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Abstract: This paper presents a model to estimate the future adoption of connected autonomous 9 

trucks (CATs) by freight transportation organizations. An accurate estimation of the market 10 

penetration rate of CATs is necessary to adequately prepare the infrastructure and legislation 11 

needed to support the technology. Building upon the theory of Diffusion of Innovations, we 12 

develop Bass models for various freight transportation innovations, including improved tractor 13 

and trailer aerodynamics, anti-idling technologies for trucks, and other organizationally adopted 14 

innovations. The proposed model also accounts for heterogeneity between organizations by using 15 

a modified Bass model to vary parameters within a designated range for each of the potentially 16 

adopting organizations. The results of the paper are Bass models for existing freight organization 17 

innovation adoption and estimates of multiple scenarios of CAT adoption over time by freight 18 

organizations within the case study region of Shelby County, Tennessee and provide a foundation 19 

for organizational innovation adoption research. Our analyses suggest that the market penetration 20 

rate of CATs within 25 years varies from nearly universal adoption to 20% or less depending on 21 

the rate at which autonomous technology improves over time, changes in public opinion on 22 

autonomous technology, and the addition of external influencing factors such as price and 23 

marketing.  24 
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1. Introduction 52 

  Many signs point to driverless vehicles joining the fleet within the next ten years. 53 

Connected Autonomous Vehicles (CAVs) have the potential to revolutionize transportation, and 54 

there has been significant research and development on the operational side of making automated 55 

vehicles a reality. However, there are a number of other barriers to overcome before widespread 56 

adoption is possible (Fagnant and Kockelman, 2015). Safety concerns, legality and liability 57 

questions, security/privacy matters, and infrastructure changes must be identified and addressed 58 

before autonomous technology reaches maturity (Fagnant and Kockelman, 2015; Kockelman et 59 

al., 2017). In order for policymakers to make informed decisions about these issues, it is essential 60 

to have an estimate of the market penetration rate of CAVs. 61 

 The freight transportation industry stands to benefit from integrating connected 62 

autonomous vehicle technology. One benefit would be a reduction in collisions, which translates 63 

to safer working conditions, increased profits, and reliability (Anderson et al., 2014; Bagloee et 64 

al., 2016). Of arguably greater interest to freight organizations, connected autonomous trucks 65 

(CATs) are predicted to increase fuel efficiency, reducing consumption by up to 10-15% 66 

(Anderson et al., 2014; Bagloee et al., 2016; Bullis, 2011; Fagnant and Kockelman, 2015; Huang 67 

and Kockelman, 2018; Kockelman et al., 2017). Integrating CATs into the fleet would also reduce 68 

the labor required to move goods, further reducing the cost of operations. Freight organizations 69 

are already attempting to address a shortage of drivers, and CATs may be the solution to the labor 70 

shortage (Rossman, 2017). The highest costs associated with long-distance trucking are driver 71 

salary and fuel costs, and CATs have the potential to greatly reduce both of these costs (Shankwitz, 72 

2017). Reducing the manpower required to operate the vehicles may also allow organizations to 73 

be more productive, because laws that regulate the number of hours a driver may legally travel 74 

might not apply to driverless vehicles.  75 

However, it is difficult to predict how policymakers will react to autonomous freight 76 

vehicles. Unlike individual CAVs, state and federal DOTs have not yet released significant 77 

regulations or guides for integrating CATs into the freight industry (Hook, 2017). In addition, 78 

organizations exhibit significant heterogeneity, and so their adoption behavior is challenging to 79 

anticipate (Frambach and Schillewaert, 2002; Ryan and Tucker, 2012). Without sufficient data on 80 

autonomous freight adoption, it is difficult to identify and address the various infrastructure, 81 

policy, and logistical changes that will need to be made as freight organizations switch to 82 

automation. It is, therefore, critical to develop a model to estimate the adoption rate of CATs for 83 

freight organizations.   84 

 One of the most widely recognized methods for explaining the rate of innovation adoption 85 

is the theory of diffusion of innovations (Mahajan et al., 1991; Rogers, 2003). Diffusion of 86 

innovations studies often focus on individual adoption rather than organizational adoption, or only 87 

discuss organizational adoption in a generalized manner. Most studies for organizational 88 

innovation adoption focus on attempting to identify characteristics of organizations that promote 89 

adoption (Damanpour, 1991; Hoerup, 2001; Kim and Srivastava, 1998; Moch and Morse, 1977; 90 

Pierce and Delbecq, 1977; Rogers, 2003; Subramanian and Nilakanta, 1996) or investigate the 91 
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process of adoption within an organization (Eveland, 1979; Fidler and Johnson, 1984; Leonard-92 

Barton and Deschamps, 1988; Meyer and Goes, 1988; Rogers, 2003). This pattern holds true for 93 

CAT adoption predictions. While there have been studies that predict the market penetration rate 94 

of CAVs for individuals (Bansal et al., 2016; Bansal and Kockelman, 2017; Lavasani et al., 2016; 95 

Perrine et al., 2018; Quarles and Kockelman, 2018), the issue of CATs and the freight industry has 96 

received little attention from academia. The literature only briefly mentions CATs in freight 97 

transportation (Catapult Transport Systems, 2017; Fagnant and Kockelman, 2015; Kockelman et 98 

al., 2017) or focuses on the costs and benefits of implementing CATs for freight without 99 

approaching the question of demand (Csiszár and Földes, 2018; Flämig, 2016; Kunze et al., 2011; 100 

Rossman, 2017; Shankwitz, 2017). In addition, the data available to form a predictive model for 101 

organizations is lacking. There is speculation on the potential benefits and drawbacks of 102 

organizational CAT adoption (Anderson et al., 2014; Bagloee et al., 2016; Bullis, 2011; 103 

Kockelman et al., 2017; Rossman, 2017; Shankwitz, 2017), but without some of the basic 104 

information such as willingness to pay (WTP), organizational structure, strength of inter-105 

organizational communication, upkeep and maintenance costs for CATs, and differences between 106 

consumer and both public and private corporate innovation behavior, it is very difficult to obtain 107 

accurate predictions regarding the adoption of innovations by organizations (Damanpour, 1991; 108 

Frambach and Schillewaert, 2002; Kim and Srivastava, 1998; Moch and Morse, 1977; Palmer et 109 

al., 2018). Research is needed in the area of predictive analysis regarding the potential market 110 

penetration rate of CATs in freight organizations. 111 

This paper uses diffusion of innovations theory to provide an estimation of the future 112 

adoption rate of CATs in freight industries. A modified version of Bass model is used to account 113 

for heterogeneity between organizations. Due to the lack of currently available data, a number of 114 

reasonable assumptions are made regarding organizational innovation adoption behavior in order 115 

to better understand how the various factors influencing the adoption of CATs may interact. 116 

Applicability of the developed model is shown with a dataset containing all freight organizations 117 

within Shelby County, the largest county both in terms of population and geographic area in the 118 

State of Tennessee, and a center for both air and ground freight transportation. 119 

The remainder of the paper is organized as follows. The following section outlines the 120 

process for modeling the adoption rate of CATs by freight organizations. Section 3 contains a brief 121 

description of the data gathered for analysis, followed by Section 4, which details the results of 122 

our model, the implications of the results, and a sensitivity analysis is performed on the model 123 

output. Finally, Section 5 concludes and summarizes major findings. 124 

 125 

2. Methodology 126 

This section elaborates on the methodology being used to forecast CAT adoption. We start 127 

with an overview of classic Bass models to offer an understanding about how this modeling 128 

approach forecast adoption of an innovation, and then move to a disaggregate Bass model 129 

operationalized to generate adoption probability for each firm.  130 

The Bass model is primarily used to describe the diffusion of innovations process (Bass et 131 

al., 1994; Mahajan et al., 1995; Massiani and Gohs, 2015; Meade and Islam, 2006; Moch and 132 

Morse, 1977; Rogers, 2003; Wright and Charlett, 1995). Diffusion of Innovations theory identifies 133 

a number of factors that cause innovation adoption, including relative advantage, compatibility, 134 

complexity, trialability, reinventability, and observability (Greenhalgh et al., 2004; Rogers, 2003). 135 

Bass estimates the adoption rate of an innovation by consolidating these factors into two 136 

parameter: one which is positively influenced by the number of previous adopters, and one which 137 
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is independent of the previous adopters (Bass, 2004; Bass et al., 1994; Rogers, 2003). The 138 

parameter which is not influenced by the number of adopters is commonly referred to as the 139 

Coefficient of Innovation (CoN), or external influences. CoN accounts for factors like 140 

compatibility, which are independent of the behaviors of other individuals. The parameter 141 

influenced by the number of previous adopters is referred to as the Coefficient of Imitation (CoM), 142 

or internal influences. CoM accounts for variables such as observability, which grow stronger as 143 

more people adopt the innovation. The Bass model lays the foundation for quantifying the social 144 

aspect of innovation adoption, which is central to diffusion of innovations theory. The Bass model 145 

is: 146 

 147 

 𝑛(𝑡)  =  𝑝 ∗  [𝑚 −  𝑁(𝑡)]  + (
𝑞 ∗  𝑁(𝑡)

𝑚
) ∗  [𝑚 −  𝑁(𝑡)]  

(1) 

 

 

where n(t) is the number of adopters at time t, m the market potential, or maximum potential 148 

adopters of the innovation, N(t) the cumulative number of adopters at time t, p the coefficient of 149 

innovation (CoN), and q the coefficient of imitation (CoM) (Mahajan et al., 1995, 1985; Rogers, 150 

2003). By integrating over t, a closed-form expression for the cumulative number of adopters can 151 

be obtained as: 152 

 153 

 𝑁(𝑡) = 𝑚 (
1 − 𝑒−(𝑝+𝑞)𝑡

1 +  
𝑞
𝑝 𝑒−(𝑝+𝑞)𝑡

) 

(2) 

 

 

 154 

 Initially, very few potential adopters choose to adopt the innovation due to the fact that the 155 

initial number of adopters is near or equal to zero, making the power of the imitative force small. 156 

Therefore, early adopters almost exclusively adopt due to the innovative force (Lavasani et al., 157 

2016; Mahler and Rogers, 1999; Rogers, 2003). However, as more adopters choose to accept the 158 

innovation, a point is reached where the adoption rate rapidly increases due to an increase in 159 

imitative influence. This point is referred to as the critical mass, and it typically occurs somewhere 160 

between 10 and 20% of the market potential (Mahler and Rogers, 1999). Once the point of critical 161 

mass has been achieved, an innovation is likely to gain widespread adoption of 90% or greater of 162 

the market potential (Rogers, 2003). The resultant curve of the Bass model is S-shaped, but unlike 163 

most other S-curve models, the Bass model also includes practical insight into the innovation 164 

adoption behavior due to its initial premise of innovative and imitative forces (Bass, 2004). For 165 

example, a Bass model with the parameters of 0.01 for the CoN and 0.1 for the CoM are 166 

comparable to the sigmoidal curve with parameters of 3.2 for alpha and -0.14 for beta. The main 167 

advantage that the Bass model provides over a sigmoidal curve is that the sigmoidal curve would 168 

need to be modified to provide the number of adopters over time, and the alpha and beta parameters 169 

do not carry any obvious behavioral implications in the way that the Bass parameters do. 170 

Over the years, a number of advancements have been made to the original Bass model. An 171 

important improvement has been the addition of external influencer variables. This addition is 172 

presented in equation 3: 173 

 174 

𝑛(𝑡) = {𝑝 ∗ [𝑚 − 𝑁(𝑡)] + [
𝑞 ∗ 𝑁(𝑡)

𝑚
]} ∗ 𝑋(𝑡) +  𝜖 

(3) 

 175 
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where 𝑋(𝑡) is the factor which accounts for all external influencer variables that are not covered 176 

explicitly by the CoN and CoM. The general form of 𝑋(𝑡) is: 177 

 178 

𝑋(𝑡) = 1 + 𝛽𝑖𝑋𝑖  (4) 

 179 

where 𝑋𝑖 represent the external influencer variables, and 𝛽𝑖 represents the corresponding 180 

coefficients for each of the variables. When no external influencing variables are included, 𝑋(𝑡) 181 

is equal to 1. These external influencing variables can include the price of the innovation, 182 

willingness to pay, and marketing strategies (Lavasani et al., 2016; Mahajan et al., 1991). Because 183 

data on these external influencing variables does not exist at this time, we provide placeholders for 184 

these variables to demonstrate how they will affect the model. 185 

The full process of estimating the market penetration of CATs over time at disaggregate 186 

level is demonstrated in Figure 1. The first step is to estimate the Bass parameters for CATs. One 187 

of the difficulties in using the Bass model for forecasting is determining the values of the Bass 188 

parameters for the new innovation. Bass parameters are traditionally estimated using regression 189 

methods after the innovation has been fully adopted. Therefore, to estimate an innovation’s Bass 190 

parameter values prior to adoption, it is necessary to compare the innovation in question to 191 

previously adopted innovations (Lavasani et al., 2016; Massiani and Gohs, 2015; Meade and Islam, 192 

2006; Sultan et al., 1990).  193 

 194 
Fig. 1. Flowchart of model process 195 

 196 

The Bass model parameters for individually adopted innovations are well-documented, but 197 

organizational adoption has received less attention, and this is a problem because there are few 198 

studies providing data for organizational adoption parameters. Therefore, it is necessary to first 199 

investigate the rate of organizational innovation adoption and how it differs from individual 200 

adoption rates. To this end, we gather organizational innovation market penetration data from 201 

multiple sources and perform non-linear regression to calculate Bass model parameters. These 202 
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parameters are then compared to Bass model parameters for individual organizations found in 203 

multiple sources. From this comparison, conclusions are drawn regarding the behavior of 204 

organizational innovation adoption and how it differs from individual adoption behaviors.  205 

Once the behavior of organizational innovations has been established, it is possible to 206 

estimate the Bass model parameters for the specific innovation in question. In the case of freight 207 

organization CAT adoption, we can form this estimation by examining both the innovation 208 

attributes and the estimated parameters for individual CAV adoption (Lavasani et al., 2016; 209 

Rogers, 2003). By examining the behavior patterns for innovation adoption by both individuals 210 

and organizations, we can estimate the expected Bass model parameters for CATs. 211 

Organizations are heterogeneous, and so they may have slightly different values for CoN 212 

and CoM (Ryan and Tucker, 2012). As Figure 2 illustrates, local organizations have lower ability 213 

to innovate than larger, national organizations, and so the adoption model must account for this 214 

heterogeneity. To address organizational heterogeneity, each organization is assigned parameter 215 

values within the proposed range for CoN and CoM based on the number of employees in the 216 

organization. Organizational size is chosen as the independent variable because larger 217 

organizations are more inclined to innovate than smaller organizations (Frambach and 218 

Schillewaert, 2002; Mahajan et al., 1995; Rogers, 2003), and size is far easier to measure than 219 

other organizational attributes linked to innovativeness (Rogers, 2003).  220 

 221 

 222 
Fig. 2. Spheres of influence and tendency toward innovativeness for organizations of differing 223 

sizes 224 

 225 

Once each organization has been assigned Bass parameter values, it is possible to simulate 226 

the adoption decision process using the modified version of the Bass model described by equation 227 

5: 228 

𝑂𝑟𝑔𝑖,𝑡  =  [𝑝𝑖   + (
𝑞𝑖  ∗  𝑁(𝑡)

𝑚
)] ∗ 𝑋(𝑡) +  𝜖 

(5) 

 229 

In the original Bass model, the p and q values are multiplied by [𝑚 −  𝑁(𝑡)], which represents 230 

the number of potential adopters that have not yet decided to adopt. By creating a Bass equation 231 

for each individual, this [𝑚 −  𝑁(𝑡)] term becomes equal to 1, and this converts the Bass model 232 



7 
 

into an equation to calculate the probability Orgi,t that organization i will adopt a CAT at time t 233 

(Amini et al., 2012; Kumar et al., 2009). A Monte Carlo simulation is then performed to estimate 234 

the adoption rate of CATs by freight organizations. To characterize the adoption decision, a cutoff-235 

based approach is employed, where a random number (𝑟𝑖) is drawn from the uniform distribution 236 

between 0 and 1, and compared to a pre-specified cutoff value. For example, if Orgi,t is 0.5%, then 237 

organization i adopts if 𝑟𝑖 > 0.005, otherwise it does not adopt at time t. The model is run 100 238 

times, and an ANOVA test is performed to confirm that there is no statistically significant variation 239 

in the output over multiple runs.  240 

If organization i chooses to adopt at time t, then Orgi,t is set equal to 1 for all future cycles, 241 

as it is assumed that the decision to adopt CATs is non-reversible. The model is run until the market 242 

penetration rate is greater than or equal to the parameter X, where X is a predetermined end 243 

condition value between 0 and 1. Because the simulation model is based on Bass principles, each 244 

organization maintains communication with all other organizations. This is a more reasonable 245 

assumption to make for organizational adoption than individual adoption because organizations 246 

clearly exhibit some communicative behavior, however a formal social network does not exist 247 

between organizations (Czepiel, 1975). 248 

 249 

3. Bass Parameter Estimations 250 

 In order to estimate the Bass parameters for CAT adoption by freight organizations, we 251 

first examine the organizational adoption behavior exhibited for previously adopted innovations. 252 

In 2015, the North American Council for Freight Efficiency (NACFE) published a report 253 

investigating the adoption of 68 fuel efficiency innovations for 14 major North American fleets. 254 

These innovations are aggregated into seven categories: trailer aerodynamics, chassis, idle 255 

reduction, tires/wheels, powertrain, practices, and tractor aerodynamics. The study covers a span 256 

of 11 years, from 2003 to 2014 (NACFE, 2015), and it provides a solid foundation for the 257 

development of Bass model parameter values for freight organizations (“NACFE Conducts 258 

Extensive Benchmarking Study on Fleet Fuel Efficiency,” 2016). Figure 3 shows the market 259 

penetration of these organizational innovations. As the data was presented in terms of percentage 260 

adopted, the market potential m for all calculations is assumed to be 100%. 261 

 262 
Fig. 3. Market penetration of organizational innovations by year 263 
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 Regression estimations are performed on each technology category to determine CoN and 265 

CoM values. The regression equation is the same as equation 1, where the number of adopters is 266 

the dependent variable, and CoN and CoM are the parameter estimates. The results of the 267 

regression model and other reported organizational Bass model parameters are shown in Table 1 268 

(NACFE, 2015). 269 

 270 

 271 

Table 1 272 

Estimated bass model parameters for organizational innovation adoption 273 

Technology Category CoN (p) CoM (q) Adj. R2 

Trailer Aerodynamics 0.0043 0.1927 0.951 

Idle Reduction 0.0122 0.0984 0.875 

Chassis 0.0000 0.1300 0.889 

Tires/Wheels 0.0038 0.1605 0.931 

Powertrain 0.0167 0.0927 0.929 

Tractor Aerodynamics 0.0713 0.0996 0.847 

Practices 0.0000 0.1084 0.834 

Average: 0.0155 0.1261 0.894 

 274 

While not a perfect fit, an R2 value that is greater than 0.75 is reasonable for the number of data 275 

points available. Interestingly, the chassis and practices categories have a value of 0 for CoN. This 276 

could be due to these innovations appearing as undesirable to organizations for economic, political, 277 

or social reasons. The reason that the innovation curves in Figure 3 do not represent the classic S-278 

curve expected by the Bass model is due to the small sample size. Each of these innovations’ 279 

market penetration rate is slow enough that it does not reach the critical points of the Bass model 280 

within the study period. However, if the CoN and CoM values that were estimated by the 281 

regression model are plotted next to the innovations, the estimated market penetration rate and the 282 

actual market penetration rate line up remarkably well. 283 

Now that a baseline for organizational adoption parameters has been established, we 284 

examine individual adoption parameters for the sake of comparison. Table 2 shows Bass model 285 

parameters for individual innovation adoption from other selected studies (Dodds, 1973; Jensen et 286 

al., 2016; Lavasani et al., 2016; Massiani and Gohs, 2015; McManus and Senter Jr, 2009; Van den 287 

Bulte and Lilien, 1997). 288 

 289 

Table 2 290 

Bass model parameters for individual innovation adoption from selected studies 291 

Innovation CoN 

(p) 

CoM 

(q) 

Reference 

Internet  0.0067 0.3906 (Lavasani et al., 2016) 

Cellphone 0.0017 0.2644 (Lavasani et al., 2016) 

Electric Vehicles 0.0019 1.2513 (Massiani and Gohs, 2015) 

Electric Vehicles 0.0020 0.2300 (Jensen et al., 2016) 

Electric Vehicles 0.0026 0.7090 (McManus and Senter Jr, 2009) 

Air Conditioner 0.0127 0.0462 (Van den Bulte and Lilien, 1997) 

Color T.V. 0.0054 0.8369 (Dodds, 1973) 
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 292 

 When compared to individual adoption parameter values, the CoN values for organizations 293 

are much larger, with the exception of the Chassis and Practices categories in Table 1. Conversely, 294 

the CoM value for individual adoption plays a larger role in the adoption rate than in organizational 295 

adoption. This indicates that organizations are more independent than individuals, and that the 296 

actions of one organization have less effect on other organizations than would be seen in individual 297 

adoption. This analysis is compatible with findings of other researchers studied organizational 298 

innovation adoption (Pierce and Delbecq, 1977). It is also intuitive that organizations would be 299 

less reliant on imitating other organizations, because most organizations are competing with one 300 

another, and they do not directly communicate as frequently as individuals. Further, organizational 301 

adoption lacks some of the social influences that contribute to individual adoption, such as peer 302 

pressure. Therefore, an innovation that provides a relative advantage over current practices will 303 

more likely be adopted based on its own merit rather than because of outside pressures. 304 

It is reasonable to assume that the trend of higher CoN and lower CoM values for 305 

organizational adoption will also be true for CATs. Lavasani et al. generated the following 306 

estimations for the Bass model parameters for individual CAV adoption: 0.001 for CoN, 0.3419 307 

for CoM (Lavasani et al., 2016). These values are more conservative than the average values for 308 

other individual innovations seen in Table 2. This is reasonable because autonomous technology 309 

is revolutionary enough to warrant caution from new adopters (Bansal et al., 2016; Bansal and 310 

Kockelman, 2017; Fagnant and Kockelman, 2015; Lavasani et al., 2016), although some have 311 

argued that organizations may be more likely to adopt CATs for economic reasons (Wadud, 2017). 312 

However, most research on the subject suggest that organizations are likely to be conservative 313 

concerning autonomous technology for a number of reasons, and so the range of values for CoN 314 

and CoM selected for this study reflect this (Bansal et al., 2016; Bansal and Kockelman, 2017; 315 

Fagnant and Kockelman, 2015; Kockelman et al., 2017; Lavasani et al., 2016; Wadud, 2017).  316 

 Based on the comparison of organizational and individual innovation adoption behaviors 317 

and the estimated parameters for individual CAV adoption, the CoN values selected for small, 318 

medium-sized, and large organizations are 0.005, 0.008, and 0.01, respectively. These values are 319 

also slightly more conservative than the values reported for most other organizational innovations 320 

such as trailer aerodynamics and powertrain, but still fall within the range of reasonable values for 321 

organizational innovations. Selected CoM values are 0.08, 0.09, and 0.1 for small, medium-sized, 322 

and large organizations, all of which are conservative without deviating from the established range 323 

of values.  324 

 325 

4. Results 326 

To estimate the market penetration of CATs for all freight organizations in Shelby County, 327 

organizational data including number of employees, organization type, and sales volume is 328 

required. This dataset was obtained from InfoUSA. Each location is considered to be a unique firm 329 

within the dataset. Most organizations are located near major cities, with clusters around Memphis, 330 

Nashville, Chattanooga, Knoxville, and Johnson City. This study uses the data from Memphis and 331 

Shelby County for analysis, as Shelby County is both the most populous county in Tennessee and 332 

Cable T.V. 0.0089 0.4428 (Dodds, 1973) 

Average: 0.0052 0.5214  
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a major center for both ground and air transportation.1 This dataset contains 1,519 organizations 333 

in industries such as trucking, freight transportation and consolidation, and moving agencies.  334 

The K-Means clustering method is used to categorize the organizations into small, 335 

medium-sized, and large groups. The K-Means clustering approach is employed as it groups 336 

the observation systematically and thus arbitrary cutoff points are avoided. Organizations 337 

with less than 85 employees per location are considered to be small, medium-sized organizations 338 

employ between 86-500 people, and large organizations contain over 500 employees. 339 

Organizations with 10 or fewer employees per location are the most common, and roughly 94% 340 

of all organizations within Shelby County qualify as small organizations. 341 

 The total fleet size of each organization is estimated based on the average yearly revenue 342 

of the organization. For-hire carriers have an average yearly revenue of roughly $200,000 per 343 

truck, where owner-operators average closer to $175,000 per truck (DAT, 3/13). Because 344 

information regarding the type of freight organization is not available, an average of $187,500 345 

yearly revenue per truck is used to determine the fleet size of the organizations. Based on this 346 

estimate, Figure 4 shows a logarithmic histogram of the estimated fleet size of each organization 347 

in the data set. 348 

 349 

 350 
Fig. 4. Histogram of fleet size by freight organizations in Shelby County   351 

   352 

The Bass model parameters are then applied to the data for Shelby County organizations. 353 

1,519 organizations are included in the Shelby County dataset, so the m Bass model parameter is 354 

set to 1,519. Based on the assumed fleet size by organizational size and revenue, the actual market 355 

penetration of CATs is estimated. The total assumed fleet size is equal to 21,000 trucks. Figure 5 356 

shows the CAT adoption curve for Shelby County dataset using the estimated CoN and CoM 357 

values with no external influencing variables, and Figure 6 shows the adoption curve of CATs by 358 

freight organizations given the result demonstrated in Figure 5. 359 

 360 

 
1 According to the 2002 vehicle inventory and use survey (Census, 2004), Tennessee had, in total, roughly 2 
million trucks, of which about 5% were heavier duty trucks. The distribution of trucks for the entire United 
States was 93.5% light and 6.5% heavier, so Tennessee is lower to the national average. (The vehicle inventory 
and use survey does not disaggregate the data further into counties.) Considering the highly active role of 
Shelby County in the state’s freight transportation system, we expect that this study’s results can offer some 
insights into CAT adoption at greater levels (e.g., state level).   
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 361 
Fig. 5. Total number of Shelby County firms adopting CATs with time 362 

 363 

 364 
Fig. 6. Total number of active autonomous vehicles over time 365 

 366 

Due to the uncertainty caused by the assumptions made in developing the model, as well 367 

as the inherent difficulty in predicting how organizations will behave in the more distant future, 368 

the model only considers the first 25 years after CATs become commercially available. The figure 369 

illustrates a very slow adoption curve, indicating that without any changes to autonomous 370 

technology after the initial introduction of CATs, organizations will be very slow to incorporate 371 

the technology. While the Bass model would indicate that eventually all of the organizations would 372 

adopt CATs, a curve as slow as the one demonstrated by Figures 5 and 6 would likely indicate a 373 

failure for CATs to reach the critical mass required for widespread adoption. This may not 374 

necessarily be the case, however, as Figure 3 indicates that very slow market penetration rates are 375 

not uncommon for freight innovations. 376 
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The estimation comes from a Monte Carlo simulation with 100 iterations. To ensure that 377 

there is no statistically significant difference between the results of each iteration, an ANOVA test 378 

is performed on the data. The results of the ANOVA test are described in Table 3. 379 

 380 

Table 3 381 

ANOVA test on the output of the Monte Carlo simulation 382 

Source of Variation SS df MS F P-value F crit 

Between Groups 1.87E+09 99 18930845 0.369233 0.9999 1.246962 

Within Groups 3.69E+11 7200 51270742    

       

Total 3.71E+11 7299         

 383 

The test fails to reject the null hypothesis that there is no significant difference between the results 384 

of the model to a confidence interval of greater than 99.9%. Therefore, it is reasonable to conclude 385 

that the model provides stable results. 386 

The estimated organizational CAT adoption relies on a number of variables, most of which 387 

are inferred from other innovations or estimated by other means. Because it is possible that the 388 

base scenario has overestimated or underestimated the values of the Bass parameters, a sensitivity 389 

analysis is performed for the values of CoN and CoM. Another strong limitation of Bass model is 390 

that it is not explicitly policy responsive. This sensitivity analysis also intends to address this 391 

limitation implicitly by associating different values of CoN and CoM parameters to changes in 392 

policy, infrastructure, or public opinion. Table 4 describes six possible scenarios that might alter 393 

the estimated Bass parameters, and Table 5 shows the altered values of CoN and CoM selected for 394 

the scenarios. 395 

 396 

Table 4 397 

Description of six potential adoption scenarios 398 

Scenario Description 

Scenario 

1 

A number of accidents cause Organizations to have less faith in CAT technology 

Scenario 

2 

CATs are not as economically viable as anticipated, and a number of problems 

with CAT technology are not sufficiently resolved 

Scenario 

3 

The financial benefits of operating CATs are not high enough to give an adopting 

organization a substantial competitive edge 

Scenario 

4 

CAT technology is responsible for preventing a number of crashes, which reduces 

the perceived risk of the technology 

Scenario 

5 

CATs provide substantial economic benefits and perform better than standard 

trucks in most situations 

Scenario 

6 

The advantages of using CATs are such that non-adopters have a difficult time 

staying competitive with adopters 

 399 

Table 5  400 

Original and altered values of variables used in sensitivity analysis 401 

Scenario Organization size CoN CoM 
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Base 

Small 0.005 0.08 

Medium 0.008 0.09 

Large  0.010 0.10 

Scenario 1 

Small 0.003 0.08 

Medium 0.006 0.09 

Large 0.008 0.10 

Scenario 2 

Small 0.003 0.07 

Medium 0.006 0.08 

Large 0.008 0.09 

 Small 0.005 0.07 

Scenario 3 Medium 0.008 0.08 

 Large 0.010 0.09 

 Small 0.007 0.08 

Scenario 4 Medium 0.010 0.09 

 Large 0.012 0.10 

 Small 0.007 0.09 

Scenario 5 Medium 0.010 0.10 

 Large 0.012 0.11 

 Small 0.005 0.09 

Scenario 6 Medium 0.008 0.10 

 Large 0.010 0.11 

 402 

 Each of the values in Table 5 represents a potential scenario for organizational CAT 403 

adoption. If CATs receive negative publicity, drivers resist CATs, or if infrastructure/legislation 404 

prevent the rapid adoption of CATs, then the more conservative values represented by Scenarios 405 

1-3 may be accurate. Conversely, if legislation promotes the adoption of CATs, or if autonomous 406 

vehicles receive positive publicity due to a reduction in crashes or an increase in fuel efficiency, 407 

the adoption rates may align more closely with the more optimistic values in Scenarios 4-6. Figure 408 

7 demonstrates the results of the potential adoption scenarios. 409 

  410 
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 411 
Fig. 7. Output for base model and 6 alternative scenarios 412 

 413 

 Varying the CoN value has a much more substantial impact on the adoption rate than the 414 

CoM parameter. This is reasonable because the model is only considering the first 25 years of 415 

potential adoption, and reducing or increasing the CoN value has a greater impact on the initial 416 

adoption rate than CoM, since CoM is multiplied by the fraction of previous adopters. In addition, 417 

increasing initial adoption causes critical mass to be reached earlier, and this results in a faster 418 

overall market penetration rate. Similarly, reducing initial adoption pushes critical mass farther 419 

down the timeline and slows the adoption rate (Mahajan et al., 1995).  420 

 It is worth noting that these models do not account for the fact that CATs are likely to 421 

change over time, becoming more cost-efficient and attractive to the potential adopter with each 422 

new generation of CAT technology (Chottani et al., 2018). The average lifespan of a traditional 423 

truck is between 5 and 6 years (Wadud, 2017), and it is possible that the CAT technology may 424 

improve faster than the average truck lifespan. Therefore, to estimate the potential effects of 425 

improvements in technology over successive generations, the CoN and CoM of the base scenario 426 

are multiplied by an Improvement Factor “I” at intervals of 3 years and 5 years. These results are 427 

shown in Figures 8 and 9. 428 
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  429 
Fig. 8. Adoption of CATs assuming new generations of CATs are developed every 3 years 430 

 431 

 432 
Fig. 9. Adoption of CATs assuming new generations of CATs are developed every 5 years 433 

 434 

 Adding the consideration that CAT technology will improve over multiple generations 435 

generates a much steeper adoption curve. It is, of course, impossible to know exactly how quickly 436 

and to what degree CAT technology will evolve, but it is reasonable to assume that because of the 437 

public interest and economic benefits of CATs, the technology will be advanced quite rapidly.  438 

 Finally, all models demonstrated up to this point do not consider the impact of the external 439 

influencing variables accounted for in the Generalized Bass Model shown in equation 3. Because 440 

no data exists to validate any supposed values for 𝑋𝑖 and 𝛽𝑖, the base model does not include the 441 

impact of these variables. However, three scenarios were tested under multiple potential values of 442 

𝛽𝑖, where the effect of a single variable and coefficient on the model can be observed. While there 443 

is no theoretical limit to the value of ∑ 𝛽𝑖𝑋𝑖, the value tends to be small - rarely exceeding a range 444 

between 0.4 and -0.4. This is intuitive because values greater than this would mean that the external 445 
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influencing factors would have a greater effect on adoption behavior than the CoN and CoM. 446 

Therefore, the 𝛽𝑖 values tested are between 0.1 and 0.4, and the first scenario assumes that the 447 

value of the external variable for each organization is positive between 0 and 1, the second scenario 448 

assumes that the value is negative between -1 and 0, and the final scenario assumes that the value 449 

can be either positive or negative between -1 and 1. The value of the external influencing variable 450 

is randomly distributed between the ranges described in the three scenarios. Although in reality, 451 

these variables are likely to not be randomly distributed among organizations, this hypothetical 452 

example is sufficient to demonstrate the effect that these variables may have on the adoption rate 453 

of innovations. The results of these three scenarios are shown in Figures 10-12. 454 

 455 

 456 
Fig. 10. Adoption of CATs when 𝑋𝑖 is between 0 and 1 457 

 458 

 459 
Fig. 11. Adoption of CATs when 𝑋𝑖 is between -1 and 0 460 
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 462 
Fig. 12. Adoption of CATs when 𝑋𝑖 is between -1 and 1 463 

 464 

 Interestingly, the estimated adoption rate when the external variables are allowed to be 465 

either positive or negative always fall below the base scenario adoption rate. Since the variables 466 

for each organization are randomly distributed between -1 and 1, there should be a perfect balance 467 

between organizations that are more inclined to adopt and those that are less inclined to adopt 468 

based on these variables. Because the overall adoption rate still falls below the base case, it is 469 

reasonable to state that negative external influencing variables have a greater impact on the 470 

aggregate adoption rate than positive variables, holding all else equal. This is further supported by 471 

the increased gap between the base case and the alternate scenarios in Figure 11 when compared 472 

to Figure 10. The positive valued variables have less of an effect on adoption rate than the negative 473 

valued variables. 474 

 475 

5. Conclusions and future work 476 

 This study investigates the market penetration patterns of CATs in freight transportation 477 

organizations. An accurate projection of the adoption rate of CATs is critical to manufacturers and 478 

policy makers because it will allow them to prepare for and manage the new technologies and 479 

infrastructure changes that will accompany the introduction of CATs to freight transportation. This 480 

paper provides several contributions to the literature. First and foremost, it provides a model 481 

framework for estimating the market penetration rate of CATs by freight organizations, given that 482 

the appropriate data is provided. Second, it demonstrates the need for further research into 483 

organizational innovation adoption behavior, particularly in the case of CAT adoption. And finally, 484 

it introduces heterogeneity into the typically homogenous Bass model, allowing for organizational 485 

characteristics to play a role in the estimation process. This also allows for easy conversion from 486 

an aggregate to a disaggregate model once sufficient data is produced.  487 

The projected market penetration rate is generated by examining the Bass model 488 

parameters of several other innovations, both individually and organizationally adopted. 489 

Organizational innovations provide a baseline for how freight organizations are likely to respond 490 

to an innovation, and individually adopted innovations are compared to the estimated market 491 

penetration rate of individually adopted CAVs to estimate the relationship between CATs and 492 
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other innovations. From these observations, an estimated range of Bass model parameter values is 493 

generated for freight organizations adopting CATs. Data on organizations within Shelby County 494 

is gathered, and organizations are assigned Bass model parameter values based on the number of 495 

employees at the organization. It should be stressed that these values are strictly estimates based 496 

on existing information about organizational adoption behavior and predictions of CAT 497 

characteristics. 498 

The base model is then compared to a variety of scenarios to determine how the 499 

components of the Generalized Bass Model interact with each other. This sensitivity analysis 500 

demonstrates that variations in the CoN tends to have a greater impact on adoption rate than CoM, 501 

and that rapid iteration on CAT technology may have a substantial impact on the adoption rate. 502 

Further, negative external influencing factors such as high price or low willingness to pay will 503 

likely have a greater impact on the adoption rate than positive influencing factors of equal weight. 504 

While it is difficult to discuss specific results due to the number of assumptions that must 505 

be made to account for the data that does not exist, a number of insights can still be gleaned from 506 

this study. First and foremost, if autonomous technology does not significantly improve over time 507 

from its initial launch, we can expect a very slow adoption of CATs, and possibly even an eventual 508 

failure of the technology to become widely adopted. However, if the technology rapidly improves 509 

and becomes viewed as both safe and advantageous, it is possible that widespread adoption may 510 

occur in as little as 20 years. We also see that negative publicity and performance will likely have 511 

a greater impact on market penetration rates than positive publicity/performance.  512 

While there are a number of contributions provided by this study, there are several key 513 

limitations which must be addressed. The greatest limitation of this study stems from the lack of 514 

data surrounding both CATs and organizational innovation adoption. This study provides a 515 

foundation for future studies by developing and exploring the limits of the Generalized Bass Model 516 

for organizational innovation adoption, but further research is clearly still needed in this field. The 517 

results of this study are based upon numerous assumptions of business practices, and while there 518 

is sufficient backing in the literature for these assumptions, true behavior can only be captured 519 

through a stakeholder survey. Therefore, future work will include designing a survey to be 520 

distributed to freight stakeholders to determine more accurate business practices for the model. 521 

Further research is also needed in the area of transferability of results. In general, behavioral 522 

(disaggregate) models are more transferable, compared to aggregate models. An aggregate model 523 

may not be used somewhere else to predict CAT adoption unless there are strong similarities 524 

among the regions of interest. A disaggregate model, on the other hand, can more transferable if it 525 

accounts for various determinants of adoption decision. In this paper, we propose a disaggregate 526 

Bass-based diffusion model that uses synthetic coefficients; we speculate that the results could be 527 

transferable both spatially and temporally. Nonetheless, further research is warranted to shed light 528 

on international/interregional organizational adoption behavior.  529 

This study includes some limited heterogeneity into the model by assigning different Bass 530 

parameter values to organizations based on their size. However, while size is generally considered 531 

to be a reasonable indicator of an organization’s ability to adopt innovations, there are certainly 532 

additional variables which will have a significant impact on the adoption decision, including 533 

organizational structure, corporate culture, and managerial support. Due to the lack of data on these 534 

variables, as well as their somewhat nebulous and qualitative nature, this study only considered 535 

organizational size. However, future studies should attempt to include additional characteristics of 536 

the adopting organizations into their models. Future studies may also wish to include a method to 537 

add organizations over time, as the current methodology does not allow for the market potential or 538 
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the total fleet size to change over time. The impact of organizational size may also be further 539 

explored, as it is likely that larger organizations have a greater impact on the behavior of small 540 

organizations. 541 

It should also be mentioned that, due to the absence of a more rigorous method of 542 

estimating CoN and CoM values for an innovation which has not yet been adopted, the actual 543 

results produced by the model contained in this paper should only be considered as estimations to 544 

be further refined once sufficient data has been gathered. The greater contribution of this study is 545 

the framework of the model and the sensitivity analysis of the various parts that form the model. 546 

Future work in this field should seek better data and estimation methods to form a more robust 547 

prediction of future adoption rate.  548 

One criticism of the Bass model is that it assumes that the innovation in question will 549 

succeed, given enough time; there is no mechanism inherent in the model that allows for innovation 550 

failure (Przybyla et al., 2014; Ram, 1987). Innovations can fail for a number of reasons: the 551 

innovation may not provide sufficient advantage over current systems, it may never reach the point 552 

of “critical mass” where the CoM becomes the dominant factor in adoption, other innovations may 553 

supplant the original innovation before widespread adoption can occur, or adopters may grow 554 

dissatisfied with the innovation and choose to reject it at a later time (Przybyla et al., 2014; Ram, 555 

1987; Rogers, 2003). Other methodologies such as Agent-Based modelling may be more suited to 556 

accounting for the possibility of adoption failure in future work (Przybyla et al., 2014). 557 

 558 
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