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1. Introduction 29 
 30 
Decision for roadway transportation network investments either for improvement (capacity or operational) 31 
or maintenance are needed on a regular basis to ensure that travel demand is satisfied within acceptable 32 
congestion levels and safety. Planning for such improvements requires a strategic approach that considers 33 
budget availability and policy limitations over a period of multiple years, while at the same time accounting 34 
for network utilization changes by the users (due to the investment, land use changes, and population 35 
growth). Even though developing and adopting a multi-period network improvements plan is a preferred 36 
strategy, when compared to single year planning, the literature suggests that multi-period network 37 
investment research is limited (Ukkusuri and Patil 2009; Wei and Schonfeld 1994).  38 

The roadway transportation network investment problem is typically formulated as a network 39 
design problem (NDP see Johnson et al., 1978). Depending on the definition of the decision variables the 40 
NDP can be classified as: (i)  continuous or CNDP (Suwansirikul et al. 1987), (ii) discrete or DNDP (Chang 41 
and Chang 1993; Farvaresh and Sepehri 2012; Haas and Bekhor 2016; Lou et al. 2009; Mishra et al. 2014a, 42 
2015; Miandoabchi and Farahani 2011; Wang et al. 2015, 2013; Welch and Mishra 2014), or (iii) mixed 43 
(MNDP) network design problem (Yang and Bell 1998). NDP is typically formulated as a bi-level problem 44 
where: (i) the upper-level problem determines the network improvements decision, and (ii) the lower-level 45 
problem determines the travel pattern of the network users. This bi-level structure and computational 46 
complexity of the lower-level result in the NDP being one of the most challenging problems in 47 
transportation investment (Allende and Still 2012; Chen and Chen 2013; Colson et al. 2005; Fontaine and 48 
Minner 2014; Zhang and Gao 2009). 49 

Formulating the NDP is easy but solving it is computationally challenging. As a result, public 50 
agencies seldom use it as a decision-making tool while at the same time limited literature has been published 51 
for cases of medium to large-scale transportation networks with single- or multi-period planning (Mathew 52 
and Sharma 2009; Wei and Schonfeld 1994). To address these issues, this research proposes an alternative 53 
approach and has the following contributions. First, we extend the single year NDP approach proposed by 54 
Wang et al. (2013) to a multi-period NDP (MPNDP) and present patterns of network investment (i.e., 55 
network size, planning period, budget, and demand) for several test and real-world networks. Second, we 56 
develop, calibrate, and evaluate a Multi-Period Econometric Network Investment Model (MENIM) that 57 
can be used as a surrogate to the NDP with comparable accuracy but slightly higher computational 58 
efficiency. 59 

The remainder of the paper is organized as follows. A summary of the published literature on 60 
DNDP and MPNDP is presented in Section 2. Section 3 presents the methodology for MPNDP. Section 4 61 
discusses the results from an application of MPNDP and their effects on policy analysis. The fifth section 62 
presents the econometric framework, calibration, and validation of the MENIM model. Policy implications, 63 
conclusions and future research are presented in the final section.  64 

 65 
2. Literature Review 66 
 67 
In this section, a brief review of the DNDP and MPNDP literature is presented to provide the foundation to 68 
understand the models and formulations proposed in this research. Since DNDP is considered in this 69 
research, the various formulations and solutions related to DNDP are thoroughly discussed.  70 
 71 
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2.1 Discrete Network Design problems 72 

2.1.1 Bi-level formulations  73 

One of the first efficient approaches to formulate the DNDP was proposed by LeBlanc et al. (1975) as a bi-74 
level programming model in which the upper-level minimized the total system cost subject to investments 75 
on links, while the lower-level solved a User-Equilibrium (UE) problem with fixed demand. A branch-and-76 
bound (B&B) algorithm was proposed to solve the resulting problem and a lower bound for the branch was 77 
derived by requiring the travelers’ route choice behavior to follow the system optimal (SO) principle instead 78 
of UE principle (Wang et al. 2013). The algorithm was relatively inefficient because the lower bounds were 79 
relatively loose. A revised B&B algorithm was developed based on LeBlanc (1975) (Farvaresh and Sepehri 80 
2012). The revised algorithm coped with explicit or implicit path enumeration, the link-node network 81 
representation with multicommodity flows and found a global optimal solution for DNDP while guarding 82 
against Braess’ paradox. 83 

Another discrete network design problem (DNDP) was proposed by (Chen and Chen 2013) where 84 
the variables were defined as a series of integers rather than binary 0 and 1. A solution algorithm was 85 
designed combining a B&B with the Hooke-Jeeves algorithm (Hooke and Jeeves, 1961). The algorithm 86 
was inefficient with respect to computational time and provided only local optimal solutions. (Chen et al. 87 
2015) proposed a bilevel mixed NDP where the upper-level minimized the average travel time while the 88 
lower-level solved a dynamic user-optimal condition (formulated as a variational inequality problem). A 89 
surrogate-based optimization framework was proposed for solving the problem that produces 90 
computational time savings by exploring the input–output mapping surface in a more systematic and 91 
efficient way. (Gao et al. 2005) introduced a traditional bi-level programming model for the DNDP and 92 
then proposed a new solution algorithm by using the support function concept to express the relationship 93 
between improvement flows and the new additional links in the existing urban network. 94 

 95 
2.1.2 Single-Level formulations 96 

In another study, a single-level mixed integer linear programming (SL-MILP) formulation was presented 97 
for the bi-level DNDP by appropriately modifying the travel time function (Farvaresh and Sepehri 2011). 98 
The nonlinearity of the travel time function was removed by means of a convex-combination based linear 99 
approximation which takes advantage of a unimodular structure. The authors presented the Karush–Kuhn–100 
Tucker (KKT) conditions in the lower-level problem for the optimality of link flows. This formulation was 101 
able to provide the optimal solution for small size problems, but it could not be applied to medium to large 102 
scale due to computational limitations. (Zhang et al. 2014) formulated NDP as a single-level problem with 103 
transit routes explicitly modeled by introducing a set of complementarity constraints (MPCC). An active-104 
set algorithm was employed to solve the problem but was limited to small scale networks. (Fontaine and 105 
Minner. 2014) reformulated the NDP problem into a single-level by replacing the lower-level with its 106 
Karush-Kuhn Tucker conditions. The resulting non-linear model was linearized and solved by a Benders 107 
Decomposition algorithm to global optimality. The application was limited to small scale networks. 108 

In another study, the CNDP and DNDP were formulated as a single-level optimization problem 109 
with equilibrium constraints (Wang and Lo, 2010). The authors transformed the equilibrium constraints 110 
into a set of mixed-integer constraints and linearize the travel time function. The integer variables 111 
correspond to the whether a link gets added capacity. (Luathep et al. 2011) formulated the mixed NDP as a 112 
single-level optimization problem with variational inequality constraints representing the UE condition. 113 
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The variational inequality constraints were needed to be satisfied for all feasible link flows.  The MNDP is 114 
transformed into a mixed-integer linear programming (MILP) problem which was solved using a global 115 
optimization algorithm based on a cutting constraint method. 116 

 117 
2.1.3 Other formulations 118 
(Lou et al. 2009) proposed a DNDP formulation under demand uncertainty and a cutting plane scheme 119 
algorithm was proposed to solve the resulting problem. The algorithm could converge to the global 120 
optimum but only under certain condition that the relaxed robust discrete network design be solved globally 121 
using subset demand and worst-case demand problem be solved globally using capacity expansion. The 122 
proposed algorithm could not handle real life size problems. (Wang et al. 2015) proposed a novel DNDP 123 
formulation to determine optimal new link additions and optimal capacity simultaneously. A global 124 
optimization solution algorithm, called range reduction technique was proposed that includes linearization 125 
and outer approximations. In another study, a mixed NDP was formulated where the lower-level is a 126 
standard UE problem (Zhang and Gao 2009) and a locally convergent algorithm is proposed to solve the 127 
problem by applying penalty function method. 128 

Other approaches for solving the DNDP in the literature include heuristic approach given by 129 
(Chang and Chang 1993; Haas and Bekhor 2016), genetic algorithms for solving the DNDP (Kim et al. 130 
2007) and also particle swarm optimization for solving the DNDP of freight transportation (Yamada and 131 
Febri 2015). 132 

 133 
2.2 Multi-period Network Design Problems 134 

Research on the multi-period network investment decision making is limited. A multi-period NDP for the 135 
dynamic investment problem was developed (Wei and Schonfeld 1994) and a B&B algorithm was used to 136 
determine the optimal solution. In another study, a multi time period flexible network design problem was 137 
developed considering both demand uncertainty and demand elasticity (Ukkusuri and Patil 2009). This 138 
formulation relaxed the flexibility to make future network investment. The problem was formulated as a 139 
bilevel stochastic mathematical programming with complementarity constraints (STOCH-MPEC) in which 140 
the bi-level formulation is converted to a single-level using non-linear complementarity constraint 141 
conditions for the UE problem. Sun et al. (2011) explored the multi-period network design problem and 142 
proposed a bi-level programming model with uncertain demand where the upper-level maximized the 143 
consumer surplus with budget constraint. Moreover, there are various studies conducted in context of multi-144 
period such as multi-period discrete facility location problem considering both transportation and location 145 
costs (Albareda-Sambola et al. 2012) and also in reverse logistics network design problem considering 146 
multi-period presenting a mixed integer programming formulation (Alumur et al. 2012). Finally, a multi-147 
period multi-path refueling location model was developed to dynamically satisfy origin-destination trips 148 
(Li et al. 2016). It was formulated as mixed integer linear program and solved by heuristic based genetic 149 
algorithm. 150 
 151 
2.3 Literature Gap 152 

The review of the literature suggests that most published studies have focused on solving the single year 153 
DNDP or CNDP with little research focusing on multi-period network investments decision ((Lai and Shih 154 
(2013); Barmann et al. (2017); Kalinowski et al. (2015); Kumar and Mishra (2018); Mishra et al. (2016); 155 
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Ngo et al. (2020); Petersen and Taylor (2001); Hooghiemstra et al. (1999); Welch and Mishra (2014b); 156 
Sharma and Mishra (2013)). Several researchers reformulated the bi-level problem into a single-level using 157 
the lower-level’s optimality conditions (e.g., KKT) but were not able to find the global optimal solution for 158 
medium to large scale problem instances. In this research, we propose a new modeling framework for the 159 
network design problem that combines the existing bilevel formulation with an econometric model. The 160 
proposed framework is applied to a multi-year network investment decision making problem. The proposed 161 
approach can be used as an alternative to the NDP for network improvement resource allocation as it 162 
identifies the relationship between network supply and demand with acceptable accuracy and reduced 163 
computational complexity. Using econometric modeling as opposed to hierarchical programming for 164 
network design problems significantly reduces the effort and expertise required by the transportation 165 
planner/engineer once the econometric model has been trained.   166 

In this paper, we present the formulation of the bilevel DNDP proposed by Wang et al. (2013) 167 
which is extended to MPNDP using SO relaxation and it is tested on networks of various sizes. Then an 168 
alternative approach is developed using multinomial framework (MENIM) for evaluating allocation 169 
potentials of large-scale networks and identifying potential benefits and limitations of such an approach 170 
over MPNDP. 171 
 172 
3. Problem Formulation (MPNDP) 173 
 174 
In any given transportation network with a given set of link improvements, the MPNDP can be defined as 175 
the problem of finding the combination of link improvements during a predefined time-period that 176 
minimizes the total system travel time subject to several constraints. The MPNDP has three important 177 
features: a) link expansion or improvements can only be completed using the budget allocated for that time-178 
period, and the remaining portion of the budget can be rolled over into succeeding periods, b) continuation 179 
of link improvements into successive periods is preserved, that is, the link improvements in one-period is 180 
carried over to the next period for improvements, and c) link improvement benefits continue in the 181 
subsequent time periods. 182 

The MPNDP with multiple capacity levels is originally formulated as a bilevel programming model 183 
where at the upper-level problem the decision maker determines the link improvements that will minimize 184 
the Total System Travel Time (TSTT) within a prespecified budget. At the lower-level problem user 185 
behavior is replicated through a UE traffic assignment problem. In this problem formulation, it is assumed 186 
that demand and budget are constant for each period and the only link improvement available is a one or 187 
two-lane additions. The nomenclature used in this research was adopted from Wang et al. (2013) and is 188 
modified for the multi-period mathematical formulation of the MPNDP model and is presented next. 189 

 190 
Sets 

𝐴𝐴 = Set of links 
𝑁𝑁 = Set of nodes 

𝐿𝐿 ⊆ 𝐴𝐴 = Set of candidate links with improvements 
I = {0, 1, 2} = Set of number of lanes to be added  

𝑂𝑂𝑝𝑝 = Set of Origin-Destination (O-D) pairs in period p 
𝑃𝑃 = Set of years in the planning period (𝑃𝑃 = {1, 2, … .𝑝𝑝}) 

   
Parameters 
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𝐵𝐵𝑝𝑝 = Budget for improvements in period p; 
𝑑𝑑𝑎𝑎 = $1 million/mile, incremental cost of adding one lane, 𝑎𝑎 ∈ 𝐿𝐿; 
𝑙𝑙𝑎𝑎 = Length of link a, 𝑎𝑎 ∈ 𝐴𝐴; 
𝐶𝐶𝑎𝑎 = Initial capacity of link a, 𝑎𝑎 ∈ 𝐴𝐴; 

𝛼𝛼𝑎𝑎 ,𝛽𝛽𝑎𝑎 = Parameters of travel time function on link a, 𝑎𝑎 ∈ 𝐴𝐴; 
∆𝐶𝐶𝑎𝑎 = Additional capacity on link a, 𝑎𝑎 ∈ 𝐿𝐿; 
𝑡𝑡𝑎𝑎 = Free flow travel time on link a; 
𝑞𝑞𝑜𝑜𝑝𝑝  = Trip rate between O-D pair o in period p; 
𝜇𝜇 = Parameter excluding first set of solution (= 2) 

   
Decision Variables 

𝑥𝑥𝑎𝑎𝑝𝑝  =  𝑓𝑓𝑙𝑙𝑓𝑓𝑓𝑓 𝑓𝑓𝑜𝑜 𝑙𝑙𝑙𝑙𝑜𝑜𝑙𝑙 𝑎𝑎 ∈ 𝐴𝐴 𝑎𝑎𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑓𝑓𝑑𝑑 𝑝𝑝 ∈ 𝑃𝑃 (lower-level decision variable) 
𝑣𝑣𝑎𝑎𝑝𝑝 
𝑖𝑖  = 1 if link 𝑎𝑎 ∈ 𝐴𝐴 is improved in period 𝑝𝑝 ∈ 𝑃𝑃 with the addition of 𝑙𝑙 ∈ 𝐼𝐼 lanes and zero 

otherwise (upper-level decision variable) 
 191 
Auxiliary Variables 192 

𝑡𝑡𝑎𝑎𝑝𝑝 �𝑥𝑥𝑎𝑎𝑝𝑝 � = Travel time on link a (Bureau of Public Roads (BPR) function) in period p 
𝜋𝜋𝑎𝑎 = Improvements cost of link a, 
𝑈𝑈𝑝𝑝 = Unspent budget in period p, 𝑝𝑝 ∈ 𝑃𝑃 ∪ {0},𝑈𝑈0 = 0; 
𝐶𝐶𝑎𝑎𝑝𝑝  = Capacity of link a in period p, 𝑎𝑎 ∈ 𝐴𝐴; 

 193 
Explicit Sets, Parameters and Variables 194 

𝐹𝐹𝑈𝑈 = Objective function of MPNDP 
𝐹𝐹𝐿𝐿 = User Equilibrium Objective function 
𝑓𝑓𝑘𝑘𝑝𝑝 
𝑜𝑜  = Flow on path k connecting O-D pair o in period p; 

𝛿𝛿𝑎𝑎𝑘𝑘𝑝𝑝 
𝑜𝑜  = 1 if link a is on path 𝑙𝑙 between O-D pair o in period p and 0 otherwise 
𝐾𝐾𝑜𝑜𝑝𝑝  = Set of paths connecting O-D pair 𝑓𝑓 ∈ 𝑂𝑂𝑝𝑝 in period p  

 195 
3.1 Extended Multi-Period NDP formulation Using SO Relaxation Method 196 

In general, it is very difficult to solve the bi-level NDP because the problem is non-convex and NP-197 
complete (Farvaresh and Sepehri 2011) and the relationship between UE link flow and upper-level decision 198 
variable(s) (in this case, the optimum number of lanes added to each link) is not explicitly defined. 199 
According to (Wang et al. 2013), if the users’ route choice decision follow the SO principle, then we would 200 
obtain a single optimization problem. Hence, the bilevel problem is relaxed and formulated into single-201 
level using a global optimization method called SO-relaxation. It exploits the property that a road network 202 
design decision under SO principle can be considered as a good approximate solution under UE principle.  203 

The solution approach consists of three main steps that involves solving the relaxed problem, 204 
solving the user equilibrium, and solving the relaxed problem excluding the generated solutions from the 205 
relaxed problem to get the second-best solution set. If the objective function of the relaxed problem (step 206 
1) is less than the objective function obtained in step 3, then the solution generated in step 1 is the optimal 207 
solution. 208 
 209 
Step 1: 210 
 211 
The relaxed multi-period problem (MPNDP) can be formulated as,  212 
 213 
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min
𝑣𝑣,𝑥𝑥

∑ ∑ ∑ 𝑥𝑥𝑎𝑎𝑝𝑝 
 𝑡𝑡𝑎𝑎𝑝𝑝 

 �𝑥𝑥𝑎𝑎𝑝𝑝 
 �𝑖𝑖∈𝐼𝐼𝑎𝑎∈𝐿𝐿𝑝𝑝∈𝑃𝑃                                                           (1) 214 

Subject to 215 
 216 

∑ ∑ [(𝜋𝜋𝑎𝑎 )] ≤ 𝐵𝐵𝑝𝑝𝑎𝑎∈𝐿𝐿𝑖𝑖∈𝐼𝐼 + 𝑈𝑈𝑝𝑝−1  ∀ 𝑝𝑝 ∈ 𝑃𝑃                                                         (2) 217 
 218 

∑ 𝑓𝑓𝑘𝑘𝑝𝑝 
𝑜𝑜

𝑘𝑘∈𝐾𝐾 =  𝑞𝑞𝑜𝑜𝑝𝑝   ∀ 𝑝𝑝 ∈ 𝑃𝑃, 𝑓𝑓 ∈ 𝑂𝑂𝑝𝑝                                                        (3) 219 
 220 

𝑥𝑥𝑎𝑎𝑝𝑝 
 = ∑ ∑ 𝛿𝛿𝑎𝑎𝑘𝑘𝑝𝑝 

𝑜𝑜 𝑓𝑓𝑘𝑘𝑝𝑝 
𝑜𝑜

𝑘𝑘∈𝐾𝐾𝑜𝑜∈𝑂𝑂    ∀ 𝑎𝑎 ∈ 𝐴𝐴,𝑝𝑝 ∈ 𝑃𝑃, 𝑓𝑓 ∈ 𝑂𝑂𝑝𝑝                                                        (4) 221 
 222 

∑ 𝑣𝑣𝑎𝑎𝑝𝑝 
𝑖𝑖

𝑖𝑖∈𝐼𝐼 = 1   ∀  𝑎𝑎 ∈ 𝐿𝐿,𝑝𝑝 ∈ 𝑃𝑃                                                        (5) 223 
 224 

∑ ∑ 𝑣𝑣𝑎𝑎𝑝𝑝 
𝑖𝑖

𝑖𝑖∈{1,2} 𝑝𝑝∈𝑃𝑃 ≤ 1   ∀ 𝑙𝑙 ∈ 𝐼𝐼,𝑎𝑎 ∈ 𝐿𝐿                                                        (6) 225 
 226 

𝐶𝐶𝑎𝑎𝑝𝑝 = 𝐶𝐶𝑎𝑎 + 𝑙𝑙. 𝑣𝑣𝑎𝑎𝑝𝑝 
𝑖𝑖 ∆𝐶𝐶𝑎𝑎  ∀ 𝑙𝑙 ∈ 𝐼𝐼,𝑎𝑎 ∈ 𝐿𝐿,𝑝𝑝 ∈ 𝑃𝑃                                                        (7) 227 

 228 
 𝑈𝑈𝑝𝑝 = 𝐵𝐵𝑝𝑝 + 𝑈𝑈𝑝𝑝−1 − ∑ ∑ [(𝜋𝜋𝑎𝑎 )]𝑎𝑎∈𝐿𝐿𝑖𝑖∈𝐼𝐼      ∀ 𝑝𝑝 ∈ 𝑃𝑃                                                      (8) 229 

 230 
𝑣𝑣𝑎𝑎𝑝𝑝 
𝑖𝑖 ∈ {0, 1}  ∀ 𝑙𝑙 ∈ 𝐼𝐼,𝑎𝑎 ∈ 𝐿𝐿,𝑝𝑝 ∈ 𝑃𝑃                                                      (9) 231 

 232 
𝜋𝜋𝑎𝑎 = ∑ 𝑙𝑙𝑣𝑣𝑎𝑎𝑝𝑝 

𝑖𝑖 𝑙𝑙𝑎𝑎𝑑𝑑𝑎𝑎 𝑖𝑖,𝑝𝑝  ∀ 𝑎𝑎 ∈ 𝐴𝐴, 𝑙𝑙 ∈ 𝐼𝐼                                                      (10)  233 
 234 

𝑓𝑓𝑘𝑘𝑝𝑝 
𝑜𝑜 ≥ 0   ∀ 𝑙𝑙 ∈ 𝐾𝐾𝑜𝑜𝑝𝑝,𝑝𝑝 ∈ 𝑃𝑃, 𝑓𝑓 ∈ 𝑂𝑂𝑝𝑝                                                        (11) 235 

 236 
𝑈𝑈𝑝𝑝 ≥ 0                                                                           (12) 237 

 238 
Eq. (1) represents the objective function of the problem. The first component on the objective 239 

function is the total travel time for the set of links without improvement and the second component if the 240 
total travel time for the set of links with improvement. Eq. (2) estimates the total cost or the allocated 241 
resource for capacity expansion does not exceed the budget for the respective period. Eq. (3) ensures the 242 
demand is satisfied within the network which is formulated in terms of path flows. Eq. (4) is the definitional 243 
incidence relationship which defines the relation between link flow and path flow. Eq. (5) ensures that only 244 
one capacity level is chosen for each candidate link. Considering the mutually exclusive nature of link 245 
improvements, one link cannot be improved more than once in the planning period. Eq. (6) ensures overall 246 
mutual exclusiveness of link improvements within the planning period. Eq. (7) estimates the new link 247 
capacity at each time-period. Eq. (8) calculates the unused amount of budget for every period (which gets 248 
rolled over into the next budget allocation-see equation 2). Eq. (9) defines the decision variable as binary. 249 
The total cost for link improvements is calculated by Eq. (10) as the product of the link length and 250 
incremental cost. Finally, Eq. (11) ensures non-negative path flows and Eq. (12) ensures non-negative 251 
budget. It is assumed throughout the study that the link travel time function (BPR function) is strictly 252 
increasing and convex so that we can have a unique solution. While solving the multi-period user 253 
equilibrium problem, the free flow travel time of the corresponding links is assumed to be constant.  254 

 255 
In this paper, it is assumed that the cost of a one-lane addition would equal the link length times 256 

the incremental cost and two-lane addition would cost twice the link length times the incremental cost. The 257 
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link length, number of lanes addition and the construction cost assumed herein does not limit the 258 
generalization of the model and can be defined by any other. 259 

 260 
The study uses the BPR function (Sheffi 1985) for the determination of link travel time as shown 261 

below: 262 

𝑡𝑡𝑎𝑎𝑝𝑝 �𝑥𝑥𝑎𝑎𝑝𝑝 
 � = �𝑡𝑡a �1 + 𝛽𝛽𝑎𝑎 �

𝑥𝑥𝑎𝑎𝑎𝑎 
 

𝐶𝐶𝑎𝑎𝑎𝑎
�
𝛼𝛼𝑎𝑎
��         ∀𝑎𝑎 ∈ 𝐴𝐴,𝑝𝑝 ∈ 𝑃𝑃                                       (13) 263 

The parameters of BPR function used are 𝛽𝛽𝑎𝑎 = 0.15 and 𝛼𝛼𝑎𝑎 = 4. 264 

Step 2: 265 
 266 

In this step, the user equilibrium problem is solved using the generated solutions from step 1 and 267 
assigning the updated capacities to the corresponding improved links. This is the traditional UE problem 268 
where it is assumed that the demand for travel is fixed and the users’ route choice is characterized by the 269 
user equilibrium principle (Sheffi 1985). The total system travel time is also calculated using the user 270 
equilibrium link flows and link travel times. 271 
 272 
Step 3: 273 
 274 
This step is like step 1 with the addition of another constraint (Eq. 14) that excludes the first set of solutions. 275 
This constraint is defined as follows: 276 
 277 

∑  [ ∑ 𝑣𝑣𝑎𝑎𝑝𝑝 
𝑖𝑖

𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖∈𝐼𝐼 𝑠𝑠𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 𝑣𝑣𝑎𝑎𝑎𝑎 
 =0 𝑎𝑎∈𝐿𝐿 + ∑ (1 − 𝑣𝑣𝑎𝑎𝑝𝑝 

𝑖𝑖 )𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖∈𝐼𝐼 𝑠𝑠𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 𝑣𝑣𝑎𝑎𝑎𝑎 
 =1 ] ≥ 𝜇𝜇            (14) 278 

 279 
Eq. (14) excludes the first set of solutions and retains all other solutions. 280 
 281 
Solution Algorithm 282 
The solution algorithm utilized for this approach is adopted from (Wang et al 2013). The steps of the 283 
approach are given below briefly: 284 
 285 
𝑆𝑆𝑡𝑡𝑝𝑝𝑝𝑝 1: 𝑥𝑥0 = 𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑙𝑙𝑜𝑜𝐹𝐹𝐿𝐿(𝑥𝑥) 286 
Set i = 1 287 
𝑆𝑆𝑡𝑡𝑝𝑝𝑝𝑝 2:𝑦𝑦1 = 𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑙𝑙𝑜𝑜𝐹𝐹𝑈𝑈(𝑦𝑦, 𝑥𝑥0) 288 
𝑆𝑆𝑡𝑡𝑝𝑝𝑝𝑝 3: 𝑥𝑥𝑖𝑖 = 𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑙𝑙𝑜𝑜𝐹𝐹𝐿𝐿(𝑦𝑦𝑖𝑖) 289 
𝑆𝑆𝑡𝑡𝑝𝑝𝑝𝑝 4: 𝑠𝑠𝑝𝑝𝑡𝑡 𝑙𝑙 = 𝑙𝑙 + 1 290 
𝑆𝑆𝑡𝑡𝑝𝑝𝑝𝑝 5:𝑦𝑦𝑖𝑖 = 𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑙𝑙𝑜𝑜𝐹𝐹𝑈𝑈(𝑦𝑦, 𝑥𝑥𝑖𝑖−1):𝑦𝑦 ≠ 𝑦𝑦𝑖𝑖−1 291 
𝑆𝑆𝑡𝑡𝑝𝑝𝑝𝑝 6: 𝑙𝑙𝑓𝑓 𝐹𝐹𝑈𝑈(𝑦𝑦𝑖𝑖, 𝑥𝑥𝑖𝑖−1) ≥ 𝐹𝐹𝑈𝑈(𝑦𝑦𝑖𝑖−1, 𝑥𝑥𝑖𝑖−1) 𝑠𝑠𝑡𝑡𝑓𝑓𝑝𝑝 𝑝𝑝𝑙𝑙𝑠𝑠𝑝𝑝 𝑎𝑎𝑓𝑓 𝑡𝑡𝑓𝑓 𝑠𝑠𝑡𝑡𝑝𝑝𝑝𝑝 3 292 
 293 

The SO-relaxation based method which is used to obtain the solution has a unique property, that is, 294 
constraint (14) eliminates previously generated solutions (y) which are not optimal. This property holds 295 
because each constraint in Eq. (14) excludes exactly one solution in non-optimal set. The value of objective 296 
function in step-1 is non-decreasing in each iteration of the method and with each excluded solution, one 297 
more constraint is added to the problem. Thus, the problem terminates in a finite number of iterations 298 
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because the cardinality of set L is finite or when the objective function of step 1 is worse than the one in 299 
previous iteration. 300 
 301 
4. Numerical Experiments 302 
 303 
In this section, MPNDP was applied to a series of test and real-world networks and detailed analysis was 304 
conducted using various budget scenarios. In addition, the objective function, namely TSTT, is also 305 
analyzed under different budget scenarios. MPNDP is a mixed integer non-linear programming (MINLP) 306 
problem that can be solved by various optimization solvers. The algorithms are coded with MATLAB, 307 
calling the genetic algorithm (GA) solver to solve the MINLP model. A personal computer with Intel(R) 308 
Core (TM) i7 3.20 GHz CPU, 12.0 GB RAM, and Windows 7 Professional operating system is used for all 309 
tests. The relative optimality tolerance ε for approximating the upper-level objective function is set at 0.001. 310 
Note that the tolerance does not affect the quality of the final solution. However, the relative optimality 311 
tolerance for the objective function of UE (used in Step 2) is set at 1E-8, to ensure the quality of the UE 312 
link flows. 313 
 314 
4.1 Case Study Networks 315 

In this study, a total of eight transportation networks are used for testing MPNDP. Out of those eight, six 316 
are used in the MENIM model development and, two networks (Winnipeg and Montgomery) are used for 317 
MENIM validation. The networks in this study are selected so that a proportionate mixture of test and real-318 
world networks with sizes varying from small-scale to large-scale is achieved. Scale is defined in terms of 319 
the number of nodes contained in each network. This mixture of networks is used for demonstrating the 320 
MPNDP as well as for practical application of the MENIM. Table 1 shows the case study networks used. 321 
Each of the test networks is analyzed for various budget scenarios. In this study the available budget was 322 
set equal to a percentage of the cost of adding 2 lanes to all the links in the network. That percentage ranged 323 
from 5 to 25 percent with an increment of 5 percent. In the remainder of this study we will refer to the total 324 
budget required to add 2 lanes to all the links in the network as optimal budget. In this study, a budget range 325 
between 5 and 25 percent was considered. 326 
 327 
 328 
Table 1: Different types of case study networks 329 
 330 

Network 
Number of 

nodes 

Number of 

Links 

Number of 

non-zero OD pairs 

Mahmassani Network 6 8 4 
Sioux Falls 24 76 528 

25-node 25 44 9 
Anaheim 416 914 1416 

Chicago Sketch 933 2950 93135 
Winnipeg 1052 2836 4345 

Atlanta 1102 2295 20736 
Montgomery 1752 4420 50625 
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4.2 Econometric Framework Approach to NDP 331 

To obtain link improvements solution for larger networks, we propose an alternative approach that can be 332 
used as a surrogate to the MPNDP for planning purposes. This approach uses an econometric framework 333 
to uncover the relationship between link improvements and network/demand properties without the need 334 
of a traffic assignment. The econometric framework proposed herein is a multinomial logit model (from 335 
now own referred to as MENIM). In this study, 𝑣𝑣𝑎𝑎𝑝𝑝 

𝑖𝑖  is the dependent variable where 𝑣𝑣𝑎𝑎𝑝𝑝 
0 is taken as the base 336 

alternative.  337 
Let i be the index for link improvement alternatives and 𝑆𝑆 denote the universal choice set of the 338 

link improvements choice S = {0 = no improvements, 1 = one lane addition, 2 = two lane addition}. It is 339 
very likely that decision maker q only considers a subset 𝑆𝑆𝑞𝑞 (of S), while making the actual choice. In 340 
MENIM, the utility associated with alternative i can be estimated as follows: 341 

𝑈𝑈𝑞𝑞𝑖𝑖 = 𝑉𝑉𝑞𝑞𝑖𝑖 + 𝜀𝜀𝑞𝑞𝑖𝑖 = 𝜷𝜷𝑖𝑖 𝑿𝑿𝑞𝑞𝑖𝑖 + 𝜀𝜀𝑞𝑞𝑖𝑖      (15) 342 

Where 𝑈𝑈𝑞𝑞𝑖𝑖  is the vector of dependent variables obtained from the MPNDP model, 𝑉𝑉𝑞𝑞𝑖𝑖 = 𝜷𝜷𝑖𝑖 𝑿𝑿𝑞𝑞𝑖𝑖  is the 343 
observed part of the utility, 𝑿𝑿𝑞𝑞𝑖𝑖  is the vector of explanatory variables, and 𝜷𝜷𝑖𝑖  is the corresponding column 344 
vector of coefficients, and 𝜀𝜀𝑞𝑞𝑖𝑖  is standard error or random variable that captures all unobserved factors that 345 
is independent and identically distributed across alternatives and decision makers. So, the probability of a 346 
decision maker q choosing an alternative i from a set of alternatives 𝑆𝑆𝑞𝑞 is given by: 347 

𝑃𝑃𝑞𝑞�𝑙𝑙|𝑆𝑆𝑞𝑞� = 𝑒𝑒𝑥𝑥𝑝𝑝𝑉𝑉𝑞𝑞
𝑖𝑖

∑ 𝑒𝑒𝑥𝑥𝑝𝑝𝑉𝑉𝑞𝑞
𝑖𝑖

𝑖𝑖∈𝐶𝐶𝑞𝑞

                             (16) 348 

Estimation of the MENIM is straightforward. The loglikelihood function can be written as: 349 

∑ �∑ 𝐼𝐼(𝑙𝑙|𝑆𝑆𝑞𝑞)𝜷𝜷𝑖𝑖 𝑿𝑿𝑞𝑞𝑖𝑖𝐼𝐼
𝑖𝑖=0 − log�∑ 𝑝𝑝𝑥𝑥𝑝𝑝(𝜷𝜷𝑖𝑖 𝑿𝑿𝑞𝑞𝑖𝑖 )𝐼𝐼

𝑖𝑖=0 ��𝑠𝑠
𝑖𝑖=1     (17) 350 

where 𝐼𝐼(. ) is the indicator function. Thus, each observation contributes two terms to the 351 
loglikelihood function. The parameters of the model are estimated using Maximum Likelihood Estimation 352 
(MLE). MLE attempts to find the parameter values or vector of coefficients, 𝜷𝜷𝑖𝑖  that maximize the above 353 
loglikelihood function. 354 
 355 
4.3 Dataset and Model Results 356 

The dataset consists of link improvements from all the links of six networks (Mahmassani, Sioux Falls, 25-357 
node, Anaheim, Chicago Sketch and Atlanta) that are identified from MPNDP. It is combined with the 358 
corresponding link properties that are used as explanatory variables such as natural log of capacity of the 359 
link, link flows, volume to capacity ratio (V/C ratio) of link, link length, total number of paths served 360 
between an O-D pair, the year when the link gets improvement, allocated budget for improvement and the 361 
functional classification of the link. The first five variables are continuous variables and the rest are 362 
categorical. Each row of the data consists of a link with improvements level and its properties such as 363 
capacity, link flow, year of improvements, V/C ratio, budget, functional classification, and total number of 364 
paths served in the network. A link improvement with zero lane capacity addition was chosen as the 365 
reference alternative. 366 
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Table 2 presents the results of the MENIM model. From the results in Table 2, it can be observed 367 
that links with higher capacities are less likely to get improved than links with lower capacities. It is also 368 
observed that links with higher V/C ratio are more likely to get a 2-lane addition than links with lower V/C 369 
ratio. On the other hand, it is interesting to note that longer links are less likely to get improved compared 370 
to shorter links. This can be explained by the fact that longer links incur higher construction costs to get 371 
improved. It is also interesting to note that links serving a higher number of paths between OD pairs are 372 
more likely to get improved since these are important links that are frequently used in the network. Also, if 373 
the link is an interstate or major arterial, it is more likely to get improved. Table 2 also shows model 374 
statistical fit parameters such as log-likelihood value, Akaike information criterion (AIC), Bayesian 375 
information criterion (BIC) and rho-square. The cutoff value for the logit model used is 0.7 on the AUC 376 
(Area Under the Curve) ROC (Receiver Operating Characteristics) curve. AUC - ROC curve is a 377 
performance measurement for classification problem at various thresholds settings. AUC-ROC value of 0.7 378 
means there is 70% chance that the MENIM model will be able to distinguish between 1-lane improvement 379 
and 2-lane improvements.  380 

These results are intuitive and expected. There were also other factors such as the year in the 381 
planning period in which the link gets improved. However, these factors were found to be insignificant in 382 
the model. These results provide ample information for the planners and decision makers to consider while 383 
selecting the links for expansion in the network. 384 

 385 
  386 
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Table 2: MENIM results 387 
Variables Description One lane addition Two lane addition 

(Base Alternative: Zero lane addition) Coeff. Std.err Coeff. 

 

Std. err 
Constant 

 

-19.258 0.073*** -19.196 0.073*** 
Log(capacity of link) 

 

-0.113 0.017*** -0.099 0.017*** 
Volume to capacity ratio of link 

 

0.181 0.078** 0.252 0.078*** 
Length of link 

 

-0.070 0.008*** -0.059 0.008*** 
Total number of paths served 0.090 0.042** 0.082 0.042* 
Interstate (Yes=1, No=0) 1.329 0.035*** 1.345 0.035*** 
Arterial (Yes=1, No=0) 1.101 0.031*** 1.122 0.031*** 
Year 1 improvements (yes=1, no=0) (base: no 
improvement) 

43.236 0.024*** 42.324 0.024*** 

Year 2 improvements (yes=1, no=0) 50.227 0.024*** 49.197 0.024*** 
Year 3 improvements (yes=1, no=0) 48.995 0.025*** 48.011 0.025*** 
Year 4 improvements (yes=1, no=0) 42.302 0.027*** 41.304 0.027*** 
Year 5 improvements (yes=1, no=0) 51.559 0.028*** 50.569 0.028*** 
Budget = 10% (yes=1, no=0) (base:  
Budget = 5%) 

2.834 0.044*** 2.624 0.044*** 

Budget = 15% (yes=1, no=0) 1.554 0.043*** 1.511 0.043*** 
Budget = 20% (yes=1, no=0) 1.105 0.042*** 0.955 0.042*** 
Budget = 25% (yes=1, no=0) 0.469 0.041*** 0.299 0.041*** 

Number of Observations 31,435 
Number of Parameters Estimated 16 
Loglikelihood -53,219 
Loglikelihood at convergence -1.693 
Rho-square 0.952 
AIC 106,471 
BIC 106,605 
* 90%  
**95% 
***99% 
 cut-off value =0.7  
   388 

4.4 Model Validation 389 

To evaluate the predictive accuracy of the MENIM, a validation exercise was undertaken in which the link 390 
improvement results (Observed) at the two capacity levels obtained from the MPNDP model were 391 
compared to the number of link improvements from the MENIM model (Predicted). The validation data set 392 
consists of the network properties and the link improvements from the MPNDP of the Winnipeg and 393 
Montgomery County, MD networks. The MENIM model is then utilized to calculate the predicted 394 
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probabilities for each link of the validation dataset. Next, these predicted probabilities are translated to link 395 
improvement choices, that is, 0, 1 or 2 values. The probabilities are compared for each link and the link 396 
improvement choice corresponding to the highest probability is selected for that link. The following 397 
example demonstrates the translation from predicted probability to link improvement choice: 398 

Link Improvement Choice Predicted Probability Selected Choice 
0 0.232  
1 0.452  
2 0.316  

Once the predicted number of link improvements were calculated for each category, the average 399 
(Total AVG) between the matched percent of zero, one lane and two-lane addition categories were 400 
calculated. The results of the MENIM model validation are presented in Table 3. These results showcase 401 
the favorable performance of the MENIM model as the percent of link improvements matched closely with 402 
that from the MPNDP model.  403 

 404 
Table 3: Model validation 405 

Budget Planning 
Period 

Number 
of Links 

Link Improvements 

Montgomery Winnipeg 

0 lane 
addition 

1 lane 
addition 

2 lane 
additions 

Total 
AVG 
(%) 

0 lane 
addition 

1 lane 
addition 

2 lane 
additions 

Total 
AVG 
(%) 

5% 

Year 1 

Observed 4100 219 101   2392 301 143   

Matched 3501 195 86   1962 221 99   

Matched 
(%) 85% 89% 86% 87% 82% 73% 69% 75% 

Year 2 

Observed 4121 202 97   2389 292 155   

Matched 3317 164 82   1819 196 101   

Matched 
(%) 80% 81% 85% 82% 76% 67% 65% 70% 

Year 3 

Observed 4123 201 96   2454 255 127   

Matched 3441 142 64   2192 221 106   

Matched 
(%) 83% 71% 67% 74% 89% 87% 84% 87% 

Year 4 

Observed 4124 211 85   2446 268 122   

Matched 3393 156 54   2125 240 110   

Matched 
(%) 82% 74% 64% 73% 87% 89% 90% 89% 

Year 5 

Observed 4134 191 95   2448 262 126   

Matched 3564 129 60   2191 212 104   

Matched 
(%) 86% 67% 64% 72% 90% 81% 82% 84% 

10% Year 1 
Observed 3815 404 201   2125 483 228   

Matched 3166 305 137   1896 407 179   
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Table 3 (Continued) 406 

10% 

 Matched 
(%) 83% 76% 68% 76% 89% 84% 78% 84% 

Year 2 

Observed 3862 351 207   2168 436 232   

Matched 3332 258 151   1952 361 191   
Matched 
(%) 86% 74% 73% 78% 90% 83% 82% 85% 

Year 3 

Observed 3831 359 230   2178 462 196   
Matched 3425 330 210   1856 381 151   
Matched 
(%) 89% 92% 91% 91% 85% 82% 77% 82% 

Year 4 

Observed 3860 370 190   2108 484 244   
Matched 3473 306 145   1990 440 218   
Matched 
(%) 90% 83% 76% 83% 94% 91% 89% 92% 

Year 5 

Observed 3794 414 212   2418 282 136   
Matched 3215 342 176   1949 204 88   
Matched 
(%) 85% 83% 83% 83% 81% 72% 65% 73% 

15% 

Year 1 

Observed 3597 559 264   1793 690 353   
Matched 3152 479 227   1483 554 276   
Matched 
(%) 88% 86% 86% 86% 83% 80% 78% 80% 

Year 2 

Observed 3500 608 312   1862 630 344   
Matched 2795 463 230   1570 514 281   
Matched 
(%) 80% 76% 74% 77% 84% 82% 82% 83% 

Year 3 

Observed 3546 579 295   2013 526 297   
Matched 3124 479 238   1693 400 220   
Matched 
(%) 88% 83% 81% 84% 84% 76% 74% 78% 

Year 4 

Observed 3538 575 307   2589 174 73   
Matched 3150 462 196   2410 162 59   
Matched 
(%) 89% 80% 64% 78% 93% 93% 81% 89% 

Year 5 

Observed 3989 253 178   2671 105 60   
Matched 3623 225 143   2320 69 34   
Matched 
(%) 91% 89% 80% 87% 87% 66% 57% 67% 

20% 

Year 1 

Observed 3210 824 386   1501 884 451   
Matched 2568 627 269   1260 706 341   
Matched 
(%) 80% 76% 70% 75% 84% 80% 76% 80% 

Year 2 
Observed 3236 795 389   1639 798 399   
Matched 3012 653 278   1613 696 306   
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Table 3 (Continued) 407 

20% 

 Matched 
(%) 93% 82% 72% 82% 98% 87% 77% 87% 

Year 3 

Observed 3268 760 392   2443 262 131   
Matched 2666 602 300   2150 229 119   
Matched 
(%) 82% 79% 77% 79% 88% 87% 91% 89% 

Year 4 

Observed 3989 285 146   2640 133 63   
Matched 3484 254 126   2200 97 37   
Matched 
(%) 87% 89% 86% 88% 83% 73% 59% 72% 

Year 5 

Observed 4322 63 35   2691 96 49   
Matched 3935 58 24   2323 66 27   
Matched 
(%) 91% 92% 69% 84% 86% 69% 55% 70% 

25% 

Year 1 

Observed 2997 922 501   1381 951 504   

Matched 2790 793 425   1310 839 438   
Matched 
(%) 93% 86% 85% 88% 95% 88% 87% 90% 

Year 2 

Observed 2972 946 502   1876 621 339   

Matched 2711 882 395   1758 591 274   
Matched 
(%) 91% 93% 79% 88% 94% 95% 81% 90% 

Year 3 

Observed 3397 683 340   2651 113 72   

Matched 3063 575 264   2424 98 59   
Matched 
(%) 90% 84% 78% 84% 91% 87% 82% 87% 

Year 4 

Observed 4138 183 99   2744 55 37   

Matched 3616 146 67   2457 49 30   
Matched 
(%) 87% 80% 68% 78% 90% 90% 81% 87% 

Year 5 

Observed 4392 19 9   2797 22 17   

Matched 3961 12 6   2564 20 14   
Matched 
(%) 90% 64% 69% 75% 92% 90% 81% 88% 

 408 

To test the predictive strength of MENIM for future scenarios, another validation exercise is 409 
performed. Using the two networks of Montgomery County, MD and Winnipeg new validation data is 410 
obtained using the MPNDP, for future demand. In planning, a 20-year horizon is typically used when 411 
evaluating transportation needs and solutions. Different traffic growth pattern types can be present in a 412 
study area. In this study, and for simplicity, a linear growth is assumed, that is, traffic demand increases 413 
linearly over time. Therefore, growth factor = 1 + (G x N) = 1 + (0.05*20) = 2. Here, G is the linear annual 414 
growth rate and N is the number of years for the future demand. In this case, a linear annual growth rate of 415 
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5% is assumed. The future demand is then obtained by multiplying the base year demand with the growth 416 
factor. Once the data is obtained for the validation, table 4 is created similarly to table 3 which shows the 417 
average percentage of matched links for each budget scenario. Like table 3, table 4 also shows that percent 418 
of link improvements from MENIM model matched closely with the percent from MPNDP model.  419 
 420 
Table 4: Model validation - future demand scenarios  421 

Budget Planning 
Period 

Number 
of Links 

Link Improvements 

Montgomery Winnipeg 

0 lane 
addition 

1 lane 
addition 

2 lane 
addition
s 

Total 
AVG 
(%) 

0 lane 
addition 

1 lane 
addition 

2 lane 
addition
s 

Total 
AVG 
(%) 

5% 

Year 1 

Observed 4132 197 91   2434 275 127   

Matched 3417 136 47   2076 228 99   
Matched 
(%) 83% 69% 52% 68% 85% 83% 78% 82% 

Year 2 

Observed 4126 189 105   2421 254 161   

Matched 3549 175 75   1947 189 84   
Matched 
(%) 86% 93% 71% 83% 80% 74% 52% 69% 

Year 3 

Observed 4107 202 111   2461 244 131   

Matched 3566 179 97   2007 174 87   
Matched 
(%) 87% 89% 88% 88% 82% 71% 66% 73% 

Year 4 

Observed 4163 169 88   2483 233 120   

Matched 3362 117 54   2136 205 97   
Matched 
(%) 81% 69% 61% 70% 86% 88% 81% 85% 

Year 5 

Observed 4139 191 90   2463 237 136   

Matched 3681 151 66   2263 216 118   
Matched 
(%) 89% 79% 74% 81% 92% 91% 87% 90% 

10% 

Year 1 

Observed 3842 404 174   2153 463 220   

Matched 3578 349 142   1878 362 155   
Matched 
(%) 93% 86% 82% 87% 87% 78% 70% 79% 

Year 2 

Observed 3819 403 198   2087 504 245   

Matched 3650 349 153   1865 399 158   
Matched 
(%) 96% 87% 77% 87% 89% 79% 64% 78% 

Year 3 
Observed 3861 381 178   2195 437 204   
Matched 3392 285 116   2006 360 162   

 422 

 423 
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Table 4 (Continued) 424 

10% 

 Matched 
(%) 88% 75% 65% 76% 91% 82% 80% 84% 

Year 4 

Observed 3837 384 199   2120 517 199   
Matched 3121 298 110   1855 444 134   
Matched 
(%) 81% 78% 55% 71% 87% 86% 67% 80% 

Year 5 

Observed 3824 384 212   2496 222 118   
Matched 3665 345 125   2269 174 62   
Matched 
(%) 96% 90% 59% 82% 91% 78% 53% 74% 

15% 

Year 1 

Observed 3488 642 290   1824 701 311   
Matched 3090 464 206   1685 544 245   
Matched 
(%) 89% 72% 71% 77% 92% 78% 79% 83% 

Year 2 

Observed 3524 593 303   1860 641 335   
Matched 3188 516 231   1749 591 285   
Matched 
(%) 90% 87% 76% 85% 94% 92% 85% 90% 

Year 3 

Observed 3613 532 275   1990 582 264   
Matched 3102 446 187   1580 451 159   
Matched 
(%) 86% 84% 68% 79% 79% 77% 60% 72% 

Year 4 

Observed 3563 552 305   2578 189 69   
Matched 2853 424 204   2135 165 59   
Matched 
(%) 80% 77% 67% 75% 83% 87% 85% 85% 

Year 5 

Observed 3842 398 180   2692 99 45   
Matched 3379 313 106   2460 90 31   
Matched 
(%) 88% 79% 59% 75% 91% 91% 70% 84% 

20% 

Year 1 

Observed 3220 808 392   1562 855 419   
Matched 2760 682 284   1422 755 331   
Matched 
(%) 86% 84% 73% 81% 91% 88% 79% 86% 

Year 2 

Observed 3305 737 378   1560 872 404   
Matched 2808 576 267   1200 642 261   
Matched 
(%) 85% 78% 71% 78% 77% 74% 65% 72% 

Year 3 

Observed 3266 750 404   2417 282 137   
Matched 2748 613 298   2114 251 115   
Matched 
(%) 84% 82% 74% 80% 87% 89% 84% 87% 

Year 4 
Observed 3846 381 193   2673 121 42   
Matched 2876 270 139   2117 111 35   
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Table 4 (Continued) 425 

20% 

 Matched 
(%) 75% 71% 72% 73% 79% 92% 84% 85% 

Year 5 

Observed 4295 90 35   2686 98 52   
Matched 3639 76 23   2159 63 30   
Matched 
(%) 85% 84% 67% 78% 80% 65% 57% 67% 

25% 

Year 1 

Observed 3031 902 487   1294 1014 528   
Matched 2729 793 402   1238 923 462   
Matched 
(%) 90% 88% 82% 87% 96% 91% 88% 91% 

Year 2 

Observed 2955 959 506   1752 742 342   
Matched 2585 802 360   1602 647 268   
Matched 
(%) 87% 84% 71% 81% 91% 87% 78% 86% 

Year 3 

Observed 3482 620 318   2532 209 95   
Matched 3307 554 276   2330 165 65   
Matched 
(%) 95% 89% 87% 90% 92% 79% 69% 80% 

Year 4 

Observed 4085 228 107   2601 159 76   
Matched 3475 171 65   2284 145 63   
Matched 
(%) 85% 75% 61% 74% 88% 91% 83% 87% 

Year 5 

Observed 4310 67 43   2716 78 42   
Matched 4006 56 28   2608 62 27   
Matched 
(%) 93% 84% 65% 81% 96% 79% 64% 80% 

 426 

Further validation was performed by comparing the TSTT of the two networks, Winnipeg and 427 
Montgomery County, MD, calculated using the MPNDP and the MENIM model. Figure 1 (a) shows the 428 
TSTT using MPNDP and TSTT using MENIM by budget and planning period for Montgomery, MD 429 
network and figure 1 (b) shows the TSTT for Winnipeg network. The TSTT calculated by MENIM is 430 
comparable with the TSTT from MPNDP across the planning period for all budget scenarios for the two 431 
networks. Similarly, figure 2 shows the TSTT using MPNDP and TSTT using MENIM by budget and 432 
planning period for the future demand scenarios for Montgomery, MD network and figure 1 (b) shows the 433 
TSTT for Winnipeg network which are also close and comparable. In addition, table 5 shows the relative 434 
difference in TSTT between MENIM and MPNDP (calculated as  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑀𝑀𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃)−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼𝑀𝑀)

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑀𝑀𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃)
 ) across 435 

various periods and budget. The lower value of the relative difference across all conditions shows how the 436 
MENIM approach is comparable to the MPNDP approach.  437 
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 438 
              (a) Montgomery, MD Network                                 (b) Winnipeg Network 439 

Fig. 1. TSTT comparison. 440 

 441 
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 442 
(a) Montgomery, MD Network                                (b) Winnipeg Network 443 

Fig. 2. TSTT comparison - future demand scenarios. 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 
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Table 5: Model validation – Relative Difference in TSTT between MENIM and MPNDP 452 

Budget Planning Period 
Relative Difference 

Montgomery Winnipeg 

5% 

Year 1 -1.8% -6.2% 
Year 2 -10.8% -5.9% 
Year 3 -6.4% -0.1% 
Year 4 -7.8% -6.0% 
Year 5 -8.0% -8.2% 

10% 

Year 1 -0.3% -6.0% 
Year 2 -16.4% -0.6% 
Year 3 -14.1% -2.7% 
Year 4 -16.4% -5.7% 
Year 5 -7.2% -1.4% 

15% 

Year 1 -4.4% -8.4% 
Year 2 -10.6% -5.7% 
Year 3 -15.6% -0.6% 
Year 4 -9.9% -3.1% 
Year 5 -7.0% -5.0% 

20% 

Year 1 -0.2% -7.8% 
Year 2 -7.1% -5.9% 
Year 3 -5.4% -6.9% 
Year 4 -0.3% -1.7% 
Year 5 -1.0% -0.7% 

25% 

Year 1 -6.2% -5.6% 
Year 2 -7.3% -2.5% 
Year 3 -4.3% -1.2% 
Year 4 -0.7% -0.6% 
Year 5 -2.9% -1.5% 

  453 
 454 

 455 

 456 

 457 

 458 

 459 
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4.5 Policy and Planning Analysis Discussion 460 

Roadways in transportation networks need to be improved and/or expanded regularly to meet the needs of 461 
growth in travel demand and to ease traffic congestion. However, planning for transportation network 462 
improvements over time is one of the challenges encountered by public agencies due to various challenges 463 
such as user behavior, budget limitations and policy constraints. Prioritizing roadway network infrastructure 464 
investment decision especially for long range planning is a major problem faced by the decision makers or 465 
planning agencies. Limited funds are forcing national, regional, and local governments to carefully 466 
prioritize their investments. These investments are usually long lasting, practically irreversible and costly. 467 
Hence the planners and decision makers need to resort to an efficient and innovative prioritization technique 468 
to ensure that the projects undertaken are significant and that the most effective utilization of resources 469 
takes place. 470 

The multi-period planning model proposed in this research shows efficient budget allocation for 471 
network improvement to the links in such a way that the total system travel time of the network is 472 
minimized. Six networks are used as case studies for MENIM development and two large networks are 473 
used for the MENIM validation. The larger networks (Atlanta and Montgomery) have higher minimized 474 
total system travel times compared to the small and medium networks. The multi-period observations 475 
suggest that the multinomial logit model presented in this research displays results comparable to the 476 
optimization model and can be used as an effective surrogate tool of resource allocation for network 477 
improvement by decision makers or transportation planning agencies. Thus, this model can be used 478 
effectively in transportation asset management process for managing transportation infrastructure with the 479 
objective of improved decision making for resource allocation for multiple periods, that is, which 480 
programs/projects should the decision makers spend/invest their funding for the best long-term benefit. To 481 
adopt this procedure in real-world networks, the decision makers need to obtain data on network variables 482 
of their respective networks as training samples to calibrate the MENIM model. Most of the data variables 483 
can be obtained from the base-year network and the number of link installations can be obtained from past 484 
completed projects and identifying on which links the improvements were made. The calibrated model can 485 
then be used like any other statistical model to identify the links in the network needed for improvement in 486 
the future long-range transportation plans. This model can be further enhanced to aid in making informed 487 
decision about managing the network over the whole lifecycle considering network performance, 488 
economics, and engineering. Resource allocation for sub-elements of the network such as pavements, 489 
bridges, congestion, safety, etc., are necessary for sound information to support long-term investment 490 
decision-making.  491 
 492 
5. Conclusion 493 
 494 
This research proposed two different models in the context of multi-period network investments. First, the 495 
single year network design problem proposed by Wang et al. (2013) was extended to a multi-period 496 
framework (MPNDP) considering budget, policy, and other constraints. Numerical experiments involving 497 
different budget allocations were conducted for the MPNDP based on several case study networks to 498 
analyze the multi-period formulation. Second, the optimal results from the MPNDP were used to develop 499 
a MENIM model to obtain reasonable multi-period network investments. MPNDP is applied to six medium- 500 
to large-scale networks and the resulting patterns were analyzed. The patterns provide insights that can be 501 
used by the public agencies to obtain the corresponding level of cost and benefits (in terms of TSTT) 502 
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associated with various network investments. It was found that with an increase in budget as well as network 503 
size, the total system travel time decreases. The methodology and policy measures presented in this research 504 
enable a decision maker to allocate resources efficiently within the planning horizon. The validation results 505 
also show that the MENIM can be used as an effective surrogate for the MPNDP for capacity expansion 506 
decision of larger networks.  507 
 NDP is considered as an NP-hard problem and therefore the computational time and cost becomes 508 
higher with larger network data. Moreover, since the problem is formulated for multiple years, the number 509 
of constraints and decision variables becomes significantly larger thus increasing the computational 510 
requirements even for example networks. The single-period problem already consists of many integer 511 
variables and thus multi-period problems will have an even higher number of integer variables. Because of 512 
this, the computational power of the mixed integer non-linear problem (MINLP) solvers becomes 513 
inefficient. The MENIM is proposed as an alternative approach to MPNDP to attempt to simulate results 514 
of reasonable accuracy and comparable efficiency for the analysis of larger networks. The authors would 515 
also like to note that for medium to large networks, and with the existing current computational capabilities 516 
and computer memory restrictions, the MPNDP may only be implemented with a cluster of computers and 517 
even then, the computational time is restrictive. The advantage of the MENIM is that it can be trained for 518 
a subset of the network at hand, where the MPNDP can be implemented, and then applied to the full 519 
network.  520 
 There are several limitations to this research that needs to be mentioned here. In order to train the 521 
MENIM model, one needs data such as how many lanes were installed in an existing network. Such data 522 
may not be readily available and need to be acquired from past completed projects in the network which 523 
may be time-consuming. In addition, it cannot be verified if those completed projects correspond to optimal 524 
decisions which may reduce the accuracy of the MENIM model. Lastly, the demand in the network is 525 
considered constant and the uncertainty is neglected. 526 
 For future research, multiple objectives can be considered in the MPNDP since planners must 527 
consider various factors while making network design decision. The TSTT can be combined with consumer 528 
surplus, construction cost or social surplus for example. The MPNDP can also be formulated in terms of 529 
safety issues. The research can also be extended to handle the interdependencies among projects and 530 
demand/budget changes in each period. Extension of this approach to other applications such as bridge 531 
project investment criteria is also worth considering.  532 

Another future avenue is the development of efficient methodological techniques to solve multiyear 533 
transportation problems and bounding techniques to obtain approximate solutions. A more realistic, time-534 
dependent probability assessment of multiple periods would be essential for determining the best possible 535 
solution sets. The results will offer rich insights on public policies, such as the budget allocation to 536 
maximize benefits or consumer surplus or minimize emissions. The major issue would stem from the 537 
stochasticity of demand. How to incorporate this stochasticity into modeling of roadway network 538 
infrastructure investment decision making is a challenge in both modeling and solution methodology. 539 
 540 
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