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Equity of transit connectivity in Tennessee cities  1 

Abstract 2 

Federal and state agencies focus on providing captive users in mobility-vulnerable population 3 

groups with access to public transit resources. One challenge to the provision of equitable access is 4 

quantifying equity-oriented metrics for public transit service. This paper utilizes an approach that utilizes 5 

the available spatial demographic data and transit network characteristics to compute multimodal transit 6 

connectivity and equity. This method is exemplified by analyzing transit connectivity for three metropolitan 7 

cities in the state of Tennessee in the United States and overlapping that connectivity on demographic data. 8 

Results indicate that the distribution of transit services among vulnerable populations varies within and 9 

between cities. The case studies illustrate how this methodology can be used by public agencies to assess 10 

the performance of transit systems and to identify the distribution of these systems among various groups 11 

to improve the equity of transit connectivity. 12 
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1 Introduction 14 

This paper provides a metric for calculating the connective power of the lines and stops in a public 15 

transportation system—and the level of equity inherent in the distribution of those connective resources—16 

using publicly available data. The presented approach focuses on identifying pockets of vulnerable 17 

populations within the network area using census data and evaluating the strength of the public transit 18 

resources in those areas using General Transit Feed Specification (GTFS) data. Vulnerable populations are, 19 

in this case, identified as those possessing low household income or low levels of vehicle ownership, though 20 

the methodology presented here could be extended to explore other factors associated with vulnerable or 21 

marginalized groups. 22 

Past studies have shown that vulnerable population groups (such as minority or low-income citizens) 23 

exhibit higher-than-average needs for transit services (Golub et al., 2013; Sanchez, 1999). In urban 24 

environments, these residents tend to be captive transit riders—that is, they often have few transportation 25 

resources available and are forced to use public transportation to meet their mobility needs. For all people, 26 

reliable access to the essential public and private facilities such as employment centers and medical facilities 27 

is vital; for captive riders with few travel choices or heightened barriers to transportation, public transit may 28 

be the only viable means of accessing these services. In order to provide access to these facilities, and 29 

because mobility correlates highly with economic opportunity (Banerjee et al., 2012; Schweitzer and 30 

Valenzuela, 2004; Taylor and Ong, 1995), healthy cities often seek to provide these groups with access to 31 

public transportation. However, identifying these groups and quantifying their access to transit can be data-32 

intensive and expensive: these measures are often determined using transit assignment models and ridership 33 

tracking tools that are not available to small- or mid-sized cities. As such, the development of reliable 34 

performance metrics using open-source data holds value for the transit agencies in these cities.  35 

A transit network represents complex interactions of nodes (stops), and links (routes) with unique 36 

characteristics serving various origins and destinations. Frequency, speed, and capacity are critical terms 37 

that define the characteristics of a stop or transit route and contribute to conventional transit level-of-service 38 
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(LOS) evaluation. The evaluation of transit supply and demand requires a systematic representation of 39 

network elements and operational characteristics. A number of connectivity measures are available in the 40 

literature, including degree centrality, eigenvector centrality, closeness centrality, and betweenness 41 

centrality (Bonacich and Lloyd, 2001; Estrada and Rodríguez-Velázquez, 2005; Mishra et al., 2012; 42 

Ruhnau, 2000). However, such measures only consider network-level characteristics and ignore operational 43 

characteristics. This paper utilizes a graph theoretic transit connectivity measure that relies on General 44 

Transit Feed Specification (GTFS) data coupled with population and employment data to capture the 45 

connective power of each stop, line, and traffic analysis zone (TAZ) in a public transit network. Then, 46 

equity of transit connectivity distribution is analyzed using the Gini index and census data. These metrics 47 

for connectivity and equity are explored in each of the three major cities in Tennessee (TN). 48 

The remainder of the paper is structured as follows. Section 2 presents a review of relevant literature, 49 

a summary of gaps in the literature, and the objectives of this study. Section 3 presents the data requirements 50 

for the connectivity and equity analysis demonstrated in this paper. Section 4 presents the methodology 51 

used to find connectivity and equity and includes a small-scale demonstration and sensitivity analysis. 52 

Section 5 shows the results of several numerical experiments for each of the cities included in this case 53 

study, and the final section concludes the paper. 54 

2 Literature Review 55 

There is a need in many communities and an interest by most urban planning agencies (TDOT, 2015) to 56 

provide better transit alternatives to single-occupancy vehicles using programs and models that do not 57 

require transit assignment models or ridership tracking tools. At the same time, ethicists are taking an 58 

increased interest in the achievement of social inclusion (Van Wee, 2011) and environmental justice 59 

(Rowangould et al., 2016) through the equitable distribution of public resources, including transit provision. 60 

In the following paragraphs, this paper reviews current literature pertaining to transportation network 61 

connectivity metrics, measures of equity and current practices of transit agencies towards incorporating 62 

equity impacts in the transportation investment decision-making. 63 
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2.1 Measures of Supply 64 

In the previous literature, the transit supply has been measured using three different approaches namely 65 

mobility, accessibility and connectivity. In this section, we provide the definition, capability and limitation 66 

of such approaches.  67 

2.1.1 Mobility 68 

Mobility measure captures the ease for a potential rider to travel in a particular area using existing transit 69 

services and is calculated based on the service frequency on a node or transit station (Sanchez et al., 2004), 70 

number of vehicle miles (Buehler, 2009). However, mobility measure only provides a quantity of travel 71 

activity and includes the limitation of not measuring service quality.   72 

2.1.2 Accessibility  73 

Accessibility, being an essential dimension of public transit services, has been studied heavily in past 74 

literature to quantify the efficacy of transport networks (Martínez et al., 2016) and is usually applied to a 75 

single node or station in a network. In past literature, accessibility measures are divided into three different 76 

categories: location-based, transport capacity-based, and potential-based ((Ato) Xu et al., 2018). Location-77 

based accessibility (LBA) measure captures the ease of reaching a station or node and referred to as 78 

“access,” “local Accessibility and “to-transit accessibility” (Geurs and Van Wee, 2004; Matisziw and 79 

Grubesic, 2010; Moniruzzaman and Páez, 2012). LBA is calculated based on average cost or travel time to 80 

reach a transit node (Karou and Hull, 2014).  Potential-based accessibility (PBA) captures the possible 81 

maximum passenger demand a transit service can serve in a specified area (Cui et al., 2016; Moniruzzaman 82 

and Páez, 2012) and also referred as “locational access,” “regional accessibility” and “by-transit 83 

accessibility” (Moniruzzaman and Páez, 2012; Páez et al., 2012). PBA is estimated from a function of travel 84 

demand in a specified area and anticipated travel cost for other adjoining areas from this area (Hansen, 85 

1959), where travel cost can be represented in terms of money, time or distance. Transport capacity-based 86 

accessibility (TCBA) captures the ease of travel activity of passenger demand in a transit service under 87 

different constraints like environmental characteristics and service level attributes and is estimated from 88 
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user behavior, usually employing utility-based methods (Nassir et al., 2016). Martens (2016) developed a 89 

theoretical framework for establishing a threshold for sufficient accessibility.  90 

Other measures of measuring transit supply, similar to accessibility, include measuring the density of 91 

transit service  (Currie and Wallis, 1992), public transportation accessibility level (PTAL),  obtained from 92 

different transit stop characteristics, including walking and average waiting times, service frequency and 93 

reliability, (Wu and Hine, 2003) and transit supply index (TSI) (Bertolaccini and Lownes, 2013), 94 

calculation similar to transit service density. However, such measures do not include all the transit service 95 

characteristics and destinations connected to the transit services.   96 

2.1.3 Connectivity 97 

Connectivity measure is a blend of both mobility and accessibility measures (Hadas and Ranjitkar, 2012; 98 

Kaplan et al., 2014; Welch and Mishra, 2013), which evaluates the level of service for a public transit 99 

network and captures the ease of connection between different nodes in a transport network (Cheng and 100 

Chen, 2015). Connectivity can be calculated in terms of time (in-vehicle, waiting, access/egress), frequency, 101 

service reliability, and transfers along multimodal routes on a transit network (Kaplan et al., 2014). Also, 102 

the previous literature has regarded the connectivity befitting index to evaluate PBA (Suau-Sanchez and 103 

Burghouwt, 2012; Van Wee, 2016).  Since the Connectivity index usually requires real travel costs and 104 

time between different locations in the networks, its application in evaluating a transit network is limited 105 

((Ato) Xu et al., 2018). Connectivity measure outperforms accessibility and mobility measures in terms of 106 

incorporating transit service characteristics.  107 

Exploration of network connectivity has not been limited to measures based on connective power; 108 

degree centrality, eigenvector centrality, and betweenness centrality have all been thoroughly addressed 109 

(Ahmed et al., 2006; Bell et al., 1999; Bonacich, 2007; Bonacich and Lloyd, 2001; Carrington et al., 2005; 110 

Estrada and Rodríguez-Velázquez, 2005; Freeman, 1978; Garroway et al., 2008; Guimerà et al., 2005; 111 

Junker et al., 2006; Liu et al., 2005; Martínez et al., 2003; Moore et al., 2003; Newman, 2004; Ruhnau, 112 

2000). Degree centrality measure captures the number of nodes connected to a particular node in the 113 
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network but ignores the connection quality. Eigenvector centrality overcomes this limitation after assigning 114 

“scores” proportional to the connecting power of the nodes. Node closeness centrality captures the graph-115 

theoretic distance in the form of shortest distance from the other nodes and hence nodes with low closeness 116 

scores are highly accessible. Betweenness centrality measures capture the time required to utilize a 117 

particular node to make a transfer between two other nodes. However, all centrality measures do not account 118 

for transit characteristics and rely entirely on network characteristics.  119 

In summary, the use of connectivity measures in transit services has evolved.  Park and Gang (2010) 120 

developed a quantitative model for multimodal urban transit network connectivity. The authors identified 121 

line length, speed, and capacity as key components of a transit line’s utility, then defined its connecting 122 

power as the product of those components. The blend of spatial parameters with operating parameters in 123 

Park and Gang’s work sparked interest in graph-theoretic measures of transportation network connectivity 124 

and was later expanded by Mishra et al. (2012) to include connectivity measures for transit stops and 125 

transfer centers. Welch and Mishra (2013) further expanded these measures to include zone connectivity 126 

measures, utilizing the concept of catchment areas around transit stops, and linking connectivity to equity. 127 

Mishra et al. (2015) developed a tool for visualizing the geographic distribution of connectivity, while 128 

Sarker et al. (2015) explored alternative scaling coefficients for use with these connectivity measures. 129 

Hence in this study, we explore the connectivity measure which includes transit characteristics through the 130 

publicly available dataset.  131 

2.2 Equity 132 

In the previous literature, the terms “equality” and “equity” are used synonymously, corroborating to 133 

confusion as they both have different meanings, especially in public transit context. The equality concept 134 

is similar to “being equal” or “sameness,” which contends that if the people and groups have the same 135 

opportunities and rights, they should be treated equally. In public transit context, this would mean to provide 136 

the same level of services to the entire population which is not generally the case. Hence, equality, in 137 

practice, is not the objective and impractical (Carleton and Porter, 2018). Equity, on the other hand, implies 138 
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that since not all people and groups have the same opportunities, they should not be treated another way to 139 

make up for the different opportunities (Brick, 2015; Litman, 2016). Hence, equity implies “justice” or 140 

“fairness,” which tends that not the entire population relies on public transit facilities and the ones who use 141 

these services more than others should be given priority over others, which ultimately makes sense.  142 

In past literature, there is no consensus on a single definition of equity (Bills and Walker, 2017; 143 

Levinson, 2010; Thomopoulos et al., 2009). In terms of regional planning agencies, Bullard (1994) defines 144 

three different types of equity, i.e., procedural, geographic, and social. Procedural equity deals with process-145 

specific factors, including time, location, and language of public meetings. Geographic and social equity 146 

deal with the spatial and demographical distribution of costs and benefits.  In past studies, social equity is 147 

further classified into two different types, i.e., horizontal and vertical (El-Geneidy et al., 2016; Musgrave 148 

et al., 1989; Welch, 2013).  Horizontal equity implies providing proportional transit facilities among the 149 

population with similar socioeconomic characteristics. Vertical equity, on the other hand, suggests a 150 

different distribution of transit facilities among different population groups.   151 

In addition to definition and different types of equity, past literature defines different standards or 152 

principles for evaluating equity-like Pareto, utilitarianism, egalitarianism, Rawls-egalitarianism, and many 153 

more (Pereira et al., 2017). For instance, Rawls-egalitarianism refers to prioritizing the least advantaged 154 

population for distributing benefits, whereas utilitarianism deals with maximizing the benefits for the entire 155 

population (Pereira et al., 2017; Van Wee and Geurs, 2011). Lucas et al. (2016) and Pereira et al. (2017) 156 

provide a useful discussion of the two non-utilitarian ethical approaches to accessibility: egalitarianism and 157 

sufficientarianism . While egalitarianism suggests that accessibility should be distributed equally regardless 158 

of need or outcome, sufficientarianism suggests that resources should be preferentially distributed in such 159 

a way as to bring all individuals (or groups) up to some minimum level of accessibility.  160 

2.2.1 Measure of Equity 161 

Social exclusion, environmental justice, and accessibility are roundly discussed in modern ethical theory. 162 

In his 2011 book, Van Wee shows that traditional cost-benefit analysis (CBA) is often insufficient for 163 
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addressing the exclusion of vulnerable groups, and can lead to inequitable distribution of public resources. 164 

This inequitable distribution is at odds with the Civil Rights Act of 1964 (Civil Rights Act, 1964). In 165 

practice, the equity analysis falls under two different approaches, i.e., modeling and non-modeling approach 166 

(Bills and Walker, 2017). The modeling approach includes exploring the equity impacts through regional 167 

travel demand models (Bills and Walker, 2017; J. Ding et al., 2018; Ramjerdi, 2006) in contrast to non-168 

modeling approaches, which include equity analysis through the use of spatial analysis tools (Currie, 2010a, 169 

2004; Delbosc and Currie, 2011). Non-modeling approaches are more prevalent among metropolitan and 170 

transit planning agencies (Amekudzi et al., 2012). (Bills and Walker, 2017) analyzed equity in 171 

transportation improvements using a revealed preference survey data, activity-based travel model, equity 172 

standards defined in past literature, and consumer surplus as equity indicator.  173 

In the past literature, in non-modeling approaches, equity is measured mainly through Gap analysis 174 

(Currie, 2010b; Fransen et al., 2015) and Lorenz curves coupled with Gini coefficients (Delbosc and Currie, 175 

2011; Kaplan et al., 2014; Welch and Mishra, 2013). Gap analysis, also known as the “needs gap,” 176 

illuminates a distinction between transit supply and potential demand for specific population groups.  Currie 177 

(2010 & 2004) measured the spatial distribution of public transport empirically extending their previous 178 

research (Currie and Wallis, 1992) to calculate transport needs and using gap analysis for transportation 179 

disadvantaged (Currie, 2004) and socially disadvantaged (Currie, 2010a) population. 180 

Gini coefficients derived from Lorenz curves, on the other hand, deduce the deviation of cumulative 181 

distribution transit supply provided to specific population groups from perfect equality (sometimes denoted 182 

as equity in literature). Gini index evaluates the distribution of a particular indicator or an attribute among 183 

the population with values of 0 and 1 reflecting perfect equality and inequality, respectively. Gini index 184 

results in an inequality measure that is independent of demand and scale (Bertolaccini and Lownes, 2013; 185 

Yeganeh et al., 2018). One of the advantages of using Gini coefficients over gap analysis is that Gini 186 

coefficients give the sense of transit equality for the entire area, whereas gap analysis results in spatially 187 

dependent analysis. However, with Gini coefficients, additional analysis is needed to get the spatial 188 

implications of equality because of the spatially disassociated results (Carleton and Porter, 2018).  189 
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Delbosc and Currie (2011) assessed equity for public transport in Melbourne using Lorenz curve cum 190 

Gini coefficients based on the distribution of public transport index, developed from databases of transit 191 

stops, among population and employment opportunities (obtained from census dataset). However, the 192 

public transport index did not include the service characteristics of public transit. Bertolaccini and Lownes 193 

(2013) studied the effect of geographic boundary and scales on equity assessment using the Gini index 194 

while using the TSI measure of supply and GTFS data and concluded that Gini index equity results are 195 

unaffected by scale and demand. Welch and Mishra (2013). take a different approach, calculating the Gini 196 

index (Gini, 1936) for the distribution of connectivity against socioeconomic identifiers such as income and 197 

car ownership. This approach is unique in that it can illustrate the level of horizontal equity extant in the 198 

system as well as measuring both subtypes of vertical equity. 199 

Yeganeh et al. (2018) analyzed the social equity for 45 public transportation systems in the US based 200 

on job accessibility using publicly available datasets, census, and transit-job accessibility, accessibility 201 

indicators, and Gini index. Results showed higher job accessibility for low-income and non-white 202 

individuals. Ding et al. (2018) analyzed the equity for bus transit networks using in Beijing using Gini index 203 

based on transit accessibility index, estimated from attractiveness (transit service level of stops) and 204 

reachability (impedance function), embedded in gravity-based travel demand. However, this study did not 205 

use open-source transit data and non-modeling techniques.  206 

2.3 Equity practices in planning agencies 207 

In this section, we explore past studies on common practices of transit agencies on incorporating equity in 208 

transportation investment decisions. Majority of transit agencies employ cost-benefit analysis (CBA) to 209 

prioritize transportation investments (Joshi and Lambert, 2007; Thomopoulos et al., 2009) and include 210 

limitations in terms of not considering equity either with inappropriate definitions (Taylor and Morris, 211 

2015) or not analyzing equity impacts at disaggregate levels (Bills et al., 2012; Linovski et al., 2018; 212 

Manaugh et al., 2015).     213 
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Joshi and Lambert (2007) developed a method for modifying traditional CBA to include a weighted 214 

measure for equity. Thomopoulos et al. (2009) provided a review of existing equity practices in transit 215 

infrastructure evaluation along with their limitations and proposed a new methodology to eliminate the 216 

identified limitations of CBA and multi-criteria analysis (MCA) were the most commonly used 217 

methodologies to study equity impacts in transportation investments especially in Europe. CBA methods, 218 

which involve selecting the project with the highest benefit-cost ratio (BCR), include limitations in terms 219 

of considering aggregate welfare (ignoring equity impacts), inability to capture intangible factors and non- 220 

monetary impacts and discount rate selection.  In contrast, the MCA approach, which involves combining 221 

multiple attributes with different values to prioritize transit investment, overcomes the limitations of CBA. 222 

However, MCA includes limitations in terms of biased decision-makers which affects the weights given to 223 

different attributes in decision making process.  224 

Bills et al. (2012) show that activity-based long-range transportation plans fail to account for the 225 

differences in travel habits between different groups of interest. Similarly, Manaugh et al. (2015) analyzed 226 

long-range planning documents of 18 different North American metropolitan areas for the consideration of 227 

social equity. The authors highlighted the absence of a clear and meaningful definition of social equity, 228 

inadequate disaggregated analysis and more focus on environmental impacts than social equity in transit 229 

investment decisions. The author highlighted the need to incorporate equity tools and definitions in the 230 

planning framework. Golub and Martens (2014) presented an “access poverty” equity assessment approach 231 

for transit and automobile accessibility. Taylor and Morris (2015) examined whether public transportation 232 

policies prioritize equity impacts based on data obtained from the National Transit Database (NTD), 233 

American Public Transportation Association (APTA), National Household Travel Survey (NHTS) and a 234 

survey of 50 different transit operators. The results highlighted the income difference between bus and rail 235 

transit users, less emphasis on equity impacts in terms of prioritizing vulnerable groups and increased 236 

preference to rail transit investments.   237 

Karner (2016) provides a review of equity practices in eight small rural region MPOs in California. In 238 

its analysis, the author concludes that each MPO has different definitions and practices for evaluating equity 239 
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and defining transportation-disadvantaged groups. In all the MPOs, equity was evaluated based on travel 240 

demand models and spatial techniques followed by proximity analysis, (distance related directly to utility 241 

and benefits) to evaluate an upcoming transportation project. Also, most of the MPOs relied on low-242 

resolution maps to evaluate equity spatially.  Hananel and Berechman (2016) proposed a novel framework 243 

for incorporating transport justice or equity in the decision-making process while considering capabilities 244 

approach and concluded that such a framework is less feasible in urban areas because of the political 245 

constraints in place. Linovski et al. (2018) provided an empirical analysis of bus rapid transit investments 246 

while focusing mainly on the integration of equity in decision making in three metropolitan regions in 247 

Canada. Findings based on the interviews of transit officials and planning documents revealed the rare 248 

occasions of integrating equity in transit investment decisions and different definitions of equity in each 249 

metropolitan area. Also, the equity was considered for different socioeconomic groups but not for the 250 

transit-dependent population and highlighted the need for better understanding and methodologies to 251 

incorporate equity into transit investment decisions.   252 

Hence, past literature vindicates the need to incorporate equity in transit planning practices and no approach 253 

has utilized publicly available datasets and open source methodologies to explore the equity impacts in 254 

transportation investments.  255 

2.4 Research Gaps 256 

Forecasting transportation demand has typically required complex data sources not available to all transit 257 

authorities, but the literature reveals a recent push toward the use of more tractable models using open-258 

access data sources. Within the study of equity, many ethicists prescribe a conceptual approach, while fewer 259 

practitioners develop methods of applying quantifiable measures of system equity. Therefore, there is room 260 

for a study to leverage open-access data to quantify connectivity at the line, node, and zone levels, then to 261 

apply tractable metrics to show the geographic distribution of that connectivity in relation to captive riders. 262 

Connectivity measure, being a blend of both mobility and accessibility measures, evaluates the level of 263 

service for a public transit network and captures the ease of connection between different nodes in a 264 
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transport network and accessibility and mobility measures in terms of incorporating transit service 265 

characteristics. Hence in this study, we employ the connectivity measure to include transit characteristics 266 

through the publicly available dataset. 267 

In addition to using open source data to measure transit connectivity at zone, node, and link levels, the 268 

Gini inequity index is employed in this study which utilizes operational characteristics of transit to identify 269 

the transit distribution among socioeconomic characteristics of the population. One of the advantages of 270 

using the Gini inequity index is that Gini coefficients give a sense of transit equality for the entire area.   271 

This study also contributes to the existing literature in terms of the effect of change in the characteristics of 272 

one line on other lines in the network (sensitivity analysis). The application of the proposed framework to 273 

three major cities in Tennessee, to identify equity associated with transit connectivity, contributes to the 274 

literature further. Therefore, this study is utilizing the existing methodological framework to identify equity 275 

associated with transit services and evaluate different transit plans based on the estimated Gini index values 276 

based on the open-source datasets.  277 

2.5 Contribution 278 

Building on the previous literature on measures of supply for transit services, equity measures and existing 279 

practices of transit agencies towards incorporating equity in investment decisions, the contribution of this 280 

study are threefold: (i) Demonstrate the use of open-source datasets in evaluating equity impacts (ii) 281 

Demonstrate the use of simpler, convenient algorithms to compute transit connectivity and equity while 282 

utilizing such datasets (iii) Complement transit agencies’ investment decisions with most straightforward 283 

and easily interpretable equity measure while incorporating transit service characteristics in terms of 284 

connectivity.    285 

2.6 Study Objectives 286 

The scope of this study is to (i) apply transit connectivity measures to the multimodal transit networks 287 

within the case study areas using open-access data, (ii) associate transit connectivity measures with various 288 

captive rider characteristics to determine transit equity, and (iii) summarize transit equity in terms of the 289 
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distribution of transit services across different groups, based on Gini index, in a format that is useful to 290 

local transit decision-makers. Three cities in Tennessee (Nashville, Memphis, and Knoxville) are used as 291 

the case study areas. 292 

3 Data Requirements 293 

One of the major benefits of this methodology is that it makes use of open-access data, which decreases the 294 

cost to use this measure and makes it accessible to transit authorities regardless of their access to transit 295 

ridership models or tracking tools.  296 

3.1 GTFS Data 297 

GTFS data (Open Mobility Data, 2016) is the primary data source used in this method to analyze 298 

connectivity. GTFS data is an open-access source that presents information on fixed transit routes in a 299 

standardized format (Antrim and Barbeau, 2013). This methodology uses it to identify transit lines, stop 300 

locations, operating schedules, and other line characteristics such as speed and capacity. It should be noted 301 

that GTFS does not include information on demand-responsive transit (DRT) services such as paratransit; 302 

as a result, this study neglects DRT. 303 

3.2 Zonal Information 304 

In Tennessee, the statewide travel demand model contains information about employment by TAZ. While 305 

other states may aggregate employment across different types of areas (i.e., census blocks, census tracts, or 306 

TAZs), each state provides this information in an open-access format. Employment information is used in 307 

calculating the connectivity index, while the study area is divided into TAZs to add granularity to measures 308 

of equity. 309 

3.3 Census Data 310 

Census data (US Census Bureau, 2010) provides information on population, which is used to calculate the 311 

connectivity index. The census also provides data on income and car ownership which is used to identify 312 



 

14 

TAZs with high levels of captive ridership. This information is used to measure the equity of the distribution 313 

of transit connectivity. 314 

4 Methodology 315 

This paper modifies the methodology developed by Welch and Mishra (2013) to obtain connectivity indices 316 

at the line, node, and zone levels. Then, this paper uses the Gini index with the zone connectivity index to 317 

show the distribution of connectivity by income level and by vehicle ownership. The notation used 318 

throughout the methodology section is summarized in Table 1. A flow chart illustrates this process in Fig. 319 

1. 320 

--Table 1 here-- 321 

--Fig. 1 here-- 322 

4.1 Node Connectivity 323 

Node connectivity is defined in order to show the quality of each stop in a multimodal transit network. 324 

Connectivity for each node is derived from the connective power of the transit lines incident upon that node 325 

and scaled for desirability as compared with other nodes in the system. First, the connecting power of the 326 

inbound and outbound lines at the node is calculated in Equations (1) and (2). (The reader is referred to 327 

Mishra et al. (2012) and Welch and Mishra (2013) for further details about connecting power of nodes and 328 

lines).  329 
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Where, 𝐶𝐶𝑙𝑙, 𝑉𝑉𝑙𝑙 and 𝐷𝐷𝑙𝑙,𝑛𝑛 are transit characteristics, average capacity, speed, and route distance from node 330 

n to the destination respectively, for line 𝑙𝑙. 𝐴𝐴𝑙𝑙,𝑛𝑛 represents the activity density which measures opportunities 331 

accessible at each transit node and can be estimated as the ratio of the total number of households and 332 

employment in a zone to the total area of the zone.    333 
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The scaling coefficients (α, β, γ, and φ) indicate the attractiveness of one line compared to other lines 334 

in the system. Each coefficient is calculated under the assumption that its related parameter (capacity, speed, 335 

distance, and activity, respectively) follows a normal distribution. For example, the determination of 𝛽𝛽𝑙𝑙 336 

requires the assumption that 𝑉𝑉~𝑁𝑁(𝜇𝜇𝑉𝑉 ,𝜎𝜎𝑉𝑉2) as shown in Equations (3) and (4). The same is true for the other 337 

coefficients.  338 
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Activity, if accurately quantified, represents diverse classification groups of households, population, 339 

employment, and built environment characteristics (Bhat and Guo, 2006). However, as per previous 340 

literature, activity is represented in different contexts such as entropy, density, etc. (Bhat and Guo, 2006; 341 

C. Ding et al., 2018; Ding et al., 2017; Ding and Cao, 2019; Pinjari et al., 2009). For instance, in the trip 342 

generation stage, specific trip rates are defined based on activity type, where activity type is defined as a 343 

combination of population and employment densities. Similarly, in the built environment, entropy is used 344 

as a proxy for activity diversity. For simplicity, land use or built environment characteristics are represented 345 

by the proxy variable activity density, defined in Equation (5). Hence, activity density is the average number 346 

of jobs and households within the zone (TAZ) in which the transit node is located. 347 

𝐴𝐴𝑙𝑙,𝑛𝑛 =
𝐻𝐻𝑙𝑙,𝑛𝑛𝑧𝑧 + 𝐸𝐸𝑙𝑙,𝑛𝑛𝑧𝑧

𝛩𝛩𝑙𝑙,𝑛𝑛𝑧𝑧
 (5) 

However, in transit connectivity context, the definition of activity is only a proxy represented by 348 

density, and it does not describe low versus high-income behavior or residential versus commercial usage 349 

which contributes to the limitation of this approach. Once the connective power of the incident lines has 350 

been calculated, the connectivity index for each node is calculated as the average connecting power of all 351 

lines passing through that node, as shown in Equation (6). 352 
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𝐶𝐶𝐶𝐶(𝑛𝑛) =
∑
𝑃𝑃𝑙𝑙,𝑛𝑛𝑖𝑖 + 𝑃𝑃𝑙𝑙,𝑛𝑛𝑜𝑜

2𝑙𝑙

𝛩𝛩𝑛𝑛
 

(6) 

4.2 Line Connectivity 353 

Once node connectivity is established, line power is averaged across the line and scaled by the number of 354 

stops, as shown in Equation (7). This scaling allows comparison between lines with many stops (such as 355 

bus lines) and lines with few stops (such as light rail lines). 356 

𝐶𝐶𝐶𝐶(𝑙𝑙) =
∑

𝑃𝑃𝑙𝑙,𝑛𝑛𝑖𝑖 + 𝑃𝑃𝑙𝑙,𝑛𝑛𝑜𝑜
2𝑛𝑛∈𝑆𝑆𝑙𝑙

|𝑆𝑆𝑙𝑙| − 1
 

(7) 

For a step-by-step demonstration of the calculation of node and line connectivity, see Table 2. 357 

4.3 Catchment Areas and Zone Connectivity 358 

Kim et al. (2005) developed a distance-decay function (shown in Equation (8)) for passenger acceptance of 359 

transit stops based on the walking distance to the stop. The coefficients they estimated are based on 360 

empirical data and are exacting to capture walk distance to transit stops. Therefore we have assumed the 361 

same coefficients for this study (τ = 1.3189, λ = -0.0872) (Kim et al., 2005). For each housing unit, a half-362 

mile catchment area is created, in keeping with results from Kim et al. (2005). For each node within the 363 

catchment area, the distance decay function (Equation (8)) is computed (nodes outside the catchment area 364 

receive a score of zero from that housing unit). Once the function has been computed, a prorated score for 365 

each node is determined by aggregating the score it receives from each housing unit. Finally, the zone score 366 

is taken as the average of the prorated node scores, as shown in Equation (9). 367 

𝜌𝜌ℎ1,𝑛𝑛 = τ𝑒𝑒λ𝑡𝑡ℎ1,𝑛𝑛 (8) 

𝜃𝜃𝑧𝑧 = (|𝑆𝑆𝑧𝑧| − 1)−1�𝑃𝑃𝑙𝑙,𝑛𝑛𝑡𝑡 �𝜌𝜌ℎ1,𝑛𝑛� (9) 

4.4 Small-Scale Example and Sensitivity Analysis 368 

In this section, we apply the proposed methodology in an example transit network for calculating 369 

connectivity (Fig. 2). The nodes are connected by four bi-directional transit lines. For simplicity, both 370 
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directions of each transit line have the same properties; therefore, 𝑃𝑃𝑙𝑙,𝑛𝑛𝑖𝑖 = 𝑃𝑃𝑙𝑙,𝑛𝑛𝑜𝑜 = 𝑃𝑃𝑙𝑙,𝑛𝑛𝑡𝑡 . In a real network, this 371 

is likely to be the case for some transit lines, but not all. Input data for each transit line are shown in Fig. 2, 372 

while Table 2 demonstrates the application of Equations (1-5). Results are shown in Table 3, and 373 

demonstrate the application of Equations (6-7).  374 

The left set of columns of Table 2 shows input data for each line at each node, where hourly capacity 375 

is the product of frequency and unit capacity. For each of the four key inputs (distance, speed, hourly 376 

capacity, and activity density), the mean and standard deviation are calculated. Then, Equations (3-4) are 377 

applied to calculate α, β, γ, and φ for each line’s distance, speed, hourly capacity, and activity density, 378 

respectively. For this example, all distributions have been assumed normal for simplicity; if parameters in 379 

a real network follow another distribution, the related equations can be substituted for Equations (3-4). Line 380 

power is calculated using Equations (1-2).  381 

--Fig. 2. here-- 382 

--Table 2  here-- 383 

The final results (Table 3) show the application of Equations (6-7). Results show line 1 as the most 384 

powerful followed by line 2 justified by the longer route length supported by attractive characteristics of 385 

these lines. Similarly, node 2 emerged as the most powerful followed by node 1 as both of these nodes are 386 

connected to line 1 and line 3. Line 2 emerged the least powerful followed by line 4 because of their small 387 

route length. Therefore node 4 has the least connecting power as it is connected to line 4 only.  388 

--Table 3 here-- 389 

4.4.1 Sensitivity of Scaling Coefficients 390 

The example network can be used to demonstrate the sensitivity of the scaling coefficients. As each 391 

parameter on a given line changes, the mean and standard of deviation for that parameter change for the 392 

entire network; this change indicates a shift in the desirability of one transit line as compared to the others. 393 

This nonlinear interplay is shown using speed as the example parameter. Keeping all other variables 394 

constant, the speed of line 1 was incrementally increased from 0 to 50 (units here are unimportant, so long 395 
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as the same unit is used for each transit line). The resulting influence on the speed scaling coefficient (β) is 396 

shown in Fig. 3. 397 

The beta value for line 1 follows the cumulative normal distribution, moving from low importance to 398 

high importance. Beta values for lines 2 and 4 are inversely related and share a similar inflection point. The 399 

implication is that within certain ranges, improvements in one line may generate improvements in the 400 

attractiveness of other lines; however, as the speed of one line begins to dominate the network, the 401 

attractiveness of all other lines falters. This analysis also highlights the fact that connectivity scores are 402 

relative: they can be used as a means of comparison between lines and nodes in the same network, but 403 

cannot be used to compare lines across different networks. 404 

4.4.2 Model Sensitivity 405 

Connectivity of each node and each line were monitored as parameters for line 1 were changed. Results 406 

reveal differences in the way line connectivity and node connectivity, each response to network changes. 407 

As each parameter for line 1 increases, connectivity for other lines shows a slight increase, followed by a 408 

prolonged decrease, shown in Fig. 4. As the capacity of line 1 increases, connectivity of lines 2 and 4 falls 409 

53.8% and 54.2%, respectively. As activity along line 1 increases, connectivity of lines 2 and 4 each fall 410 

64%. These changes reflect the same pattern shown in Fig. 3. Node connectivity, however, reacts 411 

differently. 412 

--Fig. 3. here-- 413 

As the connecting power of a line increases, the nodes connected by that line see an increase in 414 

connectivity. However, nodes not connected by that line show a decrease in connectivity. This again reflects 415 

the change in attractiveness; nodes with a high-powered line are more attractive to riders than nodes with 416 

low-powered lines. Fig. 4 shows the changes in line and node connectivity as parameters for line 1 are 417 

changed individually; Fig. 5 shows the changes in the connectivity of each line as the speed and capacity 418 

of line 1 are allowed to vary simultaneously. Note the different scales used in each sub-figure.  419 

--Fig. 4. here-- 420 
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-- Fig. 5. here-- 421 

4.5 Measuring Equity 422 

The Lorenz curve measures the distribution of a particular attribute with respect to the considered 423 

socioeconomic characteristics, in this case, transit connectivity for every cumulative percent of the 424 

population, vehicle ownership, and household income. When perfect resource equity is achieved, the 425 

Lorenz curve is a straight line; each additional 1% of the population controls an additional 1% of the 426 

resource. The Gini index shows the areal difference between the Lorenz curve and the perfect equity line; 427 

a Gini value of zero shows perfect equity, while a Gini value of one shows perfect inequity. The formula 428 

for calculating the Gini index is shown in Equation (10). 429 

𝐺𝐺𝑠𝑠 = 1 −�(𝑋𝑋𝑘𝑘 − 𝑋𝑋𝑘𝑘−1)(𝑌𝑌𝑘𝑘 − 𝑌𝑌𝑘𝑘−1)
𝑘𝑘

 (10) 

 For each of the cities in the case study, the connectivity of each zone was calculated and compared 430 

to the average household income, average vehicle ownership, and population within each TAZ. In each 431 

city, the Gini index was calculated across each of these three categories. For further insights into the 432 

calculation of Gini index, refer to prolific past literature (Cowell, 2011; Farris, 2010; Handcock and Morris, 433 

2006; Thomas et al., 1999).  434 

5 Case Study Results 435 

The presented methodology was applied to case studies in three cities in Tennessee: Memphis, Nashville, 436 

and Knoxville and their location is shown in Fig. 6.  Location of three case cities Knoxville, Memphis and 437 

Nashville. . In each city, public transit options are limited to buses and trolleys, with on-call paratransit 438 

options. Bus rapid transit services are available in Nashville, but not in Memphis or Knoxville. 439 

Demographic information for each city—as well as the state and nation—are given in Table 4, and based 440 

on the July 1, 2016 estimates from the US Census Bureau (2017).  441 

--Fig. 6. here-- 442 

--Table 4 here-- 443 
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A map for each city and category (household income, vehicle ownership, and population) is presented 444 

to help visualize results. For example, Fig. 7 shows three such maps for all three case cities. Fig. 7(a) 445 

portrays Memphis transit line connectivity and vehicle ownership. Each TAZ is grayscale-coded to show 446 

the level of vehicle ownership, where the light shade of gray indicates zones with low vehicle ownership, 447 

and darker shade of gray indicates zones with high vehicle ownership. Overlaid atop the TAZs are the 448 

transit lines in the city. Transit line connectivity is shown in terms of a heat map where different color 449 

indicates the density of transit line connectivity varying from low to high. Thin, pink lines indicate transit 450 

lines with low connectivity, while thick, blue lines indicate transit lines with strong connectivity. Fig. 7(b) 451 

shows Nashville’s transit line connectivity density and population density. Light shades of gray indicate 452 

TAZs with low population density, while darker shades of gray indicate TAZs with higher population 453 

density. Fig. 7(c) shows the Knoxville’s stop connectivity density and household income. Transit stop 454 

connectivity is also represented in terms of density for each stop node; different colors indicate variation in 455 

transit stops with low connectivity to transit stops with higher connectivity. Following these formats, Fig. 456 

9 (a), (b), and (c) in the Appendix shows Memphis’s transit stop connectivity density with household 457 

income, Nashville’s transit stop connectivity density with household income, and Knoxville’s transit line 458 

connectivity with vehicle ownership, respectively. Each image gives local transit authorities information 459 

on which stops, and lines are underperforming, as well as which areas of the city demonstrate high levels 460 

of captive ridership. 461 

The maps, shown in Fig. 7, and  Fig. 9, give visual information on the geographic distribution of 462 

connectivity but do very little to show the equity of that distribution. Showing equity requires more 463 

processing and requires the aggregation of zones based on characteristics of the populations in those zones. 464 

To this end, Tables 5-7 give the distribution of zonal connectivity across varying levels of household 465 

income, vehicle ownership, and population density, respectively. For each city, four columns are presented: 466 

the first shows the percentage of the population falling into each group; the second shows the raw 467 

connectivity score available to each group; the third shows the percentage of the network’s total 468 

connectivity score available to each group (Equation (11)); the fourth shows the ratio of the percent of 469 
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available connectivity to the percent of the population in each group (Equation (12)). Under a system in 470 

egalitarian perfect vertical equity, each element of the connectivity-to-population ratio would equal 1. In 471 

each table, shaded rows indicate the groups with access to the largest percentage of the network’s 472 

connectivity, while rows in bold indicate the groups with the highest connectivity-to-population ratio. 473 

% 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 =  
𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
∑ 𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖

 (11) 

% 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡 % 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 =
% 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
% 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖

 (12) 

 474 
--Fig. 7(a). here-- 475 

--Fig. 7(b). here-- 476 
 477 

--Fig. 7(c). here-- 478 

5.1 Connectivity with Household Income 479 

Household income was broken down into nine categories, each with a $20,000 range. The average 480 

household income for each zone was calculated from census data and compared with zonal connectivity 481 

scores. The result is shown in Table 5.  482 

Across all three cities, high income is correlated with high levels of connectivity. Knoxville is a notable 483 

exception in that the lowest income group exhibits the second-highest level of connectivity; this 484 

phenomenon is due to high connectivity scores on the University of Tennessee, Knoxville’s campus and 485 

housing districts (Fort Sanders area). The connectivity-to-population ratio bolsters the observation that high 486 

income correlates to high levels of connectivity; in all three cities, the highest per-capita connectivity is 487 

experienced by the highest earners. 488 

--Table 5 here-- 489 

In Memphis, this trend is due to the low connectivity scores associated with the nexus of low income 490 

and low connectivity exhibited in the Raleigh, Frayser, Airport Industrial Area, and West Memphis 491 

communities, coupled with high property values along the well-connected Poplar Avenue corridor. 492 

Nashville transit exhibits high connectivity around the high-income Belle Mead and Bellevue districts but 493 
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shows low connectivity near the river in low-income North Nashville. In Knoxville, high-connectivity lines 494 

stretch into the high-income Sequoyah Hills and Woodland Acres neighborhoods, while low-connectivity 495 

lines serve low-to-middle-income North Knoxville and South Knoxville neighborhoods. 496 

5.2 Connectivity with Vehicle Ownership 497 

For each zone, vehicle ownership was defined as either No vehicles, low (1 vehicle per household), 498 

moderate (2 vehicles per household), or high (> 2 vehicles per household) using census data. Vehicle 499 

ownership was compared with zone connectivity and shown in Table 6. Shaded rows indicate the groups 500 

with access to the largest percentage of the network’s connectivity, while rows in bold indicate the groups 501 

with the highest connectivity-to-population ratio.  502 

--Table 6 here-- 503 

Distribution of connectivity with vehicle ownership varies more widely from place to place than 504 

distribution with income; each city grants the largest portion of its available connectivity to a different 505 

group. Nashville provides the greatest connectivity to zones with low vehicle ownership, Memphis to zones 506 

with moderate vehicle ownership, and Knoxville to zones with high vehicle ownership. In this case, 507 

however, distribution in every city is more aligned with a sufficientarian perspective: in all three cities, the 508 

highest connectivity-to-population ratio is found amongst the lowest vehicle ownership group. It is worth 509 

mentioning that in both cities, the population with no household vehicles had the highest connectivity to 510 

population ratio which reflects the consideration of respective transit agencies to captive riders. Although 511 

Knoxville includes no population with zero vehicle ownership, similar findings are found in the low vehicle 512 

ownership.  Of the three cities, Nashville’s transit distribution exhibits the strongest preference toward low 513 

vehicle ownership zones.  514 

It is worth noting that the highest average connectivity levels and highest connectivity to population 515 

ratio differed among vehicle ownership groups, which can be either due to the less proportion of the 516 

population of low vehicle ownership groups or high-income individuals living in urban areas having high 517 

transit connectivity. However, it is not clear from the comparison of connectivity with the population. 518 

Therefore we expand Table 6 to include average household income in each vehicle ownership group in 519 
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Table 7. This inclusion reflects the impact of the built environment and household income on vehicle 520 

ownership (Bhat and Guo, 2006). Hence, Memphis and Nashville reflect high-income individuals involved 521 

with no vehicle ownership whereas in Knoxville, low-income households are associated with low vehicle 522 

ownership. Hence, high connectivity to population ratio in Memphis and Nashville can be regarded as the 523 

population living in the dense urban areas whereas in Knoxville, it can be regarded as less population 524 

proportion with low vehicle ownerships.  525 

--Table 7 here-- 526 

It should be noted that these results are likely to be self-reinforcing: transit authorities often attempt to 527 

connect households with low vehicle ownership to important destinations, and adjacency to well-connected 528 

public transit is likely to encourage low vehicle ownership. This cycle may be desirable for transportation 529 

agencies interested in decreasing the number of trips made in single-occupancy vehicles (TDOT, 2015). As 530 

these cities gentrify and urban cores repopulate with higher-income residents (who may have lower vehicle 531 

ownership), a disconnect between income and vehicle ownership may develop, especially in areas with 532 

strong public transit connections. As a result, tracking both these variables may continue to provide insight 533 

into the evolution of captive ridership.  534 

5.3 Equity 535 

For each city, the Gini index was calculated for each category. The Lorenz curves are portrayed in Fig. 8, 536 

and the Gini index results are shown in Table 8. For each category, an asterisk indicates the most equitable 537 

system. The Gini index indicates the equity between groups, and seeks to answer the question: “Does each 538 

group have equal access to public transit connectivity?” As such, the Gini index is blind to the differences 539 

between groups, including a group level of need. A high Gini index indicates that only a small group 540 

disproportionately controls connective resources; it does not imply that those resources are controlled by 541 

an otherwise privileged group such as high earners or groups with high vehicle ownership. It is therefore 542 

important to note that the Gini index should be taken in context with the preceding discussion and not used 543 

as the sole metric for equity.  544 
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Of the three cities in the case study, Memphis shows the least preference for one group over another in 545 

terms of household income; i.e., it provides more egalitarian connectivity on household income than other 546 

cities. Knoxville is close to Memphis in terms of the least equality of connectivity with household income. 547 

Nashville is close to perfect inequality with a value of 0.64 for the distribution of connectivity with 548 

household income. However, Nashville is close to perfect equality in terms of household vehicle ownership. 549 

Nashville’s system tends to be more sufficientarian than egalitarian in terms of distributing connectivity 550 

among the population and household income because of the higher Gini index scores. Knoxville includes 551 

the most equitable distribution of connectivity in terms of population. All three cities show high levels of 552 

inequity across vehicle ownership and population and show moderate levels of inequity across income.  In 553 

order to improve equity in accordance with the Civil Rights Act of 1964 (Civil Rights Act, 1964), each city 554 

should direct more connective resources to low-income areas.  555 

It is worth mentioning that the objective of this study is not to conclude that whether the distribution of 556 

transit services in three different cities is good or bad but to complement different plans and targets of transit 557 

agencies. For instance, if the transit agency plans to provide high-quality transit service to Nashville’s 558 

population, then the agency should focus on decreasing the inequality score towards perfect equality. 559 

However, if the transit agency in Memphis plans to provide increased coverage to low-income households, 560 

the target should be to increase the Gini index towards perfect inequality. Similarly, the existing Gini index 561 

scores for vehicle ownership reflect a differential treatment of different vehicle ownership groups and no 562 

modification is required if the aims are to prioritize transit captive riders over others. Similarly, Lorenz 563 

curves presented in Fig. 8 can also be utilized to evaluate the plans with the target of increasing or 564 

decreasing the area under the Lorenz curve depending upon the objectives.  565 

 --Fig. 8. here-- 566 

The population proportion with low vehicle ownership in almost all three cities is at most 8% (reflecting 567 

low proportion of transit captive riders) which indicates the need to consider an egalitarian principle to 568 

provide a high-quality transit service to all vehicle ownership groups or population or providing a transit 569 

service with a Gini score close to perfect inequality in case or dense urban areas. However, additional 570 
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analysis may be required to evaluate such plans as the Gini index are incapable of providing spatially 571 

associated results (Carleton and Porter, 2018).  572 

--Table 8 here-- 573 

6 Conclusions and Policy Implications 574 

Transit connectivity is a multidimensional problem involving various service quality factors that include 575 

both operational and geographical parameters. Furthering this complexity is the (usually) high number of 576 

available routes with distinct characteristics within a network. Because budget constraints limit the capacity 577 

of many transit agencies to develop a travel demand model or to maintain detailed ridership data, there is a 578 

need for transit models that do not require complex data (e.g., onboard surveys Karner and Golub ( 2015)). 579 

This study leverages existing transit network connectivity indices that work solely on open-source data to 580 

evaluate not only the connectivity of multimodal public transit networks but also the distribution equity of 581 

those systems. The connectivity indices are applied to transit systems in three Tennessee cities at the stop, 582 

line, and zone levels. The models and data processes demonstrated in this paper can be used to (i) determine 583 

performance of the transit system with no additional data purchase, (ii) assess future service needs, (iii) 584 

disseminate transit performance measures for potential future users, and (iv) re-estimate these performance 585 

measures to inform network investment decisions. 586 

Further, the transit connectivity measure is used to determine equity by various socio-economic factors 587 

using the Gini index. The analysis shows that each studied city exhibits preferences to some groups, but 588 

that those groups vary from place to place, but this differential preference can be regarded as space-589 

constrained development of public transport and other involved political constraints. Methods and results 590 

presented in this study can provide input to a base framework for state and local DOTs to maintain transit 591 

plans, as well for identifying changing service impacts in correlation with changing demographics in order 592 

to assess the transportation needs of metropolitan and local communities. 593 

Policy implications derived from this study depend on the ethical paradigm employed by the planning 594 

agency. If the purpose of the public transit agency in a particular community is to provide uniform service 595 
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to all community members, that agency should target a GINI index near zero (where a score near zero 596 

indicates perfect equity). However, if the goal is to provide enhanced service to a subset of members (such 597 

as captive riders), the system will have a GINI index closer to one—in this case, inequality may not be 598 

synonymous with injustice. Similar logic holds when providing a value judgment for equity of distribution 599 

by vehicle ownership: if the primary goal of a transit agency is to provide service to captive riders, 600 

connective resources should be preferentially distributed to areas with low vehicle ownership. If, however, 601 

the primary goal is to ease traffic congestion by reducing trips in single-occupancy vehicles, connective 602 

resources should be distributed to areas with high vehicle ownership in order to incentivize participation in 603 

public transit. It follows from this discussion that public transit agencies will be able to more effectively 604 

deploy their resources if they clearly define the ethical paradigm under which they operate; a sufficientarian 605 

stance will necessarily result in a higher inequality score than an egalitarian position. The primary policy 606 

implication of this study, then, is that agencies should pair an ethical paradigm with a target GINI index, 607 

and should undertake network improvement strategies that reinforce the selected paradigm. 608 

One avenue for further research is the application of this methodology to additional demographic 609 

categories, including age, race, and disability. This analysis would allow further identification of vulnerable 610 

groups. However, because GTFS data neglects DRT or other Mobility on Demand services, significant 611 

modification may be required to analyze the connective resources available to elderly populations or those 612 

with disabilities. A second avenue is the analysis of connectivity as it relates to (un)employment 613 

percentages; if poor transit connectivity is linked to low employment, such analysis could yield important 614 

policy implications for transit authorities and could be used to justify additional investment in transit 615 

systems economically. Further, a third avenue may include the development of a toolbox to measure vertical 616 

equity levels for groups identified based on the Gini index toolbox employed in this study. Finally, the 617 

fourth avenue in future research may incorporate the effect of industrial and warehouse related employment 618 

spaces in activity density, which has been used as a proxy variable to capture built environment 619 

characteristics.  620 
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