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UNFOLDING THE STATE OF THE ADOPTION OF CONNECTED AUTONOMOUS 1 

TRUCKS BY THE COMMERCIAL FLEET OWNER INDUSTRY 2 

 3 
 4 
 5 
Abstract  6 
This paper attempts to address two particular questions about the adoption of connected autonomous 7 

trucks (CATs) by trucking companies: (i) what are the factors affecting the decisions to adopt different 8 

levels of autonomous trucks? and (ii) how many with what sizes are the groups of CAT adopters? We 9 

employ choice modeling and latent-class cluster analysis (LCCA) to address the two questions. US 10 

companies working in the freight industry are contacted and 400 full responses are collected. The data 11 

is analyzed descriptively and detailed results of modeling efforts are presented and discussed. 12 

Focusing on the first question, companies view automation Level 2 not significantly different than 13 

Regular trucks. We observe that small-sized companies are more likely to adopt the higher levels of 14 

automation, and large companies may be willing to adopt only when the technology become more 15 

affordable. Cargo type is found to have some impact on the adoption: for example, companies carrying 16 

foodstuff are more likely to adopt higher levels of automation. Having promoters of new technologies 17 

in the company increases the likelihood of adoption and the impact is more visible for the higher levels 18 

of automation. Turning to the second question, our results indicate that there could be five categories 19 

of CAT adopters which is consistent with what the Theory of diffusion of Innovations (DOI) suggests. 20 

However, the sizes of the Innovators and Early Majority classes would respectively be four and two 21 

times of DOI’s general suggestion. Overall, it is speculated that the CAT adopter distribution may not 22 

be a bell-shaped curve but more of a right-skewed figure. This can be contributed to explicit financial 23 

benefits of CATs which could incentivize companies to adopt earlier. 24 

 25 
Keywords 26 
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1. Introduction 29 

There is a saying in the United States (US) that states “If it got there, a truck brought it” (LeMay et 30 

al., 2013). The saying is proven to be true when trucking industry statistics are scrutinized. According 31 

to the American Trucking Association, trucks carried about 70% of the total freight tonnage in 2017 32 

(Costello, 2017). Also, reports submitted to the US Congress indicate that trucks carry about 75% of 33 

the total cargo moved in the US, measured in tonnage or value (Frittelli, 2017; Frittelli, 2020). This 34 

market share is contributed to the 209,000-mile national truck network providing high-level 35 

accessibility to every freight generator across the country. In terms of freight ton-mile, trucks move 36 

about 40% of the freight within the US, which is due to the higher efficiency of rail transportation on 37 

long routes. Trucks continue to act as the backbone of the US freight transportation system as the 38 

demand for the trucking industry’s services is forecasted to increase at an annual rate of 1.4% through 39 

2045 (Bhattarai et al., 2021; BTS, 2015).  40 

Trucks also play an indisputable role in the highway transportation system in the US. There were 41 

more than 273 million on-road vehicles in the US in 2018, of which 2.9 million were combination trucks 42 

(i.e., a 1.06% share) and 10.3 million were single-unit trucks (i.e., a 3.77% share). The left-hand-side 43 

panel of Figure 1 shows how the number of trucks has changed over the 1970-2018 period. The 44 

number of combination trucks has increased by 182% while the share of combination trucks has been 45 

relatively stable over this period. We observe a similar rate of increase for the number of single-unit 46 

(SU) trucks while no specific trend can be identified for the share of SU trucks. In terms of generated 47 

annual VMT, however, we observe a different trend. Combination trucks traveled about 184 billion 48 

miles in 2018, up 243% from 1970. The share of combination trucks in total VMT also increases 49 

steadily (but not monotonically). We observe a less sharp rate of increase in the VMT generated by SU 50 

trucks with no noticeable trend. Overall, it can be concluded that although the share of combination 51 

trucks in total on-road vehicles has remained relatively constant over time, the annual VMT that a truck 52 

generates follows an increasing trend indicating that combination trucks continue to make a more 53 

significant impact on the highway transportation system.  54 

  
Figure 1: Number and annual VMT of single-unit  55 

(SU) and combination trucks (source: BTS (2020a; 2020b)) 56 

The automated driving technology, as an advancement revolutionizing safety, comfort, travel 57 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0

2

4

6

8

10

12

1970 1990 2010

Sh
ar

e 
(%

)

N
u

m
b

er
 o

f 
v

eh
ic

le
s 

(i
n

 m
il

li
o

n
s)

SU trucks Comb. trucks
Share of SU trucks Share of comb. Trucks

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0

40

80

120

160

200

1970 1980 1990 2000 2010 2020

Sh
ar

e 
(%

)

V
M

T
 (

in
 b

il
li

o
n

s)

SU trucks Comb. trucks
Share of SU trucks Share of comb. trucks



3 

 

behavior, environmental impacts of transportation, and economy, has arrived faster than initial 58 

expectations. For example, the 2021 Mercedes Benz S-Class seems to be more than a Level 2 automated 59 

system offering a variety of features including enhanced night vision, auto park, active lane-keeping, 60 

and blind-spot assist, active distance assist, collision prevention, as well as Drive Pilot system working 61 

at speeds up to 37 mph (Mercedes Benz R&D, 2020).  62 

One major user of the automated driving technology would be the trucking industry. The automated 63 

driving technology can impact the trucking industry and freight transportation system in a more 64 

revolutionary manner, compared to passenger car users. First, automated trucks of Level 5 may not 65 

need a driver at all. A major rule currently restricting trucking companies is the Hours-of-Service 66 

regulation of the US Department of Transportation (US DOT) which does not permit a driver to drive 67 

for more than 11 hours per day (FMCSA, 2020). Without a driver, trucks can operate outside the time 68 

window of HOS. When that happens, the growing share of trucks in the overall VMT of highway 69 

transportation system may increase drastically, which in turn exacerbates negative impacts of 70 

transportation such as noise pollution and emissions. Note that automated trucks of Level 2-4 could 71 

have the same impact but probably to a lower extent as drivers have less task in driving highly 72 

automated trucks. Second, 43% of operational costs of a trucking company is driver compensation, 73 

according to Costello (2017). This portion of the cost can be eliminated entirely or partially with the 74 

implementation of automated trucks of Levels 4 and 5. In addition, platooning, synchronization with 75 

the traffic signaling system, and application of real-time traffic data could improve fuel efficiency 76 

thereby cutting operational costs. As a result, trucking companies may choose to charge less to improve 77 

their competitive presence in the freight transportation market. This could lead to induced demand 78 

for the trucking industry and a further increase in VMT and emissions. It becomes important for the 79 

US DOT, state DOTs, and transportation planning agencies to explore how connected autonomous 80 

trucks (CATs) are perceived by commercial trucking companies so that appropriate infrastructure 81 

planning can be made in the future.    82 

Due to (i) the large number of trucks in the overall highway vehicle fleet, (ii) the significant share 83 

of combination trucks in the total annual VMT generated by highway vehicles, and (iii) potential 84 

fundamental impacts of CATs on the trucking industry, there is a need to explore different aspects of 85 

adoption of CATs by the trucking industry. To the best of our knowledge, however, the literature is 86 

primarily focused on the adoption of autonomous vehicles by individuals and several important 87 

questions regarding firm-level adoption are yet to be answered. This paper, in particular, addresses 88 

two crucial questions: what are the factors affecting the decisions to adopt different levels of autonomous 89 

trucks and how many with what sizes are the groups of CAT adopters?   90 

The remainder of this paper is organized as follows. In the subsequent section, we review the 91 

literature on autonomous vehicles and discuss how firm adoption is different from individual 92 

adoption. Building upon the synthesis of the literature, we elaborate on research gaps and explicitly 93 

present our contributions. Section 3 details the procedure of data collection and discuss descriptive 94 

statistics of the collected data, ensued by a brief presentation of the methodological background of the 95 

approaches used in the study in Section 4. In Section 5, we put forward our results and discuss them 96 

in detail. The paper is concluded in Section 6 with a summary of major findings and directions for 97 

future research. 98 

2. Literature Review and Paper Contributions 99 

Autonomous driving has been of the focus of numerous studies in the past decade. Researchers 100 

have explored issues such as safety (Alonso et al., 2011; Gurney, 2013; Fagnant and Kockelman, 2015; 101 
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Kalra and Paddock, 2016; Liu and Khattak, 2016; Deb et al., 2020; Yang and Fisher, 2021; Rahman et 102 

al., 2021; van Wees, 2021), congestion and traffic operations (Le Vine and Polak, 2016; Le Vine et al., 103 

2017; Vincent AC and Verhoef, 2016; Maciejewski and Bischoff, 2017; van den Berg, Le Vine et al. 2019; 104 

Guo et al., 2020; Martin-Gasulla and Elefteriadou, 2021), travel behavior (Harper et al., 2016; 105 

Hohenberger et al., 2016; Truong et al., 2017; Bansal and Kockelman, 2018; Acheampong et al., 2021; 106 

Nair and Bhat, 2021; Moody et al., 2020; Wang et al., 2020; Penmetsa et al., 2019), environmental 107 

impacts (Tsugawa et al., 2011; Brown et al., 2014; Wadud et al., 2016), infrastructure design and 108 

assessment (Chen et al., 2017; Talebian et al., 2019), and forecasting market penetration (Chen et al., 109 

2016; Lavasani et al., 2016; Bansal and Kockelman, 2017; Noruzoliaee et al., 2018; Shabanpour et al., 110 

2018; Talebian and Mishra, 2018).  111 

One important question in the field of automated driving research revolves around the factors 112 

impacting the adoption of the technology. From the methodological perspective, discrete choice 113 

modeling is the predominant approach used to understand how the demand for the technology will 114 

develop. From the perspective of research outcome, the literature offers mixed insights. Among all, 115 

Haboucha et al. (2017) find large overall hesitations toward the adoption of autonomous vehicles 116 

(AVs) among Israelis and Americans. Using data collected in Puget Sound, Washington, Lavieri et al. 117 

(2017) find that educated, technologically savvy, younger urban residents are likely to adopt the AVs 118 

technology sooner than others. Pettigrew et al. (2019) observe that individuals with higher education, 119 

and shorter driving history are found to be more likely to adopt first. Menon et al. (2016) suggest that 120 

demographics may have little impact on AV adoption when familiarity about benefits and concerns of 121 

AVs is included in the model specification. Liu et al. (2017) witness that longer-distance travelers in 122 

Austin, Texas prefer shared AVs over human-driven vehicles mainly due to lower travel burdens. 123 

Bansal et al. (2016) suggest that safety and equipment failure are the most important perceived benefit 124 

and concern of AVs, from the perspective of 347 Austinites who participated in the research survey. A 125 

survey of Americans by Bonnefon et al. (2016) shows that younger male respondents are more 126 

enthusiastic about using autonomous vehicles. The study by Gurumurthy and Kockelman (2020) 127 

alludes to privacy as an unimportant concern for AV travelers. Wang et al. (2020) observe that 128 

supporters of stricter traffic regulations have a positive attitude about AVs implying that they see AVs 129 

as a safer transportation mode, compared to human-driven cars. Sharma and Mishra (2020) 130 

investigate the impact on automation Level 4 adoption of social values and find that AV adoption 131 

positively impacts social values of an individual in his/her peer network. 132 

There exist a few studies looking at CAT adoption at the firm-level. Simpson et al. (2019) estimate 133 

the adoption of CATs by freight transportation companies using a modified Bass model which accounts 134 

for heterogeneity in internal and external influences among companies. The authors find a CAT market 135 

penetration of 20-95%, depending on the improvement rate of the technology, how public opinion on 136 

AVs evolves, and external factors (i.e., marketing and price). Simpson and Mishra (2020) attempt to 137 

incorporate peer effects into a discrete choice model that predicts CAT adoption. Their analysis 138 

suggests that smaller companies are more likely to change their decisions following larger companies’ 139 

decisions. Both studies discussed so far are based on parameters related to other innovations as well 140 

as a set of ad-hoc assumptions. Anderhofstadt and Spinler (2020) use a choice-based conjoint analysis 141 

to study how 69 employees from freight companies in Germany evaluate major features of 142 

autonomous alternative fuel trucks. Maximum driving range and refueling/recharging time are found 143 

to be the most important attributes while the least important feature is tank-to-wheel emissions. The 144 

survey also suggests that the market penetration of the new technology cannot be elevated unless 145 

truck manufacturers, trucking firms, infrastructure providers, and policymakers closely coordinate. In 146 

a qualitative study, Kishore Bhoopalam et al. (2021) report the range of perspectives existing among 147 
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Dutch truck drivers. The study suggests that the drivers think platooning will ultimately become 148 

widespread in the industry but at the cost of lower work quality and job satisfaction for truck drivers. 149 

While the technology of automated driving for automobiles shares many similarities with that for 150 

trucks, drivers of adoption, as well as the adoption process itself, differ fundamentally. Some believe 151 

that companies can adopt an innovation faster and easier than individuals as there exists less 152 

heterogeneity among users of the innovation within the company. For example, employees who are 153 

supposed to use a new communication technology mostly have similar education. Furthermore, 154 

companies can conveniently educate their employees thereby making the adoption process faster and 155 

smoother. On the other hand, partial adoption of an innovation within a company can result in 156 

inconsistency in operations lowering the overall efficiency. Let us consider the communication 157 

technology example again. If some employees stick to the old technology, inconsistencies between the 158 

old and new technologies may lead to incomplete or imperfect communications. Therefore, companies 159 

are better off adopting an innovation to a full extent. Doing so, however, is sometimes time- and/or 160 

budget-intensive, and this is particularly true about the adoption of automated trucks by large trucking 161 

firms. Third, the organizational theory suggests that firm size plays a key role in the adoption of firms. 162 

The decision-making process in a small organization is typically centralized and major decisions are 163 

made by the owner-manager (Dyer Jr and Handler, 1994). It is believed that the smaller the firm, the 164 

closer innovative behavior of the firm to that of the owner. In light of this, it is important to account for 165 

the characteristics of the owner (manager) when modeling the decision to adopt (Donckels and 166 

Fröhlich, 1991; Hausman, 2005). Major characteristics impacting a firm’s behavior are gender 167 

(Liedholm and Mead, 1993; McPherson, 1996; Millward and Freeman, 2002), age (Khan and 168 

Manopichetwattana, 1989), education level (Hausman, 2005; Khan and Manopichetwattana, 1989; 169 

Robson et al., 2009), and experience level (Hausman, 2005). Also, it is important to consider firm-level 170 

attributes such as firm age (Coad et al., 2016; Huergo and Jaumandreu, 2004) and organizational 171 

resources (Rogers, 2010). Decision making in large firms is not concentrated in the hands of one 172 

person and thus collective behavior of the firm’s managers will impact adoption. Therefore, 173 

organizational attributes such as age (Huergo and Jaumandreu, 2004) and organizational resources 174 

play a role. In light of these, there is a need for research explicitly addressing the adoption of CATs by 175 

trucking companies considering that the literature on adoption of this technology by individuals may 176 

not be of much help and relevance.  177 

In summary, we note that there has been far less research on how the freight sector will react to 178 

this innovative technology, despite the significant impact of trucks on the transportation system. 179 

Indeed, previous studies are mostly focused on (i) platooning potentials and impacts (Kunze et al., 180 

2011; Tsugawa et al., 2011; Sugimachi et al., 2013; Tsugawa, 2013; Castritius et al., 2020; Hassan, 2020; 181 

Zhang et al., 2020), (ii) business impacts of autonomous trucks (Fritschy and Spinler, 2019; Lingmont 182 

and Alexiou, 2020; Slowik and Sharpe, 2018), and (iii) adoption of the technology. Within the adoption 183 

domain, the literature is focused on overall perceptions about the technology (Engholm et al., 2020; 184 

Pudasaini and Shahandashti, 2020) as well as modeling adoption using simplified approaches based 185 

on the adoption of previous studies (Simpson et al., 2019; Simpson and Mishra, 2020). 186 

We identify three important gaps in the domain of adoption of the automated driving technology by 187 

trucking firms: 188 

1. The literature on the overall perceptions about the technology is still immature and requires 189 

further research. We conduct a survey and collect data that help us better understand the 190 

overall perceptions about CATs. Due to the difficulty in reaching out to freight companies and 191 

asking for their opinions about the automated driving technology, such insights are a valuable 192 
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and important addition to the literature. 193 

2. While a wide set of choice models are employed to understand preferences for passenger 194 

automated vehicles, an application that uses real-world data to elicit the preferences of 195 

trucking firms is absent from the literature. We develop choice models to identify drivers of 196 

CAT adoption and shed light on the extent to which these drivers impact firms’ decisions 197 

regarding CAT adoption. We attempt to explore if and how adoption drivers change with the 198 

technology cost.  199 

3. The theory of Diffusion of Innovations (DOI), a widely used theory for explaining the adoption 200 

of new technologies, suggests that the percentage of the population that adopts over time 201 

typically follows a bell-curve curve and adopters are broadly categorized into the five groups 202 

of Innovators, Early Adopters, Early Majority, Late Majority, and Laggards. However, there has 203 

been no research attempting to understand if CAT adoption will involve the same number of 204 

categories and if the sizes of CAT adopter categories will be the same as those suggested in DOI. 205 

We perform latent class cluster analysis (LCCA) to conjecture about the number of categories 206 

of CAT adopters as well as the sizes of the clusters. This piece of information could be of help 207 

to policymakers to better prepare for the future by prioritizing infrastructure investments 208 

taken into consideration the overall process of adoption. 209 

In conclusion, it should be highlighted that data availability and quality are the main constraints 210 

preventing us from applying more advanced methodologies. This said, this paper is the first of its kind 211 

to analytically explore the decision to use the automated driving technologies at the firm-level and 212 

offer original insights into the overall process of CAT adoption. 213 

3. Survey Design and Results 214 

3.1. Descriptive Statistics  215 

There are roughly 900,000 for-hire carriers in the United States, according to the American 216 

Trucking Association (2020). Of those companies, 91.3% operate six or fewer trucks, and 97.4% 217 

operate fewer than 20 trucks. 7.8 million individuals are employed in jobs that involve trucking 218 

activities, and 3.5 million people are employed as truck operators. While it would be ideal to survey 219 

the entire population to obtain the most accurate dataset, it is rarely a feasible option. The dataset used 220 

in this research is obtained through a national stated-preference survey sent to over 2,500 trucking 221 

companies in the US. We hired a market research company to collect the responses. Initially, we 222 

received 416 responses. Incomplete survey responses and quick response time are considered as two 223 

criteria in the data hygiene process. A total of 16 observations were eliminated in the data cleaning 224 

process leaving 400 observations for the modeling process. 225 

 The survey includes five blocks. The first block includes a short description of the survey. Figure 2 226 

(left-hand panel) shows a snapshot of the welcome page of the survey on a smartphone. The second 227 

block includes questions about participants' socioeconomic characteristics like age, educational 228 

attainment, and employment duration with the existing trucking firm. The third block includes 229 

questions that relate to the participant's trucking company. Participants are asked about the number 230 

of employees, number of power units, business region, market coverage, type of cargo transported, 231 

annual mileage of trucks, and their perceptions toward their respective company's policies. The fourth 232 

block introduces autonomous trucks to the participants, followed by a set of questions attempting to 233 

elicit companies’ perceptions toward different anticipated characteristics of CATs including the 234 

associated risks, cost-effectiveness, and performance comparison with the conventional trucks. 235 

Finally, in the fifth block, the participants are shown an infographic about the five different levels of 236 

automation (SAE On-Road Automated Vehicle Standards Committee, 2018). The participants are then 237 
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presented with four stated preference scenarios to capture their companies’ willingness to adopt 238 

different fleets with varying costs of automated technologies.1 Scenario 1 is the most expensive, and 239 

Scenario 4 is the least expensive. In Scenario 1, the price of automation Level 2 is $10,000, and the 240 

price increases by $10,000 for each higher level. The additional price of the highest level of automation 241 

would then be $40,000, which is consistent with the literature (Bansal and Kockelman, 2017; Talebian 242 

and Mishra, 2018; Loeb and Kockelman, 2019; Rashidi et al., 2020). Similarly, for Scenario 2, the price 243 

of automation Level 2 is $7,500, and the price increases by $7,500 for each higher level of autonomous 244 

fleet. In Scenarios 3 and 4, the price of automation Level 2 are $5,000 and $2,500, and the prices of 245 

higher levels of autonomous fleet are determined the same as in Scenarios 1 and 2. In all four scenarios, 246 

the base scenario pertains to regular vehicles which encompasses both SAE Levels 0 and 1 considering 247 

the fact that almost all brand-new trucks are now equipped with major advanced driver-assistance 248 

systems. Figure 2 (right-hand panel) shows Scenario 4 of the choice experiment's snapshot delineating 249 

different fleets' capabilities and price. 250 

 

 

  

Figure 2: A snapshot of the survey welcome page on a  251 

smartphone (left-hand panel) and choice experiment page (right-hand panel) 252 

3.2. Descriptive Statistics  253 

Descriptive statistics of the categorical variables, covering the companies' socioeconomic and 254 

operational characteristics, are presented in Table 1. An effort is made to ensure that the responses 255 

are not skewed toward large or small companies, thereby company-size responses are relatively 256 

symmetric. Approximately 36% of responses are from small-sized companies, whereas mid-sized and 257 

large companies contributed to an almost equal proportion of responses (32%). The majority of 258 

company representatives are aged between 35 and 55 years (57%). Approximately 34% of the 259 

representative had at least a bachelor's degree. About 32% of representatives are working with their 260 

respective companies for the past 6 to 15 years. About 36% of the companies had less than 50 trucks 261 

or power-driven units, 41% had a nationwide presence, 35% of companies' trucks' average trip length 262 

is less than 200 miles, and about 36% of trucks have an annual mileage between 100,000 to 200,000 263 

miles. Most companies are involved in machinery/electronics, construction material, and foodstuffs, 264 

whereas only 5% are involved in transporting live animals. Approximately 60% of companies do their 265 

 
1 While having multiple increments on the base price provides more price variability, we consider four levels to 
limit the time required to complete the survey and avoid compromising data quality. 
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business in the Midwest US, while about 4% conduct business outside the US. The majority of the 266 

companies (76%) own truck fleet, whereas 30% contract trucks from other companies. About 31% of 267 

companies have members advocating for autonomous vehicles.  268 

Table 1: Descriptive statistics of the survey results: categorical variables (N= 400) 269 
Variable Percentage  Variable Percentage 
Age   Types of cargo transported  

Under 25 years 5.0  Live Animals 5 
26-30 years 9.5  Foodstuffs 46 
31-35 years 10.3  Construction Material 49 
36-40 years 16.8  Fuels 15 
41-45 years 13.8  Chemicals 27 
46-50 years 13.5  Textiles 33 
46-50 years 11.8  Machinery/Electronics 49 
56-60 years 9.8  Motorized Vehicles 27 
More than 61 years 9.8  Waste/Scrap Metals 22 

Education   Other 18 
Ed. cat. 1- High school or below 22.0  Market coverage  
Ed. cat. 2- Some college 20.5  Local 16 
Ed. cat. 3- Associate's degree 14.0  Regional 28 
Ed. cat. 4- Bachelor's degree 25.5  National 41 
Ed. cat. 5- Graduate degree (Masters' 
or Doctorate) 

7.8 
 

International or Global 15 

Ed. cat. 6- Trade, technical, or 
vocational training 

10.3 
 Region of business*  

Employment duration      Northwest 37.5 
Less than one year 8.3     Northeast 47.5 
1 to 2 years 17.8     Midwest 55.5 
3 to 5 years 23.3     South 59.8 
6 to 10 years 19.3     Southwest 44.5 

11 to 20 years 
12.8  Individuals promoting/advocating for 

autonomous trucks in the near future 
 

Over 21 years 18.8  Yes 31.8 
Company's size: number of 
employees/drivers 

 
 No 68.2 

1-10 14.3  Number of power units  
11-50 21.5  1-10 17.8 
51-100 16.0  11-50 22.8 
101-250 7.5  51-100 16.8 
251-500 9.0  101-250 9.5 
501-1000 10.0  251-500 6.8 
1001-2500 6.3  501-1000 7.8 
Over 2500 15.5  1001-2500 5.8 

Truck ownership status   Over 2500 13.0 
Own 75.8  Annual mileage of Trucks   
Rent 23.5  Less than 50,000 miles 7.5 
Contract 29.3  50,000-99,999 miles 24.5 

Average trip length of Trucks   100,000-149,999 miles 19.8 
0-50 miles 7.8  150,000-199,999 miles 16.3 
51-200 miles 27.8  200,000-299,999 miles 12.3 
201-500 miles 33.8  300,000-399,999 miles 7.8 
Over 500 miles 30.8  Over 400,000 miles 12.0 

Notes: * US states are grouped into five regions according to their geographic position in the Contiguous US. The 270 
Northwest region includes Washington, Oregon, Montana, Idaho, and Wyoming. The Southwest region includes 271 
California, Nevada, Utah, Arizona, Colorado, and New Mexico. The South region includes Texas, Oklahoma, Arkansas, 272 
Louisiana, Mississippi, Alabama, Tennessee, Kentucky, Georgia, Florida, North Carolina, South Carolina, Virginia, West 273 
Virginia, Maryland, and Delaware. The Midwest region includes North Dakota, South Dakota, Nebraska, Kansas, 274 
Minnesota, Iowa, Missouri, Wisconsin, Illinois, Indiana, Michigan, and Ohio. The Northeast region includes Pennsylvania, 275 
New Jersey, New York, Connecticut, Massachusetts, Rhode Island, Vermont, New Hampshire, and Maine. 276 
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Nationwide estimates for some variables in Table 1 are adopted from the 2002 Vehicle Inventory 277 

and Use Survey (VIUS) (US Census Bureau, 2004) and Census Current Population Survey (US Census 278 

Bureau, 2021) and presented in Table 2. While we use the latest version of the VIUS survey, the current 279 

statistics could be different. It should be noted that as all measures are expressed in terms of 280 

percentage, it would be reasonable to expect minor differences given that the industry has not 281 

fundamentally. We also note that person-level statistics are associated with all occupations in the 282 

transportation and material moving industry. 283 

Table 2: Nationwide statistics for selected variables 284 
Variable Percentage  Variable Percentage 
Market coverage   Average trip length of Trucks  

High school or below 60.51  50 miles or less  53.3 
Some college 20.71  51 to 100 miles  12.4 
Associate's degree 5.34  101 to 200 miles  4.4 
Bachelor's degree 9.81  201 to 500 miles  4.2 
Graduate degree (Masters' or Doctorate) 3.45  501 miles or more  5.3 
Trade, technical, or vocational training 0.17  Off-the-road, not reported, NA 20.4 

Age   Types of cargo transported  
Under 25 years 13.29  For hire transportation or warehousing 18.5 
26-30 years 12.64  Vehicle leasing or rental 5.6 
31-35 years 11.02  Agriculture, forestry, fishing, or hunting 14.4 
36-40 years 10.48  Mining 1.6 
41-45 years 10.47  Utilities 3.4 
46-50 years 9.84  Construction 18.6 
46-50 years 11.09  Manufacturing 4.1 
56-60 years 10.15  Wholesale trade 5.2 
More than 61 years 11.01  Retail trade 6.5 

Primary Operator Classification   Waste management 5.3 
Own 71.4  Services (Arts, entertainment, etc.) 5.5 
Rent 17.7  Others, not reported, NA 11.4 
Other, NA 10.9  Medium/Heavy Truck Registrations*  

Market coverage   Midwest 30.26 
Operated within the home base state (i.e., 
local) 

76.0 
 Northeast 12.81 
 Northwest 6.08 

Other, not reported, NA   24.0 
 South 37.57 
 Southwest 13.28 

 Notes: *This variable is presented as a proxy for the region of business. NA: Not Applicable. 285 

Table 3 describes the attitude questions asked in the survey and Table 4 delineates descriptive 286 

statistics for these questions. Companies are asked to respond to questions on a 7-point Likert scale (1 287 

being strongly agree and 7 strongly disagree). The last two columns in Table 4 delineate the mean and 288 

standard deviation of the responses. Overall, most companies have specialized skill sets, directed by 289 

small groups of leaders and value established practices over innovations. Companies favor testing 290 

first-generation CATs over partial and full adoption when available in the market. Most companies 291 

believe that CATs will be more complicated, unaccountable (in terms of liability), riskier (financially 292 

and physically), and expensive than conventional trucks. The companies have mixed opinions toward 293 

governmental regulations toward their decision to adopt CATs. While automotive companies and 294 

various public sector agencies have been making significant advancements to the development of CAV 295 

technologies for commercial vehicles, the United States Congress has not yet passed comprehensive 296 

legislation governing AV operation for either passenger or commercial vehicles, various State 297 

Departments of Transportation (DOTs) have developed guidelines in registration, operation and 298 

legislation. This could contribute to the mixed opinions toward governmental regulations. DOTs play 299 

a crucial role in operation, and maintenance of various aspects of the transportation infrastructure, 300 

the regulatory environment at the state level may in fact be the most important element in facilitating 301 
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the adoption of CAV technologies for commercial vehicles. While the literature governmental 302 

regulation of passenger CAV is somewhat studied (Bartolini et al., 2017; Brodsky, 2016; Claybrook and 303 

Kildare, 2018; Geistfeld, 2017; Ilková and Ilka, 2017; Smith and Svensson, 2015) the commercial 304 

vehicle CAVs are scarce. The majority of companies are not completely familiar with the CATs and 305 

would not be prepared to implement them into their existing fleet. Most companies believe that their 306 

competitors will adopt first, and such competitors will not influence the companies’ decision to adopt 307 

or reject CATs.  308 

Table 3: Definition of attitude variables  309 
Category Variable Definition  

M
an

ag
er

ia
l 

at
tr

ib
u

te
s 

Opin1 
Most of the employees in my company tend to have very specialized skill-sets that enable them 

to perform specific tasks 

Opin2 
My company is primarily directed by a small group of leaders with a well-established chain of 

command 

Opin3 
My company values the stability of established practices or technologies more than it values 

innovation 

Im
p

le
m

en
ta

ti
o

n
 

an
d

 t
es

ti
n

g 

Opin4 
My company would be likely to purchase or contract with at least one autonomous truck for 

experimentation 

Opin5 
My company would be likely to begin replacing trucks at the end of their lifespan with 

autonomous trucks instead of conventional models 

Opin6 My company would be likely to begin converting its working fleet to autonomous trucks 

Opin14 
My company is prepared to implement autonomous trucks into its fleet once they are made 

commercially available 

A
tt

it
u

d
es

 t
o

w
ar

d
 t

h
e 

au
to

m
at

ed
  

d
ri

v
in

g 
te

ch
n

o
lo

gy
  

Opin7 My company would consider autonomous trucks to be better than conventional truck models 

Opin8 
My company would consider autonomous trucks to be more complex to operate or maintain 

than conventional truck models 

Opin9 
My company would believe that autonomous trucks are more likely to cause collisions or 

injuries than conventional truck models 

Opin10 
My company would consider investing in autonomous trucks to be a greater financial risk than 

conventional truck models 

Opin11 
My company would be less likely to adopt autonomous trucks because of concerns about 

liability in case of collisions 

Opin12 
My company would consider autonomous trucks to be more cost-effective than conventional 

truck models 

Opin13 Members of my company are very familiar with autonomous vehicle technology 

Opin15 Current governmental regulations would encourage my company to adopt autonomous trucks 

 310 
Table 4: Descriptive statistics of the survey results: Opinion-related Likert scale variables (N =400) 311 

Variable 

Likert Scale levels:  
Strongly agree (1) to Strongly disagree (7) Mean SD. 

1 2 3 4 5 6 7 

Opin1 25% 39% 22% 10% 3% 1% 1% 2.33 1.17 

Opin2 28% 36% 20% 8% 5% 2% 1% 2.35 1.28 

Opin3 18% 27% 19% 23% 9% 3% 1% 2.92 1.43 

Opin4 13% 22% 17% 17% 11% 8% 12% 3.64 1.91 

Opin5 8% 14% 17% 23% 14% 10% 15% 4.08 1.82 

Opin6 8% 12% 15% 23% 16% 13% 15% 4.21 1.81 

Opin7 44% 16% 10% 30% 0% 0% 0% 2.25 1.29 

Opin8 14% 19% 27% 24% 10% 4% 4% 3.24 1.51 

Opin9 12% 15% 19% 35% 13% 4% 3% 3.44 1.45 

Opin10 14% 18% 20% 31% 8% 6% 5% 3.37 1.57 

Opin11 20% 22% 24% 20% 9% 4% 2% 2.97 1.50 



11 

 

Variable 

Likert Scale levels:  
Strongly agree (1) to Strongly disagree (7) Mean SD. 

1 2 3 4 5 6 7 

Opin12 8% 14% 21% 29% 15% 6% 8% 3.75 1.59 

Opin13 5% 13% 14% 28% 14% 14% 12% 4.24 1.69 

Opin14 8% 11% 15% 35% 10% 12% 10% 4.01 1.66 

Opin15 8% 11% 12% 26% 12% 14% 18% 4.37 1.83 

 312 

4. Methodological Background 313 

In this study, we use multinomial logit choice modeling and latent class cluster analysis to 314 

characterize CAT adoption. 2  In the next few paragraphs, we briefly discuss the methodology 315 

underlying each technique. 316 

Focusing on discrete choice modeling, the basic principle is that each firm is faced with a set of 317 

options (i.e., different levels of automation), from which it selects only one. Each firm realizes a utility 318 

when selecting a certain alternative. Firms are rational and prefer the alternative yielding the highest 319 

utility. Suppose that firm i chooses alternative (i.e., automated truck level) k, the firm receives 𝑈𝑖𝑘 =320 

𝑉𝑖𝑘 + 𝜀𝑖𝑘  in utility, where 𝑉𝑖𝑘  is the observable (or deterministic) utility associated with the 321 

alternative’s features as well as firm’s characteristics, and 𝜀𝑖𝑘  random utility accounting for the 322 

unobserved characteristics. The deterministic part is given by 𝑉𝑖𝑘 = x𝑖𝑘β
𝑇 , where x𝑖𝑘  is the vector  323 

entailing the attributes of firm i and automated truck level k and β the vector of unknown parameters. 324 

Firm i prefers automated truck level k to l if 𝑈𝑖𝑘 > 𝑈𝑖𝑙 . Assuming independent and identically 325 

distributed error terms each following Gumbel distribution, the probability of choosing automated 326 

truck level k by firm i (i.e., 𝑝𝑖𝑘) is given by 𝑃𝑖𝑘 =
𝑒𝑉𝑖𝑘

∑ 𝑒
𝑉𝑗𝑘

𝑗∈𝐴𝑖

, where 𝐴𝑖  is the set of alternatives available 327 

to firm i. In our application, all firms have the same set of alternatives which means that all levels of 328 

automation are available to all firms. Our job is to estimate the vector of parameters, i.e., β, based on 329 

stated or revealed preferences data. This is typically done using the Maximum Likelihood Estimation 330 

(MLE) method.  331 

Turning to LCCA, the technique’s main assumption is that there exist C segments in the population 332 

of firms. The latent classes are exhaustive and mutually exclusive. LCCA probabilistically assigns firms 333 

to clusters; thus, measurement error is accounted for. This is in contrast to the conventional cluster 334 

analysis which deterministically assigns observations to a single cluster thereby ignoring the potential 335 

of misassignment to a wrong cluster. Furthermore, LCCA does not rely on the distance between each 336 

pair of observations, unlike traditional clustering methods such as K-means (Mohamed et al., 2013; 337 

Behnood et al., 2014). Another advantage of LCCA is that different variable types including counts, 338 

continuous, categorical, and nominal variables can be utilized in the analysis without any 339 

standardization (De Oña et al., 2013; Depaire et al., 2008). Compared to hierarchical clustering 340 

techniques, LCCA is not memory-intensive enabling us to develop models from large datasets (Brijs, 341 

2002). The overall procedure of model estimation in LCCA is as follows. A class membership function 342 

 
2  An alternative approach is to use latent class choice modeling (LCCM) to answer research questions. Our 
modeling efforts, however, show that LCCM approach does not offer meaningful results. We speculate that the 
sample size is the primary reason for this. Application of LCCM to better understand CAT adoption is left for future 
research. That would definitely hinge upon availability of high-quality rich datasets. We also note that we have 
examined two nest structures in our modeling effort.  In the first structure, regular truck is in nest A and 
automated driving technology Levels 2-5 are in nest B. In the second structure, regular truck is in nest A, Levels 2 
and 3 are in nest B, and automated driving technology Levels 4 and 5 are in nest C. Scrutinizing the results of each 
structure in each scenario, we found no statistically-significant nesting. 
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is inferred from a set of observed variables. LCCA computes the probability of each individual 343 

observation belonging to each cluster and ultimately labels each observation with the cluster number 344 

having the highest probability (Sasidharan et al., 2015). 345 

Latent class cluster model in its basic version has the form of 𝑓(𝐲𝑖|𝜽) = ∑ 𝜋𝑐
𝐶
𝑐=1 𝑓𝑘(𝐲𝑖|𝜃𝑐), where C 346 

is the number of clusters, 𝜃 the model parameters, 𝐲𝑖 a firm’s scores on the set of observed variables 347 

(also called indicators, outcome variables, or endogenous variables), and 𝜋𝑐  the prior probability of 348 

firm i belonging to latent cluster c. The latter would essentially be the size of cluster c. Given 𝜃, the 349 

distribution of 𝐲𝑖 , i.e., 𝑓(𝐲𝑖|𝜃), is a mixture of class-specific densities denoted by 𝑓𝑐(𝐲𝑖|𝜃𝑐) . Here, a 350 

common assumption is that indicators are continuous variables normally distributed within latent 351 

classes. The basic model can be extended by allowing nominal, ordinal, or count variables to serve as 352 

indicators. In that case, the generalized form of latent class cluster model mixing 𝐲s is 𝑓(𝐲𝑖|𝜃) =353 

∑ 𝜋𝑐
𝐶
𝑐=1 ∏ 𝑓𝑐(𝑦𝑖𝑗|𝜃𝑗𝑐)

𝐽
𝑗=1 , where J is the total number of indicators, and j a particular indicator. Note that 354 

this model does assume local independence. Here, instead of using a single multivariate distribution, 355 

an appropriate univariate distribution function for each 𝑦𝑖𝑗  is specified. Normal Gaussian distribution, 356 

multinomial distribution, adjacent-category ordinal logistic regression, and Poisson distribution are 357 

typically used for continuous, nominal, ordinal, and count variables, respectively. Ultimately, the set of 358 

parameters (i.e., 𝜃) is estimated using an expectation maximization method (Depaire et al., 2008; 359 

Lanza and Rhoades, 2013; Vermunt and Magidson, 2002).  360 

We face a couple of challenges when conducting LCCA. The first is that a priori we are unaware of 361 

the right number of unobserved classes. To address this, it is recommended to develop multiple models 362 

with different numbers of classes and choose the one yielding the lowest Bayesian Information 363 

Criterion (BIC). Overall, the classes should be interpretable and meaningful. For example, an n-class 364 

model may be preferred to an (n+1)-class model if the (n+1)-class model involves a cluster that is too 365 

small, i.e., contains a very small number of firms (Bae et al., 2017; Lee et al., 2019). The second 366 

challenge revolves around the selection of appropriate variables for the class membership function. 367 

Swait (1994) suggests including attitude-related variables as well as socioeconomic attributes of 368 

respondents in the membership model.  369 

5.  Results and discussions 370 

5.1. Multinomial Choice Modeling 371 

This section presents our modeling results aiming to shed light on determinants of autonomous 372 

technology adoption by freight firms. Examining various specifications of choice models, we find that 373 

models with generic variables are mostly uninterpretable with insignificant coefficients and very low 374 

goodness-of-fit measures. Table 5 presents the most meaningful alternative-specific MNL model for 375 

the Highly Expensive scenario (Scenario 1). We also run this model for the other levels of the additional 376 

price of automated trucks, i.e., Scenarios 2, 3, and 4, to investigate if the variables contributing to the 377 

likelihood of adoption remain statistically meaningful. Variables included in the model intent to 378 

capture (i) respondent-related, (ii) company-related, and (iii) alternative-varying attributes. The 379 

additional cost of autonomous technology is the only variable that is found to offer a better fit if 380 

considered as a generic variable. Focusing on the Highly Expensive technology scenario, several 381 

important observations are made: 382 

i. The respondent’s age has negative coefficients for Levels 3, 4, and 5 that are significant at 99%, 383 

99%, and 85% levels. This makes sense as age is broadly known to negatively correlate with an 384 

individual’s innovativeness (Khan and Manopichetwattana, 1989; Lambert-Pandraud and 385 

Laurent, 2010). The coefficient for Regular trucks is positive and significant at 85% level. This 386 
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positive sign is also intuitive as older individuals tend to stick to the established routines and day-387 

to-day existence. The coefficient for automation Level 2 is also positive but insignificant. This may 388 

suggest that the individuals see the Level 2 of automation more of regular truck. We observe 389 

positive coefficients for all three less expensive technology cost scenarios augmenting our 390 

inference.3  391 

ii. The results suggest that individuals’ education plays a role in describing the decision to adopt; 392 

however, different levels of education appear in the utility functions of different alternatives. 393 

Interestingly, possession of a graduate degree, including MSc and PhD, has no statistically 394 

meaningful impact on adoption. Having an Associate’s degree, professional degree, trade, 395 

technical, or vocational training, on the other hand, positively impacts the likelihood of adoption. 396 

iii. As expected, the additional cost of the technology has a negative coefficient significant at 90% 397 

level suggesting that the more expensive the technology, the lower the propensity of firm 398 

adoption.  399 

iv. The variables pertaining to owning and contracting trucks have negative coefficients but are 400 

significant only for Regular trucks. This is consistent with our intuition. Overall, whether an 401 

alternative could elevate economic productivity is among the top factors informing decision-402 

making at the firm-level. CATs have certain potentials allowing trucking firms to improve 403 

profitability. Thus, companies already having regular trucks are expected to seek more cost-404 

effective alternatives and are less likely to purchase the existing technology again. Likewise, 405 

companies contracting truckers are less likely to go with Regular trucks.  406 

v. Some variables associated with the region of operation are significant predictors of technology 407 

adoption. Operating in the US South region is only significant for Regular trucks which can be 408 

related to the traditionally conservative practices in the Southern states. On the other hand, 409 

companies operating in Midwestern and Northwestern states are more likely to adopt the highest 410 

level of autonomous technology.  411 

vi. Not surprisingly, “having promoters of new technologies in the company” is a variable that is 412 

significant for all levels of automation and in different scenarios of the technology additional cost. 413 

Also, the coefficient increases, but not monotonically, with the technology level suggesting that 414 

the impact of having such promoters on the propensity of adoption is greater for higher levels of 415 

automation. 416 

vii. Overall, we find a minor impact of cargo type on adoption likelihood considering that 417 

transporting foodstuffs appears in the utility function of automation Level, 3 and waste materials 418 

is only significant for level 2. The positive coefficient for foodstuffs can be interpreted fairly 419 

reasonably. In general, food is a perishable good; thus, the 11-hour driving limit poses a major 420 

restriction to the food transportation industry, and the technology helping relax this constraint 421 

is favored.  422 

viii. The number of power units is the only significant variable elucidating the adoption impact of firm 423 

size. Recall from our previous observations that Level 2 is viewed not significantly different than 424 

Regular trucks. The negative sign of the variable “Number of trucks below 100” in the utility 425 

function of automation Level 2 indicates that small- and medium-sized companies are less likely 426 

to adopt this level of technology. Indeed, a full transformation of the fleet to high levels of 427 

autonomous technology would be extremely costly; thus, it is expectable that large companies 428 

retain their existing fleet (at least at the early stages of introduction of the technology). On the 429 

 
3 While age is a continuous variable in the real-world, we were not able to ask a respondent’s age in our survey, 
mainly due to privacy concerns that individuals have. Considering that we have relatively short age categories, we 
assign each individual with a random age to ease the modeling procedure. This is done by drawing a random 
number from the uniform distribution defined on the interval to which the individual belongs.  
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other hand, the positive sign of the variable “Number of drivers below 50, in the utility function 430 

of Level 5 refers to the higher likelihood of adoption of this alternative by small-sized companies. 431 

As Table 5 indicates, the model that is fitted to the Highly Expensive scenario is not suitable for the 432 

other three scenarios as they offer much lower goodness-of-fit measures as well as several 433 

insignificant and counter-intuitive coefficients. This implies that the set of variables describing the 434 

adoption decision hinges upon the technology price level. To further investigate this, we develop a set 435 

of models that best-fit Expensive, Slightly Expensive, and Least Expensive cost levels, i.e., Scenarios 2, 436 

3, and 4, respectively. Table 6 presents our modeling results. We observe the following points: 437 

i. Age has positive signs for the Regular truck alternative across all three scenarios but the 438 

coefficient in the Least Expensive scenario is insignificant. We observe similar signs for this 439 

variable with the Level 2 alternative. These are in-line with our previously-made observations 440 

indicating that the Level 2 is viewed as an innovation not significantly different from the existing 441 

technology. The variable is significant in Expensive and Slightly Expensive scenarios for both 442 

alternatives. In each of the latter two scenarios, as well as in the Highly Expensive Scenario, the 443 

coefficient for Level 2 is smaller than that for Regular trucks which shows the lower positive 444 

impact of age on the adoption of Level 2 trucks, compared to Regular trucks. Age’s sign follows 445 

our expectation in all three scenarios for Levels 3-5 of the technology, except in the Slightly 446 

Expensive scenario with Level 3 where we see a positive coefficient significant at 90% level. 447 

ii. The respondents’ education levels still play a role. In particular, the Associate’s degree has the 448 

highest frequency of appearance in the utility functions of different alternatives. Still, a graduate 449 

degree seems to have no major impact on individuals’ stated preferences.  450 

iii. The impact of employment history is the same as what we observed previously. Those hired 451 

recently express that their companies are less likely to go with the higher levels of automation. 452 

iv. Firm size plays a different role if the technology price level reduces, i.e., we move from the Highly 453 

Expensive scenario to other scenarios. Particularly, there exists an indication that large firms may 454 

also show an interest in the highest level of automation. This is not counter-intuitive. With the 455 

technology becoming less expensive, even large firms could manage to change their fleet to 456 

autonomous. 457 

v.  The additional cost of automation has a positive sign in two scenarios but both are insignificant. 458 

vi. The variable indicating presence of promoters of innovative technologies remains highly 459 

significant across all scenarios. Also, the coefficient value increases with the technology level, and 460 

this happens in all three scenarios. 461 

vii. The variable referring to owing vehicles remains significant for Regular trucks in all three 462 

scenarios reinforcing the conclusion that firms owning a fleet are less likely to adopt Regular 463 

trucks. The impact of the variable Contract is the same as what we observed previously. The 464 

impact on the adoption of regular trucks of the variable Contract is always smaller than that of 465 

the variable Own. 466 

viii. The negative signs of average truck daily mileage below 200 and annual mileage below 200k 467 

could mean that in general, mileage positively influences the adoption propensity of alternatives: 468 

the lower(higher) the mileage, the lower(higher) the likelihood of adoption.  469 

ix. We observe that different geographical variables appear in the utility functions of different 470 

alternatives in the four cost scenarios. Southwest and Northeast are the most frequent variables. 471 

It can be inferred that companies working in the Northeast region are more likely to adopt higher 472 

levels of the automated technology.  473 
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x. Cargo type also plays a role. In particular, it seems that companies transporting live animals are 474 

less likely to adopt the higher levels of the technology. As in the Highly Expensive scenario, 475 

transporting foodstuffs positively impacts the propensity of adoption of the technology.  476 

 477 
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Table 5: Coefficient estimates with multinomial logit choice model in the four scenarios of price 478 

Level Variable 
Highly Expensive  Expensive  Slightly Expensive  Least Expensive 

Coefficient t-test  Coefficient t-test  Coefficient t-test  Coefficient t-test 

R
eg

u
la

r Age 0.0147 1.61  0.0641 7.63  0.0184 2.31  0.0023 0.283 
Own -0.98 -3.31  -0.652 -2.2  -0.665 -2.26  -0.733 -2.33 
Contract -0.581 -1.95  -0.465 -1.57  -0.47 -1.62  -0.47 -1.53 
South 0.553 2.14  0.304 1.19  0.0857 0.332  0.0544 0.201 

L
ev

el
 2

 

Constant -0.749 -1.17  -0.471 -0.73  -0.651 -0.928  -1.62 -2.12 
Age 8.25E-3 0.847  0.0495 5.1  0.00456 0.41  1.52E-4 0.0134 
Employed- 2 years 0.679 2.37  -0.0215 -0.0701  -0.0166 -0.0514  -0.0153 -0.0433 
Some college credit 0.708 2.41  0.0284 0.0892  -0.458 -1.21  0.0852 0.236 
PUs below 100 -0.656 -2.4  -0.119 -0.416  -0.0237 -0.0778  -0.265 -0.796 
Ann. mil. below 100k 0.49 1.7  0.146 0.507  0.453 1.52  0.594 1.8 
Promoters 1.87 4.11  1.59 3.15  1.18 2.32  2.85 4.67 
Waste 0.547 1.82  0.356 1.08  0.226 0.628  -0.213 -0.482 

L
ev

el
 3

 

Constant 1.1 1.99  0.268 0.545  -0.462 -0.907  0.565 1.03 
Age -0.0375 -3.74  0.0262 2.87  -0.00762 -0.815  -0.0322 -3.24 
Associate's degree 0.863 2.57  0.636 1.94  0.83 2.52  0.38 1.12 
Promoters 2.19 4.95  2.61 5.66  2.17 4.84  2.69 4.57 
Foodstuffs 0.524 2.03  0.219 0.885  0.549 2.21  -0.252 -0.96 
Southwest 0.596 2.27  0.303 1.22  0.31 1.24  -0.387 -1.43 

L
ev

el
 4

 Constant 1.97 3.61  0.475 0.889  0.615 1.55  0.325 0.802 

Age -0.051 -4.73  0.0164 1.47  -0.0206 -2.35  -0.0277 -3.12 

Promoters 3.07 6.69  2.58 5.3  2.15 4.82  2.37 4.08 

L
ev

el
 5

 

Constant -1.75 -3.15  -0.135 -0.267  -0.0674 -0.177  0.0119 0.0296 
Age -0.0201 -1.44  0.00242 0.2  -0.0253 -2.59  -0.0309 -3.4 
Employed-10 years 1.3 2.49  0.616 1.43  0.259 0.794  0.0491 0.174 
Education cat. 6 1.28 2.78  0.377 0.725  -0.271 -0.465  0.146 0.35 
Drivers below 50 0.963 2.31  -0.164 -0.418  -0.237 -0.674  0.0572 0.209 
Promoters 2.81 5.04  2.66 5.07  2.51 5.24  3 5.17 
Midwest 0.864 2.01  -0.0249 -0.0676  0.281 0.816  0.204 0.706 
Northwest 0.962 2.33  0.916 2.56  0.292 0.855  0.453 1.6 

Generic Add’l cost -4.07E-05 -1.78  2.61E-06 0.0928  -6.12E-06 -0.163  -1.40E-05 -0.182 
 

 
Final LL: -527.69 
𝜌2: 0.18             �̅�2: 0.134 
AIC: 1115.39   BIC: 1235.13 

 
Final LL:-566.17      
𝜌2: 0.121            �̅�2: 0.0739 
AIC:1192.35     BIC:1312.09 

 
Final LL:-586.29       
𝜌2: 0.0893          �̅�2: 0.0427 
AIC:1232.59      BIC:1352.33 

 
Final LL:-592.32      
𝜌2: 0.0799      �̅�2: 0.0333 
AIC:1244.64  BIC:1364.38 

        Notes: Education category 6 includes professional degree, trade, technical, or vocational training. PU: Power Unit. Employed-X years: Employed in the past X years 479 
 480 
 481 
 482 
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Table 6: Coefficient estimates for multinomial logit choice models that best fit Scenarios 2, 3 and 4 483 

Level 
Expensive  Slightly Expensive  Least Expensive 

Variable Coefficient t-test   Variable Coefficient t-test  Variable Coefficient t-test 

R
eg

u
la

r 

Age 0.0567 6.77  Age 0.0331 4.09  Age 0.00977 1.14 
Own -0.672 -2.24  Own -0.684 -2.26  Some high school 0.713 2.37 
Contract -0.412 -1.4  Contract -0.469 -1.56  Daily mi. below 200 -0.499 -1.84 
Northwest -0.559 -2.13  Daily mi. below 200 -0.722 -2.63  Own -0.53 -1.78 
           Transport 0.421 1.33 

L
ev

el
 2

 

Constant -0.702 -1.22  Constant -1.02 -1.58   Constant -0.831 -1.17 
Age 0.0413 4.48  Age 0.0178 1.69  Age 0.00849 0.769 
Promoters 1.78 3.55  Some high school 0.473 1.4  Associate's degree -1.6 -2.08 
National -0.608 -2.16  Education cat. 6 0.802 1.95  Promoters 2.95 4.91 
    Promoters 1.31 2.6  Machinery -0.46 -1.47 
           Northeast -0.464 -1.41 

L
ev

el
 3

 

Constant -0.0692 -0.145  Constant -0.353 -0.686   Constant 0.633 1.24 
Age 0.0169 1.83  Age 0.00859 0.909  Age -0.0243 -2.47 
Associate's degree 0.628 1.91  Associate's degree 0.624 1.86  Bachelor's degree -0.489 -1.5 
Promoters 2.74 6.01  Daily mi. below 200 -0.636 -2.12  Promoters 2.89 4.91 
Animals -1.38 -1.97  Promoters 2.15 4.81     
Fuels 0.492 1.54  Foodstuffs 0.579 2.29       

L
ev

el
 4

 

Constant 0.0104 0.0201  Constant 0.419 1.03   Constant 0.0195 0.0479 
Age 0.00865 0.772  Age -0.00535 -0.602  Age -0.0206 -2.25 
Promoters 2.66 5.48  Some high school -0.868 -2.23  Contract -0.499 -1.63 
Northeast -0.532 -1.8  Promoters 2.39 5.2  Promoters 2.69 4.57 
    Animals -1.61 -1.84  Southwest 1.12 4.04 
    Midwest -0.75 -2.69     
     Southwest 1.13 4.13       

L
ev

el
 5

 

Constant 0.382 0.807  Constant 0.118 0.311   Constant -0.0532 -0.144 
Age -0.00344 -0.289  Age -0.0181 -1.69  Age -0.0202 -2.31 
Employed-10 years 0.736 1.84  Employed-2 years -1 -2.3  Graduate degree 0.808 2.01 
PUs below 100 -0.915 -2.7  Bachelor's degree 0.587 1.87  Promoters 3.02 5.24 
Ann. mi. below 200k -0.701 -2.1  Promoters 2.5 5.31  Chemicals 0.494 1.84 
Promoters 2.51 4.84  Northeast 0.8 2.65  Regional -0.541 -1.62 
Waste -1.03 -2.35      Southwest 0.717 2.59 

Generic Add’l cost 1.65E-05 0.629  Add’l cost -1.63E-05 -0.439   Add’l cost 1.33E-05 0.183 

 
Final LL: -555.59    𝜌2: 0.137    �̅�2: 0.0966 
AIC: 1163.18           BIC: 1266.96  

Final LL: -562.84    𝜌2: 0.126    �̅�2: 0.0807 
AIC: 1183.68            BIC: 1299.43  

Final LL: -570.4     𝜌2: 0.114     �̅�2: 0.0705 
AIC: 1196.82          BIC: 1308.58 

484 
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It is also interesting to take a look at elasticity values as they are unitless and can be interpreted in 485 

a straightforward manner. To be able to compare elasticities of different levels of automation, we only 486 

explore the three variables of age, cost, and Promoters which refers to having promoters of new 487 

technologies in the company (Table 7). Elasticities are examined for the Highly Expensive scenario 488 

(Scenario 1) because the three variables are all statistically significant only in this scenario. Focusing 489 

on the elasticity with respect to the additional cost of automation, we observe that the probability 490 

becomes more elastic with the technology level which is intuitive. The higher levels of automation are 491 

already more budget-intensive than the lower levels and it would not surprising to see a higher amount 492 

of reduction in the adoption probability in response to an increase in the cost of automation. The 493 

absolute values of the elasticity measures are also in a reasonable range. Turning to the elasticity with 494 

respect to the age variable, the positive elasticity for Level 2 is consistent with our previous findings 495 

suggesting that trucking firms view this technology level more of regular trucks. We expect to see an 496 

increase in the absolute value of elasticity because a positive attitude about the higher levels of 497 

automation requires a more tech-savvy attitude which is commonly seen to negatively correlate with 498 

age. The elasticity measure for Level 5, however, does not follow our expectation but it should be also 499 

recalled that the corresponding coefficient is statistically-significant only at 85.1% level. A similar 500 

trend is anticipated for the Promoters variable but the sign of the measure for Level 3 as well as the 501 

value of elasticity for Level 5 seem to be counter-intuitive.  502 

Table 7: Elasticity of choice probabilities with respect to selected variables in Scenario 1 503 

Model elasticity 
Autonomous driving technology level 
Level 2 Level 3 Level 4 Level 5 

Elasticity of the probability with respect to cost -0.2914 -0.5918 -0.8885 -1.331 
Elasticity of the probability with respect to age 0.7397 -0.9457 -1.234 -0.2627 
Elasticity of the probability with respect to Promoters -0.1349 -0.1166 0.4091 0.114 

5.2. Latent Class Cluster Analysis 504 

Next, we present our modeling efforts to explore if firms adopting the autonomous driving 505 

technology would be categorized into the five well-known groups, as suggested in the Theory of 506 

Diffusion of Innovations (Rogers, 2010). As noted above, the optimal number of latent classes is not a 507 

priori; thus, we first develop latent class clustering models with one to eight clusters and then 508 

determine the superior model. Goodness-of-fit measures for these models are presented in Table 8. To 509 

perform LCCA, we use a wide set of predisposing and attitude variables. The former includes socio-510 

economic characteristics of respondents (i.e., Age and Education category variables) and company 511 

attributes (i.e., average daily mileage) while the latter includes variables explaining overall firm 512 

management practices (i.e., Opin2) as well as variables showing firm-level attitudes toward CATs (i.e., 513 

Opin8, Opin9, Opin10, Opin11, Opin12, and Opin13). It should also be noted that several other models 514 

are developed using other variables but other models are found to offer lower goodness-of-fit 515 

measures and very high bivariate residuals. The model with five latent classes has the lowest BIC and 516 

therefore is selected for further scrutiny. This number of latent classes is consistent with what the 517 

Theory of DOI suggests. 518 

 519 
 520 
 521 
 522 
 523 
 524 
 525 
 526 
 527 
 528 
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Table 8: Goodness-of-fit statistics for latent class models with one to eight clusters 529 

Model Npar  LL  L² BIC(LL)  

1-Cluster 56 -6,574.12 8,360.61 13,483.75 

2-Cluster 76 -6,478.51 8,169.40 13,412.38 

3-Cluster 96 -6,378.58 7,969.53 13,332.34 

4-Cluster 116 -6,316.02 7,844.42 13,327.06 

5-Cluster 136 -6,250.63 7,713.62 13,316.09 

6-Cluster 156 -6,215.23 7,642.84 13,365.13 

7-Cluster 176 -6,199.32 7,611.02 13,453.14 

8-Cluster 196 -6,169.72 7,551.81 13,513.77 
             Notes: Npar refers to the number of parameters estimated in the model 530 

Clearly, by increasing the number of clusters and/or indicators, the number of parameters to be 531 

estimated dramatically increases. It is therefore essential to impose restrictions to class-specific 532 

variance–covariance matrices in order to achieve a greater level of parsimony and stability (Vermunt 533 

and Magidson, 2002). In Table 9, we present multiple pair-wise measures, i.e., bivariate residuals, 534 

helping examine the covariance among ten indicators used to find latent clusters. Bivariate residuals 535 

follow a Pearson Chi-square distribution divided by the degree of freedom number (Pani et al., 2020). 536 

Assuming a significance level of 0.05, bivariate residuals are compared to 𝜒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
2  = 3.84. All residuals 537 

presented in Table 9 are lower than 3.84 indicating that the 5-Cluster model may not fall short in 538 

reproducing the association between different pairs of variables. 539 

Table 9: Bivariate residuals for the latent class model with 5 classes 540 

Indicators Opin2 Opin8 Opin9 Opin10 Opin11 Opin12 Opin13 Age  Ed. cat. Avg. mil. 

Opin2 .          
Opin8 0.019 .         
Opin9 0.041 0.928 .        
Opin10 0.166 0.000 3.080 .       
Opin11 0.638 2.345 1.0E-04 3.351 .      
Opin12 0.049 0.009 0.441 0.011 1.274 .     
Opin13 0.482 0.000 1.031 0.287 2.518 2.110 .    
Age 0.610 0.104 0.368 0.108 0.748 1.199 2.107 .   
Ed. cat. 0.172 1.612 0.222 0.202 0.395 1.133 1.472 1.661 .  
Avg. mil. 1.377 0.792 0.523 0.511 0.776 0.184 0.733 1.127 0.860 . 

It is common in LCCA to label the classes. To do so, we take a look at class response percentages 541 

within selected attitude variables presented in Table 10. The rationale behind the selection of these 542 

variables (i.e., Opin4, 5, 6, and 14) is that they explicitly ask about the likelihood of testing and 543 

implementation of the autonomous technology; thus, they can show the general attitude about 544 

adoption. To be able to compare luster sizes with the general group categories that DOI suggests, we 545 

use the same terminology as in DOI. The clusters’ labels are as follows: 546 

• Cluster-2: with the lowest mean across all variables, this cluster includes “Laggards”.  547 

• Cluster-5: this cluster has the second-lowest mean across all four variables and is therefore 548 

labeled “Late Majority”.  549 

• Cluster-1: we label this cluster “Early Majority” as it has the third-lowest mean across the four 550 

attitude variables. 551 

• Cluster-4: this cluster consistently scores the second-highest mean; thus, it is identified as “Early 552 

Adopters”. 553 

• Cluster-3: we tag this cluster “Innovators” considering that we observe the highest means for this 554 

cluster across all variables. 555 
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Table 10: Class response percentage within selected attitude variables in the model with 5 classes 556 

Variable Class 

Likert Scale levels: Strongly agree (1) to Strongly 
disagree (7) Mean STD 

1 2 3 4 5 6 7 

Opin4: purchase or 
contract with at least 

one autonomous truck 
for experimentation  

Class-1 4.09 7.81 12.27 23.05 22.68 22.68 7.43 4.50 1.54 

Class-2 59.57 17.02 12.77 2.13 2.13 6.38 0.00 1.89 1.43 

Class-3 5.41 0.00 0.00 0.00 2.70 43.24 48.65 6.19 1.37 

Class-4 6.06 0.00 0.00 12.12 12.12 24.24 45.45 5.79 1.62 

Class-5 35.71 21.43 21.43 0.00 0.00 7.14 14.29 2.86 2.21 

Opin5: begin replacing 
trucks at the end of 
their lifespan with 
autonomous trucks 

instead of conventional 
models 

Class-1 5.58 10.41 17.47 31.97 19.33 11.15 4.09 3.99 1.45 

Class-2 68.09 12.77 10.64 6.38 2.13 0.00 0.00 1.62 1.05 

Class-3 5.41 2.70 0.00 2.70 13.51 45.95 29.73 5.73 1.52 

Class-4 6.06 0.00 3.03 6.06 24.24 27.27 33.33 5.58 1.58 

Class-5 42.86 28.57 0.00 7.14 7.14 7.14 7.14 2.57 2.06 

Opin6: begin converting 
its working fleet to 
autonomous trucks 

Class-1 6.69 11.90 20.82 31.60 18.22 9.29 1.49 3.77 1.39 

Class-2 61.70 21.28 8.51 4.26 4.26 0.00 0.00 1.68 1.09 

Class-3 5.41 2.70 2.70 0.00 2.70 43.24 43.24 5.95 1.60 

Class-4 6.06 3.03 6.06 3.03 33.33 15.15 33.33 5.33 1.73 

Class-5 42.86 28.57 0.00 14.29 7.14 0.00 7.14 2.43 1.87 

Opin14: implement 
autonomous trucks into 

its fleet once they are 
made commercially 

available 

Class-1 8.92 15.99 15.99 34.57 15.61 6.69 2.23 3.61 1.44 

Class-2 74.47 10.64 4.26 6.38 0.00 2.13 2.13 1.62 1.34 

Class-3 0.00 2.70 5.41 5.41 5.41 43.24 37.84 5.95 1.27 

Class-4 9.09 3.03 3.03 12.12 18.18 21.21 33.33 5.24 1.89 

Class-5 35.71 42.86 7.14 14.29 0.00 0.00 0.00 2.00 1.04 

In Table 11 below we take a look at class probabilities and how they are compared with adopter 557 

categorization suggested by the DOI Theory. LCCA suggests that some 10% of companies would be 558 

Innovators which is much greater than what the Theory of DOI suggests. DOI and LCCA suggest a 559 

relatively comparable size for the Early Adopters class. We observe that our estimate for the Early 560 

Majority is about two times of the amount suggested by the DOI Theory. LCCA, on the other hand, 561 

suggests that the Late Majority class is far smaller than the DOI’s suggestion. It can be inferred that the 562 

size of the inflated Early Majority group is realized by attracting firms from the Late Majority class. Our 563 

estimate for the Laggard class is also comparable to what we see in the DOI Theory. Overall, we 564 

speculate that the CAT adopter distribution may not have a perfect bell-shaped curve but be more of 565 

right-skewed. This finding is understandable because CATs bring explicit economic benefits to the 566 

trucking industry (Next Big Future, 2019) incentivizing companies to adopt earlier. More specifically, 567 

platooning and computerized smoother driving combined can lower fuel consumption by at least 20%, 568 

cutting the total operating cost substantially (Andersson and Ivehammar, 2019). Also, driver 569 

compensation accounts for 43% of the operating cost of a trucking company (Costello, 2017), which 570 

can be partially– or even fully – saved by replacement of regular trucks by Level 5 autonomous trucks. 571 

In addition to lower costs, CATs have the potential to boost trucking productivity. For example, it is 572 

said that an autonomous truck can travel across the US in 2 days, three days less than regular trucks 573 

(Next Big Future, 2019). (i) Major investments of giant logistics firms (i.e., Amazon) on CATs (Data 574 

Driven Investor,  (ii) significant competition among tech companies and startups (e.g., Waymo, Tesla, 575 

Volvo, Embark, TU Simple, Kodiak Robotics, and Starsky) to develop the technology earlier (ATBS, 576 

2018; TTNews, 2021), and (iii) substantial pre-orders of autonomous trucks by sophisticated shippers 577 

and carriers (Forbes, 2021) are real-world evidences confirming the enthusiasm of the freight industry 578 

to implement the self-driving technology as soon as possible. 579 

 580 
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Table 11: Class sizes in the latent class model with 5 clusters 581 

Cluster 3 4 1 5 2 

Title Innovators  Early Adopters Early Majority  Late Majority  Laggards 

Size 10.10% 8.20% 66.32% 3.43% 11.95% 

Adopter categorization in DOI 2.5% 13.5% 34% 34% 16% 

To further understand the characteristics of the latent classes, we inspect class response 582 

percentages within some socio-demographic and firm-level variables (Table 12). We notice a clear 583 

positive skew in the age of respondents in Cluster 3 (Innovators) which is consistent with our previous 584 

observation indicating younger individuals are more likely to state that their companies will adopt 585 

CATs earlier. Indeed, more than 70% of individuals in Cluster-3 are less than 40 years old. On the other 586 

hand, this percentage is only 21.28% for Cluster-2 (i.e., Laggards) which is in-line with the nature of 587 

the class. Switching to education, we see that the majority of Innovators have a graduate degree 588 

showing an overall positive impact on the innovativeness of advanced academic studies. On the 589 

opposite, High School Diploma or below is the most frequent education category among Laggards which 590 

is not surprising. We also take a look at firm-specific variables. We see that about two-thirds of 591 

Laggards serve the US South region while only 38% of Innovators do so. Also, about 60% of Innovators 592 

transport foodstuffs, up 25% from Laggards. These observations reinforce our previous inference.  593 
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Table 12: Class response percentage within socio-demographic and firm-level variables in the model with 5 classes 594 

Variable Category Cluster-1 Cluster-2 Cluster-3 Cluster-4 Cluster-5  Variable Category Cluster-1 Cluster-2 Cluster-3 Cluster-4 Cluster-5 
A

ge
 c

at
eg

o
ry

 
Under 25 years 5.58 4.26 5.41 3.03 0  

A
v

g.
 d

ai
ly

 
m

il
ea

ge
 0-50 mil. 8.92 12.77 2.7 0 0 

26-30 years 10.41 2.13 21.62 3.03 0  51-200 mil. 29.74 27.66 21.62 21.21 21.43 

31-35 years 9.29 6.38 24.32 12.12 0  201-500 mil. 35.32 21.28 43.24 33.33 21.43 

36-40 years 16.73 8.51 18.92 24.24 21.43  Over 500 mil. 26.02 38.3 32.43 45.45 57.14 

41-45 years 13.01 19.15 18.92 12.12 0  

N
u

m
b

er
 o

f 
p

o
w

er
 

u
n

it
s 

1-10 16.36 27.66 10.81 12.12 42.86 

46-50 years 14.5 19.15 2.7 12.12 7.14  11-50 23.42 29.79 13.51 24.24 7.14 

46-50 years 9.67 23.4 5.41 6.06 42.86  51-100 17.84 12.77 16.22 9.09 28.57 

56-60 years 10.41 6.38 2.7 12.12 21.43  101-250 7.81 6.38 27.03 12.12 0 

Over 61 years 10.41 10.64 0 15.15 7.14  251-500 7.06 0 16.22 6.06 0 

E
d

u
ca

ti
o

n
 

ca
te

go
ry

 

Ed. Cat. 1 23.05 25.53 16.22 15.15 21.43  501-1000 8.18 4.26 5.41 6.06 21.43 

Ed. Cat. 2 21.93 21.28 8.11 24.24 14.29  1001-2500 7.06 4.26 2.7 3.03 0 

Ed. Cat. 3 13.38 14.89 13.51 15.15 21.43  Over 2500 12.27 14.89 8.11 27.27 0 

Ed. Cat. 4 27.14 21.28 24.32 24.24 14.29  

R
eg

io
n

 

Northwest 38.29 42.55 29.73 42.42 14.29 

Ed. Cat. 5 4.83 2.13 32.43 15.15 0  Southwest 44.24 46.81 32.43 60.61 35.71 

Ed. Cat. 6 9.67 14.89 5.41 6.06 28.57  South 62.45 61.7 37.84 69.7 35.71 

E
m

p
lo

y
m

en
t 

ti
m

e 

Less than 1 year 9.67 10.64 2.7 3.03 0  Midwest 57.99 48.94 40.54 63.64 50 

1-2 years 18.22 21.28 16.22 12.12 14.29  Northeast 49.07 51.06 27.03 57.58 35.71 

3-5 years 23.05 17.02 24.32 36.36 14.29  Outside 1.49 0 2.7 0 0 

6-10 years 18.22 12.77 37.84 12.12 28.57  

C
ar

go
 t

y
p

e 

Animals 4.09 6.38 13.51 3.03 7.14 

11-15 years 11.15 19.15 10.81 15.15 21.43  Foodstuffs 44.61 34.04 59.46 69.7 28.57 

16-20 years 9.29 10.64 2.7 12.12 14.29  Construction 46.84 44.68 56.76 69.7 42.86 

21-25 years 4.46 2.13 5.41 3.03 0  Fuels 14.5 12.77 29.73 15.15 7.14 

Over 25 years 5.95 6.38 0 6.06 7.14  Chemicals 24.91 25.53 32.43 36.36 21.43 

O
w

n
er

sh
ip

 

Own 72.49 78.72 86.49 81.82 85.71  Textiles 32.34 23.4 40.54 51.52 7.14 

Rent 23.79 8.51 35.14 24.24 35.71  Machinery 47.96 40.43 48.65 66.67 50 

Contract 32.71 12.77 21.62 39.39 14.29  Transport 24.91 17.02 29.73 45.45 14.29 

       Waste 21.56 17.02 21.62 27.27 7.14 

 595 
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6. Conclusion 596 

The trucking industry acts as the backbone of the US freight transportation system by not only 597 

providing point-to-point services to shippers but also offering access to rail and air transportation 598 

systems. Also, VMT increase on highway transportation system has been rising at a rate that is greater 599 

than truck fleet size increase rate suggesting that the annual mileage that a truck travels has been 600 

increasing. This trend is expected to continue over the next decade, mainly due to economic and 601 

population growth and flourish of e-shopping. The emergence of automated driving technology may 602 

change the trucking industry to a great extent. It is anticipated that trucks run more miles as 603 

restrictions pertaining to Hours-of-Service will be lifted or eased. Removing drivers from cabs, which 604 

will only happen with the highest level of automation, can lower operation costs substantially allowing 605 

trucking companies to charge lower which in turn can induce demand. Yet the factors impacting the 606 

adoption of autonomous trucks are not well-understood. In addition, it is not clear if adopters of 607 

automated trucks could be categorized in the five well-known groups suggested in the Theory of 608 

Diffusion of Innovations (DOI). It is also unknown if the sizes of CAT adoption categories follow the 609 

general numbers offered by DOI. 610 

This paper contributes to the literature by presenting choice models and latent class cluster 611 

analysis aiming to (i) elicit drivers of adoption of highly automated driving technologies by freight 612 

companies and (ii) estimate the number and sizes of categories of CAT adopters. Companies working 613 

in the freight industry are contacted and 400 full responses are collected. The data is analyzed 614 

descriptively and detailed results of modeling efforts are presented and discussed. 615 

Our choice models suggest that independent of the technology cost, older individuals suggest that 616 

their company would be less likely to adopt the higher levels of adoption. Companies view the 617 

automation Level 2 not significantly different than Regular trucks. We observe that the location in 618 

which the company is providing transportation services plays a role in the propensity of adoption. 619 

Also, cargo type is found to have some impact on the adoption. Having promoters of new technologies 620 

in the company increases the likelihood of adoption and the impact is more visible for the higher levels 621 

of automation. Our latent-class cluster analysis suggests that there could be five categories of CAT 622 

adopters which is consistent with what DOI suggests. However, the size of the Innovators class would 623 

be about four times of DOI’s general suggestion. Also, the Early Majority group would be about two 624 

times of what we see DOI and the size of the Laggards class is smaller than our observation from DOI. 625 

Overall, it can be conjectured that the CAT adopter distribution may not be a bell-shaped curve but 626 

more of a right-skewed figure. This can be contributed to explicit financial benefits of the automated 627 

driving technology which could incentivize companies to adopt earlier. We notice that a large portion 628 

of Laggards operate in the US south region. Most Innovators share the point that they transport 629 

foodstuffs.  630 

This study can be extended in a few directions. While looking at drivers of adoption of different 631 

levels of automated driving is beneficial, trucking companies may choose a step-by-step transition, 632 

mainly due to uncertainty in technology cost. In that scenario, some features of automated driving will 633 

gradually be added to the existing vehicles. To better understand the characteristics of that adoption 634 

procedure, one could investigate how each piece of technology is perceived by trucking firms. In 635 

addition, exploring new datasets on perceptions about CATs could reinforce the findings of this paper. 636 

Also, the application of more advanced methodologies, conditional on data availability, could shed light 637 

on elements of CAT adoption that could not be discovered by this study. As noted previously, CATs 638 

could pose significant benefit in terms of reducing operational cost because of limited to no 639 

involvement of drivers. This benefit may not be realized easily as some labor unions are strongly 640 
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against the legislation of self-driving commercial trucks. Industry experts believe that it may take a 641 

decade or more for fully-automated trucks to become fully operational on the roadway because of the 642 

complexity of interaction with other road users. Also, humans will be needed to handle the many non-643 

driving tasks such as coupling tractors and trailers, fueling, inspections, paperwork, communicating 644 

with customers, loading and unloading, etc. Labor unions advocate for skilled and trained drivers such 645 

that the truck-driver workforce problem can be better addressed during the transition to the full 646 

automation era (Pacific Standard, 2018; The New York Times, 2017; UC Berkeley Labor Center, 2018). 647 

It would be interesting to see if the existence of the labor union would affect the company's adoption. 648 
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