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Abstract  
On the grounds that individuals heavily rely on the information that they receive from their peers when 
evaluating adoption of a radical innovation, this paper proposes a new approach to forecasting long 
term adoption of connected autonomous vehicles (CAVs). The concept of resistance is employed to 
explain why individuals typically tend to defer adoption of an innovation. We assume that there exists 
a social network among individuals through which they communicate based on certain frequencies. In 
addition, individuals can be subject to media advertisement (marketing) again based on certain 
frequencies. An individual’s perceptions are dynamic and change over time as the individual is exposed 
to advertisement and communicates with satisfied and dissatisfied adopters. We also explicitly allow 
willingness-to-pay to change as a result of intercommunication. Applicability of the proposed approach 
is shown using a survey of employees of the University of Memphis. Our results show that the 
automobile fleet will be near homogenous in about 2050 only if CAV prices decrease at an annual rate 
of 15% or 20%. We find that a 6-month pre-introduction marketing campaign may have no significant 
impact on adoption trend. Marketing is shown to ignite CAV diffusion but its effect is capped. CAV 
market share will be close to 100% only if all adopters are satisfied with their purchases; therefore, 
the probability that an individual becomes a satisfied adopter plays an important role in the trend of 
adoption. The effect of the latter probability is more pronounced as time goes by and is also more 
prominent when CAV price reduces at greater rates. 
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1. Introduction 
Connected autonomous vehicles (CAVs) are about to become a reality, and they are arriving much 

earlier than many would think. By incorporating features such as parking assist, adaptive cruise 
control, and collision avoidance systems, most automobile manufacturers have already incorporated 
some degrees of automation into the existing cars. Also, Mercedes-Benz, Google, Tesla, and others have 
already developed and tested prototypes of the first fully autonomous vehicles. Because of these 
advancements, research on various aspects of CAVs has gained increasing attention over the past 
decade. While automobile manufacturers have made huge investments to make the technology more 
viable, affordable, and safer, academic efforts have been directed to issues such as safety (Alonso et al., 
2011; Fagnant and Kockelman, 2015; Gurney, 2013; Kalra and Paddock, 2016; Liu and Khattak, 2016), 
congestion and traffic operations (Le Vine and Polak, 2016; Le Vine et al., 2017; Maciejewski and 
Bischoff, 2017; van den Berg, Vincent AC and Verhoef, 2016), travel behavior (Harper et al., 2016; 
Hohenberger et al., 2016; Truong et al., 2017), environmental impacts (Brown et al., 2014; Tsugawa et 
al., 2011; Wadud et al., 2016), and freight operations (Kunze et al., 2009; Kunze et al., 2011; Muratori 
et al., 2017).  

One key question that has been of interest to policymakers, academic researchers, and industry 
professionals is how much will be the demand for ownership of CAVs and how will be the timing of 
adoption in long-term? Most of the recent studies with focus on the demand for CAVs address 
respondents' willingness-to-pay (WTP) as well as their opinions and concerns (Choi and Ji, 2015; 
Daziano et al., 2017; Haboucha et al., 2017; Kyriakidis et al., 2015; Lavieri et al., 2017; Menon et al., 
2016; Pettersson and Karlsson, 2015; Schoettle and Sivak, 2014). On the other hand, a limited number 
of studies attempt to forecast evolution of connected autonomous fleet.  

The majority of studies on adoption forecasting are based on expert knowledge, projection of 
adoption trends of other technologies, and sales estimates. Among the studies in the first category, a 
group of experts from the Institute of Electrical and Electronics Engineers (IEEE) suggest that about 
75% of all vehicles will be CAVS by 2040 (IEEE, 2012). Bierstedt et al. (2014) forecast that the 
autonomous fleet will be in the range of 50%–75% between 2035 and 2045. Using future sale 
estimates, IHS Automotive (2014) determines that nearly all vehicles in use will be autonomous after 
2050. Based on the adoption patterns of previous vehicle technologies such as navigation systems, air 
bags, and hybrid vehicles, Litman (2014) forecasts that in the most optimistic and pessimistic 
scenarios, CAVs will be 95% and 70% of vehicles in 2070, respectively. Different from the latter studies, 
Bansal and Kockelman (2017) develop a micro-simulation model to forecast long-term adoption of 
CAVs in the US. Multiple discrete choice models are used in a Monte Carlo simulation to emulate 
decisions such as buying or selling a car, purchasing a used or new car, adding connectivity and 
automation features. In three scenarios, the authors assume that individuals’ WTP increase at the rates 
of 0%, 5%, and 10%, annually. The study suggests that the fleet of light-duty vehicles in the US will not 
be near homogenous by 2045.  

Discrete choice modeling has been the prevailing approach in understanding various aspects of the 
demand for CAVs (Bansal and Kockelman, 2017; Haboucha et al., 2017; Lavieri et al., 2017; Liu et al., 
2017; Menon et al., 2016). Choice models try to capture decision makers’ preferences amongst a set of 
available alternatives. These models are based on the notion of stated preference which assumes that 
an individual’s expectations are the same as market outcome; thus, stated preferences will remain 
valid. This assumption, known as rational expectations, could be problematic when a radical 
innovation, such as CAVs, is introduced to the market. In such a case, consumers have no previous 
experience on which they can base expectations (Snowdon et al., 1994). Empirical evidence suggests 
that individuals heavily rely on the information they receive from their peers when assessing adoption 
of a radical innovation (Henry, 2009; Wilson and Dowlatabadi, 2007). Discrete choice modeling fails 
to capture the effects that adoption of an individual may have on other individuals within his/her 
network.  
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One promising avenue to forecast the demand for the next generation of transportation fleet is the 
theory of Diffusion of Innovation (DOI). DOI theory seeks to understand how an innovation will diffuse 
as a result of communication and consumer interactions in a social network. DOI theory considers 
innovation diffusion as a social phenomenon which has four aspects: (i) the demand to adopt the 
innovation; (ii) communication through certain channels; (iii) communication among individuals in a 
social network; and (iv) communication over time (Rogers, 1976; Rogers, 2010). It should be noted 
that innovation is not limited to new technologies, but also includes new ideas and practices although 
in this paper we focus on the technological side (i.e., CAVs). Diffusion research has been of interest to 
the academic community for an extended period of time. The seminal diffusion study was published in 
1943, when Ryan and Gross (1943) modeled the diffusion of hybrid seed corn among Iowa farmers. In 
1969, the revolutionary paradigm of Bass (Bass, 1969) was introduced in which adoption is forecasted 
based on the number of previous adopters. The basic idea behind the Bass model is that mass 
communication (i.e., media) starts the diffusion of an innovation, and word-of-mouth (WOM) pushes 
it forward. The Bass model is based on a hazard function that describes conditional probability of 
adoption at each time point using two parameters: innovation and imitation coefficients. The Bass 
model was later extended by various researchers to account for issues such as multi-generation 
products (Mahajan and Muller, 1996; Michalakelis et al., 2010; Norton and Bass, 1987), pirated sales 
(Givon et al., 1995; Liu et al., 2011), and pricing strategies (Bass et al., 1994; Krishnan et al., 1999; 
Robinson and Lakhani, 1975). The Bass model is commonly used to reproduce diffusion of new 
products at an aggregate level, and its application for forecasting new products requires strong – and 
in some cases invalid – assumptions. For example, one may assume that the adoption pattern of CAVs 
will be similar to previous technologies (Lavasani et al., 2016), but historical data on adoption shows 
that each new product has its own distinct adoption pattern (Christiansen, 2008; Perry, 2010). 
Moreover, the Bass models neglect the micro-level impacts on adoption of social interactions. 

This paper contributes to the literature by coupling the theory of DOI with agent-based modeling 
(ABM) context to forecast CAV adoption at a disaggregate level. Our modeling approach explicitly 
allows for communication among individuals, as a result of which perceptions about CAVs will be 
dynamic. Unlike previous studies assuming ad-hoc changes in willingness-to-pay, our approach let 
each individual's WTP positively or negatively alter due to communication with adopters who are 
satisfied or dissatisfied with their purchases. This construct is based on strong empirical evidence  
suggesting statistically significant impact on WTP of word-of-mouth (Parry and Kawakami (2015). 
Using a survey of the University of Memphis (UofM) employees, we show the applicability of the 
proposed approach. To this end, we first conduct multivariate normal imputation to fill-in the missing 
values of the survey data. Iterative Proportional Updating procedure is employed to inflate the sample 
data to the full population of UofM employees. Building upon the concept of homophily, which indicates 
that individuals with geographical proximity and socioeconomic similarity are more likely to be 
peered, we develop a synthetic social network among agents. Policy-relevant insights are offered by 
simulating CAV adoption over the period between 2025 and 2050. 

The remainder of this paper is organized as follows. Section 2 elaborates the notion of resistance, 
a key concept in adoption modeling based on the theory of DOI. Section 3 presents the details of agent-
based simulation of adoption. Section 4 discusses our survey design and key findings of the survey. 
Section 5 puts forward our approach to developing the social network among individuals. Section 6 
offers numerical analysis and results discussions. Summary of major findings and directions for further 
research are given in Section 7. 

2. Resistance Concept  
Before delving into the agent-based framework of adoption modeling, let us elaborate the concept 

of resistance which is a fundamental notion in explaining adoption using DOI theory. Industrialized 
nations are recognized by advanced technological innovations. The question is that why then do 
individuals typically resist to some innovations? Automobile manufacturers certainly realize the 
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benefits of automated features on vehicles but individuals do not see this new technology from that 
perspective. Consumers are typically resistant to innovations, especially revolutionary ones, as 
innovations can change their established routines and day-to-day existence. It is worth highlighting 
three aspects of consumer resistance. First, resistance can impact the timing of innovation adoption. 
The marketing literature categorizes consumers into five categories: innovators, early adopters, early 
majority, late majority, and laggards. Each group has a certain level of resistance, and the variations in 
resistance level influence adoption timing. Second, there exists a continuum of resistance: from passive 
resistance (inertia) to active resistance. Third, various classes of innovations (evolutionary and 
revolutionary innovations) cause different levels of resistance as they conflict with the consumers’ 
routines differently.  

In this study we consider nine aspects for resistance toward CAV adoption. Following Ram and 
Sheth (1989) and Zsifkovits and Günther (2015), these resistances (barriers) are segmented into two 
categories: 

1. Functional barrier: arises when the innovation challenges an individual’s current workflows and 
habits. Three subcategories can be identified: 
a. Product usage patterns: this is realized when the innovation is incompatible with the existing 

practices. Inability to use autonomous features in areas with low internet coverage is one 
aspect of usage barrier.  

b. Product value: some consumers will adopt only if the ratio of performance over value for CAVs 
is greater than that for traditional cars. We incorporate willingness-to-pay into our modeling 
approach to account for product value barrier. 

c. Risks: this barrier is induced when the users have uncertainty about the actual consequences 
of adoption. Risk of malfunctioning due to operating system crash, virus attack, or 
disconnection from internet are three aspects of usage risk barrier. Economic risk relates to 
the fear of higher than expected maintenance costs.  

2. Psychological barrier: arises when there are conflicts with the consumers’ prior beliefs. Two 
sub-categories for psychological barrier are: 
a. Traditions and norms: this is realized because CAVs will change consumers' habits and 

routines and thus ultimately result in discomfort. For example, users of traditional cars change 
their lane, path, and speed at any time; thus, this notion that a computer system will have full 
control of the automobile can hinder them from adoption. Another aspect of tradition barrier 
pertains to safety that is people feel that CAVs may not be as safe as traditional cars.  

b. Perceived product image (image barrier): the difference between the product’s image and the 
consumer’s perception leads to a barrier obstructing adoption. For example, consumers 
preferring sport cars may imagine that CAVs are less agile and maneuverable than traditional 
cars. 

c. Risk: Losing or lessening relationship with friends who are not willing to purchase CAVs is an 
example of psychological risk. This risk specifically relates to social circles with aggressive 
driving behavior. 

We also recognize four dis-barriers (incentives) for CAV adoption. First, CAVs can be synched with 
traffic signals and other vehicles to lower travel time and cost. This can be viewed as a functional dis-
barrier. Second, having a CAV can improve one's status among his/her peers. This incentive is the 
opposite of image barriers. The third incentive pertains to environment as CAVs can use real time 
traffic information in order to efficiently navigate to their destination and thus generate less pollutants. 
This incentive may not be considered as an important motive of purchase for less environmentally 
conscious consumers. Fourth, CAVs can provide a greater degree of mobility to consumers with 
impairment.2  

                                                                  
2 The terms agent, consumer, and individual are used interchangeably throughout the text.   
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As the number and intensity of resistances realized by an individual increase, she/he starts to defer 
adoption. Two factors can impact the individual resistances and incentives and facilitate the adoption 
process (Ram, 1987; Ram and Sheth, 1989; Wangenheim, 2005): 

1. Mass communication (marketing): media advertisement can target a broad spectrum of 
consumers to reduce both functional and psychological barriers. Marketing, for example, can 
weaken tradition barrier by convincing consumers that they can take the full power of their 
vehicles at any time. The marketing literature suggests that in adoption of a radical innovation, 
marketing can reduce resistances to a limited extent and is mostly effective at the early stages 
of adoption. 

2. Peer-to-peer communication (word-of-mouth): once individuals received initial information 
through media advertisement, the information that propagates among peers will be the main 
propeller of diffusion. Communication between satisfied and potential adopters strengthens 
incentives and weakens barriers. Communication occurs within a social network in which nodes 
represent individuals and communication channels are shown using directed arcs. The 
frequency and intensity of communication between a pair of individuals determine how 
effective a communication channels is. For example, some individuals talk to others more 
frequently and some are more communicative; thus there will be a greater influence on the 
potential adopters from more socialized adopters (Günther et al., 2011). The pattern of 
information diffusion largely hinges upon the way the network is structured. More specifically, 
position of a specific individual in the network can be such that his/her level of uncertainty 
about adoption decreases faster than other individuals (Abrahamson and Rosenkopf, 1997).  

3. Agent-Based Simulation Modeling of DOI 
This section presents the agent-based framework that models the process in which peer-to-peer 

communication and media advertisement impact the determinants of adoption decision, i.e., 
resistances and incentives. This framework consists of three components: (i) mass communication; 
(ii) pre-introduction vehicle purchase; and (iii) peer-to-peer communication. In what follows, we 
describe each component in detail. These components assume that a set of individuals and the 
corresponding social network is given. Later in Section 5, we discuss how such set and network can be 
developed using survey data. 

Component 1: Mass communication model 
As discussed previously, an individual’s decision to whether or not purchase a product largely 

depends on how he/she perceives the product’s various aspects. Perceptions are dynamic and may 
change over time as the individual communicates with his/her peers and is exposed to media 
advertisement. Specifically, individuals watching TV or listening to radio are exposed to 
advertisement, and the impact of advertisement is a function of frequency of exposure.3 We consider 
two marketing stages: pre-introduction and post-introduction. We assume that car manufacturers 
initiate marketing campaigns at a certain time point before introduction of CAVs to possibly attract a 
greater number of innovators. We reasonably assume that agents have memory and the effect of 
advertisement accumulates over time, but also dissipates as time goes by. Let 𝑋𝑖,𝑙

𝑡  denote the 𝑙𝑡ℎ 

element of agent 𝑖 ’s perception about CAVs at time t. This perception is dynamic and is updated 

according to 𝑋𝑖,𝑙
𝑡 = 𝑋𝑖,𝑙

𝑡−1 + 𝑦𝑖
𝑡,𝑡−1 𝑋𝑖,𝑙

𝑡 𝜏𝑖,𝑙

(1+𝜌)𝑓𝑖
𝑡−1

, ∀𝑙 ∈ 𝐿, 𝑡 = 1,2, … , 𝑇, 𝑖 ∈ 𝐼, where I is the set of agents, L the 

set of perception elements, 𝑦𝑖
𝑡,𝑡−1  a binary variable equating 1 if agent i has been exposed to 

advertisement between 𝑡 − 1 and 𝑡, 𝜏𝑖,𝑙 a stochastic scalar between 0 and 1 indicating the impact of 

                                                                  
3 Our survey of UofM employees, which will be discussed later, shows that 75.7% of respondents listen to radio 
and 71.9% of them watch TV on a daily basis. 12.8% and 17.4% of employees state that they listen to radio and 
watch TV once a week or more. Only 2.1% and 3.4% of respondents never watch TV and listen to radio. We should 
reasonably expect considerable exposure to media advertisement. 
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one round of advertisement on agent i's 𝑙𝑡ℎ element of perception, 𝜌 dissipation rate of advertisement 
impact, and 𝑓𝑖

𝑡 the total number of times that agent i has been exposed to advertisement until time t. 
Mass communication changes one's perception about CAVs through the same mechanism in pre- and 
post-introduction stages but at different rates (i.e.,, 𝜏𝑖,𝑙 can be different in pre- and post-introduction 

stages). 

Component 2: Pre-introduction vehicle purchase model 
Following Shafiei et al. (2013), we assume that vehicles' lifetime is drawn from a truncated normal 

distribution. Let 𝐿𝐹𝑖  denote vehicle's life for agent i. To determine a vehicle's life in the base year 
(𝐴𝑔𝑒𝑖

0), one can draw an age from the uniform distribution 𝑈(0, 𝐿𝐹𝑖), as suggested by Shafiei et al. 
(2012).  By doing so, however, some agents who frequently purchase a car may get a car whose age is 
greater than the maximum age that corresponds to the agent's frequency of purchase. To address this 
issue, we develop a pre-introduction vehicle purchase simulation model. The steps of the algorithm 
are detailed below, where 𝑇𝑃  denotes the length of pre-introduction vehicle purchase (warm-up) 
simulation.  

 
Algorithm 1: The selection algorithm that develops social network among individuals 

Stage 1 
Step 0 (initialization): Set 𝑡 = 0 . For each agent 𝑖 ∈ 𝐼 , draw 𝐿𝐹𝑖  from truncated normal 
distribution 𝑁(𝜇, 𝜎) with 𝑀𝑎𝑥 = �̅� and 𝑀𝑖𝑛 = 0. Then, draw the vehicle age at the base year 
(𝐴𝑔𝑒𝑖

0) from 𝑈(0, 𝐿𝐹𝑖). 
Step 1: Set = 𝑡 + 1. 𝐴𝑔𝑒𝑖

𝑡 = 𝐴𝑔𝑒𝑖
𝑡−1 + 1, ∀𝑖 ∈ 𝐼.  

Step 2: For each agent 𝑖 ∈ 𝐼, if 𝐴𝑔𝑒𝑖
𝑡> 𝐿𝐹𝑖 or vehicle purchase frequency stipulates a purchase, 

consider a vehicle purchase for agent i. Set 𝐴𝑔𝑒𝑖
𝑡 = 0 and draw a new 𝐿𝐹𝑖. 

Step 3: if 𝑡 < 𝑇𝑃 , go to Step 1, otherwise terminate and report 𝐴𝑔𝑒𝑖
𝑇𝑃 as the algorithm's output. 

 
Component 3: Peer-to-peer communication model 

The information received from peer-to-peer communication significantly impacts purchase 
decisions (Baxter et al., 2003; Brown and Reingen, 1987; Mourali et al., 2005). The literature suggests 
that this information is two to seven times more effective than that received from advertisement in 
newspaper, radio, or magazines (Katz and Paul, 1966). To model intercommunication impacts, we 
follow Günther et al. (2011) and assume that there exists a learning process between a potential 
adopter and other adopted agents. Each agent i communicates with agents within its social network 
according to a certain frequency. The social learning impact on agent 𝑖  is given by 𝑋𝑖,𝑙

𝑡 = 𝑋𝑖,𝑙
𝑡−1 +

∑ 𝑧𝑖𝑗
𝑡 𝑤𝑖𝑗𝛽𝑖𝑗

𝑙 (𝑋𝑖,𝑙
𝑡−1−𝑋𝑗,𝑙

𝑡−1)

(1+𝛼)
𝑓𝑤𝑖,𝑗

𝑡 −1𝑗∈𝐸𝑖
, where 𝐸𝑖  is agent 𝑖’s set of adopted peers, 𝑧𝑖𝑗

𝑡  dummy variable indicating if 

agents i and j communicated between time t-1 and t, 𝛽𝑖𝑗
𝑙  a stochastic scalar representing the effect of 

communication with agent j on 𝑙𝑡ℎ  element of agent i's perception (learning factor), 𝑓𝑤𝑖
𝑡  the total 

number of times that agent i has had communication with agent j until time t, 𝛼 the dissipation rate of 
WOM, and 𝑤𝑖𝑗  the weight of the social tie between agents i and j (see Section 5.2 for the latter).  

Some adopted agents may not be satisfied with performance and features of CAVs, and thus start 
to propagate negative WOM. Behavioral research indicate that a dissatisfied consumer talks to more 
individuals, compared to a satisfied consumer (Anderson, 1998; TARP, 1982). Moreover, the power of 
negative WOM is known to be at least two times greater than positive WOM (Goldenberg et al., 2007). 
In this paper, we assume that both types of WOM can be transmitted among agents. This is modeled 
by manipulating the value of 𝛽𝑖𝑗

𝑙 . When there is negative WOM between two agents, 𝛽𝑖𝑗
𝑙  will be equal to 

(-1), multiplied by relative effect of negative WOM, multiplied by the value of 𝛽𝑖𝑗
𝑙  corresponding to 

positive WOM. The literature frequently assumes that a fixed portion of consumers (e.g., 5% (Amini et 
al. 2012; Goldenberg et al., 2007)) are dissatisfied with their purchases. To account for stochasticity of 
this portion, we assume that there is a probability 𝜃2 that agent i becomes a dissatisfied adopter at the 
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time of purchase. At each time t, we also assume that each satisfied adopter turns to a dissatisfied 
adopter with a probability 𝜃1. While conducting simulation, we make sure that a dissatisfied adopter 
never purchases a CAV in the next possible rounds of purchase. Nonetheless, such agent continues to 
spread negative WOM. On the other hand, a satisfied adopter continues with CAVs in the next possible 
purchases. 

Empirical evidence indicates that communication with a satisfied(dissatisfied) adopter can 
increase(decrease) WTP (Parry and Kawakami, 2015). To account for this, we let WTP at each time 

point be determined by 𝑊𝑇𝑃𝑖
𝑡 = 𝑊𝑇𝑃𝑖

𝑡−1 + ∑
𝑤𝑖𝑗𝛾𝑖𝑗(𝑊𝑇𝑃𝑗

𝑡−1−𝑊𝑇𝑃𝑖
𝑡−1)

(1+𝛼)
𝑓𝑤𝑖,𝑗

𝑡 −1𝑗∈𝐸𝑖
, where 𝛾𝑖𝑗  is a stochastic scalar 

that captures the effect of communication with agent j on agent i's WTP.  

Figure 1 shows how the three modeling components are coupled to forecast diffusion of CAVs. The 
simulation model receives vehicle ages and individual perceptions at the introduction time from pre-
introduction vehicle purchase and mass communication models, respectively. Based on the age of the 
existing vehicle and its automobile purchase behavior, each agent i makes a decision to whether or not 
purchase a new vehicle. An individual seeking to purchase an automobile is termed “potential buyer”. 
At each time period t, each agent i has a total perception index (𝑃𝐼𝑖

𝑡) which is equal to a weighted sum 
of barriers and incentives about CAVs: 𝑃𝐼𝑖

𝑡 = ∑ 𝜑𝑙𝑋𝑖,𝑙
𝑡

𝑙∈𝐿 , where 𝜑𝑙 is the weight of the 𝑙𝑡ℎ element of 

perception. If agent i is a potential buyer, it first evaluates if it can afford a CAV, i.e., if its WTP is greater 
than the price of adding automation and connectivity at time t. If 𝑊𝑇𝑃𝑖

𝑡  is greater than the cost of 
adding automation, agent i compares total perception indexes against a cut-off value (𝑃𝐼𝐶) and decides 
whether it wants to purchase a CAV. The cutoff value is assumed to remain constant over time. Once 
each agent's purchase decision is determined, we update perceptions and WTP based on media 
exposures and peer-to-peer communications between t-1 and t, and proceed to time interval t+1. This 
process continues until time period T. 

4. Survey Design and Results 
We conduct a survey to (i) understand how individuals rely on various sources of information when 

they assess CAV adoption; and (ii) to develop a seed for generation of synthetic population. The survey 
consists of 41 questions that are grouped into four blocks. The first block of questions is about 
socioeconomic characteristics of respondents. The second block questions about household 
characteristics of the individuals. Vehicle purchase behavior, household WTP, and household income 
are among the questions that are asked here. The third block aims to discover information about the 
work social network that each individual has developed. Finally, the fourth block quantifies various 
resistances and incentives that individuals realize.  

The Division of Research and Sponsored Programs at the University of Memphis processed the 
survey and determined that it is exempt from Institutional Review Board (IRB) review (IRB number: 
PRO-FY2017-598). 2,465 full-time employees of the University of Memphis were contacted through 
email and asked to complete the survey. In total, we received 327 complete responses (13.3%) which 
is a promising rate of response in the transportation field.  
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 1 
Figure 1: Simulation model for modeling adoption of CAVs 2 

 3 
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Of 15,369 entries (327 rows by 47 columns), 100 cells were missing, that is a missing rate of 0.65%. 
In order to fill-in missing values, we perform multivariate normal imputation using the R package 
Amelia II (Honaker et al., 2011). Multivariate normal imputation revolves around the idea that the 
distribution of the dataset, including both observed and missing entries, is multivariate normal (see 
Honaker and King (2010) for a detailed description of multivariate normal imputation methodology). 
We impute m values for each missing cell, and then use the average of the m values as the final filled-
in value for the missing entry. In this study we set m=10 although Honaker et al. (2011) suggest that 
m=5 is also sufficient for low missing rates. To check the plausibility of imputation, we compare the 
distribution of imputed values to that of observed values. Overall, density comparison shows 
acceptable quality of imputation. For demonstration, density comparison for employment type 
(faculty/administrative staff/ non-administrative staff/other) and household income are presented in 
Error! Reference source not found.. In both panels, the relative density of modal imputation follows 
that of observed values to an acceptable extent. 

 

  
Figure 2: Density comparison for household income (HH_Income) and employment type (Employment) 

 
Descriptive statistics of the survey results are presented in Table 1. Majority of respondents 

(63.3%) are female. In terms of race, 92% of respondents are either white or African American (or 
black). More than two third of respondents make less than $65,000 annually. We observe that the 
respondents are relatively equally scattered across the six intervals representing the ages of 30 to 60 
years. We expected to receive a small number of responses from non-administrative staff, mainly 
because of the nature of their job which may not require regular use of computer and email. 
Fortunately nearly 20% of respondents were non-administrative staff. In this study we assume that 
household is the entity making the decision to purchase a new car, and thus household income and 
WTP affect adoption. Only two respondents stated they purchase a car annually. On the other hand, 
29.4% of them purchase a car every five years and 45.6% make a car purchase every 10 years. In total, 
less than 5% of respondents state that their households are willing to pay an additional $20,000 to add 
automation and connectivity. 69.1% of respondents' households are willing to pay only an additional 
$5,000 or less to have the driverless option added to their car. On a seven-point scale (1 = Very 
Unreliable to 7 = Very Reliable), individuals consider an average reliability score of 5.58 (𝜎 = 1.08) for 
the information they receive from their peers, while the scores for media and car dealership are 3.79 
(𝜎 = 1.36) and 3.63 (𝜎 = 1.44), respectively. This highlights the necessity of incorporating WOM into 
adoption modeling. Individuals give relatively equal weights to the information they receive from their 
work and non-work social network; it is therefore reasonable to assume that the information received 
through work social network can effectively change individuals' decision regarding CAV purchase. On 
average, individuals have five peers. Most individuals (94.5%) talk about non-work materials with 
their peers at least once a week. We identify nine barriers and four incentives form an individual's 
perception. Individuals are asked to rate their opinion about each barrier/incentive on a seven-point 
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scale (1 = Strongly disagree to 7 = strongly agree). Among respondents, risk of virus attack is considered 
as the most important barrier, with the highest average and lowest standard deviation (𝜇 = 6.54 and 
𝜎 = 0.91). Respondents rated improving social status among peers as the least important incentive 
with 𝜇 = 2.18 and 𝜎 = 1.41. 
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Table 1: Descriptive statistics of the survey results (after imputation dataset) 

Variable Level Frequency  Variable Level Frequency 
Gender    Age   
 Male 120 (36.7%)   <20 0 (0%) 
 Female 207 (63.3%)   20-24 5 (1.5%)  
Employment type    25-29 23 (7.0%)  
 Faculty 128 (39.1%)   30-34 39 (11.9%)  
 Administrative staff 128 (39.1%)   35-39 45 (13.8%)  
 Non-administrative staff 64 (19.6%)   40-44 38 (11.6%)  
 Other 7 (2.1%)   45-49 42 (12.8%)  
Income     50-54 34 (10.4%)  
 <$20,000 3 (0.9%)   55-59 36 (11.0%) 
 $21-000-$35,000 57 (17.4%)   >60 65 (19.9%) 
 $36,000-$50,000 77 (23.5%)  Race   
 $51,000-$65,000 74 (22.6%)   White 245 (74.9%) 
 $66,000-$80,000 38 (11.6%)   African American or Black 56 (17.1%) 
 $81,000-$95,000 19 (5.8%)   American Indian or Alaska native 1 (0.3 %) 
 $96,000-$110,000 30 (9.2%)   Asian or Pacific Islander 7 (2.1%) 
 $111,000-$125,000 12 (3.7%)   Hispanic or Latino 7 (2.1%) 
 $126,000-$140,000 8 (2.4%)   Multi-race 6 (1.8%) 
 >$141,000 9 (2.7%)   Other 5 (1.5%) 

Household size   Car purchase frequency  
 1 65 (19.9%)   Once a year 2 (0.6%) 
 2 125 (38.2%)   Once every 2-3 years 27 (8.3%) 
 3 64 (19.6%)   Once every 5 years 96 (29.4%) 
 ≥4 73 (22.3%)   Once every 10 years 149 (45.6%) 
WTP for adding automation & connectivity    Once every 15 years 45 (13.8%) 
 <$2,500 155 (47.4%)   Once every 20 years and more 8 (2.4%) 
 $2600-$5,000 71 (21.7%)  WTP for CAV maintenance (in addition to regular cost) 
 $5,100-$7,500 40 (12.2%)   $0 more 115 (35.2%) 
 $7,600-$10,000 25 (7.6%)   Less than $100 46 (14.1%) 
 $10,100-$15,000 16 (4.9%)   $100-$300 76 (23.2%) 
 $15,100-$20,000 6 (1.8%)   $300-$500 61 (18.7%) 
 $20,100-$25,000 3 (0.9%)   $500-$1,000 24 (7.3%) 
 $25,100-$30,000 3 (0.9%)   >$1,000 5 (1.5%) 
 $30,100-$35,000 4 (1.2%)     
 >$35,000 4 (1.2%)     

Reliability of information received from  Frequency of communication with peers   
 Social network: 𝜇 = 5.57, 𝜎 = 1.09   Once or more in couple of weeks 309 (94.5%) 
 Media: 𝜇 = 3.79, 𝜎 = 1.36   Once a month 2 (0.6%) 
 Car dealers: 𝜇 = 3.63, 𝜎 = 1.45   Once every few month 16 (4.9%) 
Number of social ties   Reliability of information received from   
 𝜇 = 5.27, 𝜎 = 5.045   Work social ties 𝜇 = 4.45, 𝜎 = 1.58 
 𝑀𝑖𝑛 = 0, 𝑀𝑎𝑥 = 25    Non-work social ties 𝜇 = 4.71, 𝜎 = 1.64 

B
ar

ri
er

s 

The autonomous feature does not work in areas with poor internet connection 𝜇 = 6.02, 𝜎 = 1.40 
There is a risk associated with losing internet connection (quitting self-driving mode) 𝜇 = 6.25, 𝜎 = 1.12 
There is a risk associated with crashing the operating system of CAVs 𝜇 = 6.62, 𝜎 = 0.87 
There is a risk associated with virus attack against the operating system of CAVs 𝜇 = 5.82, 𝜎 = 1.33 
There is a risk associated with higher annual maintenance costs for CAVs 𝜇 = 5.15, 𝜎 = 1.39 
CAVs might not be as agile as traditional cars while on autonomous mode 𝜇 = 6.02, 𝜎 = 1.40 
A computer will have full control over my car 𝜇 = 5.70, 𝜎 = 1.56 
By having a CAV, I may lose some friends who are not likely to purchase CAVs 𝜇 = 2.23, 𝜎 = 1.46 
A self-driving car might not be as safe as a standard car 𝜇 = 3.53, 𝜎 = 1.81 

M
o

ti
v

es
 A CAV can provide a greater degree of mobility for someone with impairment 𝜇 = 5.73, 𝜎 = 1.37 

Having a CAV can improve my status among my peers 𝜇 = 2.18, 𝜎 = 1.41 
CAVs may generate less pollutants compared to traditional cars 𝜇 = 5.61, 𝜎 = 1.31 
CAVs can be synced with traffic lights and other vehicles to decrease travel time 𝜇 = 5.74, 𝜎 = 1.25 
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5. Social Network Development 

5.1 Synthetic Population  
A primary input for any agent-based model is a set of individuals. Collecting a fully disaggregate 

dataset through survey is usually costly, especially when a large population is of interest. Moreover, if 
collected, using such a dataset can be problematic in many countries due to strict privacy regulations. 
An alternative is to use aggregate data about the true population to generate an artificial population, 
thereby generating a synthetic population. Assume that the sample data provides the distributions of 
a set of attributes for agents, referred to marginal distributions. To develop a joint distribution, one 
can multiply the marginal distributions which will be unbiased only if there is no correlation among 
various socioeconomic variables. In the real world, however, there are strong relationship among 
socioeconomic variables (for example, age and income are highly correlated). Thus, there is a need for 
more sophisticated approaches of population synthesis. In general, there exist two approaches to 
generate a population of synthetic agents: synthetic reconstruction (SR) techniques and combinatorial 
optimization (CO) methods (Barthelemy and Toint, 2013). The CO approach partitions the area of 
interest into a number of zones. The approach requires a set of marginal distributions to be available 
for the attributes of interest. It then fits a sample of population to the set of margins for each zone. The 
SR methods, which are more common than CO, typically generate a joint distribution from marginal 
distributions and then sample from it. Researches have attempted to address issues affecting the 
quality of population synthesis through synthetic reconstruction such as simultaneous control of the 
individual and household variables (Arentze et al., 2007; Auld and Mohammadian, 2010; Guo and Bhat, 
2007) and data limitations (Barthelemy and Toint, 2013; Farooq et al., 2013; Zhu and Ferreira, 2014). 
In this paper, we use an SR approach that employs the Iterative Proportional Updating (IPU) algorithm 
to generate the synthetic population. IPU's strength is in matching both household-level and person-
level characteristics of interest. The algorithm iteratively adjusts and reallocates weights among a 
certain type of households until household- and person-level attributes are both matched with the 
marginal distributions of the true population.  

Considering that we possess no household-level marginal data, we are unable to match any 
household-level attribute, and thus we only synthesize the person-level population. Using the sample 
data discussed in the previous section and marginal data entailing the number of employees in each 
department by gender, age, race, income and employment type, the sample of 327 employees is 
inflated to the full population of 2449 employees. The synthetic population procedure assigns the 
following attributes to each agent: socioeconomic attributes (gender, marital status, age, income, race, 
disability, and employment type); vehicle purchase information (frequency of car purchase in 
household and household WTP for adding automation and connectivity); travel behavior (flexibility of 
work schedule); social behavior (number of social ties at workplace, frequency of communication); 
and perceived barriers and incentives (13 items each rated on the seven-point scale). 

5.2 Synthetic Network 
Using response data to develop social ties among individuals requires a very extensive survey 

which is impossible to collect for a real-world problem. We therefore resort to generating a synthetic 
social network using socioeconomic attributes of the agents. The central concept in doing so is the 
homophily principle which indicates that the possibility that a pair of agents establish a connection is 
a function of geographical proximity and socio-demographic similarity (McPherson et al., 2001). Let I 
the set of agents, supplied from population synthesis. We define an 8-dimentional coordinate system 
by age, gender, race, employment type, income level, disability status, teleworking habit, and 
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college/division.4 Each agent is then placed in the 8-dimentional space, and the distance between each 

two agents i and j is calculated as 𝐷𝑖𝑗 = √∑ 𝜎𝑚 (
𝐴𝑚𝑖

−𝐴𝑚𝑗

max 𝐴𝑚
)

2

𝑚∈𝑆 , where 𝐷𝑖𝑗  is the distance between 

agents i and j, S the set of eight attributes of interest, 𝐴𝑚𝑘
 the value of the 𝑚𝑡ℎ (∀𝑚 ∈ 𝑆) attribute of 

interest for agent k (∀𝑘 = 𝑖, 𝑗), 𝜎𝑚 the weight for dimension 𝑚 ∈ 𝑆, and 𝑑𝑚 maximum value along the 
𝑚𝑡ℎ (∀𝑚 ∈ 𝑆) attribute of interest. In this study we set the weights for department and employment 
type (𝜎𝐸𝑚𝑝 and 𝜎𝐷𝑒𝑝) equal to 2 and other weights equal to 1. (Intuitively, in an academic environment, 

being in the same department and having the same employment type (faculty and non-faculty) seem 
to play more important roles in formation of social network.) Our primary analysis show that the 
values of the weights considered for each attribute can substantially impact network structure, and 
thus further research in this area is called for. Effectiveness of the social tie between agents i and j is 

defined by 𝑤𝑖𝑗 =
𝐷𝑖𝑗−min

𝑗
𝐷𝑖𝑗

max
𝑗

𝐷𝑖𝑗−min
𝑗

𝐷𝑖𝑗
. The latter expression gives a weight of 1 to the tie with the closest agent 

to the given agent i and 0 to the one with the farthest.  

We introduce a two-stage selection algorithm to choose the ties with the highest probability subject 
to the number of ties that each agent has. In Stage 1, the selection algorithm first calculates the distance 
between each two agents. Assume that each individual i has 𝑁𝑖 social ties. If an agent j is among 𝑁𝑖 
closest agents to agent i and agent i is among 𝑁𝑗  closest agents to agent j, the algorithm establishes a 

tie between agents i and j. Note that the order of selecting the agent indexed i can impact the structure 
of social network; thus, we randomly pick the agent indexed i. In Stage 2, the algorithm randomly 
selects an agent i and connects it to the closest agent which still have capacity for tie addition. It 
continues this process until 𝑁𝑖 links established for agent i. Algorithm 2 below presents the steps of 
the selection process in detail. The social network established among UofM employees is shown in 
Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                  
4 In reality, income and age are continuous while other variables are categorical. In our survey, however, we were 
unable to ask the exact amount of respondents' age and income because of privacy issues. Considering that our 
age intervals are relatively short, we assign a random age to each agent. An individual's age is drawn from the 
uniform distribution between the starting and ending points of the interval to which the individual belongs. For 
income, however, we stick to the categorical representation as our income intervals are not short, but are 
reasonable at the same time. 
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Algorithm 2: The selection algorithm that develops social network among individuals 

Stage 1 
Step 0 (initialization): Set 𝑛𝑖 = 𝑁𝑖 , ∀𝑖 ∈ 𝐼. Also set 𝐼′ = 𝐼 
Step 1: Calculate 𝐷𝑖𝑗 , ∀𝑖, 𝑗 ∈ 𝐼|𝑗 ≠ 𝑖.  

Step 2: For each agent 𝑖 ∈ 𝐼, sort agents 𝑗 ∈ 𝐼|𝑗 ≠ 𝑖 such that 𝐷𝑖𝑗 values are in ascending order. 

Let 𝑆𝐴𝑖  denote the set of sorted agents. Clearly, the dimension of 𝑆𝐼𝑖  is |𝐼| − 1 and the first 
element in that list (i.e., 𝑆𝐼𝑖(1)) is the closest agent to i and the last one (i.e., 𝑆𝐴𝑖(|𝐼| − 1)) is the 
farthest. 
Step 3: Randomly select an agent i from 𝐼′. If  𝑛𝑖 > 0, store the first 𝑛𝑖 elements of 𝑆𝐼𝑖 into 𝑆𝐼𝑖

′.  
Step 4: For each element of 𝑆𝐼𝑖

′, i.e., 𝑆𝐼𝑖
′(𝑗), if i is in 𝑆𝐼𝑗

′, establish a tie between agents i and 𝑆𝐼𝑖
′(𝑗). 

Store the established tie in the list 𝑇. Set 𝑛𝑖 = 𝑛𝑖 − 1 and 𝑛𝑆𝐼𝑖
′(𝑗) = 𝑛𝑆𝐼𝑖

′(𝑗) − 1. 

Step 5: Remove agent i from 𝐼′. Go to Step 3 and continue until 𝐼′ becomes empty.  
 

Stage 2 
Step 0 (initialization): Set 𝐼′ = 𝐼 
Step 1: Randomly select an agent i from 𝐼′. If  𝑛𝑖 > 0, go to the next step, otherwise, remove 
agent i from 𝐼′ and randomly select another agent i from 𝐼′, conditional on non-empty 𝐼′.   
Step 2: For  j equal to 1 to |𝐼| − 1: 

if 𝑛𝑖 > 0 and 𝑛𝑆𝐼𝑖(𝑗) > 0 and there is no tie between agents i and 𝑆𝐼𝑖(𝑗),  establish a 

tie between agents i and 𝑆𝐼𝑖(𝑗). Store the established tie in the list 𝑇. Set 𝑛𝑖 = 𝑛𝑖 − 1 
and 𝑛𝑆𝐼𝑖(𝑗) = 𝑛𝑆𝐼𝑖(𝑗) − 1 

Step 2: Remove the agent i from 𝐼′. Go to Step 2 and continue until 𝐼′ becomes empty. 

 

 
Figure 3: The social network established among  
UofM employees (isolated nodes are not shown) 

 

6. Numerical Analysis  
This section presents our numerical experiments of on CAV adoption of CAVs by UofM employees. 

We first describe modeling parameters and then present and discuss the results. The agent-based 
model is implemented in MATLAB 2017a and executed on a desktop computer with Windows 10 OS, 
Intel Core i5 3.1 GHz processor, and 8 GB memory. Running time for each simulation replication is 
about 20 seconds. 
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6.1 Parameter selection 
The first step to numerical analysis is to determine appropriate values for the parameters involved 

in the model. We simulate CAV adoption over a 25-yer horizon, starting from 2025, discretized into 
two-week periods following Shafiei et al. (2015). We consider a pre-introduction marketing campaign 
of 6 months and vehicle purchase warm-up period of 7 years. Vehicles' lifetime is assumed to follow a 
normal distribution with a mean of 15.9 years and a standard deviation of 4.2 years (Mueller et al., 
2007). The left tail of the distribution is truncated at 0 and the right tail at 30 years, which seems to be 
a reasonable maximum vehicle lifetime for the current vehicles in the market. We follow Bansal and 
Kockelman (2017) and assume that the additional cost of full automation is $40,000 at the base year, 
i.e., introduction year, and decreases at a specified annual rate. We set 𝜃2 = 0.05 following Amini et al. 
(2012), and also assume that at each time point, a satisfied adopter may become dissatisfied with a 
probability 𝜃1 = 0.0001. 𝜌 is set equal to 1 which means that the effectiveness of the second round of 
exposure to media advertisement is half of the first round, and that of the third round is half of the 
second round and so on. Reasonably assuming that intercommunication effect dissipates at a lower 
rate, we consider 𝛼 = 0.5. Negative WOM is assume to be 4 times more effective as positive WOM.  

Recall from Section 5 that a potential buyer calculates the weighted sum of various elements of its 
perception and compares it to the cutoff perception 𝑃𝐼𝐶 . To obtain reasonable values for 𝜑𝑙 , ∀𝑙 ∈ 𝐿, we 
conducted a brief survey in which 17 respondents of the main survey were contacted through email 
and requested to express a weight between 0 and 10 for each element. For each element 𝑙 ∈ 𝐿, 𝜑𝑙 is set 
equal to the average of the weights stated by respondents. With the weights in place, the lower and 
upper bounds for the overall perception index are −419.9 and 102.2, which respectively correspond 
to the most pessimistic and optimistic perceptions about CAVs. We assume 𝑃𝐼𝐶~𝑈(−54.4, −2.2). Note 
that −54.4  and − 2.2 respectively correspond to 70% and 80% of perception span (i. e. , 102.2 −
(−419.9)). This means that one is convinced to purchase a CAV when at least some 70% to 80% of the 
resistances he/she realizes is eliminated.  

For each experiment, 10 repetitions are executed. Then the mean CAV market share is calculated 
and 95% confidence interval is established. In what follows, we scrutinize the impacts on adoption 
trend of other modeling parameters. 

6.2 Modeling Results 
Let us begin with the impact on vehicle fleet mixture of the annual rate of CAV price reduction. We 

conduct four experiments in which the reduction rate increases from 5% to 20% with an increment of 
5%. In this analysis we assume that the impact of intercommunication on WTP follows U(0,0.5). We 
further assume 𝛽𝑖𝑗

𝑙 ~(0.5,1.0) and 𝜏𝑖,𝑙~(0.3,0.4), ∀𝑙 ∈ 𝐿. Mean CAV market share and lower and upper 

bounds for the 95% confidence interval in the four scenarios are illustrated in Figure 4. The width of 
the confidence interval is at most 1.86% indicating that the simulation results are robust. CAV price 
reduction rate has significant impact not only on the ultimate amount of CAV market share in 2050 but 
also on the shape of adoption curve. With 5% rate, only some 15% of UofM employees will adopt by 
2050. This share will reach about 90% if CAV price is reduced at 20%, annually. The impact of CAV 
price reduction is more evident in long term – more specifically after 2030. 
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Figure 4: Mean CAV market share and 95% confidence interval (CI) bounds as a  

function of annual rate of CAV price reduction (LB: CI lower bound; UB: CI upper bound) 

 
Next we study the possible impact of pre-introduction marketing. We scrutinize five scenarios, in 

the first of which no pre-introduction advertisement is considered. In the second to fifth experiments, 
the impact of marketing on each element of an agent’s perception, i.e., 𝜏𝑖,𝑙 , follows U(0,0.1), U(0.1,0.2), 
U(0.2,0.3), and U(0.3,0.4), respectively. Post-introduction marketing impact is assumed to follow 
U(0.3,0.4) and the learning factor, 𝛽𝑖𝑗

𝑙 , be U(0.5,1). Also, CAV price decreases at 10% rate, annually. The 

simulation results, shown in Figure 5, indicate that the impact of pre-introduction marketing on CAV 
market share is almost non-existent. This can be explained intuitively. A very small portion of the 
population is willing to pay for the very high introductory price of adding automation and connectivity. 
As a result, no matter how much pre-introduction marketing can address barriers, the group 
considering CAV adoption right after introduction remains the same. WTP of other users also remains 
almost intact considering that no significant intercommunication effect is added. Therefore, a pre-
introduction marketing campaign of six month may not have any significant effects on CAV market 
share as long as CAVs are introduced to the market with high initial prices. This can have important 
implications for car manufacturers and marketing agencies.  
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Figure 5: CAV market share as a function of pre-introduction marketing effect 

 
DOI literature suggests that while advertisement initiates diffusion of an innovation, its impact is 

limited. Our next experiment examines this hypothesis about CAVs. Five scenarios are considered in 
which 𝜏𝑖,𝑙  is zero (i.e., no marketing is undertaken) or follows U(0,0.1), U(0.1,0.2), U(0.2,0.3), and 

U(0.3,0.4). Here we assume CAV annual price reduction rate is 10%, 𝛽𝑖𝑗
𝑙 ~U(0.5,1), and 𝛾𝑖𝑗~U(0,0.5). 

The simulation results are shown in Figure 6. CAV market share will not be more than 4% if no 
advertisement is undertaken. Innovators, i.e., those that are more risk seeking and willing to obtain 
new technologies before others, form a tiny portion of population – typically less than 2.5%. WOM that 
is spread by such little portion can increase CAV market share by a limited extent. When 𝜏𝑖,𝑙~U(0,0.1), 
advertisement gradually changes the perceptions of more people. Starting from 2035, WOM propels 
the diffusion. By setting 𝜏𝑖,𝑙 to U(0.1,0.2) CAV market share surges but the share with U(0.2,0.3) and 
U(0.3,0.4) is almost the same as the share with U(0.1,0.2) indicating that the impact on innovation 
diffusion of marketing is capped. 

One important aspect of WOM is the impact on willingness-to-pay. We investigate this impact in 
Figure 7, where WOM does not change in the first experiment and 𝛾𝑖𝑗  is U(0,0.2), U(0.2,0.4), U(0.4,0.6), 

and U(0.6,0.8) in the second to fourth experiments. Here our assumption is that the price reduction 
rate is 10%, 𝛽𝑖𝑗

𝑙 ~U(0.5,1), and 𝜏𝑖,𝑙~U(0.3,0.4). Two points worth highlighting. First, CAV market share 

significantly grows with increase of the effect of intercommunication on WTP. Second, changing 𝛾𝑖𝑗  has 

no significant effect on CAV market share in the early stages of adoption. The reason is that even with 
high change to WTP, a large number of individuals still envision CAVs as something incompatible with 
their existing practices and continue to defer adoption.  
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Figure 6: CAV market share as a function of marketing effect 

 

  
Figure 7: CAV market share as a function change to WTP due to intercommunication 

 
Let us also look at the percentage of dissatisfied adopters and negative WOM spreaders (Figure 8). 

In this experiment CAV prices reduce at the rate of 10%. Also, it is assumed 𝛽𝑖𝑗
𝑙 ~U(0.5,1), 𝛾𝑖𝑗~U(0,0.5), 

and 𝜏𝑖,𝑙~U(0.3,0.4). Focusing on the left-hand-side panel, the percentage of dissatisfied CAV users is 
defined as the number of active dissatisfied adopters over the number of all adopters. This percentage 
and the corresponding confidence interval stabilize as time goes by. In 2050, the percentage of 
dissatisfied adopters is 3.6%, with a margin of error of 0.3%. A dissatisfied adopter continues to spread 
negative WOM even after switching back to conventional cars; thus, the percentage of negative WOM 
spreaders monotonically increases as illustrated in the right-hand-side panel of Figure 8. Here, the 
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width of confidence interval also increases with time. 
 

   
Figure 8: Percentage of dissatisfied adopters and negative  

WOM spreaders and corresponding confidence interval bounds 

 
So far, we have assumed that 𝜃 = 0.05. In Figure 9, we investigate how the value of 𝜃  impacts 

adoption trend. To this end, we let 𝜃 increases from 0 to 0.2 with 0.05 increments. For each experiment, 
we consider four scenarios of CAV price reduction. Other parameters are set as follows: 𝛽𝑖𝑗

𝑙 ~U(0.5,1), 

𝛾𝑖𝑗~U(0,0.5), and 𝜏𝑖,𝑙~U(0.3,0.4).  Three trends can be identified. First, an increase in 𝜃 lowers CAV 

market share because it elevates the number dissatisfied adopter. (Recall that a dissatisfied adopter 
switches to conventional cars in his/her next round of purchase.) As is observed in the lower-right 
panel, CAV market share approaches 100% only when the possibility of dissatisfaction is zero. Here, a 
0.01 increase in 𝜃  lower CAV market share in 2050 by more than 1%. Second, the impact of 𝜃  on 
adoption trend is more pronounced for greater rates of price reduction. Third, the effect of 𝜃 value is 
more evident as time passes.  
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Figure 9: CAV market share as a function of 𝜽, the probability of  

becoming a dissatisfied adopter, for four annual rates of CAV price reduction 

 

7. Conclusion 

Connected autonomous vehicles will hit the roads in the near future, faster than initial speculations. 
Over the past decade car manufacturers have substantially invested to make this technology viable and 
affordable, and academic community have made significant contribution to advance our knowledge 
about safety, travel behavior, and congestion effects of CAVs. Yet, the question that how people will 
adopt this new technology in long-term is not well researched. The studies addressing CAV adoption 
use expert knowledge, sales estimates, and discrete choice modeling to explain how transportation 
fleet will be transformed in the next decades. Discrete choice models assume that an individual’s 
expectations are the same as the market outcome, and therefore stated preferences will remain valid. 
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This, however, may not be true about CAVs because individuals have no previous experience on which 
they can base their expectations. Empirical studies suggest that individuals heavily rely on the 
information they receive from their peers when assessing adoption of a radical innovation such as 
connected autonomous vehicles.  

This study is the first of its kind to couple the theory of Diffusion of Innovation and agent-based 
modeling to forecast long term adoption of CAVs. The concept of resistance is used to explain why 
individuals typically tend to defer adoption of an innovation. We assume that there exists a social 
network among individuals through which they communicate based on certain frequencies. In 
addition, individuals can be subject to media advertisement (marketing) again based on certain 
frequencies. An individual’s perceptions are dynamic and change over time when the individual is 
exposed to media advertisement or communication with satisfied and dissatisfied adopters. The 
individual’s willingness-to-pay for automation is also dynamic and changes as result of 
intercommunication. This means that communication with a satisfied adopter can not only convinces 
a potential adopter that the barriers which he/she perceives are not real (or perhaps not as important 
as he/she thinks) but also it is worth spending more money on CAVs. Media advertisement has similar 
impacts on individuals’ perceptions but to a lesser extent. 

We show applicability of the proposed approach using a survey of 327 employees of the University 
of Memphis. The survey aims to (i) understand how individuals rely on their social network when 
assessing the purchase of CAVs; (ii) investigate how individuals think about various barriers and 
incentives associated with adoption of CAVs; and (iii) develop a seed for population synthesis. 
Multivariate normal is performed to fill-in missing values of survey data. Then the full population of 
UofM employees is synthesized using Iterative Proportional Updating procedure. The synthetic 
network among individuals is generated based on the concept of homophily which states that the 
individuals with geographical proximity and socio-demographic similarity are more likely to form a 
social tie. We then simulate the market share of CAVs over a 25-year time period, starting from 2025. 

Our numerical analysis indicates that the automobile fleet will be nearly homogenous in about 2050 
only if CAV prices decrease at significant rates (e.g., 15% or 20% annually). With a 5% annual rate of 
price reduction, CAVs will only be about 15% of all vehicles. We find that a 6-month pre-introduction 
marketing campaign may have no significant impact on adoption trend. Our results further confirm 
that marketing impact does initiate CAV diffusion but the effect of marketing is capped. CAV market 
share is also found to significantly alter as a result of changes in WTP caused by intercommunication. 
CAV market share will be close to 100% only if all adopters are satisfied with their purchases; 
therefore, the probability that an individual becomes a satisfied adopter plays an important role in the 
trend of adoption. The effect of the latter probability is more pronounced as time goes by and is also 
more prominent when CAV price reduces at greater rates. 

The current work can be extended in a few directions. First behavioral research is suggested to 
understand other barriers and incentives that are possibly missed in the current research. Due to data 
limitations, this study does not account for adoption of used cars, multiple technology generations, car 
types (SUV, sedan, van, etc.) and classes (luxury, economy, sport, etc.). By collecting richer datasets, 
these simplifications can be addressed and more detailed modeling components (e.g., more advanced 
purchase models) can be developed. Our analysis is based on only work social networks of a population 
with certain employment types. With more diverse data, our modeling results can be validated and 
more solid conclusions can be made.   
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