxi, which
covers a wide range of transport services, ranging from less formal community transport through
to area-wide service networks”. Wang and Winter (2010) showed that DRT has the potential to
solve the challenges of the public transportation in low density urban areas. Braun and Winter
(2009) have demonstrated that the collaborative transport can effectively solve classical transport
planning problems in real-time. Ad-hoc DRT does not have pre-defined schedules and flexible
routes but provides point-to-point transportation by reacting on demand in real-time. The fare of
DRT is usually very low compared to taxis as it offers shared forms of transport and in some cases
government subsidized costs. On the other hand, DRT has a long list of failure cases around the



world. Enoch et al.(2006) listed several cases of DRT failed projects along with lessons that each
provides. Their findings on the cause of DRT projects failure is that DRT often were not realistically
designed with a full understanding of the demand of serving area and proper future plan. In many
places, DRT cost is subsided by government considering this as a service for captive and low-
income travelers and performance metrics should focus on the effectiveness as a social service.

Paratransit microsimulation patron accessibility analysis tool has been developed by LaMondia
and Bhat (2010) by combining paratransit trip data with census data to explore variables
associated with paratransit trips in Brownsville, Texas. From the analyses of the data, the authors
revealed that paratransit trips are higher in census block groups with larger population, older
populations, larger households, and close proximity to fixed route transit. TCRP Report 161
(2013) developed a model for forecasting transit demand for general public , non-program related
services based on 2009 rural National Transit Database (NTD). This model proposed that the
demand can be forecasted based on the size of the demographic groups such as the older adults,
people with disabilities, and people without access to a vehicle because they are the dominant
riders of these services according to 2009 rural NTD data. The demand model with estimated
coefficients is as follows:

Non-program Demand (trips per year) = (2.20 x Population Age 60+) + (5.21 x Mobility Limited
Population age 18-64) + (1.52 x Residents of Household Having No Vehicle)

TCRP 161 (2013) also recommended demand model for program related trips. These trips are
only produced with the existence of a specific social-service program or activity. The developed
models for program trips is given bellow:

Number of Program Participants x Program Events per Week x the Proportion of Program
Participants who attend the Program on an Average Day x the Proportion of Program Participants
that are Transit Dependent or Likely to Use the Transit Service provided/funded by the Agency x
the Number of Weeks per Year the Program is Offered x 2 (trips per participant per event)

TCRP 161 (2013) also developed models for estimating demand for small city fixed-route service,
where population is less than 50,000 and commuter transit from a rural area to an urban center.
The main significant factors were revenue hours of service provided, population of service area,
and college/university enrollment. In addition, the number of workers commuting, the commute
distance, and if the urban place is a state capital have been used to estimate commuter trips of
the proportion of workers using transit. Simple regression models have been developed for
estimating ridership based on service characteristics of DRT service providers and demographic
characteristics for rural demand response transit service (Mattson, 2017). He explored potential
service characteristics as geographic coverage, span of services, fares, reservation
requirements, and demographic characteristics as percentage of the population comprised of
older adults or people without access to a vehicle etc. Multilevel models were developed to
examine the effects of DRT supply-oriented factors and socio-economic attributes to estimate the
demand for DRT services. The models predict that DRT users are higher in areas with higher
levels of poverty, lower car ownership, lower population density, lower proportion of people
working from home (C. Wang, Quddus, Enoch, Ryley, & Davison, 2014). Lerman et al. (1980)
identified that vehicle ownership is negatively associated with service coverage of DRT. From a
study of DRT services in Belgium, it was found that female, retired, homebound persons, and
students are dominant users of DRT ( Mageean & Nelson, 2003). A report from Active Age
(solution for an ageing society) (2008) showed that DRT reduces the dependency on private
vehicles and can be used to support mobility of disabled riders. Female and retired persons are
identified as more than 50% of the users of DRT services from another study of DRT services in
Tyne and Wear in the UK (Nelson & Phonphitakchai, 2012). Yang and Cherry (2017) studied the
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rural transit rider characteristics of Deviated Fixed Route Transit (DFRT) and DRT services for
the State of Tennessee. The study found that DFRT and DRT passengers are likely to be female,
of minority races, of low personal/household income and low or zero car ownership, etc. The
Telebus Mobility and Access Benefits Project was done by Maddern and Jenner (2007) in
Melbourne, Australia and they revealed that people aged 15-24 years and over 55 years were
74% of the DRT Telebus users and 31% passengers used the service for shopping purposes.
They also conclude that 78% of passengers had no driving license and 74% of users are female.

A DRT demand model was developed by Nguyen-Hoang and Yeung (2010) at the national level
in the U.S. They identified that disabled and elderly people are positively related to the unlinked
passenger trips but poor households decrease the demand for unlinked passenger trips.
Methodologies for paratransit service demand and a new tool for forecasting demand for
transportation-disadvantaged services has been developed by Goodwill & Joslin (2013).
Paratransit service demand can be estimated based on data from 2009 National Household
Travel Survey by calculating trips rate for households without access to a vehicle. People with
disabilities, older adults, children defined as “high-risk” or “at-risk,” and low-income persons are
defined as transportation-disadvantaged (TD) population according to this study. Kattiyapornpong
and Miller (2006) revealed that passenger’s travel decisions were significantly influenced by the
potential demographic characteristics such as income, age, and life cycle . They also found that
the travelers aged 20 to 24 years are different in their travel behavior, and the short trip planning
behavior is closely associated with the income and life stage interaction, and the income and age
interaction. In addition, Piatkowski and Marshal (2015) and Jain et al.(2017) point out that various
socio-economic characteristics and trip characteristics of travelers affect travel behavior. TCRP
(1995) and TCRP (2004) studies found the elderly, mobility limited, and those on low incomes as
potential markets for DRT in rural areas. Enoch et al.(2006) found target markets for DRT: people
who cannot access public transport, people without personal transport, unemployed people,
single pension households, individuals with a limiting long-term illness, ethnic minority
households, and people aged 14-19 years. The various demographic characteristics of the
population and trip characteristics affect the travel decisions.

2.3 Literature review summary

From the review of previous studies, it can be understood that majority of models developed for
DRT demand are specific to certain user groups like elderly or disable. But the prediction of DRT
trip frequency that is dependent on various factors has not been addressed. This research intends
to review all those identified potential variables affecting DRT ridership, identify new variables and
build and compare a comprehensive set of statistical models to predict future traffic trends of
DRT. According to our knowledge, this is the first such comparison of a comprehensive set of
statistical models predicting DRT trip frequency.

Next chapter will describe the data which was used for this study and the data source, collection
method, and its cleaning procedure.



CHAPTER 3: DATA COLLECTION

Data requirements for transit network assessment differ, depending whether the focus is on urban
or rural areas. Two primary sources of data are used for determining transit connectivity measures
in urban areas: (i) GTFS data for transit network characteristics, (ii) Tennessee socio-economic
data from census, and Tennessee statewide transportation travel demand model. On the other
hand, ACS data and DRT service data are used to develop statistical model for rural areas. In the
following paragraphs the reader will be briefly introduced to the data types that have been selected
and used for the specific project.

3.1 Urban Areas - GTFS Data

GTFS data for the cities of Nashville, Memphis, and Knoxville urban areas, was requested by the
relevant transit authorities and has been analyzed in order to generate transit connectivity
thematic maps (in ArcGIS environment). GTFS data is a standardized transit data format that
incorporates public transit schedules and transit associated geographic data (transit stops, routes,
etc.) To analyze the given datasets in the context of connectivity, as described earlier in the
literature review, a code has been developed in R environment enabling data processing in order
to monitor performance at node, line, transfer center, and zone level. The result of this type of
analysis was the generation of shape files illustrating routes (and route stops) colored and sized
accordingly to account for the level of connectivity that they provide. More on GTFS data is
provided in Appendix A through D.

3.2 Urban Areas - Tennessee Traffic Analysis Zone (TAZ) Statewide model data

As mentioned in the literature review, captive ridership is correlated with low income, low or zero
car ownership, etc. Tennessee TAZ Statewide model was used to indicate TAZs that are more
likely to generate such transit demand (i.e., TAZs with low household income or low car ownership
levels etc.). Combining the results of this data analysis along with GTFS data, comprehensive
thematic maps were created to support the visualization of areas most likely to produce transit
demand, because of the existence of potential captive riders.

3.3 Rural Areas — American Community Survey (ACS) data and DRT service data

The data for the empirical analysis was compiled from three different data sources which are
shown in figure 3-1. DRT services provided in the state of Tennessee are considered as the case
study in this research. All DRT trip occurrences for the year 2012 were collected from Tennessee
Department of Transportation (TDOT). Each trip record includes trip attributes such as origin and
destination ZIP Code, County, and trip purpose. The data is provided by TDOT is at the ZIP Code
level to maintain anonymity of the traveler. For each DRT trip corresponding demographic data
was collected from American Community Survey (ACS) for each of the ZIP Codes in Tennessee.
The demographic characteristics include age, gender split, vehicle ownership, household size
and structure, household income etc. Combining socio-economic data for each of the ZIP Codes
from ACS 2011 with DRT trip data, a comprehensive dataset was developed. Further, service
variables such as distance and travel time between ZIP Codes are determined using shortest
path method and added to the dataset. All the trips from a specific origin ZIP Code to a destination
ZIP Code have been accumulated to find total trip count for that pair. The final dataset contains
number of trips between two ZIP Codes, the origin and destination ZIP Codes along with DRT trip
features, socio-economic and demographic characteristics, and level of service measures.
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Figure 1: Data components.

Demographic data attributes of ZIP Codes are expected to be correlated to each other. To avoid
multicollinearity problem, a correlation matrix is calculated consisting all continuous independent
variables and one of the two highly correlated variables were dropped for inclusion in the final
model dataset. There are total 640 ZIP Codes in the state of Tennessee which creates a total of
409,600 (640*640) origin-destination pairs. The number of trips produced from each ZIP Code to
another ZIP Code is almost equal to the number of trips attracted by each ZIP Code from another
ZIP Code. This is because almost all the trips reported in the travel diaries are round trips. Hence
only production trips are considered for our study and a total of 205,120 (640*641/2) observations
were found. By eliminating missing data for DRT trips, 185,500 records were kept for further
analysis. 148,454 observations (80%) are used in model training and 37,046 (20%) observations
are used for model validation.

In the next chapter, we will discuss about the data analysis, methodology, and result of urban
transit study.

10



CHAPTER 4: METHODOLOGY AND RESULT-URBAN AREAS

4.1 Node and Line Connectivity

For the purposes of this study, data analysis has been based on the concept of connectivity index
as described in the study of Welch and Mishra (2013). Instead of measuring connectivity as the
transit frequency to a specific stop, Mishra et al (2012), addressed the shortcomings of this
measure by developing a Node Connecting Power that considers information such as the
opportunities accessible by transit, the time it takes to reach those opportunities, or the ability to
transfer to different routes and modes to reach a broader array of activities. In a brief, the measure
uses frequency, speed, distance, capacity, required transfers, and activity density of the
underlying land use served by a transit node, for all modes including buses, light rail, bus rapid
transit, and other similar transit facilities. The inbound and outbound connecting power of a transit
line (on a specific node n) can be defined as follows:

|:)IC,)n:GCI xBV, XVDI?nstI,nx (PTI,n 4.1)
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where C; is the average vehicle capacity of line |, F; is the frequency on line | (60 is divided by F;
to determine the number of operation per hour), H is the daily hours of operation of line I, V, is the
speed of line |, and D7, is the distance of line I, from node n to the destination. Parameters: a is
the scaling factor coefficient for capacity which is the reciprocal of the average capacity of the
system multiplied by the average number of daily operations of each line, B is the scaling factor
coefficient for speed represented by the reciprocal of the average speed on each line, and y is
the scaling factor coefficient for distance which is the reciprocal of the average network-route
distance and 6 and ¢ are scaling factors. A, is the activity density which represents the
development pattern (as a ratio of households and employment in a zone to the unit area) based
on both land use and transportation characteristics and incorporates the quantity of opportunities
accessible at each node in the system. Activity density is defined as:
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where, Hznis the number of households in zone z, Enis the number of jobs, and @, is the area
of zone z.

The node connectivity inde, is then defined in to measure the aggregate connecting power of
all lines, accessible to a given node:

YPi
Tl,n= ®|n -

The total connecting power of a line, is calculated as the sum of the averages of inbound and
outbound connecting powers for all transit nodes on the line (equation (4.5)) scaled by the number
of stops (Si) on each line. The line connectivity can be defined as:

(4.4)
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This approach of connectivity was incorporated in a code developed in R, using as inputs GTFS
and activity density data. Through processing, shape files that store connectivity related data of
transit nodes and lines were generated. These files were combined with shape files containing
socioeconomic data (at a TAZ level), and are, briefly, analyzed in the next section, in order to
develop thematic maps that can depict both network connectivity and TAZs that may host
potential captive riders.

4.2 Transit Catchment and Accessibility

To determine accessibility to transit stops transit catchment is defined as the buffer distance
around a housing unit (e.g., half mile) in which at least one transit stop may or may not exist.
Using this definition, a distance decay function may be formulated in order to the connectivity of
transit nodes within these catchment (Euclidian) distances, of each housing unit (based on the
centroid of a residential parcel in which they are concentrated). Equation (4.6) is used to calculate
the pro-rated connectivity of a station within the catchment area.

pZ1‘n=axe'bth1'” (4.6)
where, pz1,n is the pro-rated connectivity, a and b are the parameters (based on empirical data)
of pro-rated connectivity and th1»is the walk time to travel from housing unit h; to node transit stop
n. For nodes outside the catchment p,1, » takes a value of zero. To obtain the connectivity index
of a zone, the connecting power of each node in the catchment area is scaled by the number of
transit nodes within the catchment area of each zone, and summed afterwards. Thus, a zone in
a very dense transit area is made comparable to a zone in a less dense area. Connectivity index
for a zone is given by equation (4.7):

82=(Sul-1) ) Pin(py, 1) (4.7)

4.3 Inequity Index

Inequity is a measure of the geographic concentration of a certain phenomenon (commonly used
to describe the distribution of income among populations. The most common measure for this
inequity is the GINI index, used to estimate the distribution of wealth among a population. The
index measure is the difference between a perfect equity line (a straight 45-degree line) and a
Lorenz curve, which measures the real distribution. GINI index values of 0 indicate perfect equity
(coincidence of Lorenz curve with equity line), while zero values indicate perfect inequity. This
principle can be applied to transit service quality, where it can be a measure of the cumulative
proportion of population and the cumulative proportion of transit connectivity that is immediately
accessible to the population. Generally, to estimate the GINI index integration is necessary to find
the (area) difference between Lorenz curves and the equity line. An approximating approach to
avoid this complex task is given by the formula of equation (4.8):

Ga=1- ) (KXY -Yier) 4.8)
k=1

where, G, is the GINI index value for a population or sample a, X is the cumulative proportion of
the population endowed with attribute k (in this case transit connectivity) for k = (0,...,n), and Yy is
the cumulative proportion of attribute k. For more information on the concepts of
Catchment/Accessibility and inequity we refer to Welch and Mishra (T. F. Welch & Mishra, 2013).
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4.4 Tennessee Statewide Model — Socioeconomic Data Analysis
In order to obtain socioeconomic data at the TAZ level on Average Household Income and Car
Ownership, the Tennessee Statewide model was used.

4.5 Memphis Transit Network Connectivity Example

Utilizing the data files from connectivity and socioeconomic analysis, thematic maps have been
developed for the cities of Memphis, Knoxville, and Nashville. Within the context of this study, an
example of such thematic maps will be presented for the three cities and the case of the city of
Memphis will be briefly discussed as an example.

In Figure 2, the line connectivity of the three cities transit network is presented, whereas the line
numbering is following the codification of lines, as given by the local transit authority. The number
shown on top of each line shows the bus route number. The connectivity (in terms of connectivity
index as described earlier) of each line is represented by colored lines that are gradually moving
from shades of red to shades of green and are also of increasing width as the connectivity index
increases. At the same time the thematic maps include a colored TAZ layer that presents a
specific socioeconomic value in each TAZ (here for example, this value is household income)
where low incomes are represented by lighter green shaded TAZs and vice versa. This analysis
can support agency decision makers when having to choose which areas of the city can be
potential locations of investment in new lines or how existing transit lines could be modified in
order to incorporate more areas that may be hosting potential captive riders. Taking Memphis as
an example, network performance appears to be relatively good for locations and TAZs near the
city center, while distant locations especially in West Memphis, but also in North and Northeast
Memphis appear to be poorly connected. Figure 2, also suggests that central business districts
(i.e., Downtown Memphis) that mostly serve as destinations rather than origins show high network
density, while areas located at the outskirts and which are, most likely, commuting origins, are
served by a less dense transit network.

Similarly, Figure 3 presents transit stops connectivity in comparison to household income. Transit
network stops appear as blue dots of increasing size for increased values of connectivity indices.
Taking Memphis as an example, stops located on major corridors (e.g., Poplar Avenue), have
higher connectivity than others. Again, one can easily identify stops with low connectivity indices
that reside in areas of also low incomes. Similar maps have been developed to assess low
connectivity versus areas of low car ownership. By cross-examining such thematic maps
simultaneously, the decision maker can, inductively, locate stops that could be further supported
if needed, by including them to neighboring lines, or including them in new lines during planning
processes and so forth.

4.6 Income and Connectivity

Results of connectivity at various income levels are shown in Table 1. Nine groups were defined
based on the distribution of income and these groups were held constant for connectivity
comparison in three cities. For each city three performance measures were selected, namely
percent population, average connectivity, and percent connected. Percent population refers to
share of overall population residing in a city respective to a defined income group. Connectivity
of a zone is estimated by using the formula shown in equation 7. Connectivity of a specific income
group is further estimated by average of connectivity indices for all zones within the group. Percent
connected for each income group is the ratio of connectivity of each group out of the total
connectivity for each city. Three top most connected income groups are shaded in gray for each
income group and for each city. For instance, in Memphis, the top most connected segment is
the highest income group followed by two other groups of incomes more than $100,000. The
highest income group only contains population of 1.02 percent enjoys the 34.75% of connectivity.
In contrast, the lowest income group only receives 3.91 percent of the overall connectivity. The
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highest percent of population is in the income group of $20,000 and $40,000. The 40.66% of
population only receives 1.33% of the overall connectivity. This refers to the need for better transit
connectivity for lower income group population where further investment may aid to satisfy the
basic travel needs for captive riders. Connectivity of transit in Memphis is attributed to its land
use, urban infrastructure, history of service, and sprawl. Connectivity is highest in the CBD or in
the neighborhood area that serves the medical district, large scale establishments, and tourist
attractions close to the Mississippi river. Some of the wealthiest neighborhoods are also close to
the downtown, though these income segments do not need transit per say, but live in areas that
serves as a pathway to the CBD.

Transit connectivity in Nashville is very similar to Memphis though there exist, distinct differences.
First, the lower income groups are relatively better connected in compared with Memphis. For
example, the lowest income group receives 10.39% of overall connectivity as compared to 3.91%
in Memphis. However, still, low-income areas which may be hosting potential captive riders, could
be a be potential locations of investment in new lines or modifying existing transit lines in order to
serve people more efficient. Second, the largest population segment is contained in the income
group of $40,000-$60,000 with 40.87% of the population which receives the connectivity with
6.84%. Average per capita income is higher in Nashville compared to Memphis. Third, the highest
connected group is the income group of $140,000-$160,000, and 70% of connectivity is for 8.81%
of the population with income higher than $100,000.

In Knoxville, the trend is somewhat different — the lowest income group is one of the top three
categories receiving percent share of overall connectivity of the city, 16.59% of overall
connectivity as compared to 3.91% in Memphis and 10.39 in Nashville. Also, the largest
population segment with 47.93% of the population is contained in the income group of $40,000-
$60,000 which receives the lowest connectivity with 5.13%. On the other hand, 51.17% of
connectivity is for 3.5% of the population with more than $100,000 income. In addition, there are
not enough population centers in the group of incomes more than $140,000. This does not mean
that individuals do not earn more in Knoxville, but rather the average income of zones considered
in this analysis does not portray any share of income groups higher than $140,000. Overall, the
connectivity of all three represents some similarity but there exist unique characteristics of each.
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Figure 2b: Knoxville transit line connectivity and TAZ household median income.
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Figure 2c: Nashville transit line connectivity and TAZ household median income.

Figure 2: Transit line connectivity and TAZ household Median income.
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Figure 3b: Knoxville transit stops connectivity and TAZ household median income.
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Figure 3c: Nashville transit stops connectivity and TAZ household median income.

Figure 3: Transit stops connectivity and TAZ household median income (Note: the numeric value
above each line on the map refers to bus route number).
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4.7 Vehicle Ownership and Connectivity

Vehicle ownership is a critical factor that represents need for transit connectivity. Considering
distribution of vehicle ownership in three cities, three groups were formed namely less than equal
to one vehicle, greater than one and less than or equal to two vehicles, and more than two
vehicles. Percent population, connectivity, and percent connected are estimated for each vehicle
ownership group and for each city. The results are shown in Table 2. One aspect common in all
three cities is that the average vehicle ownership group is one to two vehicles per household.
Both in Memphis and Knoxville the highest connected group is one to two vehicles per household.
In Knoxville, the share of connectivity is 92.27% while in Memphis 56.63%. In Nashville, the
highest connectivity is received by the lowest vehicle ownership group. The lowest vehicle
ownership group receives 52.05% of overall connectivity. Certainly, a transit system like in
Nashville is desirable from the needs of the users, and from the view point of the transit agency.

0 125 25 5 75 10

Figure 4a: Memphis transit lines connectivity and TAZ vehicle ownership.
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Figure 4b: Knoxville transit lines connectivity and TAZ vehicle ownership.
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Figure 4c: Nashville transit lines connectivity and TAZ vehicle ownership.

Figure 4: Transit lines connectivity and TAZ vehicle ownership (Note: the numeric value above
each line on the map refers to bus route number).
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4.8 Employment and Connectivity

Employment by workplace for each TAZ is estimated, and based on its distribution seven
categories are constructed for all three cities as shown in Table 3. The highest and lowest zonal
employment is less than 500 and more than 2,500 respectively. Memphis is unique in one sense
that the highest connected segment is the employment group 2,000 to 2,500. This group receives
62.85% of connectivity which shows that larger employment group is well connected, and transit
service is available to place of work. Another interesting observation is that the highest
employment group contains the second highest percent population the percent connectivity is
third highest. In contrast, the top most employment group contains 21% population and is not in
top three categories of percent connected. Nashville’s transit connectivity does not predominantly
serve to any specific employment group. The highest share of connectivity is received by the
zonal employment group 1,500 to 2,000. Knoxville’s transit connectivity also attributed to the
higher zonal employment groups. Similar to Nashville, Knoxville also does not predominantly
serve any specific employment group. The highest share of connectivity (27.4%) is received by
the top most employment group. The highest share of population is also contained within the
highest employment group. Such a population and employment distribution in Knoxville
demonstrates adequate transit service is provided to higher zonal employment and population.
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Figure 5a: Knoxville transit lines connectivity and TAZ total employment.
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Figure 5a: Nashville transit lines connectivity and TAZ total employment.

Figure 5: Transit line connectivity and TAZ total employment (Note: the numeric value above each
line on the map refers to bus route number).
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4.9 Population and Connectivity

Table 4 shows connectivity for all three cities based on zonal population. Nine categories are
constructed based on population distribution. In Memphis, approximately the top three population
groups receive connectivity accordingly. Similar transit connectivity distribution is not observed in
Nashville. The highest percent population group is not among the top three connected categories.
Similar to Nashville, Knoxville’s highest population group is not among the top recipient of transit
connectivity. However, the population distribution alone does not portray other imperative
attributes such as household income, vehicle ownership, and employment. Since transit service
is decided upon a number of other factors besides just population results in Table 1 through Table

3 should be viewed in conjunction with population distribution.
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Figure 6a: Memphis transit lines connectivity and population density.
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Figure 6: Connectivity vs Population Density.
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4.10 Equity

Table 5 provides the GINI index values for the three cities (based on household income, vehicle
ownership, employment and population). Results showcase a mix of equity conditions for all three
cities. For example, the population based GINI index shows that none of the three cities provide
equitable transit connectivity while Knoxville and Nashville do a better job on providing the
equitable connectivity to transit riders if income or vehicle ownership is used as the population
grouping factor. Unfortunately, Memphis (and always based on the GINI index) provides
inequitable transit connectivity except by population criteria. If an agency’s goal is to spread high-
guality transit service among all households, the scores should be evaluated with a goal of
reducing the GINI index towards zero. On the other hand, should an agency wish to provide very
high-quality transit service to a highly concentrated geographic area, a score moving towards a
value of one would be the goal. In either case, the framework provides a tool to measure
distribution at several levels of aggregation.
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Table 1: Transit connectivity by household income.

MEMPHIS NASHVILLE KNOXVILLE
Income Group % % % % % %

($) Population | Connectivity | Connected | Population | Connectivity | Connected | Population | Connectivity | Connected
<20,000 1.14 1.90 3.91 0.76 13.82 10.39 3.02 1.95 16.59
20,000-40,000 40.66 0.64 1.33 15.16 10.32 7.76 25.49 0.87 7.42
40,000-60,000 29.07 0.71 1.45 40.87 9.10 6.84 47.93 0.60 5.13
60,000-80,000 19.21 2.17 4.48 23.20 3.66 2.75 13.68 1.61 13.74
80,000-100,000 4.54 1.59 3.29 11.20 3.01 2.26 6.38 0.70 5.96
100,000-120,000 291 9.58 19.76 3.93 23.32 17.53 2.09 1.91 16.31
120,000-140,000 0.74 8.99 18.54 2.86 2.63 1.98 1.41 4.09 34.86
140,000-160,000 0.72 6.06 12.49 0.71 43.39 32.62 0.00 0.00 0.00
>160,000 1.02 16.85 34.75 1.31 23.75 17.86 0.00 0.00 0.00

Note: Shaded area represents top three income groups by percent connected
Table 2: Transit connectivity by vehicle ownership.
_ MEMPHIS NASHVILLE KNOXVILLE
Vehicle
Ownership % % % % % %
Group Population | Connectivity | Connected | Population | Connectivity | Connected | Population | Connectivity | Connected
<=1 7.91 1.07 38.59 4.35 13.49 52.05 2.71 0.64 2.71
>1 and <=2 89.79 1.56 56.36 77.00 9.51 36.67 92.27 0.96 92.27
>2 2.29 0.14 5.05 18.65 2.93 11.28 5.02 0.96 5.02

Note: Shaded area represents the top most vehicle ownership group by percent connected

27




Table 3: Transit connectivity by employment density.

1,000-1,500

10.40

0.6

3.25

Note: Shaded area represents top three employment groups by percent connected

Table 4: Transit connectivity by population density.

MEMPHIS NASHVILLE KNOXVILLE
Employment % % % % % %
Group Population | Connectivity | Connected | Population | Connectivity | Connected | Population | Connectivity | Connected
<500 40.40 0.6 3.60 31.83 5.3 8.45 7.27 0.4 8.19
500-1,000 16.19 0.4 2.25 11.51 0.4 8.38

Note: Shaded area represents top three population groups by percent connectivity

MEMPHIS NASHVILLE KNOXVILLE

Population % % % % % %

Group Population | Connectivity | Connected | Population | Connectivity | Connected | Population | Connectivity | Connected
<500 0.02 0.13 1.29 0.10 12.17 15.52 0.00 0.00 0.00
500-1,000 0.73 0.47 4.79 1.00 0.98 1.24 0.00 0.00 0.00
1,000-1,500 2.00 0.43 4.37 3.41 3.28 4.19 0.49 0.60 9.59
1,500-2,000 5.61 0.72 7.33
2,000-2,500
2,500-3,000
3,000-3,500
3,500-4,000
>4,000
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Table 5: GINI index by socioeconomic criteria.
City
Criteria _ . :
Knoxville Memphis Nashville
Household Income 0.21* 0.68 0.38
Vehicle Ownership 0.46 0.67 0.14*
Employment Density 0.86 0.91 0.79*
Population Density 0.85 0.84* 0.88

Note: * represents most equitable transit connectivity by criteria
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CHAPTER 5: METHODOLOGY AND RESULT-RURAL AREAS

5.1 Data Description
This section provides a comprehensive view of the DRT data along with the descriptive statistics
of the complete data set (combination of ACS and DRT data).

For this project, we have collected demographic data from ACS and travel impedance data (such
as travel distance, time etc.) from TDOT which are the primary data source for trip related
information. The final dataset contains number of trips between two ZIP Codes, the origin and
destination ZIP Codes demographic profile, and the travel cost (distance, time, etc.) between
them. Figure 7 shows proportion of all trip purposes of DRT. The highest proportion of trips was
for medical purposes (52.37 %). Hence, medical trip is the most important cause of making
demand response trip in rural areas of Tennessee. Second largest trip purpose was for work
related activities (employment, work, and customer home) which combines to 15.17 % of total
travels. Other significant causes of trip request were recreation (3.62 %), senior center (3.37 %),
and shopping (3.97 %).
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Figure 7 : DRT trip purpose frequency.

Figure 8 shows trip production for each ZIP code in the state of Tennessee. For illustration, trip
count is divided into six quintile levels (0, 1-4, 5-71, 72-346, 347-1099, 1100 and above). In the
figure, deep green colored areas are highlighted as most trip production region. It is clear that
most of the smaller cities closer to big cities are the main source of demand-response traffic
generation. As example, Columbia city (ZIP Code 38401) is smaller sub-urban city, which is 44
miles away from Nashville, and produced highest number of trips in the whole state (13.10% of
total trips). The second highest (6.31%) trip generating region was Tullahoma city (ZIP Code
37388) which is around 74 miles away from Nashville. Another significant trip generating area is
Shelbyville city (ZIP Code 37160) which is 57 miles from Nashville. These information give insight
of selecting covariates which may influence DRT trips.
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Figure 8: Trip production at ZIP Code level.

The most trip generating ZIP Codes and their purposes of trips in the map are shown in Figure 9.
Most of the travels made in high trip generating ZIP Code are due to medical purpose. There are
few ZIP Codes, near Knoxville, have remarkable number of trips for employment purpose.
Another important thing to note, out of 640 ZIP Codes, 337 have trip count zero which is probably
because of the fact that all ZIP Code may not have DRT service or people of those ZIP Code are
reluctant to use that service.
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Figure 9: Trip Purposes (Trip production) at ZIP Code level.

Figure 10 shows the total amount of trip count and its purpose based on destination ZIP Code.
There is no noticeable difference between trip production and trip attraction map based on the
travel dataset because majority of DRT trips return to the origin ZIP code.
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Figure 10: Trip Purposes (Trip Attraction) at ZIP Code level.

Flow network map of ninety-five counties is presented (shown in Figure 11). The highest number
of trips are produced or attracted from Maury County to other counties. There are no transit trips
has been produced or attracted by Macon, Pickett, Clay, Fentress, Overton, DeKalb, Van Buren,
Bledsoe and Fayette. This analysis can support agency decision makers when having to choose
which areas of the counties can be potential locations of investment in new demand response
services or how existing transit services could be modified in order to incorporate more areas that
may be hosting potential captive riders.

Figure 11: Flow network at county level.

Figure 12 presents trips production of each ZIP Code in comparison to trips attraction. Trips
production and trips attraction of each ZIP Code are presented by bars of increasing height for
increased values of trips attraction and trips production. Number of trips produced and attracted
of each ZIP Code is almost same. Transit users normally take this service for medical, shopping,
work, employment purposes, hence they probably like to go to their nearest destination to serve
their needs from their origin points and they return to their origin. Taking ZIP Code 38401 as an
example has the highest number of produced and attracted trips than others. By this map, the
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decision maker can locate areas that could be further supported if needed, by including them to
neighboring demand response transit service providers, or including them in new transit service
providers during planning processes and so forth.

Trips production vs Trips attraction

RogReR REINE TR SRS SBR[
L {Wé“f@?&' e %%‘*%»&'sﬁ#*

}5-' & J 3l Ik <A Q ’
ylce MR s
U, e
i b il VA4 7 S v

SaSe sy of @«% ) \1;',". i o
1 ' 9 pi "9‘&‘:’ 4 ‘_‘:*’*;z‘l‘gﬂ -:ﬂﬂ:':;"w ] o st

Figure 12: Trips production vs trips attraction at ZIP Code level.

Figure 13 illustrates trips production of each zip code in metropolitan areas of Knoxville and
Nashville. As it is shown the map, even in the metropolitan areas, most of the trip are concentrated
in central counties and zip codes.

Figure 13a: Nashville zip code trips.
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Figure 13b: Knoxville zip code trips.

Figure 13: ZIP Codes trip production- Metropolitan areas.

In society, individuals who may not have the option of traveling by car are seniors, teenagers,
persons with disabilities, those with low incomes, and those without access to a car. Analyzing
these populations can be helpful in understanding the potential for transit use in the area. A review
of 2007-2011 ACS data provided the following findings:
e A total of 15.0% of the population with disabilities, and can be considered as a primary
source of DRT trips.
e Senior population (age 65 and over) share is 13.286%. Few ZIP Codes (i.e. 38558, 37326)
have this proportion more than 50%.
e 6.202% of the occupied housing units, do not own a vehicle, and 32.551% own only one
vehicle.
e Children who are old enough to travel alone, but not yet old enough to drive are also a
good source of DRT traffic. In Tennessee, 6.654% of the population is between 10 and
14.
e 28.304% of households have an income lower than $25,000 per year and approximately
8.965% have an income below $10,000.

Table 6 represents the potential independent variables selected for models along with brief
description. The descriptive statistics of those variables is presented below in Table 7.
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TABLE 6: Potential independent variables.

Variable Description Type Categories (if applicable)
Destination ZIP Code Retail | Continuous
Trade related businesses

Destination ZIP Code | Continuous
Wholesale  Trade related

businesses

Distance between two ZIP | Continuous
Code (mi)

Origin ZIP Code Population | Continuous
density (/)

Origin ZIP Code Proportion of | Continuous
white population

Origin ZIP Code Household | Continuous
median income

Origin  ZIP Code Average | Continuous
household Size

Origin ZIP Code Homeowner | Continuous
vacancy rate

Origin  ZIP Code Renter | Continuous
occupied housing Unit

Origin  ZIP Code Disabled | Continuous
population

Origin ZIP Code Population | Continuous
aged 14 years or less

Origin ZIP Code Population | Continuous
aged 65 years or over

Origin ZIP Code Household | Continuous
income 200K or more

Rural urban commuting area | Categorical 1- Metropolitan

type of Origin ZIP Code

2- Micropolitan
3- Small town

4- Rural
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Rural urban commuting area | Categorical 1- Metropolitan
type of Destination ZIP Code

2- Micropolitan

3- Small town

4- Rural
Dominant Sex of Origin ZIP | Categorical 0-Female
Code

1-Male
Dominant Race of Origin ZIP | Categorical 0-Black
Code _

1-White

TABLE 7: Descriptive statistics.
Variable Min Mean Max Standard
deviation

Destination ZIP Code Retail Trade related | O 40.55 401 63.01
businesses
Destination ZIP Code Wholesale Trade related | O 11.94 275.00 24.70
businesses
Distance between two ZIP Code (mi) 0 176.60 | 544.50 106.26
Origin ZIP Code Population density (/) 472 | 475.10 17,840 1,235.69
Origin ZIP Code Proportion of white population | 0.02 | 0.859 1.00 0.19
Origin ZIP Code Household median income 8,524 | 40,000 136,200 | 13,652.29
Origin ZIP Code Average Household Size 146 | 2.62 19.96 0.96
Origin ZIP Code Homeowner vacancy rate 0 1.49 37.82 2.31
Origin ZIP Code Renter occupied housing Unit | O 1,119 14,530 1,748.65
Origin ZIP Code Disabled population 0 1,444 9,259 1,654.53
Origin ZIP Code Population aged 14 years or | O 1,781 16,800 2,399.16
less
Origin ZIP Code Population aged 65 years or | 1 1,284 7,975 1,502.29
over
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Origin ZIP Code Household income 200K or | O 93.93 4,448 242.51
more

Rural urban commuting area type of Origin ZIP | 1 2.24 4 1.16
Code

Rural urban commuting area type of Destination | 1 1.84 4 1.10
ZIP Code

Dominant Sex of Origin ZIP Code 0 0.35 1 0.47
Dominant Race of Origin ZIP Code 0 0.92 1 0.26

Figure 14 represents the relationship between trip count (dependent variable) and various ZIP
Code related socio-economic factors (independent variables). It is difficult to understand by
directly looking at the graph whether there is a positive or negative relationship between trip count
and these socio-economic factors. This may be due to the fact that all factors affecting DRT
demand need to be considered when developing a relationship between them. Hence, a set of
econometric models were necessary to conclude how these socio-economic factors affect DRT

trips.
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Figure 14 : Relationship between dependent variable (DRT trip) and other potential
independent variables.

5.2. DRT Model Descriptions:
Count or frequency models are usually considered as a parametric model where the model

parameters are estimated from count observations. The parameters of the underlying distribution
are specified as a function of different covariates to capture their influence on count dependent
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variable. Count variable has non-negative integer value which implies that a log-linear model is
better fit for a count variable. A linear regression model generally produces negative predicted
outcomes and there is a substantial problem of heteroscedasticity. Another advantage of using
the log-linear specification is that, with count data, the effects of predictors are often multiplicative
rather than additive. That is, one typically observes small effects for small counts, and large effects
for large counts. If the effect is in fact proportional to the count, working in the log scale leads to
a much simpler model. Poisson model is a good choice in this case. The Poisson and Negative
Binomial (NB) log-linear models are the two most commonly implemented parametric model in
the literature for count data modelling (Washington, Karlaftis, & Mannering, 2010). The Poisson
model has a restrictive assumption of equi-dispersion property i.e., the expected mean parameter
of the Poisson distribution is equal to the variance. The NB model overcomes that assumption,
which makes it suitable for cases when there is over-dispersion in the count data being modeled.
Another aspect of considerable importance while modeling count data is over-representation of
zeroes beyond the probability mass implied by the standard count models — a property referred
to as the excess zeroes problem. Several variants of standard models including the zero-inflated
count models, hurdle count models, and zero inflated mixed effect models were developed to
address the excess zeroes problem (Fang et al., 2014; Gurmu, 1998; Hu et al., 2011; Hur et al.,
2002; Moghimbeigi et al., 2008; Yang et al., 2016; Yau et al., 2003; Yau and Lee, 2001). In this
section, we briefly present specification of each model type for analyzing DRT trip frequency. A
brief discussion of alternate modeling methods are follows.

5.2.1 Poisson regression model:
In Poisson model, the probability of an event count y;, given the vector of covariates X; , is given
by the Poisson distribution:

P(Yi=y,IX)= y:=0,1,2, ...... (5.1)

ehixp Vi
y;! ’

The mean parameter A is a function of the vector of covariates in period:
E(ilX) = A; = exp(X{B) (5.2)

where B is a (k+1) x1 parameter vector. The intercept is ,, and the coefficients for the k covariates
are B,...., By

In Poisson distribution, predictor variables are linked to the outcome via a natural log
transformation, and this log transformation guarantees that the regression model predicted values
are never negative. The general form of Poisson regression model to predict trip count is as
follows

log(y)=B0+B, X1 +BXa+...+ByXi=X] B (5.3)

Where, y is the expected count of trips (mean) given a set of explanatory variables X = (X1, Xz,
Xk). In Poisson distribution, predictor variables are linked to the outcome via a natural log
transformation, and this log transformation guarantees that the regression model predicted values
are never negative.

5.2.2 Negative Binomial model
In the NB model, the probability of observing count outcome y; conditional on the expected mean

parameter A and dispersion parameter 8>0 is given by:
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oy = (L) L (2
P(Y =y)= (9+/1) X to+re X (9+/1) (54)

Where I is the gamma function defined as follows:

® 14X " r
I'(t)={fx=ox e™dx for positive non-integer t 55)

(t-N! for positive integer t

2
The variance of the NB model is v= A+% . Here, 6 is an over-dispersion parameter and A is the
expected mean.

5.2.3 Zero-inflated models

Zero-inflated count models (assuming either the Poisson or NB distribution of the count outcome)
provide a way of modeling the excess zeros in addition to allowing for over-dispersion (negative
binomial) or without (Poisson distribution). In particular, for each observation, there are two
possible data generation processes. For each observation, Process 1 is chosen with probability
p; and Process 2 with probability 1- p,. Process 1 generates only zero counts, whereas Process

2, P(Y:=y|X;), generates counts from either a Poisson or a NB model. In general:

yi = { 0 with probability p;
;=

P(Y; = y;|X;) with probability 1 —p; (5.6)

The probability P[Y,-:yI.|X,-)depends on the process where it is zero-inflated Poisson (ZIP) or zero-
inflated negative binomial (ZINB). Zero-inflated model consists of binary logit model and counts
models. Binary logit model is commonly used to predict a behavior's occurrence, but with ZIP
/ZINB, the logistic regression part of the model predicts non-occurrence (i.e., it predicts the zeros).
The count models predict how frequently the behavior occurred.

The expected count is function of the two processes. In this study, the expected trip count is
defined as follows:

E(y)=pi*0+ (1 —p;)*xe% (5.7)

p; is the predicted probability that trip count is zero, e is the expected trip count given it is not
zero and it is modeled using Poisson/NB regression.

The probability whether the trip is not possible (zero part), p; is modeled by a logistic regression.
Its form is:

log (2) =By *B X1+B Xz .. (5.8)

B; is the parameter that will be estimated and X; is the feature of the ZIP Code, such as population
density, household income, and trip distance. e%is modeled using Poisson/NB regression. Its
form is:
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et = p(AotarXy+axXo+..) (5.9)

a; is the parameter that will be estimated and again, X; is the feature of the ZIP Code.

5.2.4 Hurdle Models

In hurdle models, the count data generating process is controlled by Bernoulli probability that
governs the binary outcome of whether a count variable has a zero or non-zero value. If the value
is positive, the hurdle is crossed, and the conditional distribution of the non-zero outcome is
governed by a Poisson/NB count data model. Hence Hurdle models can take shape of various
count structures such as: Hurdle Poisson (HP) or Hurdle NB (HNB). In general, the hurdle model
has two parts:

1. Zero count generating model.
2. Value (positive) generating model.

These two models are not considered to be the same. Hence, the difference from zero-inflated
model is that the value generating part is not allowed to create zero outcomes. If the predicted
variable y;>0, the hurdle is crossed, the conditional distribution of the count value is governed by

value generating model part. The zero-generating model can be considered as a logit model:

X
PO = 01X) = (o2l = p, (5.10)

The value generating part of the model has conditional probability of count value given that the
number is greater than zero. If we consider that the value generating model is Poisson model:

: oy o= XiB)
— il N _ POi=j&yi>01Xy) _ expX;B)rje "1 . _
POi=]jlyi>0,X) == =5 = P e A T (5.11)
So, the expected value of y; is
Elyi|Xi] =pi 0+ (1 —py) * E[yily; > 0,X;] (5.12)

If there is over-dispersion, the estimate of the parameters from HP will be biased and inconsistent.
In that case, the NB is a good substitute as a value generating model. For a HNB model, a
dependent variable Y; (i=1, 2, ..., n) has the distribution

pi’ yl = OI
PrY;=y) = F(yi+6-1) (1+62)~0 ~vigvia)i (5.13)
' ' (1 - pl) T(y;+1D)r(@-1) 1_1(1_'_9/11')_9—1 - » Vi > 0;

Where, 6 (20) is dispersion parameter that is assumed not to be dependent on independent
variables. p; is a non-negative function that is modeled via logit link function,

logit(p;) = log (:—;i) = YiL17ij6; (5.14)

Where, zijis i-th row of covariate matrix Z and ; are unknown m-dimensional column vector of
parameters.
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5.2.5 Zero-inflated Negative Binomial Mixed-effects Model

Zero-inflated negative binomial mixed effect models (ZINB Mixed Effect) were developed to
address over-dispersed count data with excess number of zeros (Fang et al., 2014; Moghimbeigi
et al.,, 2008; Yau et al., 2003). This mixed model contains extra parameters to model the
probability of excess zero values and the variability in non-zero values, allowing for repeated
measures incorporating independent random effects for these two parts. ZINB Mixed Effect model
can be expressed as follows:

Here, X;; represents the matrix of covariates and g is their respective regression coefficient for
the negative binomial part, Z;; represents the covariate matrix and the respective vector of
regression coefficient y for the logistic part, a; and b; are the random intercepts and they follow
normal distribution with mean zero. For simplicity those intercepts are assumed to be
independent. This assumption is also used in the literature of ZINB/ZIP with random effects (Fang
et al., 2014; Hur et al., 2002; Yau and Lee, 2001).

5.3 Model Estimation Results

A comparison of the estimation results of seven count data models: Poisson (Model 1), NB (Model
2), ZIP (Model 3), ZINB (Model 4), HP (Model 5), HNB (Model 6) and ZINB Mixed Effect (Model
7) is presented in Table 8. The statistically significant explanatory variables along with their
estimated coefficients and t-statistics (in parenthesis) for each of the developed models are shown
in Table 8. Only ZI and hurdle models have estimates of the parameters for zero counts. The log-
likelihood value at convergence, the Bayesian Information Criterion value (BIC), and the total
number of observations are also included for each model. Poisson regression is one of the most
basic count regression models. The explicit assumption used for Poisson model is that the mean
and variance of count variable are statistically equal. Given that there is no a priori reason for the
mean and variance in any practical context to be equal, the use of a NB distribution for Model 2,
4, 6, and 7 is an important empirical generalization over the Poisson distribution. The NB model
is considered as a generalization of Poisson model since it has the same mean structure as
Poisson regression and it has an extra parameter ("0 " ) to model over-dispersion. If the
conditional distribution of the outcome variable is over-dispersed, the confidence intervals for the
NB regression are likely to be narrower as compared to that of a Poisson model. In the NB model,
the dispersion parameter properly captures the difference between mean and variance. However,
the NB model needs to be further examined to model DRT trip frequency due to the presence of
excessive zeros in this dataset. Zero-inflated models (Model 3 through 7) accounts for presence
of excess zeros in the trip frequency. The distribution of dependent variable (Trips) is extremely
skewed because of excess number of zero trip occurrences (97.78% of origin-destination pairs)
in trip count data. Zero inflated and hurdle models are good candidates for this data which can
address over-dispersion for the excess zeroes problem effectively. ZIP model has been
developed for this dataset. The zero-estimation part is a binary model which examines if the trips
ever occurred by using a logistic regression. The second model is the normal Poisson model
(value estimation part) that predicts the frequency of the trip if that is non-zero. This model was
able to estimate excess amount of zero but failed to capture variability due to dispersion. However,
this model gave us a set of significant independent variables along with a good starting estimate
value for ZINB and hurdle models. The difference between mean and variance is still high even if
all zero trips occurrences are not taken into consideration which has standard deviation (678.03)
that is much higher than mean (73.51). The results from ZINB model demonstrate that we can
indeed reject the hypothesis that the trip generation process is Poisson, since log () =-2.470 with
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p-value < 0.0001, and thus the variance of the process is much larger than the mean. The estimate
of significant positive intercept in logistic model part proves that there is excess number of zeros
in the data.

Hurdle models including HP and HNB have also been developed to accommaodate over dispersion
and excess zeroes problem. Hurdle model in case of zero estimation is different from zero-inflated
models. The sign of estimated parameters in the hurdle model is not opposite for value-estimation
and zero-estimation parts because these two processes are independent and likely to follow
similar effect over trip count. In addition, to achieve inter-ZIP Code trip variability, which is not
captured well by covariates, the origin and destination ZIP Codes are introduced in the zero-
estimation part of the model as random effect parameters. The estimated standard deviations of
those random effects are significantly large. Another random effect variable incorporated in the
value estimate part of the ZINB Mixed Effect model is, the rural urban commuting area (RUCA),
which indicates the type of ZIP Code area based on the size and direction of the primary
commuting flows. The estimated standard deviation of this random effect variable indicates that
the trip count has variability across different types of ZIP Codes. The estimated standard
deviations (o) of the random effects are presented in Table 8.

The variables that have significant effect on DRT trip frequency includes origin ZIP Code
population density, distance between two ZIP Codes, population aged 14 years or less,
population aged 65 years or over, the number of disabled people, household median income ,
homeowner vacancy rate , average household size, the number of renter occupied housing unit,
dominant sex (male), proportion of white people, the number of wholesale trade establishments
in destination Zip and the number of retail trade establishments in destination ZIP Code. The
estimated parameter signs are similar across the models which means the effect of variables are
consistent. The results indicate that lower population density is likely to increase the overall trip
count. The similar relationship between this variable and DRT demand is also found in the
demand model developed by Wang et al.(2014). This is intuitive because of unavailability of
demand response service in an urban area where the population density is higher and lower the
density means the ZIP Code area is in rural area. It is more likely to have fixed route public
transportation services in an urban area. Moreover, people living in higher population density
areas can coordinate with others to make a trip. The distance between ZIP Codes has an opposite
effect over trip count. The results indicate that with increasing distance the likelihood of
occurrence of a DRT trip decreases. This is intuitive because DRT serves trips that are relatively
short and not supporting inter-city type services that tend to cover long distance. Trip count is
likely to decrease with the increase of younger population (age 14 or less) in the origin ZIP Code
area. The presence of children of less than 14 years reduces DRT trips as parents are typically
not elderly and may own a car in such households. On the other hand, older age group (age 65
or over) population has opposite effect on trip count because they likely rely on DRT for medical
services and increasingly, the baby boomer generation is “aging in place”. Moreover, the aged
population might not own a car or be unable to drive. The similar effect observed from disabled
population in the origin ZIP Code where the trip count increases with the disabled population size
increases. This result is consistent with the research conducted by Mattson (2017). The disabled
population tends to be most captive to transit services and may need additional medical services.
The variable Household median income has a negative impact on trip count because people like
to get their own vehicle when they have higher income level. This finding coincides with the
research conducted by Yang and Cherry (2017). The Homeowner vacancy rate in origin ZIP Code
are likely to increase DRT trip in the sense that we have higher homeowner vacancy rate in rural
area. The Average household size is also likely to increase the trip count. The number of Renter
occupied housing unit in origin ZIP Code has positive impact over trip count. This is because the
renter occupied people in rural area is less likely to own and operate a vehicle. The variable Sex
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indicates that women are the primary user of DRT service. If the Origin ZIP Code with higher
number of female compared to male, it is more likely to induce demand for DRT trip. This similar
relation is also observed in the DRT and DFRT study of Yang and Cherry (2017). In case of
variable Race, white people are most likely to use DRT service in rural areas. This finding
coincides with the research conducted by Wang et al.(2014).When destinations are based on
Retail trade, they are likely to attract more DRT trips as population from neighboring areas will
likely to make trips for retail goods. However, Whole sale trade shows an inverse relationship with
DRT frequency.

In zero estimation part, the parameters for zero estimation indicate which variables will
predominantly describe likelihood of DRT to be zero. Especially Model 3 through 7 have zero
estimation parameters. For zero-inflated models, the sign of the estimated parameters for zero
estimation part is opposite to the sign of the estimated parameters for value estimation part. Also,
the sign of the variables remains consistent across all zero-inflated models. The variable in zero
estimation part like Origin ZIP Code Average Household size has positive regression coefficient
implies that the probability of zero DRT trip increases with the increase of average household
size. The variable Origin ZIP Code Population age up to 14 years increases the zero occurrence
of trip count whereas the variable Origin ZIP Code Population age 65 and over years decrease
the probability of DRP trip count being zero. The variable distance has greater impact on zero trip
count probability which increase with the increase of distance. But the sign of estimated
parameters is not opposite in the hurdle model for two processes like zero inflated models
because these two parts are independent in hurdle model. Variables indicating zero DRT trips
include Destination ZIP Code Retail Trade related businesses, Log (Origin ZIP Code Household
Median income), Log (Origin ZIP Code Population age up to 14 years), Log (Origin ZIP Code
Population age 65 and over years), Log (Origin ZIP Code Disable Population), and Distance
between Origin and Destination ZIP Code.
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TABLE 8: Model estimation results

Variables Poisson NB ZIP ZINB HP HNB ZINB Mixed

(Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6) Effect
(Model 7)

Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient
(t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat)

Value estimation part

Intercept 6.003 -11.013 2.486 1.142 -1.169 -9.003 0.512
(58.785) (-7.76) (25.980) (2.725) (-50.77) (-0.612) (.223)

Distance between | -0.112 -0.090 -0.031 -0.087 -0.031 -0.030

two ZIP Code (-939.448) (-762.450) (-35.488) (-725.68) (-32.717) (-39.610)

Origin ZIP Code -1.192

Population (-524.096)

density

Log (Origin ZIP -1.043 -0.652 -1.223 -0.522 -0.403

Code Population (-466.470) (-18.624) (-477.01) (-11.407) (-12.300)

density)

Log (Origin ZIP -.665 -0.387 -0.215 -0.329 -0.346

Code Population (-7.674) (-5.784) (-30.940) (-3.936) (-5.960)

aged 14 years or

less)

Proportion of 1.717

white people in (8.156)

Origin ZIP Code

Log (Origin ZIP 0.317 0.713

Code Population | (37.179) (6.516)

aged 65 years or

over)

Log (Origin ZIP -1.150 -0.386 -0.602

Code Household | (-116.075) (-2.889) (-65.750)

Median income)

Destination ZIP 0.009

Code Retail (459.281)

Trade related

businesses
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Log (Destination
ZIP Code Retail
Trade related
businesses)

1.439
(32.024)

0.727
(385.870)

0.731
(17.065)

0.823
(279.04)

0.843
(15.862)

0.562
(13.340)

Log (Destination
ZIP Code Whole
Sale Trade
related
businesses)

-0.698
(-13.724)

-0.336
(-6.533)

-0.180
(-63.780)

-0.415
(-6.160)

-0.004
(-.080)

Origin ZIP Code
Homeowner
vacancy rate

0.187
(185.638)

0.161
(165.060)

Origin ZIP Code
Average
Household size

0.016
(2.134)

0.668
(113.060)

Log (Origin ZIP
Code Disabled
population)

1.551
(172.618)

1.423
(17.111)

1.424
(491.550)

0.205
(2.441)

1.069
(151.3)

0.336
(3.065)

0.460
(5.720)

Log (Origin ZIP
Code Renter
occupied housing
unit)

0.806
(10.546)

0.636
(96.42)

0.638
(6.416)

0.502
(7.230)

Origin ZIP Code
Dominant Sex
(male)

-0.344
(-68.014)

Origin ZIP Code
Dominant Race
(white)

2.814
(114.842)

Log (6)

-5.149
(-50.902)

2.47
(-63.796)

~11.690
(-0.796)

-1.437
(-46.477)

Random effects
parameters:

o (RUCA type of
Origin ZIP Code)

0.00013
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o0 (RUCA type of
Destination ZIP
Code)

0.502

Zero estimation part

Intercept

4.592
(4.729)

4.841
(18.334)

-4.508
(-6.502)

-2.065
(-3.088)

9.662
(10.060)

Origin ZIP Code
Average
Household size

0.533 (7.369)

0.205
(5.513)

-0.297
(-4.528)

-0.236
(-4.503)

0.438
(3.060)

Destination ZIP
Code Retail
Trade related
businesses

-0.284
(-19.866)

Log (Destination
ZIP Code Retail
Trade related
businesses)

-0.668
(-25.879)

-0.954
(-11.830)

Log (Origin ZIP
Code Household
Median income)

-0.217
(-2.321)

0.153
(2.375)

-0.197
(-3.128)

Log (Origin ZIP
Code Population
aged 14 years or
less)

0.522
(10.110)

0.343
(3.767)

-0.320
(-8.459)

-0.348
(-8.988)

1.143
(3.990)

Log (Origin ZIP
Code Population
aged 65 years or
over)

-0.311
(-3.129)

0.530
(9.129)

-1.440
(-3.950)

Log (Origin ZIP
Code Disabled
Population)

0.274
(5.166)

0.196
(3.492)

Log (Origin ZIP
Code Renter
occupied housing
unit)

-0.781
(-14.048)

-0.730
(-13.171)

0.733
(15.619)

0.211
(6.857)

-0.656
(-3.170)
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Origin ZIP Code
Number of
Households with
income 200K or
more

-0.001
(-5.404)

Log (Origin ZIP
Code Population
density)

0.059
(2.717)

-0.289
(-13.949)

Distance between
two ZIP Codes

0.039
(37.368)

-0.034
(-59.382

-0.033
(-59.506)

0.053
(32.240)

Random effects
parameters:

o (Origin ZIP
Code)

2.636

o (Destination
ZIP Code)

2.509

Measures of fit

Log-Likelihood at
convergence

-613,048

-27,933

-36,8191

-22,421

-376413

-23,222

-19,585

BIC

1,226,228

55,973

736,573

45,033

753,015

46,648

39,408

Number of
observations

148,454

148,454

148,454

148,454

148,454

148,454

148,454

Number of
parameters
estimated

11

9

16

16

16

17

20
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5.4 Model Selection and Statistical Fit

Several criteria can be used to select the best performing model among non-nested models. Here,
two goodness-of-fit indices were used to evaluate the fitness of the model, log-likelihood, and
BIC. Goodness-of-fit indices for the seven models are shown in Table 8. The log-likelihood value
of ZINB Mixed Effect model is lowest. To facilitate comparison across different models estimated
in this study, BIC value was computed as: -2xLL+KXLN(N), where K is the number of model
parameters and N is the number of observations in the estimation sample. The BIC statistic
penalizes model that attain higher LL values using more parameters to the estimated model
(Akaike, 1987; Schwarz, 1978). According to the BIC criterion, a model with lower BIC value is
preferred over model with higher BIC value. It can be seen from the table that the ZINB Mixed
Effect model had the lowest BIC value among all models for the dataset used in the analysis.
Among all the models considered, the ZINB Mixed Effect model with spatial effects has the highest
LL value and the least BIC value suggesting superior data fit.

5.5 Elasticity Effects

The parameter estimates in the count models (shown in Table 8) do not directly indicate the
magnitude of impact of different independent variables on expected DRT trip frequency. In order
to determine the magnitude of effects of the different independent variables on DRT trip
frequency, it is necessary to compute their corresponding elasticity effects. The elasticity effect
represents the percentage change in the response variable due to a unit percentage change in
an explanatory variable (Castro et al., 2012). Table 9 presents the elasticity effect of the best
performing ZINB Mixed Effect model. From the Table 10, it can be observed that the elasticity
effects are consistent with the coefficient estimates of the model variables. The elasticity
parameter of population density indicates that doubling the log of population density in the origin
ZIP Code will cause the expected trip counts to be decreased by 0.716%, on average if everything
else remains the same. The highest elasticity effect was observed on distance variable. It
indicates that, on average if everything else remains the same, the trip generation will be
decreased by 2.026% with one unit increase of the distance between origin and destination ZIP
Code. Other elasticity values in the table can be interpreted similarly.

TABLE 9: Elasticity effects of the ZINB mixed effect model.

Variables ZINB Mixed Effect
Value estimation part

Log (Origin ZIP Code Population density) -0.716
Log (Destination ZIP Code Retail Trade related businesses) 0.562
Log (Destination ZIP Code Whole Sale Trade related businesses) | -0.0024
Distance between two ZIP Code -2.026
Log (Origin ZIP Code Population aged 14 years or less) -0.869
Log (Origin ZIP Code Disabled population) 1.154
Log (Origin ZIP Code Renter occupied housing unit) 1.127
Zero estimation part

Log (Origin ZIP Code Population aged 65 years or over) -3.524
Log (Origin ZIP Code Renter occupied housing unit) -1.437
Origin ZIP Code Average Household size 0.439
Log (Origin ZIP Code Population aged 14 years or less) 2.871
Distance between two ZIP Code 3.585
Log (Destination ZIP Code Retail Trade related businesses) -0.955
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Figure 15 shows the effects of socio-economic variables on the frequency of DRT trip. The vertical
axis shows percentage changes in frequency of DRT trip. The effects of 10, 20, and 30% increase
in retail trade, the number of disabled people, population aged 14 years or less, the number of
renter occupied housing unit and population density on DRT trip count are shown. As expected,
the figure shows that the DRT trip frequency decreases with the population density and population
aged 14 years or less increases. On the other hand, DRT trip frequency increases with the
increased number of disabled people, and population aged 14 years or less increases. Number
of renter occupied housing unit, retail trade related establishment which are clearly visible from
the figure 15.
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Figure 15 : Changes in predicted trips based on Independent variables; RT, RO, 14L, DP and PD
mean Retail Trade, Renter occupied, Population aged 14 years or less, Disabled population and
Population density respectively.

5.6 Model Validation

To test the predictive power of these models, a validation exercise was undertaken in which the
predicted demand trip counts were compared with the observed counts in the data (Table 10).
The dataset is divided into training set (80%) and test set (20%) by randomly taking data points.
Absolute Percentage Difference (APD) between predicted and observed shares for each count
outcome was computed. Next, Average Absolute Percentage Difference (AAPD) across all count
outcomes was computed and used as a metric of predictive performance. Models with lower
AAPD value are preferred over models with higher AAPD values. Table 10 represents the result
of the prediction analyses. It is observed from the table that ZINB Mixed Effect model better suited
to capture dispersion in count data among all models for DRT trips in rural areas.
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TABLE 10: Model validation based on AAPD.

Trips | Observed | Expected Count
Count
Poisson NB ZIP HP HNB ZINB ZINB
Mixed Effect
Count | APD Count | APD Count | APD Count | APD Count | APD Count | APD Count | APD
(%) (%) (%0) (%) (%) (%) (%)
0 36,250 34,743 | 4.15 25,625 | 29.31 | 34,991 | 3.47 35,158 | 3.01 33,378 | 7.92 33,221 | 8.35 34,829 | 3.92
1-10 511 143 72.01 | 219 57.14 | 163 68.10 | 132 7416 | 259 49.32 | 241 52.83 | 187 63.41
11- 202 54 59.00 | 59 61 61 69.80 | 55 7277 | 84 58.41 | 109 46.04 | 158 21.78
100
>100 83 24 71.08 |0 100 10 87.95 | 20 75.90 | 4 9338 | 4 95.18 | 24 71.08
AAP 52.13 64.31 57.33 56.46 52.26 50.60 40.05
D (%)
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CHAPTER 6: DISCUSSION AND CONCLUSIONS

6.1 Urban connectivity

Because of budget constraints most suburban transit agencies do not have the capacity to (1)
routinely collect transit ridership, boarding, alighting, and (2) maintain a comprehensive and well-
designed transit assignment module in a travel demand model or from an advanced transit system
where smart cards are used to keep track of transit demand performance. Transit connectivity is
a multidimensional problem involving various service quality factors that include walking distance,
in-vehicle travel time, waiting time, number of destinations served and number of transfers to
reach destinations. Further adding to this complexity is the (usually) high number of available
routes with distinct characteristics within a network. Based on network graph properties this paper
proposes connectivity indices at stop, route, and zonal level by considering various factors such
as speed, frequency, operational capacity, fare, route origins and destination, and urban form
characteristics that serves the transit system. The connectivity indices are applied to three
metropolitan cities (Knoxville, Memphis, and Nashville) of Tennessee by using open access GTFS
data. The models and data processes developed in this paper can be used to (i) determine the
performance transit system with no additional data purchase, (ii) use of transit performance
measures along with other data sources (such as vehicle ownership, income etc.) to assess future
service needs, (iii) use of geographic information systems capabilities to disseminate transit
performance measures for potential future users, and to further induce demand, and (iv) seamless
re-estimation of transit performance measures both in alternate dimensions of time and space.

Public Transit is a critical component of TDOT’s Long-Range Transportation Plan. The
demographic data and trends in the state of Tennessee point to a potential increase in need for
public transit services in cities and rural communities. The role of TDOT in providing the mobility
and accessibility options to the residents, especially captive riders, is critical for the future quality
of life and economic competitiveness of Tennessee. Also, the trend of increased percentages of
household income spent on transportation and increased commuting distances are going to be
major contributing factors behind increased transit demand in the future. This research is crucial
in identifying areas in needs of service, developing a methodology to address the accessibility
and mobility issues and formulating a cost-effective plan to provide transit services. The results
will serve as components of Tennessee statewide mobility report. The demand model developed
in TCRP Report 161 includes some service characteristics, such as size of service area and
service miles, but it lacks other service characteristics. This study came up with a better demand-
response trip predictive model which considers few other factors like transportation-
disadvantaged groups of societies play an important role in demand ridership. Performance of
this model can be further improved if we add Land use data to capture real picture of trip attraction
in the locality. The label of ZIP Code whether that belongs to urban or rural area can be another
good predictor for zero inflated part of the ZINB model. Other factors such as fares span of
service, reservation requirements, and other service characteristics of DRT providers will likely
impact ridership.

Further, the transit connectivity measure is used to determine equity by various socio-economic
factors such as household income, vehicle ownership, employment, and population. Transit
connectivity equity is estimated by the GINI index. All three cities have both strengths and
weaknesses in serving the captive riders when various socioeconomic factors are considered.
For instance, Knoxville provides more equitable transit service when household income is
considered, while Memphis based on population, and Nashville based on vehicle ownership. This
paper presents results from a broader study that aims to provide TDOT with valuable information
on captive ridership in urban, suburban, and rural areas, and identify transit needs in these areas.
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Methods and results presented in this study can provide input to a base framework for state DOTs
to maintain a five-year transit plans, as well for identifying changing service impacts in correlation
with changing demographics in order to assess the transportation needs of metropolitan and local
communities. However, the generalized data set and its integration with the proposed model can
be adopted by any public agency to assess connectivity and equity.

6.2 Rural demand-responsive transit

The primary objective of this research was to develop a set of econometric models that can predict
DRT trip frequency as a function of land use, socio-economic and demographic characteristics.
We test these models on DRT trip data for rural areas in the state of Tennessee. To be specific,
seven count data models; Poisson, Negative Binomial (NB), Zero-inflated Poisson (ZIP), Zero-
inflated Negative Binomial (ZINB), Hurdle Poisson (HP), Hurdle Negative Binomial (HNB), and
ZINB Mixed Effect were developed to determine the causal factors related to DRT trips. BIC and
Log-likelihood was computed to compare different models. In addition, the predicted number of
DRT trips was used for model validation. The ZINB Mixed Effect model performed better
compared to all other models on model fit statistics and on the validation exercise. The results of
statistical models revealed that the significant contributing factors that lead to DRT trip frequency
are: trip distance, population density, population aged 14 years or less, population aged 65 years
or over, average household size, average income, retail and wholesale trade related
establishments and others. The elasticity effects of all variables entered ZINB Mixed Effect model
were also computed to understand clearly the impacts of those variables. The analyses of the
elasticity effect revealed that the variables with the largest effect were trip distance, population
aged 65 years or over, disabled population etc.

In terms of future research, characteristics of DRT service providers should be taken into
consideration while developing models for better prediction of DRT trip frequency. These
characteristics (i.e. reservation requirements, fare, days of operation per week etc.) may impact
the trip count in their serving area. Inclusion of theses service characteristics information with
demographic and land use data of ZIP Codes should provide better predictive outcome. In
addition, if more attributes of the trip makers were available (Yang and Cherry, 2017), the models
could have developed at a finer geographic level or even at individual level rather than ZIP Codes.
The models can be strengthened if time-of-day travel information is available to predict DRT trips
by various times of the day.
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APPENDIX-A: GTFS DATA STRUCTURE
A typical GTFS data set will include the following files.

Agency.txt
Calendar.txt
Feed_info.txt
Routes.txt
Shapes.txt
Stop_times.txt
Stops.txt
Trips.txt

©ONogarwWNE

For this project, we have utilized GTFS data for three cities and the data sets can be downloaded
using following links.

1. GTFS Data for Knoxville: Download
2. GTFS Data for Memphis: Download
3. GTFS Data for Nashville: Download

The most updated datasets are available on the following website.

http://www.gtfs-data-exchange.com/
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https://www.dropbox.com/sh/zd32mbutrychzpb/AABohAXw7wkuFtoHRNnxhNICa?dl=0
https://www.dropbox.com/sh/av8oq9rs7oblxm5/AADkP27a0v6rLbcPspXFP6Fua?dl=0
https://www.dropbox.com/sh/4m9nrl16djgi9yn/AACcuXl0VZNwiFJ_zMsU3jTia?dl=0
http://www.gtfs-data-exchange.com/

APPENDIX-B: KNOXVILLE GTFS DATA STRUCTURE and MAPS
A. Agency.txt

agency_id, agency_name, agency_url,
agency_timezone,agency_lang,agency_phone,agency_fare_url

1, Knoxville Area Transit
http://www.katbus.com/,America/New_York,en,865.637.3000,http://www.katbus.com/
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B. Calendar.txt

service_id monday tuesday wednesday thursday friday saturday

sunday start_date
1 1 1 1 1 1 0 0 20160111
2 0 0 0 0 0 1 0 20160111
3 0 0 0 0 0 0 1 20160111

C. Feed_info.txt

feed_publisher_name, feed_publisher_url,
feed_lang,feed_start_date,feed_end_date,feed_version

end_date

20160531
20160531
20160531

Knoxville Area Transit, http://www.katbus.com/,en,20160111,20160531,2016 1-11 NO ARRV

St_20160405
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D. Routes.txt

route_id
2803
2804
2805
2806
2807
2808
2809
2810
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2823
2824
2826
2827
2833

agency_id

PR R R R R R R R R R R R R R R R R R R R R R

route_short_name

44(F)

10
11
12
13
16
17
19
20
21
22
23
24
30
31
32
33
34
40
41
42

45
90

route_long_name

Sequoyah Hills

Kingston Pike

Western Avenue

Beaumont

Cedar Bluff Connector
Sutherland/Bearden
Lakeshore/Lonas Connector
Central Avenue

Lincoln Park

Broadway
Millertown/Fairmont
Inskip/Breda

Parkridge

Magnolia Avenue

Dandridge Avenue

Martin Luther King Jr. Boulevard
Burlington

South Knoxville

Chapman Highway

UT Hospital

Gateway at Knoxville Apartments
Vestal

Crosstown Connector

route_desc

route_type

W W W W W W W wwwwwwwwWwwWwwWwwWwwww wow

route_url

route_color
2673
FF0000
339900
FFBB33
2673
73B2FF
339900
FF0000
2673
FF0000
339900
2673
73B2FF
FF0000
339900
FFBB33
2673
2673
FFO000
339900
339900
FFBB33
A900E6

route_text_color
ffffff
ffffff
ffffff

i

ffffff
ffffff
ffffff
ffffff
ffffff
ffffff

ffffff
LiLid

LiLid
ffffff
fffef
ffffff
fffef

fffef
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E. Shapes.txt

shape_id
23211
23211
23211
23211
23211
23211
23211
23211
23211
23211
23211
23211
23211
23211
23211
23211
23211
23211
23211
23211
23211
23211
23211
23211
23211
23211
23211
23211
23211

shape_pt_lat
35.965431
35.965466
35.965582
35.965582
35.96552
35.965299
35.964909
35.964839
35.96479
35.964659
35.964579
35.96453
35.964469
35.964309
35.96409
35.96388
35.96343
35.962599
35.962209
35.961789
35.96137
35.960969
35.960889
35.960699
35.96057
35.960419
35.96019
35.96001
35.959889

shape_pt_lon

-83.913153
-83.913176
-83.912985
-83.912974
-83.912929
-83.91331
-83.91399
-83.91412
-83.91422
-83.91449
-83.914679
-83.91479
-83.914909
-83.915229
-83.91569
-83.9162
-83.917329
-83.91681
-83.9178
-83.918859
-83.91992
-83.920979
-83.921169
-83.92155
-83.92172
-83.92187
-83.92205
-83.92222
-83.922369

shape_pt_sequence

© 00 N o g A W N B

NN NN NNDNDNRNNDNERR P P B B P P R
© ® N O 0 B W N B O © ® N O 00~ W N P O

shape_dist_traveled

0.0045
0.0259
0.0269
0.0349
0.0766
0.1518
0.1662
0.1765
0.2048

0.224
0.2357
0.2473
0.2815
0.3295
0.3809
0.4941
0.5983
0.6976
0.8027
0.9086
1.0138

1.033

1.073
1.0935
1.1149
1.1454

1.171
1.1901
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F. Stop_times.txt

trip_id

252030
252030
252030
252030
252030
252030
252030
252030
252030
252030
252030
252030
252030
252030
252030
252030
252030
252030
252031
252031
252031
252031
252031
252031
252031
252031
252031
252031
252031

arrival_time
8:00:00
8:03:56
8:05:04
8:07:48
8:10:00
8:10:35
8:11:17
8:12:40
8:13:45
8:15:09
8:16:25
8:17:23
8:19:20
8:21:11
8:24:33
8:25:50
8:27:15
8:30:00
9:00:00
9:03:56
9:05:04
9:07:48
9:10:00
9:10:35
9:11:17
9:12:40
9:13:45
9:15:09
9:16:25

departure_time
8:00:00
8:03:56
8:05:04
8:07:48
8:10:00
8:10:35
8:11:17
8:12:40
8:13:45
8:15:09
8:16:25
8:17:23
8:19:20
8:21:11
8:24:33
8:25:50
8:27:15
8:30:00
9:00:00
9:03:56
9:05:04
9:07:48
9:10:00
9:10:35
9:11:17
9:12:40
9:13:45
9:15:09
9:16:25

stop_id
210
960
32
1278

34
154
1280
1643
471
1383
472
473
474
475
476
457
458
210
960
32
1278

34
154
1280
1643
471
1383

stop_sequence

© 00 N O O M~ W N PP

el N o =
® N o O b W N P O

© 00 N o o0 b~ W N

B
NS

stop_headsign

pickup_type

O O O O O O O O O O O O O O 0O 0O O 0o 0o o o o o o o o o o o

drop_off_type

O O O O O O O O O O O O O O 0O 0O OO OO0 o o o o o o o o o

shape_dist_traveled

0.5522
0.753
1.236

1.6169

1.7951

2.0076

2.4276

2.7547
3.177

3.5583

3.8494

4.4399

4.9975

6.0116
6.399

6.8257
7.637

0.5522
0.753
1.236

1.6169

1.7951

2.0076

2.4276

2.7547
3.177

3.5583
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G. Stops.txt

stop_id

© 00 NN

11
13
14
15
16
20
23
27
30
32
33
34
35
36
38
39
44
46
47
48
49
50
53
54
55

stop_code
CumbJAge
CumbPFul
KingNth2
GuyBTwrl
SMryHspl
ChicBway
SMryHsp2
GuyBTwr2
KingLynW
RayMWinW
WindSqre
RayMWinE
WT@Belk
CumbLocW
CumbVol2
Cumb16th
BoydUnv1l
McSpVirg
640PLZ
UnivColl
VirgMcSp
CollUniv
UnivBoyd
MainCCBI
TexShm2
CentBax1
KnoxJuvC
StatOffc
ChroHItS

stop_name

Cumberland at James Agee
Cumberland at Phillip Fulmer
Kingston Pk. at Northshore

Guy B. Love Towers

St. Mary's Hospital

Chickamauga at Broadway

St Mary's Hospital

Guy B. Love Towers

Kingston Pk. at Lyons View

Ray Mears Blvd WB @ Winston Rd
Windsor Square

Ray Mears Blvd EB @ Winston Rd
West Town between Belk & Pk Gar
Cumberland Ave WB @ Locust St
Cumberland Ave EB @ Volunteer Blvd
Cumberland Ave WB @ 16th St
Boyd St NB @ University Ave
Virginia at McSpadden

1-640 Plaza

College at University

Virginia at McSpadden

College at University

University Ave EB @ Boyd St

Main Street EB @ City & County Bldg
Texas Ave EB @ Sherman St
Central St NB @ Baxter Ave

Knox Co. Juvenile Court

State Office Bldg.

Cherokee Health

stop_desc

S NORTHSHORE DR & ACCESS
E ANDERSON AVE & FOLSOM AVE
HURON ST & E OAK HILL AVE

KINGSTON PIKE
RAY MEARS BLVD & ACCESS
N SEVEN OAKS DR

MCSPADDEN ST

SHOPPERS LN

UNIVERSITY AVE

VIRGINIA AVE & MCSPADDEN ST
COLLEGE ST & UNIVERSITY AVE
BOYD ST & UNIVERSITY AVE

stop_lat

35.958184
35.958019
35.932732
35.985158
35.992074
36.001396
35.992328
35.985332
35.941285
35.924109
35.913198
35.923771
35.923596
35.961533

35.95718
35.957504
35.970919
35.980403
35.971666
35.968405
35.980356
35.968267
35.970734
35.961248
35.982124
35.980642
35.956007
35.963941
35.966511

stop_lon

-83.928308
-83.928144
-84.002774
-83.92509
-83.928204
-83.926411
-83.928387
-83.9252
-83.977855
-84.044946
-84.098491
-84.045071
-84.037896
-83.919847
-83.93042
-83.930115
-83.934563
-83.945369
-83.988916
-83.937948
-83.94516
-83.938281
-83.934867
-83.917355
-83.961684
-83.928218
-83.960633
-83.956732
-83.944551
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H. Trips.txt

route_id
2803
2803
2803
2803
2803
2803
2803
2803
2803
2803
2804
2804
2804
2804
2804
2804
2804
2804
2804
2804
2804
2804
2804
2804
2804
2804
2804
2804
2804

service_id

trip_id
252030
252031
252032
252033
252034
252035
252036
252037
252038
252039
252040
252075
252041
252071
252042
252074
252043
252072
252044
252085
252045
252073
252046
252047
252048
252049
252050
252051
252052

trip_headsign

trip_short_name

direction_id

O O O O O O O 0O OO0 OO0 oo oo oo o r P P P P OO O O O

block_id
12259
12259
12260
12260
12260
12259
12259
12259
12260
12260
12261
12268
12262
12265
12263
12267
12264
12266
12261
12268
12262
12265
12263
12264
12261
12262
12263
12264
12261

shape_id
23211
23211
23212
23211
23213
23215
23214
23216
23214
23214
23219
23219
23217
23217
23217
23217
23217
23217
23217
23217
23217
23217
23217
23217
23217
23217
23217
23217
23217

wheelchair_accessible

O O O O O O O O O O 0O 0O 0O 0O 0O 0O o0 OO0 oo o o o o o o o o

bikes_allowed
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APPENDIX-C: MEMPHIS GTFS DATA STRUCTURE
A. Agency.txt

agency_id, agency_name,
agency_url,agency_timezone,agency_lang,agency_phone,agency_fare_url

MATA, Memphis Area Transit Authority, http://www.matatransit.com,America/Chicago,en,,

B. Calendar.txt

service_id monday tuesday wednesday thursday friday saturday sunday start_date  end_date
2 0 0 0 0 0 1 0 20151213 20160423
3 0 0 0 0 0 0 1 20151213 20160423
5 1 1 1 1 1 0 0 20151213 20160423
3405 0 0 0 0 0 0 0 20151213 20160423
3505 0 0 0 0 0 0 0 20151213 20160423

C. Feed_info.txt

feed_publisher_name, feed_publisher_url,
feed_lang,feed_start_date,feed_end_date,feed_version

Memphis Area Transit Authoritiy,
http://www.matatransit.com,en,20151213,20160423,DEC2015 20151204

65



D. Routes.txt

route_id agency_id
2742 MATA
2743 MATA
2744  MATA
2745 MATA
2746 MATA
2747 MATA
2748 MATA
2749 MATA
2750 MATA
2751 MATA
2752 MATA
2753 MATA
2754 MATA
2755 MATA
2756 MATA
2757 MATA
2758 MATA
2759 MATA
2760 MATA
2761 MATA
2762 MATA
2763 MATA
2764 MATA
2765 MATA
2766 MATA
2767 MATA
2768 MATA
2769 MATA
2770 MATA
. continue

route_short_name

© 00 N o o b~ N

100
101
102
11
12
13
15
17
19
20
30
32
34
35
36
37
38
39
40
42
46
50

route_long_name
Madison

Walker

Central

Northaven

Air Park

Chelsea

Highland

Trolley Main Line
Trolley Riverfront
Trolley Madison Line
Thomas

Florida

Lauderdale
President's Island
McLemore

Vollintine

Bellevue Winchester
Brooks

East Parkway / Hollywood
Walnut Grove

South Parkway

Hacks Cross

Perkins
Boxtown-Westwood
South Third

Wolfchase

Crosstown

Whithaven

Poplar

route_desc

route_type

W W W W W W W W W W W W W Ww wwwwwwowwwwowwwwow

route_url

route_color
800000
800000
8000
800080
FFOOFF
8080FF
8080
FF80CO
FF80CO
FF80CO
800080
8080
800000
Ccococo
coDbcco
ABCAFO
808080
FF0000
80
Ccococo
800080
80
FFO000
0
8080
Ccococo
0
0
800080

route_text_color
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E. Shapes.txt

shape_id shape_pt_lat

28567
28567
28567
28567
28567
28567
28567
28567
28567
28567
28567
28567
28567
28567
28567
28567
28567
28567
28567
28567
28567
28567
28567
28567
28567
28567
28567
28567

28567
.... continue

35.044702
35.044729
35.044749
35.044781
35.044835
35.044886
35.044909
35.044943
35.044988
35.045069
35.045232
35.045454
35.046169
35.046407
35.046484
35.046658
35.046703
35.046755
35.046835
35.046906
35.046951
35.046973
35.047014
35.047028
35.047038
35.047059
35.047107
35.047182
35.047323

shape_pt_lon

-89.981017
-89.980169
-89.980098

-89.98005
-89.980022
-89.980024
-89.979992
-89.979968
-89.979953
-89.979921
-89.979922
-89.979927
-89.979984
-89.980038
-89.980056
-89.980134
-89.980159
-89.980184
-89.980253
-89.980342
-89.980417
-89.980462
-89.980562
-89.980667
-89.981032
-89.981162
-89.981296
-89.981401

-89.98148

shape_pt_sequence

© 00 N o g A W N B

NN NN NNDNDNRNNDNERR P P B B P P R
© ® N O 0 B W N B O © ® N O 00~ W N P O

shape_dist_traveled

0.0771
0.0838
0.0888
0.0955
0.1015
0.1057
0.1093
0.1144
0.1239
0.1429
0.1679
0.2481
0.2746
0.2836
0.3039
0.3097

0.316
0.3268
0.3382
0.3468
0.3512
0.3615
0.3717
0.4047
0.4169
0.4299
0.4426
0.4601
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F. Stop_times.txt

trip_id arrival_time
355855 21:43:00
355855 21:43:36
355855 21:43:52
355855 21:44:13
355855 21:44:27
355855 21:44:48
355855 21:45:01
355855 21:45:16
355855 21:45:40
355855 21:45:54
355855 21:46:22
355855 21:46:36
355855 21:46:48
355855 21:47:24
355855 21:47:48
355855 21:47:48
355855 21:48:00
355855 21:48:21
355855 21:49:00
355855 21:49:40
355855 21:50:02
355855 21:50:22
355855 21:51:01
355855 21:51:23
355855 21:51:41
355855 21:51:57
355855 21:52:16
355855 21:52:37
355855 21:52:49
.... continue

departure_time
21:43:00
21:43:36
21:43:52
21:44:13
21:44:27
21:44:48
21:45:01
21:45:16
21:45:40
21:45:54
21:46:22
21:46:36
21:46:48
21:47:24
21:47:48
21:47:48
21:48:00
21:48:21
21:49:00
21:49:40
21:50:02
21:50:22
21:51:01
21:51:23
21:51:41
21:51:57
21:52:16
21:52:37
21:52:49

stop_id
30
3342
3343
3344
3345
3526
3527
3528
3529
3530
3386
3387
3388
3389
3842
3843
3390
3391
747
748
749
750
751
752
753
754
755
756
757

stop_sequence

© 00 N o o b~ W N P

NN RN RN N NNNRNDNDIERRR B B B B B
© ® N 0o O b~ ® N P O © ® N O O » W N P O

stop_headsign

O O O O O O O O O O O O 0O 0O O 0O OO0 OO0 O o o o o o o o o

pickup_type

O O O O O O O O O O O O 0O 0O O 0O OO0 OO0 O o o o o o o o o

drop_off_type

0.2621
0.3821
0.5362
0.6382
0.7944
0.8944
1.0035
1.1836
1.2876
1.4916
1.5997
1.6928
1.96
2.1351
2.1351
2.2272
2.3813
2.6032
2.8606
2.9998
3.1299
3.3775
3.5169
3.6329
3.738
3.8607
3.9963
4.076
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G. Stops.ixt

stop_id, stop_code, stop_name, stop_desc,
stop_lat,stop_lon,zone_id,stop_url,location_type,parent_station,stop_timezone,wheelchair_boar
ding

7, AIRKETSN, AIRWAYS BLVD@KETCHUM, AIRWAYS BLVD & KETCHUM RD,35.079543, -
89.984917,,,,,,0
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H. Trips.txt

route_id service_id
2742
2742
2742
2742
2742
2742
2742
2742
2742
2742
2742
2742
2742
2742
2742
2742
2742
2742
2742
2742
2742
2743
2743
2743
2743
2743
2743
2743
2743

.... continue

N N NN N NN DN DN DNDDNDNDNDDNDDNDNDNDNDDNDDNDNDNDDNDDNDDNDNDNDNDNDDNDDNDNDNNDN

trip_id

355865
355864
355863
355862
355861
355860
355859
355858
355857
355856
355855
355875
355874
355873
355872
355871
355870
355869
355868
355867
355866
355977
355975
358881
358882
355973
355972
355971
355970

trip_headsign direction_id
2 Downtown

2 Downtown

2 Downtown

2 Downtown

2 Downtown

2 Downtown

2 Medical Center - Fairgrounds
2 Medical Center - Fairgrounds
2 Medical Center - Fairgrounds
2 Medical Center - Fairgrounds
2 Medical Center - Fairgrounds
2 Medical Center Airport

2 Medical Center Airport

2 Medical Center Airport

2 Medical Center Airport

2 Medical Center Airport

2 Medical Center - Fairgrounds
2 Medical Center - Fairgrounds
2 Medical Center - Fairgrounds
2 Medical Center - Fairgrounds
2 Medical Center - Fairgrounds
4 Walker Alcy

4 Walker Castalia

4 Walker Alcy

4 Walker Castalia

4 Walker Alcy

4 Walker Castalia

4 Walker Alcy

4 Walker Castalia

O O 0O oo oo oo kr P P P P P PP PP OOOOOHOOOOOOo

26872
26872
26872
26872
26872
26872
26872
26872
26872
26872
26872
26872
26872
26872
26872
26872
26872
26872
26872
26872
26872
26881
26880
26881
26880
26881
26880
26881
26880

wheelchair_accessible

O O O O O O O O O O 0O OO O 0O 0O o0 O o0 oo oo o o o o o o

bikes_allowed
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APPENDIX-D: NASHVILLE GTFS DATA STRUCTURE
A. Agency.txt

agency_id, agency_name, agency_url,
agency_timezone,agency_lang,agency_phone,agency_fare_url

Nashville MTA, Nashville Metropolitan Transit Authority,
http://www.nashvillemta.org/,America/Chicago,en,615-862-5950,

Nashville RTA,Regional Transportation Authority of Middle
Tennessee,http://rtarelaxandride.com/,America/Chicago,en,615-862-8833,
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B. Calendar.txt

service_id
1

2

3

301

401

201

101

901

1001

monday

3204

C. Feed_info.txt

O B O O O O O O O O Bk

tuesday

O B O O O O O O O O Bk

wednesday

O B O O O O O O O O Bk

thursday

O B O O O O O O O O Bk

friday

O P O O O O O O O O Bk

saturday

O O O O O O o o o +» o

sunday

O O O O O O o o +» o o

start_date
20150927
20150927
20150927
20150927
20150927
20150927
20150927
20150927
20150927
20150927
20150927

end_date

20160326
20160326
20160326
20160326
20160326
20160326
20160326
20160326
20160326
20160326
20160326
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D. Routes.txt

route_id agency_id
1 Nashville
2 Nashville
3 Nashville
4 Nashville
5 Nashville
6  Nashville
7 Nashville
8 Nashville
9 Nashville
10 Nashville
12 Nashville
14  Nashville
15 Nashville
17  Nashville
18 Nashville
19 Nashville
20 Nashville
21 Nashville
22 Nashville
23 Nashville
24 Nashville
25 Nashville
26 Nashville
27 Nashville
28 Nashville
29 Nashville
30 Nashville
....continue

route_short_name

MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA
MTA

route_long_name

© 00 N o o B~ W N PP

WORNN NN DNNNDNRNDNERER B B B b
O © ® N o 0 B W N P O © ® N 0 M N O

route_desc

100 OAKS

BELMONT

WEST END WHITE BRIFGE
SHELBY

WEST END BELLEVUE
LEBANON PIKE
HILLSBORO

8TH AVENUE SOUTH
METROCENTER
CHARLOTTE
NOLENSVILLE PIKE
WHITES CREEK
MURFREESBORO PIKE
12TH AVENUE SOUTH
AIRPORT DOWNTOWN HOTELS
HERMAN

SCOTT

UNIVERSITY CONNECTOR
BORDEAUX

DICKERSON PIKE
BELLEVUE EXPRESS
MIDTOWN CONNECTOR
GALLATIN PIKE

OLD HICKORY

MERIDIAN

JEFFERSON

McFERRIN

route_type

W W W W W W W WwwWWwWWWWWWWWWWWW W W W w w

route_url
00A651
00A651
ED1C24
ED1C24
FF0000
00A651
ED1C24
00A651
00A651
ED1C24
ED1C24
00A651
ED1C24
ED1C24
00A651
ED1C24
00A651
FFO000
ED1C24
ED1C24
F18C03
00A651
ED1C24
FF8000
ED1C24
ED1C24
00A651

route_color
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
FFFFFF
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E. Shapes.txt

shape_id
9649
9649
9649
9649
9649
9649
9649
9649
9649
9649
9649
9649
9649
9649
9649
9649
9649
9649
9649
9649
9649
9649
9649
9649
9649
9649
9649
9649

9649
...continue

shape_pt_lat

36.166454
36.166567
36.166454
36.166409
36.166126
36.165851
36.165682
36.165278
36.164543
36.164493
36.164019

36.16316
36.163038
36.162594

36.16188
36.161622
36.160863
36.160642
36.160493

36.15967
36.159401
36.158716
36.158437
36.158226
36.158031
36.157959
36.157847
36.157294
36.156927

shape_pt_lon

-86.782269
-86.781977
-86.782268

-86.78224
-86.782064
-86.781893
-86.781792
-86.781551
-86.781098

-86.78107
-86.780756
-86.780181
-86.780099
-86.779797
-86.779326
-86.779158

-86.77868
-86.778541
-86.778442
-86.777898
-86.777718
-86.777259
-86.777097
-86.777614
-86.778087
-86.778267
-86.778563
-86.778204
-86.777958

shape_pt_sequence

© 00 N o g A W N B

NN NN NNDNDNRNNDNERR P P B B P P R
© ® N O 0 B W N B O © ® N O 00~ W N P O

shape_dist_traveled

0.0291
0.0291
0.0349
0.0702
0.1042
0.1253
0.1758
0.2675
0.2729
0.3337
0.4424
0.4577
0.5145
0.6049
0.6375
0.7323
0.7605
0.7784
0.8835
0.9175
1.0039
1.0388
1.0902
1.1376
1.1555
1.1846
1.2544
1.3009
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F. Stop_times.txt

trip_id arrival_time
116305 6:18:00
116305 6:19:23
116305 6:20:00
116305 6:22:13
116305 6:36:00
116306 7:15:00
116306 7:16:32
116306 7:17:13
116306 7:19:41
116306 7:35:00
116307 8:15:00
116307 8:16:23
116307 8:17:00
116307 8:19:13
116307 8:33:00
116308 15:15:00
116308 15:16:49
116308 15:18:16
116308 15:19:13
116308 15:22:00
116308 15:22:42
116308 15:23:12
116308 15:24:53
116308 15:26:05
116308 15:27:22
116308 15:28:18
116308 15:29:30
116308 15:29:49
116308 15:31:00
...continue

departure_time
6:18:00
6:19:23
6:20:00
6:22:13
6:36:00
7:15:00
7:16:32
7:17:13
7:19:41
7:35:00
8:15:00
8:16:23
8:17:00
8:19:13
8:33:00
15:15:00
15:16:49
15:18:16
15:19:13
15:22:00
15:22:42
15:23:12
15:24:53
15:26:05
15:27:22
15:28:18
15:29:30
15:29:49
15:31:00

stop_id
MCC5_11
CHA7AWN
CHABAWN
CXONGULC
1000AKS
MCC5_11
CHA7AWN
CHABAWN
CXONGULC
1000AKS
MCC5_11
CHA7AWN
CHABAWN
CXONGULC
1000AKS
MCC5_11
5AUNISM
5AVCOMSN
5AVBROSN
6AVDEMSF
6APEASN
LAFEWIEN
6A0OAKSN
FORVINSM
FORCHESN
HAMFOREF
HAMMAREN
MARMOOSF
MARWEDSN

stop_sequence

© 00 N O O A~ W N PP OO >~ OON PP O B NP OO B ODND P

R o i =
A W N B O

stop_headsign

O O O O O O O 0O O 0o oo oo r OO0 O 0O r O 0o o o +r o o o o

pickup_type

O O O O O O O O O 0O 0O O Or OO0 OO kP OO0 O O P O o O O k-

drop_off_type

0.3178
0.4601
0.9683
10.4874

0.3178
0.4601
0.9683
10.4874

0.3178
0.4601
0.9683
10.4874

0.3315
0.5946
0.7695
1.2678
1.5456
1.7464
2.4127
2.8898
3.3999
3.7719
4.2497
4.3805
4.8138
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G. Stops.ixt

stop_id
10ABENNN
10AGILSN
10AHALNN
10AHALSN
10AHERNN
10ALAWSN
10ALAWNN
10ASDONN
10AWALNN
11AWHESN
12AARCSN
12AARCSM
12AARGNN
12ACALSN
12ACALNM
12ADEMNN
12ADIVNN
12AEDGSN
12AEDGNN
GRAFERSN
GRAFERNN
12AHAWSN
12AHAWNN
12AHORSM
12AHORSN
12AHORNN
12ALAUSN
12ALAWNN

12ALINNN
...continue

stop_code
10ABENNN
10AGILSN
10AHALNN
10AHALSN
10AHERNN
10ALAWSN
10ALAWNN
10ASDONN
10AWALNN
11AWHESN
12AARCSN
12AARCSM
12AARGNN
12ACALSN
12ACALNM
12ADEMNN
12ADIVNN
12AEDGSN
12AEDGNN
GRAFERSN
GRAFERNN
12AHAWSN
12AHAWNN
12AHORSM
12AHORSN
12AHORNN
12ALAUSN
12ALAWNN
12ALINNN

stop_name

10TH AVE S & BENTON AVE NB
10TH AVE S & GILMORE AVE SB
10TH AVE S & HALCYON AVE NB
10TH AVE S & HALCYON AVE SB
10TH AVE N & HERMAN ST NB

10TH AVE S & LAWRENCE AVE SB
10TH AVE S & LAWRENCE AVE NB
10TH AVE S & S DOUGLAS AVE NB
10TH AVE S & WALDKIRCH AVE NB
11TH AVE N & WHEELESS ST SB
12TH AVE S & ARCHER ST SB

12TH AVE S & ARCHER ST SB

12TH AVE S & ARGYLE AVE NB
12TH AVE S & CALDWELL AVE SB
12TH AVE S & CALDWELL AVE NB
12TH AVE S & DEMONBREUN ST NB
12TH AVE S & DIVISION ST NB

12TH AVE S & EDGEHILL AVE SB
12TH AVE S & EDGEHILL AVE NB
GRANNY WHITE PIKE & FERGUSON AVE SB
GRANNY WHITE PIKE & FERGUSON AVE NB
12TH AVE S & HAWKINS ST SB
12TH AVE S & HAWKINS ST NB
12TH AVE S & EDGEHILL AVE SB
12TH AVE S & HORTON AVE SB
12TH AVE S & HORTON AVE NB
12TH AVE S & LAUREL ST SB

12TH AVE S & LAWRENCE AVE NB
12TH AVE S & LINDEN AVE NB

stop_desc

10TH AV S & GILMORE AV

10TH AV S & HALCYON AV
10TH AV N & HERMAN ST
10TH AV S & LAWRENCE AV
10TH AV S & LAWRENCE AV
10TH AV S & S DOUGLAS AV
10TH AV S & WALDKIRCH AV

12TH AV S & ARCHER ST

12TH AV S & ARCHER ST

12TH AV S & ARGYLE AV

12TH AV S & CALDWELL AV
12TH AV S & CALDWELL AV
12TH AV S & DEMONBREUN ST

12TH AV S & EDGEHILL AV

12TH AV S & EDGEHILL AV

GRANNY WHITE PK & FERGUSON AV
GRANNY WHITE PK & FERGUSON AV
12TH AV S & HAWKINS ST

12TH AV S & HAWKINS ST

12TH AV S & HORTON AV

12TH AV S & HORTON AV

12TH AV S & HORTON AV

12TH AV S & LAUREL ST

12TH AV S & UNKNOWN AL

12TH AV S & LINDEN AV

stop_lat

36.132025
36.124667
36.122265
36.122488
36.168831
36.129275
36.128739

36.13031
36.126855
36.179003
36.145597
36.144535
36.137677
36.132811
36.132436
36.154509
36.150705
36.142972
36.142624
36.118934
36.118756
36.148669
36.148383
36.141267
36.140043
36.139606
36.153723
36.129319
36.127614

stop_lon

-86.785641
-86.786403

-86.78647
-86.786537
-86.792339
-86.786044
-86.785943
-86.785797
-86.786145
-86.803879
-86.786258
-86.786549
-86.788074
-86.788803
-86.788657
-86.786056
-86.784306
-86.787031
-86.786998
-86.791122
-86.791055
-86.785136
-86.785282

-86.78739
-86.787626
-86.787525
-86.785686
-86.788814
-86.789082
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H. Trips.txt

route_id

N N NN NN DNDNRNDMDNDNDNDDNRNNRR R R R R RBP R R R R B R B R

...continue

service_id

PR R R R R R R R R R R R R R R R R R R R R R R R R R B R

trip_id
116305
116306
116307
116311
116308
116309
116310
116312
116313
116314
116315
116319
116316
116317
116318
116323
116324
116321
116325
116330
116322
116329
116326
116327
116328
116320
116332
116335
116336

trip_headsign trip_short_name
100 OAKS EXPRESS
100 OAKS EXPRESS
100 OAKS EXPRESS
100 OAKS MALL

100 OAKS MALL

100 OAKS MALL

100 OAKS MALL
DOWNTOWN
DOWNTOWN
DOWNTOWN
DOWNTOWN
DOWNTOWN EXPRESS
DOWNTOWN EXPRESS
DOWNTOWN EXPRESS
DOWNTOWN EXPRESS
BELMONT

BELMONT

BELMONT

BELMONT

BELMONT

BELMONT

BELMONT

BELMONT

BELMONT

BELMONT

BELMONT
DOWNTOWN
DOWNTOWN
DOWNTOWN

direction_id

0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1

block_id

12879
12879
12879
12881
12880
12880
12880
12879
12879
12879
12879
12881
12880
12880
12880
12883
12885
12883
12885
12882
12884
12882
12884
12882
12884
12882
12883
12885
12883

shape_id

9650
9650
9650
9649
9649
9649
9649
9651
9651
9651
9651
9654
9653
9653
9653
9655
9655
9655
9655
9655
9655
9655
9655
9655
9655
9655
9656
9656
9656
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APPENDIX-E: SCRIPT TO PROCESS GTFS DATA
Example code-Nashville

HHHHHHA R R R R R

### GTFS CONNECTIVITY TOOL v1.0###

HH AR R R R
#Version Date: 12.07.2015

#Coded by: Tim Welch, Georgia Tech and Sabya Mishra, University of Memphis
#You are free to use, modify and distribute this code
library("maptools")

library(“foreign™)

library("plyr")

library("dplyr")

library("Hmisc")

library("ggplot2")

library("ggthemes")

library("parallel")

library("doParallel)

library("snow")

library("data.table")

library("sp")

library("leaflet")

HHRR R R R R R R R R R R R B B
RHRHRR R

HHAHHHH AR
HHAHHH AR

HHAHHHH AR AR
HHAHHH AR

HHAHHHH AR AR
HHAHHH AR

# THESE ARE THE ONLY TWO LINES YOU CHANGE AND IT SHOULD RUN
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LOC<-"Nashville"
PDFFILENAME<-"Nashville.pdf"
PDFFILENAMEZ2<-"Nashville.png"

BHAHHHHHHHHHHHHHHHHHHH R R R R R R R R
HHAH R

HHARHHHHH R R R R
HHAHHH AR

BHAHHHHHHHHHHHHHHHHHHH R R R R R R R R
HHAHHH AR

BHAH R R R R R R R R R
HHAHHH R

BHHHHH AR AR H R R R R H R R R R
BHHHHHA R H

polygon<-readShapePoly("ActivityShape.shp")
#Convert Inputs to CSV
stop_timeTXT = read.delim("stop_times.txt",sep=",") #Stop-Time file

write.table(stop_timeTXT, file="stop_times.csv",sep=",",col.names=TRUE,row.names=FALSE)

tripTXT = read.delim("trips.txt",sep=",") #Stop-Time file

write.table(tripTXT, file="trips.csv",sep=",",col.names=TRUE,row.names=FALSE)

routesTXT = read.delim("routes.txt",sep=",") #Stop-Time file

write.table(routesTXT, file="routes.csv",sep=",",col.names=TRUE,row.names=FALSE)

stopsTXT = read.delim("stops.txt",sep=",") #Stop-Time file

nn

write.table(stopsTXT, file="stops.csv",sep=",",col.names=TRUE,row.names=FALSE)

ShapesTXT = read.delim("shapes.txt",sep=",") #Stop-Time file
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write.table(ShapesTXT, file="Shapes.csv",sep=",",col.names=TRUE,row.names=FALSE)

#Read Back CSVs

stop_times <- read.csv("stop_times.csv",sep=",")
trips <- read.csv("trips.csv",sep=",")

routes <- read.csv("routes.csv",sep=",")

stops <- read.csv("stops.csv",sep=",")

shapes <- read.csv("Shapes.csv",sep=",")

# merge Routes with Trips
trips_routes = merge(trips, routes, by="route_id")

Stops_times_trips_routes = merge(stop_times, trips_routes, by="trip_id")

Stops_times_trips_routes$arrival_time <- as.character(Stops_times_trips_routes$arrival_time)

Stops_times_trips_routes$arrival_time <-
sapply(strsplit(Stops_times_trips_routes$arrival_time,":"),

function(x) {
X <- as.numeric(x)
X[1]+x[2]/60+x[3]/3600
}

#Select 1 direction

Stops_times_trips_routes_Dirl <- subset(Stops_times_trips_routes,direction_id==1)

###CALC TRIP TIME
# use aggregate to create new data frame with the maxima

Stops_times_trips_routes_Dirl_aggMAX <- aggregate(arrival_time ~ trip_id,
Stops_times_trips_routes_Dirl, max)
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names(Stops_times_trips_routes_Dirl _aggMAX)[1] <- "trip_id"
names(Stops_times_trips_routes_Dirl_aggMAX)[2] <- "timeMAX"

Stops_times_trips_routes_Dirl _aggMIN <- aggregate(arrival_time ~ trip_id,
Stops_times_trips_routes_Dirl, min)

names(Stops_times_trips_routes_Dirl_aggMIN)[1] <- "trip_id"

names(Stops_times_trips_routes_Dirl _aggMIN)[2] <- "timeMIN"

Stops_times_trips_routes_Dirl_aggMINMAX = merge(Stops_times_trips_routes_Dirl_aggMIN,
Stops_times_trips_routes_Dirl_aggMAX, by="trip_id")

Stops_times_trips_routes_Dirl aggMINMAX$RouteTime <-
(Stops_times_trips_routes_Dirl_aggMINMAX$timeMAX-
Stops_times_trips_routes_Dirl _aggMINMAX$timeMIN)*60

###CALC TRIP DISTANCE

Stops_times_trips_routes_Dirl_TripDISTMAX <- aggregate(shape_dist_traveled ~ trip_id,
Stops_times_trips_routes_Dirl, max)

names(Stops_times_trips_routes_Dirl TripDISTMAX)[1] <- "trip_id"
names(Stops_times_trips_routes_Dirl_TripDISTMAX)[2] <- "distMAX"

Stops_times_trips_routes_Dirl_TripDISTMIN <- aggregate(shape_dist_traveled ~ trip_id,
Stops_times_trips_routes_Dirl, min)

names(Stops_times_trips_routes_Dirl TripDISTMIN)[1] <- "trip_id"
names(Stops_times_trips_routes_Dirl TripDISTMIN)[2] <- "distMIN"

Stops_times_trips_routes_Dirl_TripDISTMINMAX =
merge(Stops_times_trips_routes_Dirl TripDISTMIN,
Stops_times_trips_routes_Dirl_TripDISTMAX, by="trip_id")

Stops_times_trips_routes_Dirl_TripDISTMINMAX$RouteDIST <-
(Stops_times_trips_routes_Dirl_TripDISTMINMAX$distMAX-
Stops_times_trips_routes_Dirl_TripDISTMINMAXS$distMIN)
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###Merge Time and Distance, CALC SPPED
Stops_times_trips_routes_Dirl TripSPEED =
merge(Stops_times_trips_routes_Dirl_aggMINMAX,
Stops_times_trips_routes_Dirl_ TripDISTMINMAX, by="trip_id")
Stops_times_trips_routes_Dirl_TripSPEED$TripSpeed <-

((Stops_times_trips_routes_Dirl_TripSPEED$RouteDIST/5280)/Stops_times_trips_routes_Dirl
_TripSPEED$RouteTime)*60

###CALC HEADWAY

Stops_times_trips_routes_Dirl_aggMAX["Count"] <-1

# use aggregate to create new data frame with the maxima

Stops_times_trips_routes_Dirl_RouteTimeMAX <- aggregate(arrival_time ~ route_id,
Stops_times_trips_routes_Dirl, max)

names(Stops_times_trips_routes_Dirl RouteTimeMAX)[1] <- "route_id"
names(Stops_times_trips_routes_Dirl RouteTimeMAX)[2] <- "timeMAX"

Stops_times_trips_routes_Dirl RouteTimeMIN <- aggregate(arrival_time ~ route_id,
Stops_times_trips_routes_Dirl, min)

names(Stops_times_trips_routes_Dirl _RouteTimeMIN)[1] <- "route_id"

names(Stops_times_trips_routes_Dirl RouteTimeMIN)[2] <- "timeMIN"

Stops_times_trips_routes_Dirl RouteTimeMINMAX =
merge(Stops_times_trips_routes_Dirl RouteTimeMAX,
Stops_times_trips_routes_Dirl RouteTimeMIN, by="route id")

Stops_times_trips_routes_Dirl RouteTimeMINMAXS$trips_RouteTime <-
Stops_times_trips_routes_Dirl RouteTimeMINMAX$timeMAX-
Stops_times_trips_routes_Dirl RouteTimeMINMAX$timeMIN

#Select 1 direction

trips_Dirl <- subset(trips,direction_id==1)

trips_Dirl_TripCount <- aggregate(direction_id ~ route_id, trips_Dirl, sum)

names(trips_Dirl_TripCount)[1] <- "route_id"
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names(trips_Dirl_TripCount)[2] <- "TripCount"

##Merge Route Info acn CALC final headways

Trips_Routes_Headway = merge(Stops_times_trips_routes_Dirl_RouteTimeMINMAX,
trips_Dirl_TripCount, by="route id")

Trips_Routes_Headway$RouteHeadway <-
(Trips_Routes_Headway$trips_RouteTime/Trips_Routes_Headway$TripCount)*60

Trips_Routes_Headway$RouteFrequency <- 60/Trips_Routes_Headway$RouteHeadway

###CALC CAPACITY and CAP

ifelse(routes$route_type==3, routes$CAPACITY <- 50, 200)

routes_ALLDATA = merge(routes, Trips_Routes_Headway, by="route_id")

routes_ ALLDATAS$CAP <- routes_ ALLDATA$CAPACITY*routes_ALLDATAS$RouteFrequency

#H##CALC DIST IN-OUT

stop_times_trips_routes_TRIPDIST = merge(Stops_times_trips_routes,
Stops_times_trips_routes_Dirl TripSPEED, by="trip_id")

stop_times_trips_routes_TRIPDIST$OriginDistance =
stop_times_trips_routes_TRIPDIST$shape_dist_traveled -
stop_times_trips_routes_TRIPDIST$distMIN

stop_times_trips_routes_TRIPDIST$DestinationDistance =
stop_times_trips_routes TRIPDIST$RouteDIST-
stop_times_trips_routes_TRIPDIST$OriginDistance

###CALC ACTIVITY
coordinates(stops)=~stop_lon+stop_lat

stops$Activity = over(stops,polygon)

stop_times_trips_routes_TRIPDIST_Activity = merge(stop_times_trips_routes_TRIPDIST,
stops, by="stop_id")

###Construct Connectivity INPUT FILE
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stop_times_trips_routes_TRIPDIST_ROUTEDATA =

merge(stop_times_trips_routes_TRIPDIST_Activity, routes_ALLDATA, by="route_id")

INPUT <-

stop_times_trips_routes_TRIPDIST_ROUTEDATA|],c("route_id","RouteDIST","stop_id","OriginD

istance","DestinationDistance”,"TripSpeed","RouteFrequency"”,"CAPACITY","CAP","Activity")]

names(INPUT)[1] <- "Line"
names(INPUT)[2] <- "Distance"
names(INPUT)[3] <- "Node"
names(INPUT)[4] <- "Origin Distance"
names(INPUT)[5] <- "Destination Distance"
names(INPUT)[6] <- "Speed"
names(INPUT)[7] <- "Frequency"
names(INPUT)[8] <- "Capacity"
names(INPUT)[9] <- "CAP"
names(INPUT)[10] <- "Activity"

write.table(INPUT, file="input.csv",sep=",",col.names=TRUE,row.names=FALSE)

#H A CALC CONNECTIVITY s
nO<-read.csv("input.csv", header=TRUE)
nO[["Activity"]][is.na(nO[["Activity"]])] <- 1

n<-na.omit(n0)

#Mean and Stdev.

# add .rm=TRUE if missing values
mean_QOdist=mean(n$0Origin.Distance);sd_Odist=sd(n$Origin.Distance);
mean_Ddist=mean(n$Destination.Distance);sd_Ddist=sd(n$Destination.Distance);
mean_speed=mean(n$Speed);sd_speed=sd(n$Speed);
mean_cap=mean(n$CAP); sd_cap=sd(n$CAP);

mean_actv=mean(n$Activity); sd_actv=sd(n$Activity)
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#Scaling Coefficients

alpha<-pnorm(n$CAP, mean = mean_cap, sd = sd_cap, log = FALSE)
beta<-pnorm(n$Speed, mean = mean_speed, sd = sd_speed, log = FALSE)
gammas<-pnorm(n$Origin.Distance, mean = mean_0Odist, sd = sd_Odist, log = FALSE)

phi<-pnorm(n$Activity, mean = mean_actv, sd = sd_actv, log = FALSE)

n<-cbhind(n,alpha,beta,gamma,phi)

#Connecting power
length=nrow(n)

inbound=((n$alpha*0.01*n$CAP)*(n$beta*0.01*n$Speed)*(n$gamma*n$Destination.Distance)*(
n$phi*n$Activity))

outbound=((n$alpha*0.01*n$CAP)*(n$beta*0.01*n$Speed)*(n$gamma*n$Origin.Distance)*(n$p
hi*n$Activity))

Avg_CP=((inbound+outbound)/2)

n<-cbind(n,inbound,outbound,Avg_CP)

## Node Connecting power(node_CP)
node_stepl<-aggregate(.~Node,data=n,sum);
freg<-as.data.frame(table(n$Node))

node_CP= (node_stepl[,ncol(node_stepl)])/freq[2];

node_CP=cbind(node_stepl[1],node_CP); names(node_CP)<- c("Node", "Connectivity Index");

## Line Connecting Power(LCP)
Node= n$Node
A<-cbind(n[3],n[1],n[17])
sum_CP=rep(NA,length(Node))

A<-data.frame(A,sum_CP)
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A$sum_CP<-node_stepl1$Avg_CP[match(A$Node,node_step1$Node)]

require(dplyr)

A<-group_by(A,Line)

A.summary <- summarise(A,Line_CP=sum(sum_CP))
freq_L<-as.data.frame(table(n$Line))

LCP= (A.summary[2])/((freq_L[2])-1);

LCP=cbind(A.summary[1],LCP); names(LCP)<- c("Line", "Line Connecting Power");

#Export the Output
write.csv(n,"Output_pt.1.csv",row.names=FALSE)
write.csv(node_CP,"Output_Node.csv",row.names=FALSE)

write.csv(LCP,"Output_Line.csv",row.names=FALSE)

#Aggregate and Export Line (Route) Data to Shape ID for mapping
names(LCP)[names(LCP)=="Line"] <- "route_id"

tripsRED<-trips[,c("route_id","shape_id")]

LCP_Routes = merge(tripsRED, LCP, by="route_id")
LCP_RoutesRED<-LCP_Routes|,c("shape_id","Line Connecting Power")]
LCP_AGG<-aggregate(.~shape_id,data=LCP_RoutesRED,sum)

LCP_AGG_Out = merge(shapes, LCP_AGG, by="shape_id",all = TRUE)
LCP_AGG_Out[is.na(LCP_AGG_Out)] <- 0
names(LCP_AGG_Out)[names(LCP_AGG_Out)=="Line Connecting Power"] <- "connectivity"
#Normalize scores

LCP_AGG_Out$CONN_NORM<-((LCP_AGG_Out$connectivity-
min(LCP_AGG_Out$connectivity))/(max(LCP_AGG_Out$connectivity)-
min(LCP_AGG_Out$connectivity)))*100

LCP_AGG_Out$CONN_GROUP <- as.numeric(cut2(LCP_AGG_Out$CONN_NORM, g=5))

colors <- read.csv('colors.csv')
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LCP_AGG_Out$CONNCOLOR = colors[match(LCP_AGG_Out$CONN_GROUP,
colors$CONN_GROUP),"CONCOLOR!]

write.csv(LCP_AGG_Out,"Shape_Output.csv",row.names=FALSE)

###Plot Lines and save map

Shape_Output <- read.csv("Shape_Output.csv")

Shape_Output=Shape_Output[ order(-Shape_Output[,4], -Shape_Output[,1]), ]
Shape_Output$size<-Shape_OutputSCONN_GROUP/5

p <- ggplot(Shape_Output) + geom_path(aes(shape_pt_lon, shape_pt_lat, group = shape_id),
size = Shape_Output$size, alpha = .5, colour=Shape_Output$CONNCOLOR) + coord_equal()

+ theme_map()

p<- p + theme(plot.title = element_text(size=15, face="bold"))

p
ggsave(file=PDFFILENAME)

ggsave(file=PDFFILENAME?2)

###Move image to main directory

#Export Node (Stop) Data to Stop ID for mapping
names(node_CP)[names(node_CP)=="Node"] <- "stop_id"
node_CP_Out = merge(stops, node_CP, by="stop_id")

write.csv(node_CP_Out,"Stop_Output.csv",row.names=FALSE)
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APPENDIX-F: SCRIPT TO DEVELOP COUNT MODEL FOR FREQUENCY OF
DEMAND RESPONSE TRANSIT TRIPS

rm(list=Is())
require(IDPmisc);
library(MASS);
require(ggplot2);
require(pscl);
require(boot);
require(Metrics)
require(repmis)
require(foreign)
library(readr)
library(gimmTMB);
TrainingDataDRT5=read.table(file="E:/DRT5/TrainingDataDRT5.txt",sep ="\t",header = TRUE)
testDataDRT5=read.table(file="E:/DRT5/testDataDRT5.txt",sep = "\t",header =TRUE)
#factor origin and destination zipcode
TrainingDataDRT5$0rgZipl<-as.factor(TrainingDataDRT5$0rgZip)
TrainingDataDRT5$DestZip1<-as.factor(TrainingDataDRT5$DestZip)
testDataDRT5$0rgZipl<-as.factor(testDataDRT5$OrgZip)
testDataDRT5%$DestZipl<-as.factor(testDataDRT5$DestZip)
#Poisson
summary(combTrainfinal.pos <- glm(Trips ~
org_DomSEx+org_DomRace+des_RetTrad+distanc+org AHHSize+logoforg_Disablep08t012+logoforg
_Popden+logoforg_64over+org_ HOVR+logoforg_ HHMein
,data = TrainingDataDRT5, trace = F,family = poisson))
testl.actual=testDataDRT5$Trips
test.predict.pos=predict(combTrainfinal.pos, testDataDRT5, type="response")
#Negative Binomial
summary(combTrainfinal.nb <- glm.nb(Trips ~
prwhite+logoforg_Disablep08t012+logoforg_ HHMein+logoforg_64over+logofdes_RetTrad+logofdes_ W
hSTrad+logoforg_Ageuptol4,data = TrainingDataDRT5,control=glm.control(maxit=100))) ;
testl.actual=testDataDRT5$Trips
test.predict.nb=predict(combTrainfinal.nb, testDataDRT5, type="response")
#Hurdle poisson
summary(combTrainfinal.hp <- hurdle(Trips
~logoforg_Ageuptol4+logoforg Disablep08t012+logoforg Popden+logofdes RetTrad+logofdes WhSTr
ad+distanc+logoforg_RentOCClorg_AHHSize+logoforg_Disablep08t012+logoforg_Popden+distanc+log
oforg_RentOCC+logoforg_Ageuptol4+logoforg_ HHMein ,data = TrainingDataDRTS5, link = "logit", dist
= "poisson™))
testl.actual=testDataDRT5$Trips
test.predict.hp=predict(combTrainfinal.hp, testDataDRT5, type="response")
#Zero-inflted Negative Binomial
summary(combTrainfinal.zinb <- zeroinfl(Trips
~logoforg_Ageuptol4+logoforg_Disablep08t012+logoforg _Popden+logofdes RetTrad+logofdes WhSTr
ad+distanc+logoforg_RentOCClorg_AHHSize+logoforg_64over+distanc+logoforg_RentOCC+logofdes
RetTrad+logoforg_Ageuptol4 ,data = TrainingDataDRT5, link = "logit", dist = "negbin”, trace = F, EM =
F)
testl.actual=testDataDRT5$Trips
test.predict.zinb=predict(combTrainfinal.zinb, testDataDRT5, type="response")
#Hurdle NB
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summary(combTrainfinal.hnb <- hurdle(Trips
~logoforg_Ageuptol4+logoforg_Disablep08t012+logoforg_Popden+logofdes_RetTrad+logofdes WhSTr
a

lorg_ AHHSize+logoforg_64over+distanc+logoforg_RentOCC+logoforg_Ageuptol4+logoforg_Disablep
08t012+logoforg HHMein ,data = TrainingDataDRT5, link = "logit", dist = "'neghin™))
summary(combTrainfinal.hnb)

testl.actual=testDataDRT5$Trips

test.predict.hnb=predict(combTrainfinal.hnb, testDataDRT5, type="response")

#Zero inflated poisson

summary(combTrainfinal.zip <-

zeroinfl(Trips~logofdes_RetTrad+distanc+org_ AHHSize+logoforg_Disablep08t012+logoforg_Popden+l
ogoforg_HHMein+org_ HOVR

lorg_HHInG200+0rg_AHHSize+logofdes_RetTrad+logoforg_ HHMein+logoforg_Ageuptol4+logoforg_
RentOCC+logoforg_Popden ,data = TrainingDataDRT5, link = "logit", dist = "poisson”, trace = F, EM =
F)

testl.actual=testDataDRT5$Trips

test.predict.zip=predict(combTrainfinal.zip, testDataDRT5, type="response")

#ZINB Mixed effect

m102 <- gimmTMB(Trips~logoforg_Ageuptol4+logoforg_Disablep08t012
+logoforg_Popden+logofdes_RetTrad+logofdes WhSTrad+distanc+logoforg_RentOCC+(1jorg_RUCA)
+(1|des_RUCA),zi=~org_AHHSize+logoforg_64over+distanc+logoforg_RentOCC+logofdes_RetTrad+l
ogoforg_Ageuptol4+(1|OrgZipl)+(1|DestZipl),family=nbinom2, TrainingDataDRT5)

summary(m102)

testl.actual=testDataDRT5$Trips

test.predict. m102=predict(m102, testDataDRT5, zitype="response")

# Calculate Elasticity of Zero-inflted Negative Binomial Mixed effect
as.numeric(fixef(m102)$cond["logoforg_Ageuptol4"]
*mean(TrainingDataDRT5$logoforg_Ageuptol4)/mean(TrainingDataDRT5$Trips))
as.numeric(fixef(m102)$cond["logoforg_Disablep08t012"]*mean(TrainingDataDRT5$logoforg_Disable
p08t012)/mean(TrainingDataDRT5$Trips))

as.numeric(fixef(m102)$cond["logoforg_Popden™] *
mean(TrainingDataDRT5$logoforg_Popden)/mean(TrainingDataDRT5$Trips))
as.numeric(fixef(m102)$cond["logofdes_RetTrad"]
*mean(TrainingDataDRT5$logofdes_RetTrad)/mean(TrainingDataDRT5$Trips))
as.numeric(fixef(m102)$cond["logofdes_WhSTrad"]*mean(TrainingDataDRT5$logofdes_WhSTrad)/me
an(TrainingDataDRT5$Trips))

as.numeric(fixef(m102)$cond["distanc"] *
mean(TrainingDataDRT5$distanc)/mean(TrainingDataDRT5$Trips))
as.numeric(fixef(m102)$cond["logoforg_RentOCC"] *
mean(TrainingDataDRT5$logoforg_RentOCC)/mean(TrainingDataDRT5$Trips))
as.numeric(fixef(m102)$zi["org_ AHHSize"] *
mean(TrainingDataDRT5%org_AHHSize)/mean(TrainingDataDRT5$Trips))
as.numeric(fixef(m102)$zi["logoforg_64over"] *
mean(TrainingDataDRT5$logoforg_64over)/mean(TrainingDataDRT5$Trips))
as.numeric(fixef(m102)$zi["logoforg_RentOCC"] *
mean(TrainingDataDRT5$logoforg_RentOCC)/mean(TrainingDataDRT5$Trips))
as.numeric(fixef(m102)$zi["logoforg_Ageupto14"] *
mean(TrainingDataDRT5$logoforg_Ageuptol14)/mean(TrainingDataDRT5$Trips))
as.numeric(fixef(m102)$zi["distanc"] *
mean(TrainingDataDRT5$distanc)/mean(TrainingDataDRT5$Trips))
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as.numeric(fixef(m102)$zi["logofdes_RetTrad"] *
mean(TrainingDataDRT5$logofdes_RetTrad)/mean(TrainingDataDRT5$Trips))
#AAPD Calculation (Predictive performance of model)
sum(testl.actual[1:36250]<1)

sum(testl.actual[36251:36761]>=1 & testl.actual[36251:36761]<10)
sum(testl.actual[36762:36963]>=10 & testl.actual[36762:36963]<100)
sum(testl.actual[36964:37046]>=100)

#Zero-inflted Negative Binomial

sum(test.predict.zinb[1:36250]<1)

sum(test.predict.zinb[36251:36761]>=1 & test.predict.zinb[36251:36761]<10)
sum(test.predict.zinb[36762:36963]>=10 & test.predict.zinb[36762:36963]<100)
sum(test.predict.zinb[36964:37046]>=100)

#Poisson

sum(test.predict.pos[1:36250]<1)

sum(test.predict.pos[36251:36761]>=1 & test.predict.pos[36251:36761]<10)
sum(test.predict.pos[36762:36963]>=10 & test.predict.pos[36762:36963]<100)
sum(test.predict.pos[36964:37046]>=100)

#Negative Binomial

sum(test.predict.nb[1:36250]<1)

sum(test.predict.nb[36251:36761]>=1 & test.predict.nb[36251:36761]<10)
sum(test.predict.nb[36762:36963]>=10 & test.predict.nb[36762:36963]<100)
sum(test.predict.nb[36964:37046]>=100)

#Zero inflated poisson

sum(test.predict.zip[1:36250]<1)

sum(test.predict.zip[36251:36761]>=1 & test.predict.zip[36251:36761]<10)
sum(test.predict.zip[36762:36963]>=10 & test.predict.zip[36762:36963]<100)
sum(test.predict.zip[36964:37046]>=100)

#Hurdle poisson

sum(test.predict.hp[1:36250]<1)

sum(test.predict.hp[36251:36761]>=1 & test.predict.hp[36251:36761]<10)
sum(test.predict.hp[36762:36963]>=10 & test.predict.hp[36762:36963]<100)
sum(test.predict.hp[36964:37046]>=100)

#Hurdle NB

sum(test.predict.hnb[1:36250]<1)

sum(test.predict.hnb[36251:36761]>=1 & test.predict.hnb[36251:36761]<10)
sum(test.predict.hnb[36762:36963]>=10 & test.predict.nnb[36762:36963]<100)
sum(test.predict.hnb[36964:37046]>=100)

#Zero-inflated Negative Binomial Mixed effect

sum(test.predict. m102[1:36250]<1)

sum(test.predict. m102[36251:36761]>=1 & test.predict. m102[36251:36761]<10)

sum(test.predict.m102[36762:36963]>=10 & test.predict.m102[36762:36963]<100)

sum(test.predict.m102[36964:37046]>=100)
#Goodness of Fit

#Poisson

logLik(combTrainfinal.pos)
AIC(combTrainfinal.pos)
BIC(combTrainfinal.pos)

#Negative Binomial
logLik(combTrainfinal.nb)
AlIC(combTrainfinal.nb)
BIC(combTrainfinal.nb)
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#Zero-inflated Poisson

AIC(combTrainfinal.zip)

AIC(combTrainfinal.zip, k = log(nrow(TrainingDataDRT5))) #for BIC
logLik(combTrainfinal.zip)

#Zero-inflated Negative Binomial

logLik(combTrainfinal.zinb)

AIC(combTrainfinal.zinb)

AIC(combTrainfinal.zinb, k = log(nrow(TrainingDataDRT?5))) #for BIC
#Hurdle NB

logLik(combTrainfinal.hnb)

AIC(combTrainfinal.hnb)

AIC(combTrainfinal.hnb, k = log(nrow(TrainingDataDRT?5)))#for BIC
#Hurdle poisson

logLik(combTrainfinal.hp)

AIC(combTrainfinal.hp)

AIC(combTrainfinal.hp, k = log(nrow(TrainingDataDRT5)))#for BIC
#Zero-inflted Negative Binomial Mixed effect

logLik(m102)

AIC(m102)

AIC(m102, k = log(nrow(TrainingDataDRT?5)))#for BIC
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APPENDIX-G: ADDITIONAL MAPS FOR DEMAND BASED TRIPS

Figure F1: TN Bank trips

Figure F2: TN Medical trips
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Figure F3: TN shopping trips

Figure F4: Knoxville bank trips
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Figure F5: Knoxville medical trips

Figure F6: Knoxville shopping trips
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Figure F7: Nashville bank trips

Figure F8: Nashville medical trips
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