
Land Use Effects on Bicycle Ridership: A Framework for State 1 

Planning Agencies 2 

By 3 

 4 

Yuchen Cui 5 

Ph.D. Assistant 6 

National Center for Smart Growth Research and Education 7 

School of Architecture, Planning and Preservation 8 

University of Maryland 9 

College Park, MD 20742 10 

Phone: (301) 405-2373 11 

E-mail: ycui@umd.edu 12 

 13 

Sabyasachee Mishra, Ph.D., P.E.  14 

Assistant Professor 15 

Department of Civil Engineering  16 

University of Memphis  17 

Memphis, TN 38152 18 

Phone: (901) 678-5043 19 

Email: smishra3@memphis.edu 20 

(Corresponding Author) 21 

 22 

Timothy F. Welch, JD, Ph.D. 23 

Assistant Professor 24 

Center for Quality Growth and Regional Development 25 

School of City and Regional Planning 26 

Georgia Institute of Technology 27 

Atlanta, GA 30332 28 

Phone: (404) 385-5114 29 

Email: tim.welch@coa.gatech.edu 30 

 31 

 32 

 33 

Total Word Count: Words (5,771) + Number of Tables and Figures (6x250) =7,271 34 

Date Submitted: August 1, 2013 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

Submitted for Presentation at the 2014 Transportation Research Board Annual Meeting and Publication 45 

Consideration in Transportation Research Record 46 

 47 

mailto:ycui@umd.edu
mailto:smishra3@memphis.edu
mailto:tim.welch@coa.gatech.edu


Cui, Mishra, and Welch                                                                                                                              1 

ABSTRACT 1 

State and local agencies are more aware to provide infrastructure needs as bicycle riders are increasing 2 

over period of time. Because of the lack of planning tools, it is difficult to determine bicycle ridership 3 

estimates and the corresponding needs to provide infrastructure for bicyclists. This paper proposes a 4 

series of empirical models and applied them to the State of Maryland in the United States, using ordinary 5 

least squares and spatial lag approaches to explore land use, built environment, demographics, socio-6 

economic, and travel behavior connections to bicycle ridership. A set of separate models are proposed for 7 

three urban typologies: urban, suburban and rural. Results show that some land-use patterns, 8 

socioeconomic, demographic, network and travel characteristics are positively correlated with bicycle 9 

ridership. Specific types of land use, employment categories, auto ownership, and high income have 10 

negative relationships with bicycle ridership. The model is also used for future year application under two 11 

suggested land-use scenarios. Future year results seem reasonable and follow expected trend. This 12 

proposed approach can be used as a tool to model and forecast bicycle demand, and to assist planning 13 

agencies in preparing and planning ahead for future events.  14 

Keywords: bicycle ridership; land use; ordinary least squares; spatial lag; urban typologies 15 

 16 

INTRODUCTION 17 

Bicycle use is getting more popular for commuting, shopping and other trip purposes because of its higher 18 

mobility, wide range of benefits and flexibility to connect with public transportation. However, for 19 

number of cases, existing transportation infrastructure is not ready to accommodate as many bicycles as 20 

possible because there are not enough dedicated bicycle lanes. From safety standards, this creates a 21 

problem to bicyclists and discourages them to travel under unsafe conditions. Planning agencies at local 22 

and state level are paying more attention to provide infrastructure for bicyclists if there is a need. In their 23 

effort to close this gap, the use of bicycle is encouraged as an active travel mode, which has great 24 

potential to reduce vehicular congestion and lead to environmental benefits. Therefore, for planning 25 

agencies, their key task is to determine the bicycle ridership demand so that they can make decisions to 26 

provide adequate infrastructure for bicyclists. Past experiences suggest the factors that would explain 27 

bicycle ridership are closely related to socioeconomics, demographics, public policy, and built 28 

environment attributes. Previous literature also shows that income, urbanization, and vehicle ownership 29 

are important factors that are correlated to bicycle ridership.  30 

Accordingly, transportation researchers and practitioners have attempted to identify factors that 31 

encourage and sustain higher densities of bicycle use under the influence of local land use policy. Such 32 

factors include design principles for new subdivisions, accessibility to stations, and regional urban form 33 

(1–5). Advocates of active travel mode have promoted and incorporated these ideas in urban plans and 34 

ordinances, and in bicycle siting decisions. As a result, cities with large geographic area and poor public 35 

transit service would be more likely to experience a large shift of bicycle users. Despite the literature 36 

focusing on the bicycle phenomenon in the U.S., there is little research that quantitatively examined the 37 

emerging trend in greater detail from a transportation perspective. With the urgent need to facilitate the 38 

understanding of determinants to bicycle ridership generation, further research needs to be conducted on 39 

why and how different factors, including socioeconomics, demographics and built environment attributes, 40 

would impact the travel decisions on bicycle use at both household and state levels. These decisions have 41 

profound influence towards planning agencies on how to provide adequate infrastructure needs to bicycle 42 

users. 43 

The land use measures employed in travel behavior studies originated from the concept of “three 44 

Ds” (density, diversity and design) and was followed by accessibility, distance to transit, demand 45 

management and even demographics (6). Neighborhood type, which represents the interaction of multiple 46 
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built environment dimensions, has also attracted growing interests in transportation studies (7). Over the 1 

past two decades, there was increasing volume of literature trying to evaluate preferences and choices of 2 

owning a bicycle. To date, there is limited literature that could provide policy implications to planning 3 

agencies so as to determine the demand of bicycle use, identify contributing variables of bicycle ridership, 4 

and plan ahead for future events. 5 

In this paper, we proposed a framework using bicycle ridership as the key measure. We examined 6 

how different outcomes in different futures may present the state agency with specific planning choices. 7 

We chose the State of Maryland in the United States as our study area. Using a number of criteria, we 8 

subdivided the state into 1151 statewide modeling zones (SMZs). In base year (2007), we estimated 9 

effects of a range of explanatory variables at state level, including developed land under different uses, 10 

population and employment densities, developed land densities by industry category, auto ownership, 11 

household income density, workers per household, free flow speed and congested speed of existing 12 

transportation infrastructure, current transport capacities, and accessibility to different transport modes. In 13 

spite of developing the statewide models, we also estimated a set of econometric models for urban, 14 

suburban and rural typologies. We found that characteristics of land uses, transit accessibility, household 15 

income, and density variables were strongly significant and robust predictors of bicycle ridership for the 16 

statewide and urban areas datasets. 17 

The paper is structured as follows. In the next section, we present a thorough review to explore 18 

the connections between bicycle ridership and land use patterns to derive and frame the key planning 19 

questions. In the following section, we discuss the datasets, the rationale behind the choice of our study 20 

area, and the modeling framework for our empirical analysis; and in the next two sections, we present 21 

findings of this analysis and apply our model to develop scenarios for the horizon year and discuss 22 

implication for planning decisions at state level, respectively. We offer concluding remarks in the final 23 

section followed by caveats and scope of future research. 24 

 25 

LITERATURE REVIEW 26 

Regular physical activity is believed to increase physical fitness and help lower the risk for chronic 27 

conditions such as obesity, high blood pressure, and diabetes (8–10). Organized sports, free play, leisure 28 

time exercise, strength training, and active travel modes, such as walking and bicycling, are the typical 29 

types of physical activity (11). Meanwhile, it has been largely recognized by the transportation scholars 30 

that, walking and bicycling are environmental friendly transport modes which do not produce carbon 31 

emissions, congestion and traffic noise (12, 13). 32 

With its far-reaching impacts on environmental and health, active travel mode has been examined 33 

by a substantial amount of literature (see 1 and 14 for detailed reviews of those studies). Generally, most 34 

disaggregated and controlled studies showed that trip generation rates of non-motorized travel mainly 35 

depended on household vehicle ownership, employment status of household members, and education 36 

level of household members (15–18). Particularly, the influence of household income on active travel 37 

demand is confounding. While some researchers indicated that, higher income was found to be correlated 38 

with lower demand of active travel (16, 17, 19, 20), there were contradictory results showing that higher 39 

income had positive influence on walking or bicycling trips (21). 40 

Likewise, studies that focused on non-motorized travel behavior presented that mode choices 41 

depended as much on built environment attributes as on socioeconomic and demographics characteristics. 42 

Using household survey data on 11 Metropolitan Statistical Areas, Cervero (22) examined how mixed 43 

land-use patterns influenced non-automobile commuting, giving special attention to retail activities in 44 

neighborhoods. Having controlled built environment attributes and household characteristics, Cervero 45 

concluded that, non-automobile commuting was positively related to neighborhood densities and the 46 
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presence of neighborhood shops was found to be a better predictor of commuting by bicycle or walking 1 

than residential density. Targa and Clifton (21) applied 2001 National Household Travel Survey add-on 2 

for the Baltimore metropolitan region to estimate the person-level walking trips. Finding from their study 3 

showed that, neighborhood with higher densities, better access to bus transit lines, better street 4 

connectivity, and mixed land-uses were associated with number of trips made by active travel mode. 5 

Consistently, Guo et al. (19) and Sehatzaden et al. (17) pointed out in their studies that higher population 6 

density was related to lower active travel frequency and higher retail employment density had a positive 7 

association with it. One common finding that can be derived from those studies is that neighborhood built 8 

environment has considerable impact on people’s choices of active travel mode. 9 

Moreover, some studies suggested the need to take closer look to land-use patterns and 10 

incorporate particular land-use categories in order to understand the determinants to different active travel 11 

mode choices (16, 20, 23, 24). Those studies consistently revealed that, when land-use diversity 12 

increased, especially for the intensities of transit station, grocery stores, and retail stores in 13 

neighborhoods, people tended to rely on non-motorized modes more frequently. Transportation scholars 14 

argued that the road traffic characteristics also had great impact on people’s choices of travel modes.  15 

Traffic volume, highway density, congested time, and traffic speed were shown to have negative effects 16 

on non-motorized travel frequency (17, 25, 26). 17 

Overall, most of existing research has focused on examining the non-motorized travel patterns at 18 

household or individual level, controlling the effects of traveler’s characteristics, household attributes, 19 

neighborhood built environment attributes, and land use patterns. However, there is geographic limitation 20 

in existing disaggregated studies as they did not encompass their studies area at state level. Those studies 21 

also failed to account for spatial typologies (i.e. urban, suburban, and rural) in their analysis. With the 22 

need to understand statewide active travel patterns, we developed a series of empirical models for the 23 

State of Maryland to examine the predictors of bicycle ridership, considering different spatial typologies, 24 

land-uses attributes, built environment attributes, socioeconomic, demographics, and road traffic 25 

characteristics. This approach would allow us to generate bicycle ridership under different policy 26 

scenarios in future year, which would further help policy makers and city planners to effectively promote 27 

active bicycle travel at state level.  28 

 29 

DATA AND METHOD 30 

To develop a bicycle ridership model for the State of Maryland, we collected data from a number of 31 

national, state, and local agencies. Basically, the State of Maryland consists of 23 counties and one 32 

independent city. Its total population was 5.8 million and total employment was 3.4 million in 2010 (27). 33 

There were seventeen types of public transportation systems identified, such as metro rail, commuter rail, 34 

local bus and long distance buses. To develop our dataset, we subdivided the state into 1,151 Statewide 35 

Modeling Zones (SMZs). The main criteria for SMZ delineation was to conforming to census 36 

geographies, nesting within counties, separating traffic sheds of major roads as well as employment 37 

activity centers, and grouping of adjacent traffic analysis zones (TAZs). The development of SMZs also 38 

delineated areas with good accessibility to Metro stations and distinguished rural from urban/suburban 39 

development and zoning boundaries as much as possible. This SMZ development went through several 40 

iterations and reviews with the State Highway Administration (SHA) as part of a larger modeling project.  41 
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 1 

FIGURE 1 Regions used to develop statewide modeling zones (source: Maryland Statewide 2 

Transportation Model, State Highway Administration). 3 

For MPO regions in the Maryland and Washington metropolitan area, their socio-economic data 4 

were collected from the cooperative forecast datasets that belonged to Baltimore Metropolitan Council 5 

(BMC) and Metropolitan Washington Council of Governments (MWCOG). For non-MPO covered areas, 6 

their socio-economic data were collected from Quarterly Census Employment and Wages (QCEW, 7 

formerly known as ES202), which was prepared by the Department of Labor, Licensing and Regulations 8 

(DLLR). The MPO and QCEW data were then aggregated to determine the employment by categories, 9 

such as retail, office, industrial, and other. Household income data was collected from MPO datasets and 10 

U.S. Census datasets for both MPO and non-MPO regions. We also developed a number of land use and 11 

network characteristics from a variety of datasets as well as through the GIS analysis. Transportation 12 

network was developed from Census TIGER files. Particularly, the Maryland Department of 13 

Transportation (MDOT) datasets were used to determine the total freeway distance, average free flow 14 

speed, average congested speed, and presence of bus stop. Additionally, the Maryland Department of 15 

Planning’s (MDP) Property View dataset was used to determine specific land uses, including health care, 16 

housing, shopping, industry, office, recreation, dining, warehouse, and other commercial establishments. 17 

The descriptive statistics for key variables discussed in the empirical analysis section are presented in 18 

Table 1.  19 

In this study the bicycle ridership model developed was restricted to the SMZs within Maryland 20 

for year 2007. The rational of using 2007 as base year was that all the input variables collected from 21 

different agencies in the State of Maryland were only consistent for this specific year. The socioeconomic 22 

data were classified by densities and were further classified by the number of workers, household size, 23 

and household income. To account for variations in relationship between land use patterns and ridership 24 
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across the state, we used a combination of household and employment densities to classify SMZs under 1 

three spatial typologies – Urban, Suburban, and Rural. Details of the spatial classification can be found in 2 

the literature (7). The dependent variable was bicycle ridership and it was the ridership data provided by 3 

local MPOs and SHA. We also developed two land use scenarios for future year 2030 and they were 4 

constrained long range plan (2030-CLRP) and 2030 high energy price (2030-HEP).  5 

TABLE 1 Descriptive Statistics  6 

Variables Mean S.D. Min. Max. 

Daily bicycle ridership 1.4424 1.5084 0 8.4784 

Population density  4.4222 5.6612 0 42.4043 

Household density  1.8761 2.6793 0 21.3794 

Household workers density  2.0654 2.6154 0 29.2736 

Household with zero workers density 0.0049 0.0210 0 0.5776 

Total employment density 3.7840 18.9964 0 476.0905 

Retail employment density 0.5707 2.3735 0 62.2317 

Office employment density 1.8186 11.4937 0 300.2474 

Industrial employment density 0.2817 1.0990 0 29.0244 

Other employment density 1.1130 5.4454 0 105.3763 

School enrollment density 0.6169 1.2425 0 11.8216 

Drive alone density 0.1741 0.2694 0 3.4490 

Household with 0 cars 0.1943 0.3616 0 3.0270 

Household with income over 60,000 1077.4200 905.1540 0 8737 

Average freeway distance (miles) 0.8119 1.8899 0 26.0400 

Average free flow speed (mph) 31.6387 6.4007 16.1250 55.8000 

Average congested speed 26.7107 5.8400 7.1167 51.1987 

Accessibility to transit (dummy) 0.2200 - 0 1 

Amtrak presence (dummy) 0.0100 - 0 1 

Retail count 32.3400 102.1310 0 950 

Dinning count 2.1000 8.4550 0 103 

Healthcare count 0.2800 0.7810 0 8 

Housing count 4.5200 20.1120 0 267 

Office count 3.3800 13.3760 0 157 

Recreation count 0.4500 1.2620 0 13 

Shopping count 8.4500 35.7500 0 462 

Warehouse count 1.0800 4.4600 0 59 

Transportation count 0.0100 0.1020 0 2 

Note: Unit of density variables was per acre.  7 

There were two methodological approaches applied in this study. The first step was to specify and 8 

estimate a linear regression model by means of the ordinary least squares (OLS) for entire state. OLS is a 9 

simple but validate modeling approach that would assist us in scenario analysis and model application as 10 

presented later in this paper. R square value adjusted for the number of parameters (Adjusted R-square) 11 

was used as scalar measures of fit for the OLS models. The second step was to estimate the relationship 12 

between explanatory variables and bicycle ridership using a spatial regression model – spatial lag model 13 

(SLM). The SLM is a modeling technique that has been applied when high likelihood of spatial 14 
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autocorrelation exists and when there are variations of a specific variable across space. The rationale of 1 

the spatial regression method was discussed by Anselin et al (28). Estimation of the spatial regression 2 

models is supported by means of the maximum likelihood (ML) method (29). Specifically, the SLM 3 

includes a contiguity weight factor (Lambda) that accounts for the effects due to the characteristics of 4 

surrounding SMZs. These two methods (OLS and SLM) were then repeated on a dataset which consisted 5 

of SMZs for three different urban typologies.  6 

 7 

EMPIRICAL RESULTS 8 

The OLS model was estimated for entire state and three urban typologies, respectively. The estimated 9 

coefficient, t statistics, statistical significant test, R-square, adjusted R-square for OLS, and spatial weight 10 

matrix (Lambda) for SLM were reported. Alternative model specifications were estimated in order to 11 

control as many socioeconomic characteristics, land-use patterns, built environment attributes, and traffic 12 

characteristics variables as possible. Appropriate measures were considered to avoid multicollinearities 13 

among those variables for both OLS and SLM. 14 

Table 2 presents the OLS and SLM estimated results for four model specifications with proposed 15 

explanatory variables. Overall, the results were intuitive and robust across all model specifications. At 16 

state level, bicycle ridership increased with household, population, household workers, zero-worker 17 

household, and school enrollment densities and the ridership was higher in lower income and lower car 18 

ownership households. A variety of employment types impacted bicycle ridership differently. Industrial 19 

employment and other employment densities had negative effects on bicycle ridership while retail 20 

employment had positive effect on it. The bicycle ridership decreased with increasing drive-alone density, 21 

average congestion speed, average free flow speed, and average freeway miles in an SMZ. Consistent 22 

with our expectations, Amtrak presence was negatively associated with bicycle ridership since the Amtrak 23 

stations were not usually built very closely to residential areas. Transit accessibility was found to be 24 

positively associated with bicycle ridership, implying the multi-modal non-automobile trips in the state.   25 

The effects of a number of land-use categories (i.e. number of retail, dinning, office, recreation, 26 

and shopping), were also found to be significantly related to statewide bicycle ridership and the results 27 

were consistent with our expectations. Particularly, bicycle ridership increased where there was more 28 

retail, office, or recreation centers but it declined when number of shopping or dining centers increased. 29 

These results reflected the facts that shopping centers and dining restaurants were usually concentrated in 30 

non-residential areas, where could not be conveniently reached by bicycle. On the contrary, the retail 31 

stores and recreational centers could possibly be concentrated around residential areas in order to attract 32 

more customers and the relatively shorter travel distance would encourage people to travel on bicycle 33 

more frequently.  34 

The SLMs estimated on statewide dataset showed similar results for most of the variables 35 

compared to the OLS models. Some of the OLS estimated coefficients became statistically insignificant 36 

in the SLMs, and the weight matrix variable (Lambda) was strongly significant in all four models. These 37 

results indicated that the spatial interactions and bicycle ridership interdependencies should not be 38 

neglected. The goodness-of-fit results of SLMs appeared to outweigh OLS models for each model 39 

specification analyzed at state level.    40 
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TABLE 2 Regression Results for Bicycle Ridership Model at State Level  

Explanatory variables Ordinary Least Squares  Spatial Lag Model 

 

Model-I Model-IA Model-IB Model-IC  Model-II Model-IIA Model-IIB Model-IIC 

Constant 1.426
***

 1.805
***

 2.187
***

 1.858
***

  -0.031 0.031 0.096 0.027 

(8.922) (11.768) (13.819) (11.093)  (-0.440) (0.461) (1.473) (0.401) 

Population density  0.175
***

     0.033
***

    

(14.293)     (6.104)    

Household density  0.358
***

     0.056
***

   

 (15.328)     (5.420)   

Household workers density    0.226
***

     0.048
***

 

   (16.478)     (8.471) 

Household with zero workers density 0.115
*
  0.563

***
   -0.006  0.091

***
  

(2.051)  (16.098)   (-0.259)  (6.220)  

Industrial employment density 0.095
**

 0.184
***

 0.166
***

   0.027
**

 0.007 0.010 0.007 

(3.218) (4.717) (4.440)   (2.135) (0.449) (0.696) (0.659) 

Retail employment density  -0.058
***

 -0.055
***

    0.013
*
 0.011  

 (-3.643) (-3.347)    (1.863) (1.609)  

Other employment density 0.031 
***

 0.018
**

    0.004 0.003   

(4.846) (2.928)    (1.387) (1.185)   

School enrollment density 0.159
***

 0.188
***

 0.200
***

 0.207
***

  0.036
***

 0.040
***

 0.039
***

 0.042
***

 

(8.470) (9.961) (10.079) (10.344)  (4.446) (4.889) (4.916) (5.253) 

Household with income over $60,000 -0.175
**

 -0.200
***

 -0.064
*
 -0.191

***
  0.000 0.003 0.026

***
 -0.002 

(-6.710) (-7.609) (-2.409) (-6.730)  (0.042) (0.258) (2.471) (-0.141) 

Drive alone density -1.427
***

 -1.443
***

    -0.149
*
 -0.098   

(-7.633) (-7.151)    (-1.835) (-1.131)   

Households without cars  0.469
***

     0.051   

 (4.923)     (1.266)   

Average freeway distance  -0.048
***

 -0.055
***

    -0.005 -0.004  

 (-3.909) (-4.348)    (-0.955) (-0.852)  

Transit accessibility 0.454
***

 0.479
***

 0.602
***

 0.522
***

  0.099
***

 0.110
***

 0.112
***

 0.101
***

 

(8.087) (8.453) (10.167) (8.773)  (3.964) (4.373) (4.506) (4.083) 

Average congestion speed  -0.036
***

     0.000   

 (-7.220)     (-0.084)   

Average free flow speed -0.024
***

  -0.043
***

 -0.035
***

  0.001  -0.002 -0.0004 

(-5.462)  (-9.585) (-7.499)  (0.637)  (-1.308) (-0.224) 

Amtrak presence -0.889
***

 -1.007
***

 -1.315 -0.899
***

  -0.307
***

 -0.226
***

 -0.328
***

 -0.205
***

 

(-3.551) (-3.987) (-4.896) (-3.381)  (-2.869) (-2.108) (-3.060) (-1.941) 

Number of Retail Locations 0.004
***

 0.004
***

 0.004
***

 0.007
***

  0.001
***

 0.001
***

 0.001
***

 0.001
***
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(9.199) (9.335) (10.653) (16.758)  (2.775) (3.559) (3.171) (4.479) 

Number of Dinning Locations  -0.018
***

     -0.004
***

   

 (-3.805)     (-1.902)   

Number of Office Locations 0.006
***

  0.005
**

   0.004
***

  0.003
***

  

(3.365)  (2.648)   (4.705)  (4.172)  

Number of Recreation Locations 0.063
**

     0.011    

(2.577)     (1.042)    

Number of Shopping Locations -0.005
***

   -0.004
***

  -0.001   -0.00002 

(-3.968)   (-3.622)  (-0.911)   (-0.038) 

          

Lambda      0.852 0.861 0.874 0.868 

     (74.418) (76.454) (82.041) (78.252) 

Sample size 1144 1144 1144 1144  1144 1144 1144 1144 

R-square 0.7753 0.7692 0.7389 0.7353  0.9589 0.9583 0.9584 0.9582 

Adjusted R-square 0.7727 0.7663 0.7364 0.7332      

Note: Dependent Variable: Total daily bicycle ridership; T-statistics are in parenthesis 

*** Significant at 99%; ** Significant at 95%; * Significant at 90% 
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Table 3 presents OLS and SLM results at typology level for urban, suburban and rural areas, 1 

respectively. The directionality and magnitudes were consistent with models estimated on statewide 2 

dataset. Several highlights can be derived from the results. First, the constant was positive and significant 3 

for all the OLS and spatial lag models. The magnitude of the constant decreased from models for urban 4 

area to models for rural areas, implying that the overall bicycle ridership difference between urban to 5 

rural areas was smaller. Secondly, there tended to have more bicycle ridership where employment density 6 

was higher or in lower income households across all models.  7 

Additionally, there were some noticeable differences across the models at typology level. First, in 8 

urban and suburban areas, population density, school enrollment density, and number of retail centers 9 

were positively related to bicycle ridership while average freeway miles was negatively correlated with it. 10 

However, those relationships became insignificant in rural area. Secondly, while transit accessibility 11 

(positive association) and Amtrak presence (negative association) were significant predictors to bicycle 12 

ridership in suburban and rural areas but their relationships were not significant in urban area. Thirdly, 13 

several relationships between explanatory variables and bicycle ridership were only significant in certain 14 

typology model. In urban area, bicycle ridership was higher where average free flow speed decreased, 15 

number of shopping centers was lower, or number of recreational centers was greater. In suburban area, 16 

number of dining restaurants and average congestion speed were negatively related to bicycle ridership 17 

while number of health centers and number of office centers were positively correlated with it. Fourthly, 18 

it is worth noting that, number of households without cars had positive impact on bicycle ridership in 19 

urban area but this association became negative in suburban area. This spatial disparity implied that it was 20 

necessary to estimate the dataset at spatial typology level, considering the different influence that 21 

explanatory variables would have on bicycle ridership in different areas.  22 

Generally, urban typology model had the highest R-square while rural typology model had the 23 

lowest R-square. It may be due to the higher bicycle ridership generated in urban areas than that in rural 24 

areas. Comparing the models estimated at state level and typology level, several differences can be 25 

perceived. First, in typology models, population density and school enrollment showed smaller magnitude 26 

while household density, transit accessibility, Amtrak presence, and health count showed greater 27 

magnitude. Secondly, household workers, zero-worker household, and retail employment densities were 28 

stronger determinants to bicycle ridership in statewide model but they lost their significance in typology 29 

models. Their relationships with the bicycle ridership may not be clear due to the relative similarity of 30 

land-use patterns in urban area, which led to lower variance among the explanatory variables in urban 31 

SMZs. Thirdly, the magnitude of the land-use effects was relatively smaller than other explanatory 32 

variables at both state level and typology level. 33 

Specifically, there was an interesting finding that, number of healthcare centers was found to be 34 

positively related to bicycle ridership in suburban area. It indicated higher equality in healthcare service to 35 

those who did not own automobile and mainly relied on bicycles. Generally, land-use variables were 36 

mainly significant in urban and suburban areas, but not in rural area. This is understandable since the 37 

commercial land uses were generally planned where people resided. 38 

 39 
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TABLE 3 Regression Results for Bicycle Ridership Model for Three Urban Typology Models 

Explanatory variables Ordinary Least Squares  Spatial Lag Model 

 

Model-III Model-III Model-III  

(Rural) 

 Model-IV  

(Urban) 

Model-IV Model-IV  

(Rural) (Urban) (Sub-Urban)  (Sub-Urban) 

Constant 1.730
***

 1.218
***

 0.521
***

  0.522
***

 0.602
***

 0.197
***

 

(6.234) (5.060) (8.741)  (3.437) (3.077) (3.848) 

Population density 0.160
***

 0.110
***

   0.052
***

 0.063
***

  

(9.557) (8.621)   (5.571) (6.017)  

Household density   0.676
***

    0.392
***

 

  (14.531)    (10.396) 

Industrial employment density 0.095
*
  0.251

***
  0.056

***
  0.154

***
 

(2.311)  (3.722)  (2.596)  (3.118) 

Other employment density 0.020
*
 0.028

*
 0.096

***
  0.005 0.022

**
 0.054

***
 

(2.176) (2.273) (4.348)  (1.020) (2.285) (3.332) 

School enrollment density 0.180
***

 0.143
***

   0.061
***

 0.132
***

  

(5.798) (5.276)   (3.637) (6.179)  

Household with income over $60,000 -0.194
***

 -0.150
***

 -0.169
***

  -0.025 -0.079
**

 -0.088
***

 

(-4.638) (-3.149) (-4.472)  (-1.086) (-2.084) (-3.099) 

Drive alone density -1.168
***

  -2.658
***

  -0.202  -1.800
***

 

(-4.014)  (-7.776)  (-1.292)  (-7.101) 

Households without cars 0.323
*
 -0.317

*
   0.002 -0.066  

(2.435) (-1.941)   (0.025) (-0.511)  

Average freeway distance -0.094
**

 -0.037
**

   -0.030
*
 -0.021

**
  

(-2.800) (-2.845)   (-1.658) (-1.976)  

Transit accessibility  0.993
***

 0.582
***

   0.560
***

 0.215
***

 

 (11.625) (7.605)   (7.684) (3.487) 

Average congestion speed  -0.020
**

    -0.009  

 (-2.629)    (-1.522)  

Average free flow speed -0.029
***

    -0.010
**

   

(-3.621)    (-2.359)   

Amtrak presence  -1.683
***

 -2.181
***

   -1.184
***

 -1.724
***

 

 (-4.341) (-3.892)   (-3.851) (-4.218) 

Number of Retail Locations 0.004
***

 0.006
***

   0.001
***

 0.004
***

  

(7.689) (7.186)   (3.618) (5.895)  

Number of Dinning Locations  -0.035
***

    -0.014
**

  

 (-3.939)    (-2.028)  

Number of Health Care Locations  0.108
*
    0.118

***
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 (1.906)    (2.629)  

Number of Office Locations  0.010
**

    0.006
*
  

 (2.477)    (1.804)  

Number of Recreation Locations 0.104
**

    0.032   

(2.640)    (1.521)   

Number of Shopping Locations -0.004
*
    -0.001   

(-2.413)    (-1.497)   

         

Lambda     0.701 0.421 0.561 

    (31.138) (14.930) (14.679) 

Sample size 465 421 259  465 421 259 

R-square 0.8280 0.7570 0.7212  0.9504 0.8427 0.8480 

Adjusted R-square 0.8230 0.7490 0.7134     

Note: Dependent Variable: Total Daily Bicycle Ridership; T-statistics are in parenthesis 

*** Significant at 99%; ** Significant at 95%; * Significant at 90% 
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PLANNING APPLICATION 1 

Ridership Scenarios  2 

In this section, we applied one of the abovementioned empirical models to predict bicycle ridership in two 3 

future scenarios. Based on the robustness of our key explanatory variables across different model 4 

specifications and the planning objects in the State of Maryland, we found it more appropriate to use the 5 

coefficients of the statewide OLS Model I. To be comprehensive on demonstrating the application 6 

process, we drew framework of Maryland Scenario Project (MSP), which was conducted by the National 7 

Center of Smart Growth (NCSG) at the University of Maryland College Park (refer to 30 for detailed 8 

description). Based on this policy-making context, we characterized one set of 2030 future year scenarios 9 

as Constrained Long Range Plan (CLRP) and High Energy Price (HEP). CLRP scenario represents the 10 

visionary land use and transportation growth used for decision-making of future infrastructure investment 11 

by the state DOT. Under HEP scenario, oil prices were presumed to rise at one percent above the 12 

projected inflation rate. Specifically, three main parameters were taken into consideration in HEP 13 

scenario, and they were increase in federal defense spending, increase in employment in professional 14 

service, and increase in agriculture commodity price. The rationale on this parameter-selection was that, 15 

without changing major government policy, to identify the clustered urban development, reduced 16 

development on green infrastructure, and fewer vehicle miles travelled (VMT).  17 

The CLRP scenario was developed based on 2030 household and employment projections from 18 

the Baltimore and Washington MPOs through a process called cooperative forecasting. For areas outside 19 

the MPO regions, household and employment estimates were developed based on projections from the 20 

Maryland Department of Planning. The CLRP scenario represented the allocation of jobs and households 21 

that most closely reflected official forecasts adopted by state, regional, and local governments. The HEP 22 

scenario was created to explore the effects of high energy prices on development patterns and travel 23 

behavior. This scenario derived population and employment from national forecasts of economic activity 24 

provided by the Inforum Longterm Interindustry Forecasting Tool (LIFT) model. The outcomes of this 25 

model influenced the regional and local demographic change and determined household and employment 26 

distributions in the SMZs (refer to 31for detailed description).  27 

In order to predict the bicycle ridership in future scenarios, socioeconomic and demographic data 28 

were obtained from the process as mentioned above. Road network related variables, such as average 29 

congestion speed and free flow speed, were derived from the 2030 network developed by NCSG for the 30 

Maryland Statewide Transportation Model (MSTM). All other variables, including the land-use variables 31 

for different land-use categories, transit accessibility, and Amtrak presence were assumed to be the same 32 

as they were in 2007 (because these data were not available from public data sources). This assumption 33 

can be justified by looking at Table 2 and Table 3, where those variables showed lower magnitude of 34 

impact to determining the bicycle ridership compared to other explanatory variables. However, when 35 

these data become available in the future, this assumption can be relaxed and predicted values can be used 36 

in the model.  37 

Figure 2 shows bicycle ridership at the SMZ level under two future scenarios. For 2030 CLRP, 38 

both Washington and Baltimore metropolitan areas had higher bicycle ridership referring to larger 39 

concentration of population and employment (Figure 2(a)). 2030 HEP scenario suggested that urban areas 40 

not only had higher bicycle ridership, but the distribution of bicycle ridership concentrated in the core of 41 

urban areas (Figure 2(b)). Due to the assumed higher oil prices in 2030, the 2030 HEP scenario resulted in 42 

higher bicycle ridership and most bicycle users were expected to shift to the core of urban areas in order 43 

to remain close to both households and jobs.  44 
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FIGURE 2(a) 2030 bicycle ridership 

 

FIGURE 2(b) 2030 HEP bicycle ridership 

FIGURE 2 Bike ridership for future year scenarios. 1 

 2 

Elasticity Estimation 3 

The model estimations developed in this paper provides an opportunity to examine the individual 4 

variables that influence bicycle ridership. The most significant variables from Model-1 were examined in 5 

this case. While the coefficients from Table 2 provide a good explanation of the magnitude of each 6 

variable that influenced bicycle ridership, elasticity is useful to examine how in a much more real-world 7 

context each variable influenced the ridership. Figure 3 provides the elasticities of bicycle ridership with 8 

respect to several key variables from the Model-1 (see Table 2 for Model-I details). 9 

10 
FIGURE 3 Elasticity of bike ridership to key independent variables. 11 
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X-axis of Figure 3 represents percentage change in independent variable and Y-axis shows the 1 

corresponding change in bicycle ridership. For example, a 1 percent change in population density will 2 

result in a .85 percent change in bike ridership. Similarly, a 5 percent increase in households with number 3 

of households with income over $60,000 will result in a 3.79 percent reduction in bicycle ridership. It 4 

appeared that bicycle ridership was very sensitive to population density and number of households with 5 

income over $60,000. While population density was positively related to bicycle ridership, it suggested 6 

higher population density increased the probability of having higher bicycle ridership; number of 7 

households with higher income was inversely related to bicycle ridership, suggesting higher income zones 8 

may tend to have lower bicycle ridership and vice versa. Similarly, industrial employment density and 9 

transit accessibility were positively related to bicycle ridership. The purpose of elasticity analysis is to 10 

enhance policy making and to estimate how bicycle ridership can be influenced by changes in other 11 

variables.  12 

 13 

CONCLUSIONS 14 

In this paper we proposed a framework and set of models to help policy makers understand higher level 15 

determinants to generating bicycle ridership in the State of Maryland. We developed a number of OLS 16 

and SLM models in order to control several sets of exogenous variables, including socioeconomic and 17 

demographics characteristics, built environment attributes, land-use categories, and road traffic variables. 18 

Irrespective of the statewide and typological differences, the results were consistent with our expectation. 19 

Overall, our analysis showed that, (1) the land use and built environment attributes are strong predictors 20 

of bicycle ridership at state level; (2) different employment types predicted bicycle ridership differently. 21 

Urban and suburban areas with more retail and recreation centers tended to produce more bicycle trips 22 

than their counterparts; (3) road traffic related variables significantly predicted bicycle ridership, which 23 

implied potential impact of infrastructure investment on active travel mode; (4) the magnitude and 24 

significance of explanatory variables varied by subarea typologies, suggesting the need to present 25 

prospective policy-making within a finer spatial framework; (5) the differences of relationships between 26 

explanatory variables and bicycle ridership estimated by OLS and SLM confirmed the existence of spatial 27 

interdependency among the SMZs, as we expected.  28 

For model application we used two future year scenarios – 2030 constrained long range plan and 29 

2030 high energy prices. The primary purpose of model application was to demonstrate how such analysis 30 

could lead to multiple choices that planning agency can possible consider when making future plans. 31 

Multiple scenarios showed how bicycle ridership could vary by parts of the state and demonstrated the 32 

model’s value in assessing interdependencies of land use planning decisions and bicycle ridership. State 33 

agencies can use such planning tool to predict bicycle ridership and adjust roadway investments to 34 

encourage active travel model.  35 

We acknowledge that there are several limitations in this research. Our analysis was developed at 36 

the SMZ level only and did not take individual characteristics into account. This limitation can be avoided 37 

when additional data resources become available in the future. Model application shown in the paper was 38 

to justify the model estimation process for prediction purposes but not recommended for the use of policy 39 

making. With more available land use and transportation data, realistic model application can be 40 

developed in order to reflect policy scenarios. However, research presented in this paper already provided 41 

a useful tool for state agencies to analyze hypothesis on bicycle ridership generation and its 42 

interdependencies with several exogenous attributes.  43 
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