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Abstact: Matching riders and drivers in ridesharing considering conflicting objectives of diverse stakeholders is challenging. 
The objective of this research is to formulate and evaluate the performance of four ridesharing matching-objectives (i.e., 
system-wide minimization of passengers’ wait time, minimization of VMT, minimization of detour distance, maximization of 
drivers profit) considering interests of diverse mobility stakeholders (i.e., drivers, riders, matching agencies, government 
transportation agencies). A grid roadway network was used to compare the performance of the four matching-objectives in 
serving a ridesharing demand scenario. Performance comparison of matching-objectives revealed that system-wide VMT 
minimization matching-objective performed best with least sacrifices on the other three matching-objectives from their 
respective best performance level. Also, system-wide VMT minimization was the best matching-objective, when drivers and 
government transportation agencies’ expectations were prioritized. System-wide drivers’ profit maximization matching-
objective provided the highest monetary incentives for drivers and riders in terms of maximizing profit and travel cost 
savings, respectively. System-wide minimization of detour distance was found to be least flexible in providing shared rides. 
The findings of this research provide useful insights on ridesharing matching system modeling and performance evaluation 
based on different matching-objectives and can be used in developing and implementing ridesharing service considering 
multiple stakeholders’ concerns. 
 
1. Introduction  

According to the 2015 Urban Mobility Scorecard, 
United States (US) travelers lost seven billion hours and wasted 
three billion gallons of fuel due to traffic congestion [1]. Shared 
transportation modes are the emerging transportation demand 
management (TDM) strategies to better utilize limited 
transportation infrastructures and improve transportation 
system performance. Ridesharing, a form of shared mobility 
service, has been growing in popularity and has the potential to 
reduce emissions, fuel consumption, system-level vehicle miles 
traveled (VMT), and most importantly, traffic congestion [2], 
[3]. Modern-day ridesharing services, enabled by information 
technology (i.e. mobile apps) face several operational 
challenges (e.g., efficient drivers’ and riders’ matching, 
maintaining acceptable service reliability and flexibility, 
integration with multimodal options, and multi-institutional 
collaboration) [4]. Several studies have explored optimization-
based drivers’ and riders’ matching algorithms considering 
single and multiple matching-objectives to evaluate the 
ridesharing service performance (e.g., in terms of minimizing 
VMT, minimizing travel cost, maximizing the total number of 
matching) [5], [6].  Although the selection of matching-
objective of ridesharing service may vary with stakeholders’ 
(e.g., government transportation agencies, matching agencies, 
drivers, and riders) interest, past studies have not focused on 
evaluating the relative performance of the matching-objectives 
used in matching optimization from various stakeholders’ 
perspectives.  

Matching among drivers and riders is one of the most 
important tasks in ridesharing services. There are several 
stakeholders involved in ridesharing service. Understanding 
and addressing their needs is critical for the successful 
implementation of ridesharing. Since drivers’ and riders’ 

matching significantly controls the outcome of ridesharing, 
selection of appropriate matching-objective has paramount 
importance. The goal of this study is to investigate how 
optimization of one ridesharing drivers’ and riders’ matching-
objective influences the other matching-objectives. The relative 
effectiveness of individual matching-objective towards 
achieving interests of multiple ridesharing stakeholders will be 
determined to understand the effect of each matching-objective 
on system-level performance in terms of each stakeholders’ 
interest and on mobility policy development. The ridesharing 
service model considered to evaluate the matching-objectives 
has taken both drivers’ and riders’ origin-destination (O-D) into 
account. Usually, the drivers in commercial ridesharing (e.g., 
UberPool and Lyft Line), whose primary interest are making 
profit however, results negative implications for the goal of 
ridesharing. Drivers spend significant amount of their time with 
no passenger in their backseat and look for new passengers [7]. 
Due to this, there exists a surplus of drivers in the system to 
meet the travel needs for passengers except in some cases (e.g., 
during the peak demand). Thus, commercial ridesharing 
services are found adding system-wide VMT, thereby 
increasing congestion rather lessening it [8]. Assigning drivers 
with fixed origin, destination, and travel time constraints could 
solve the negative aspect of commercial ridesharing services. 
Ridesharing services then would be more demand responsive 
and ensure that each vehicle on the road would serve a purpose 
(i.e. have a particular O-D) rather than looking for passengers 
and increasing VMT, congestion, and pollution.  

The rest of the paper is organized as follows. The 
Literature Review shows implications of past studies related to 
this research, The Methodology explains ridesharing matching-
objective models and solution method, Analysis and Results 
discusses the findings of the ridesharing matching-objective 
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models evaluation considering a hypothetical grid roadway 
network, Implications in Ridesharing Policy discusses the 
research findings on ridesharing policy decision making and 
Conclusions presents concluding remarks, contributions of this 
research, and future research directions. 

 
2. Literature Review 

Solving the ridesharing problem based on received 
requests is similar to the dial-a-ride problem that provides on-
demand service to passengers requesting trips between two 
points [9]. However, ridesharing drivers’ and riders’ matching 
with existing requests has additional constraints such as drivers’ 
acceptable trip time windows, drivers’ own origin and 
destination, which reduces the search space and complicates the 
problem [6]. Different techniques were adopted by researchers 
to solve ridesharing drivers’ and riders’ matching issues.  A 
switching role approach between drivers and riders was used by 
Armant and Brown with system-wide VMT minimization as a 
matching-objective, where drivers and riders could change their 
role (i.e., when ride demand is too high, some potential 
passengers can decide to act as drivers and provide rides, 
instead of requesting a ride) [5]. The limitation of this 
matching-method is that the driving route between a pair of 
locations was considered similar regardless of existing requests, 
and thereby, drivers do not have to cover any detour distance 
which provides fewer incentives to riders as sometimes they 
need to walk or use some other modes for first-mile and last-
mile transportation. A ridesharing matching algorithm 
proposed by Ehsani and Yu [10] predicted total system-wide 
VMT reduction using the New York City Taxis and Limousine 
Commission dataset focusing on the maximization of the 
number of matching. However, shared rides used by all users in 
the dataset was an unrealistic assumption. Liu et al. [11] 
focused on minimizing unassigned trip requests by using future 
ridesharing demand and supply estimation. With forecasted 
demand and supply, an algorithm developed by the authors 
guided matching among drivers and riders in real-time. Ren et 
al. [12] optimized travel cost (i.e., vehicle operation cost, user 
time cost, user rental cost) of ridesharing with electric vehicles. 
The authors reported that the proposed routing optimization 
model improved the utilization of the electric vehicles, and 
reduced user cost and VMT. 

Several studies solved the ridesharing drivers’ and 
riders’ matching problem by applying multi-objective 
optimization techniques [2], [6], [13], [14], [15], [16], [17]. A 
ridesharing routing optimization model to minimize drivers’ 
operational cost and maximize riders’ satisfaction illustrated 
that ridesharing could reduce taxi demand by 24% and system-
wide VMT by 19% [13].  Multi-objective route planning 
algorithms were adopted by Herbawi and Weber for the 
dynamic multi-hop ridesharing problem, where a single rider’s 
trip request was served by multiple drivers [14], [15]. 
Passenger’s origin to destination trips for this ridesharing type 
is shared by multiple drivers who do not need to change their 
original route. However, transferring in between trips may 
result in inconvenience to passengers.  An improved version of 
this approach considered multiple riders instead of a single rider 
sharing trips with the available drivers along with time windows 

for pick-up and drop-off, and drivers’ detour requirements [6]. 
A genetic algorithm was used to solve this ridesharing matching 
optimization problem considering multiple matching-
objectives i.e., minimizing travel time, minimizing travel 
distance, and maximizing the number of drivers’ and riders’ 
matching. This algorithm was able to serve 73% of riders’ 
requests using the trip-demand scenario of Northeastern, 
Illinois when drivers with longer travel distance were selected 
from a pool of travelers. However, when drivers were chosen 
randomly, the algorithm was only able to match 42% of riders’ 
requests with comparatively lesser sacrifice in the direct travel 
distance and direct travel time. A dynamic riders’ request 
handling mechanism was developed by Agatz et al. [16] by 
minimizing system–wide VMT and travel cost. A simulation 
study was conducted using travel demand data collected from 
metropolitan Atlanta, GA, USA to evaluate the optimization 
model. The proposed rolling-horizon technique substantially 
increased matching and reduced VMT compared to greedy 
matching technique. Khademi-Zareh et al. [17]focused on 
minimizing total trip time in addition to maximizing earliest 
departure time of ridesharing participants with same travel 
destinations. A numerical experiment justified selecting two 
matching-objectives, as ignoring either of the matching-
objective resulted in inefficient matching. Ozkan [18] 
optimized both matching and pricing dimensions of ridesharing 
and recommended matching and pricing policies in different 
demand and supply scenarios. The authors proposed a decrease 
in fare when there were excess drivers in the system and vice 
versa. 

The concept of stability in ridesharing was introduced 
by using a stability constraint in the optimization of VMT, 
where trips having negative VMT savings were not rejected, 
but, balanced with trips that generated positive VMT savings 
[19]. This approach can serve riders with trip origins away from 
the travel routes of drivers and cause additional system-wide 
VMT. One major concern of this approach is that some drivers 
would experience less satisfaction due to required detours to 
pick-up passengers if there is no reward scheme (e.g., additional 
profit) for detouring. Li et al. [20] demonstrated that matching 
between drivers and riders can not be established, if their travel 
inconveniences cross a certain threshold. They argued that this 
type of matching failure could not be fixed by adjusting the 
compensation scheme. A matching algorithm developed by 
Aydin et al. [21]assigned new travel requests to the unmatched 
distance of ridesharing drivers’ routes, which improved the 
satisfaction levels of drivers and reported a 33% increase in 
matching among  drivers and riders. 

Fixed meeting points instead of door to door pick-up 
and drop-off locations could save en-route delays for in-vehicle 
passengers and drivers, can serve more passengers, and can 
increase operational flexibility. An extensive simulation study 
based on real-world traffic data evaluated the “meeting point 
concept” and found that meeting points increased the number 
of matches and decreased total system-wide VMT [22]. Using 
this meeting point concept for ridesharing, Li et al. [23] 
minimized travel time cost and cost of walking time to and from 
pick-up and drop-off points, respectively, and reported 2.7% to 
3.8% travel time savings for a small-scale ridesharing system. 
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Park and ride locations were used as meeting points by Kaan 
and Olinick [24] to minimize cost in vanpool service. The 
assumption of common origins and destinations (i.e., pick-up 
and drop-off at park and ride locations only) for all passengers 
was the limitation of this model’s applicability for ridesharing. 

While several past studies considered single and 
multiple matching-objectives in developing ridesharing service 
matching models, no study evaluated the relative performance 
of the matching-objectives considering the interests of diverse 
stakeholders involved in ridesharing service matching decision 
making. In this research, a hypothetical ridesharing service 
scenario was used to evaluate the relative performance of four 
matching-objectives. This research evaluated the consequences 
of optimizing the system for one matching-objective 
considering the associated tradeoffs in terms of the other three 
matching-objectives. Besides, this research estimated the 
impacts of selecting one matching-objective on stakeholders’ 
specific interests in ridesharing (e.g, trip times of drivers and 
passengers, cost savings of passengers, monetary gains of 
matching agencies). Findings of this research will help 
transportation policy decision-makers in developing 
ridesharing drivers’ and riders’ matching system by considering 
system performance of the four matching-objectives and 
accommodating diverse stakeholders’ interests. 

 
3. Methodology: Drivers’ and Riders’ Matching 
Optimization Models and Solution Method 

In this research, four ridesharing drivers’ and riders’ 
matching-objectives were selected to evaluate their relative 
effectiveness from different ridesharing stakeholders’ 
perspectives. Four selected matching-objectives are: (i) 
minimization of system-wide passengers’ wait time, (ii) 
minimization of system-wide vehicle miles traveled (VMT), 
(iii) minimization of system-wide detour distance, and (iv) 
maximization of system-wide drivers’ profit. Each of the four 
matching-objectives has potential to provide maximum benefit 
to some stakeholders while negatively affecting other 
stakeholders.  

 
3.1 Selection of Matching-objective Functions  

One of the significant benefits of ridesharing is the 
elimination of parking inconveniences (i.e., parking cost and 
search time) to find parking spaces in business districts. 
Ridesharing customers can also perform other activities (e.g., 
reading papers/magazines) en-route instead of driving their own 
vehicles [25]. However, riders in ridesharing trips may incur 
longer wait times for rides at their trip origins and longer trip 
time due to pick-up and drop-off other passengers. As 
ridesharing service matching-objective, minimization of 
system-wide passengers’ wait time (matching-objective 1) can 
ensure the attractiveness of the service and travel convenience.  

One of the selling points of ridesharing services is the 
reduction in system-level VMT while serving equal numbers of 
passenger miles traveled. Thus, considering the minimization 
of system-wide VMT (matching-objective 2) during matching 
riders and drivers may reduce congestion levels during rush 
hours, and reduce emissions, fuel consumption, and overall 
travel costs [19,21].  

Excessive detour distance in matching drivers and 
riders can affect drivers and onboard passengers’ travel plans 
by increasing their total trip time. While detours are 
unavoidable in most ridesharing trips, it is important to consider 
both drivers’ and passengers’ maximum trip time flexibility to 
limit unexpected detour distance/time and ensure service 
quality and satisfaction.  Drivers usually prefer passengers’ 
pick-up and drop-off points en-route between their origin and 
destination with minimum or no detour to pick-up and drop-off 
passengers.  Again onboard passengers prefer to travel in the 
shortest route to their destination. Ridesharing service providers 
want a match among drivers and riders with minimum detours 
as possible to improve users’ satisfaction. Minimizing system-
wide detours (matching-objective 3) can reduce the travel time 
of a trip that not only increases riders’ satisfaction but also 
ensures more available drivers to serve new requests. 

For ridesharing, drivers may need to perform 
substantial detour, and incur additional trip times due to 
passenger pick-up and drop-off between their origins and 
destinations. Ridesharing drivers may need to sacrifice more 
than riders in terms of travel convenience and freedom in return 
for travel cost savings/earning enabled by sharing the trip cost 
with riders. An appropriate pricing scheme and a matching 
mechanism are necessary to maximize drivers’ profit 
(matching-objective 4) to attract drivers for participating in 
ridesharing.  

 
3.2 Model Parameters and Indices  

Service providers for ridesharing receive a stream of 
trip requests from participants with their specific trip origins 
and destinations. Trip announcements in ridesharing can be 
classified into two parts: trip requests from drivers and riders. 
The matching agency requires diverse trip-related information 
from drivers and riders to develop matches among them. The 
trip-related information required from drivers include current 
location, available seats, destination, and acceptable late arrival 
time at destination. In contrast, pick-up location, destination, 
number of passengers in a request, maximum acceptable wait 
time, and ride time are required from passengers. 

𝐿𝐿𝑃𝑃  represents any link in the roadway network. p 
varies from 1 to m, where m is the total number of links. Links 
generate the connection between nodes ( 𝐿𝐿𝑛𝑛 

𝑃𝑃 ). R is the set of 
requests received from passengers. A request from single or 
multiple passengers is represented by i. 𝑣𝑣𝑡𝑡𝑡𝑡   indicates the drivers 
available for sharing a ride, where t is the type of vehicle which 
ensures that the developed model is capable to consider 
different vehicle type and capacity for ridesharing purpose. V is 
the set of all available drivers for ridesharing. In this study, 
ridesharing requests from passengers for a given time were 
optimized based on available drivers in the system. Passengers 
were assigned to vehicles based on the matching-objective and 
constraints, and the drivers were informed about the all 
passenger requests assigned to them and passengers’ pick-up 
and drop-off locations before the start of their trips. Table 1 
represents the indices and parameters used in the formulation of 
ridesharing matching optimization models. 
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3.3 Decision Variables 
The following three decision variables are considered in 

this research:  

i. 𝑦𝑦𝑖𝑖 ,𝑣𝑣𝑡𝑡𝑡𝑡 provides a decision on a match between a vehicle 
or driver 𝑣𝑣𝑡𝑡𝑡𝑡 ∈V with a request i ∈ R.  

o If the driver of vehicle 𝑣𝑣𝑡𝑡𝑡𝑡  can serve the 
request i, 𝑦𝑦𝑖𝑖 ,𝑣𝑣𝑡𝑡𝑡𝑡 = 1   

Table 1 Model parameter and indices 
  

Parameters and Indices Symbol 
Roadway Related 

Length of a link, 𝐿𝐿P 𝑙𝑙 𝐿𝐿𝑃𝑃 

Distance between two consecutive nodes 𝑙𝑙𝐿𝐿𝑛𝑛,  
𝑃𝑃 𝐿𝐿𝑛𝑛 (𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡) 

𝑃𝑃  

Distance between two nodes a and b TD a,b 
A node  𝐿𝐿𝑛𝑛 

𝑃𝑃  on link 𝐿𝐿𝑃𝑃 with an attribute, a 𝐿𝐿𝑛𝑛,  
𝑃𝑃 𝑎𝑎 

Passengers  Related 
Request ID i 
Set of requests R 
Number of passengers in request i 𝑁𝑁𝑖𝑖 
Pick-up node of request i 𝐿𝐿𝑛𝑛, 𝑜𝑜𝑖𝑖 

𝑃𝑃  

Destination node of request i 𝐿𝐿𝑛𝑛, 𝑑𝑑𝑖𝑖 
𝑃𝑃  

Number of pick-up and drop-off nodes associated with a passenger(s)’ ride request   b 
Pick-up time of trip request i (in vehicle 𝑣𝑣𝑡𝑡𝑡𝑡 ) from the origin node 𝐿𝐿𝑛𝑛𝑃𝑃  𝑇𝑇𝐿𝐿𝑛𝑛, 

𝑃𝑃 𝑜𝑜𝑖𝑖
 

Drop-off time of trip request i (in vehicle 𝑣𝑣𝑡𝑡𝑡𝑡) at the destination node 𝐿𝐿𝑛𝑛𝑃𝑃  𝑇𝑇𝐿𝐿𝑛𝑛, 
𝑃𝑃 𝑑𝑑𝑖𝑖

 

Acceptable late pick-up time of a request, i 𝑇𝑇𝑙𝑙𝑙𝑙𝑖𝑖  
Maximum travel time allowed by a passenger  request, I between origin and destination 𝑇𝑇𝑖𝑖𝑀𝑀 
Penalty for unassigned passengers’ wait time  𝑈𝑈𝑊𝑊 
Penalty for unassigned passengers’ VMT  𝐷𝐷𝐹𝐹  
Penalty for unassigned passengers’ detour distance  𝐷𝐷𝐷𝐷𝐹𝐹  

Drivers/Vehicles  Related 
Vehicle ID (vehicle type, t and vehicle ID, j) 𝑣𝑣𝑡𝑡𝑡𝑡 
Total number of drivers or vehicles V 
Fare per unit distance F 
Capacity of a vehicle type, t and vehicle number, j  𝑣𝑣𝑡𝑡𝑡𝑡𝑐𝑐  

Starting time of vehicle 𝑣𝑣𝑡𝑡𝑡𝑡  from  its origin node 𝐿𝐿𝑛𝑛𝑃𝑃  𝑇𝑇𝐿𝐿𝑛𝑛,
𝑃𝑃 𝑜𝑜𝑣𝑣𝑡𝑡𝑡𝑡

 

Arrival time of vehicle 𝑣𝑣𝑡𝑡𝑡𝑡  at its destination node 𝐿𝐿𝑛𝑛𝑃𝑃  𝑇𝑇𝐿𝐿𝑛𝑛,
𝑃𝑃 𝑑𝑑𝑣𝑣𝑡𝑡𝑡𝑡   

Acceptable late arrival time of driver in vehicle, 𝑣𝑣𝑡𝑡𝑡𝑡 at driver’s final destination 𝑇𝑇𝑙𝑙𝑙𝑙𝑣𝑣𝑡𝑡𝑡𝑡  

Number of on-board passengers in the vehicle before new pick-up         𝑁𝑁𝐸𝐸  
Number of on-board passengers in a vehicle at any node after pick -up and drop-off 𝑁𝑁𝐿𝐿𝑛𝑛𝑃𝑃 ,𝑣𝑣𝑡𝑡𝑡𝑡 

Additional ride time due to an en-route pick-up or drop-off at a node by vehicle 𝑣𝑣𝑡𝑡𝑡𝑡 𝑀𝑀𝑣𝑣𝑡𝑡𝑡𝑡    
 

Ridesharing fare in vehicle 𝑣𝑣𝑡𝑡𝑡𝑡 at the link between nodes 𝐿𝐿𝑛𝑛 
𝑃𝑃  and 𝐿𝐿𝑛𝑛 (𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡) 

𝑃𝑃  𝑅𝑅𝑅𝑅𝐿𝐿𝑛𝑛𝑃𝑃 ,𝑣𝑣𝑡𝑡𝑡𝑡 

Percentage of total profit gained by drivers P 
Cost and Optimization Related 

Timestamp T 
Congestion delay C 
Fare inflation factor 𝛼𝛼 
Fuel cost per mile f 
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o If the driver of vehicle 𝑣𝑣𝑡𝑡𝑡𝑡  cannot serve the 
request i, 𝑦𝑦𝑖𝑖,𝑣𝑣𝑡𝑡𝑡𝑡 = 0. 

ii. 𝑋𝑋𝐿𝐿𝑛𝑛𝑃𝑃,𝑣𝑣𝑡𝑡𝑡𝑡  represents the requirement of pick-up or drop-
off associated to a node for vehicle or driver  𝑣𝑣𝑡𝑡𝑡𝑡 

o If there is a pick-up or drop-off request at a 
node for vehicle 𝑣𝑣𝑡𝑡𝑡𝑡, 𝑋𝑋𝐿𝐿𝑛𝑛𝑃𝑃,𝑣𝑣𝑡𝑡𝑡𝑡    = 1. 

o If there is no pick-up or drop-off request at a 
node for vehicle 𝑣𝑣𝑡𝑡𝑡𝑡, 𝑋𝑋𝐿𝐿𝑛𝑛𝑃𝑃,𝑣𝑣𝑡𝑡𝑡𝑡    = 0. 

iii. 𝑍𝑍𝑖𝑖  denotes if a request, i is served by a match or not  
o If there is no match available for the request 

i, 𝑍𝑍𝑖𝑖=1.  
o If the request, i is assigned, 𝑍𝑍𝑖𝑖=0. 

3.4 Model Formulation 
In this subsection, we have formulated four matching-

objectives considered to evaluate their relative effectiveness in 
serving the purpose of ridesharing stakeholders. The following 
assumptions were made in the model formulations: 

i. Each request will be fulfilled by one driver. 
ii. As the ridesharing system may not be able to serve 

all trip requests due to optimization of certain 
objective function and constraints, any 
unassigned requests are assumed to use an 
alternative mode of transportation (e.g., 
ridehailing, public transportation, personal 
vehicle). 

iii. Request execution of drivers and riders will be 
static rather than dynamic. Available requests will 
be executed by available drivers at that time. 

iv. For a particular request, delay due to other 
requests’ pick-up and drop-off, will be counted at 
nodes other than pick-up and drop-off nodes of 
that particular request. 

v. Total fare will be shared by both drivers and 
passengers. 

vi. Pick-up and drop-off will occur at nodes only. 
vii. The problem formulations will consider ‘ride 

now’ type of ride requests, and not applicable for 
‘ride later’ type of requests. 

Matching-objective 1: Minimization of system-wide wait time 
of passengers  

𝑚𝑚𝑚𝑚𝑚𝑚 ∑ ∑ [𝑣𝑣𝑡𝑡𝑡𝑡∈V  𝑖𝑖∈R  {(𝑇𝑇𝐿𝐿𝑛𝑛, 
𝑃𝑃 𝑜𝑜𝑖𝑖

−  𝑇𝑇𝐿𝐿𝑛𝑛, 
𝑃𝑃 𝑑𝑑𝑖𝑖

) +∑ {𝑀𝑀𝑣𝑣𝑡𝑡𝑡𝑡 ∗
  𝐿𝐿𝑛𝑛, 
𝑃𝑃 𝑑𝑑𝑖𝑖

𝐿𝐿𝑛𝑛, 
𝑃𝑃 𝑜𝑜𝑖𝑖

(𝑋𝑋𝐿𝐿𝑛𝑛𝑃𝑃, 𝑣𝑣𝑡𝑡𝑡𝑡 − 𝑏𝑏)} + ∑ 𝐶𝐶𝐿𝐿𝑛𝑛 
𝑃𝑃

𝐿𝐿𝑛𝑛, 
𝑃𝑃 𝑑𝑑𝑖𝑖
𝐿𝐿𝑛𝑛, 
𝑃𝑃 𝑜𝑜𝑖𝑖

 }* 𝑦𝑦𝑖𝑖,𝑣𝑣𝑡𝑡𝑡𝑡+  𝑈𝑈𝑊𝑊 ∗ 𝑍𝑍𝑖𝑖  ] 

This matching-objective function consists of four wait 
time components. The first component represents the wait time 
of the ride request at the pick-up node. The second component 
represents wait time related to the en-route pick-up and drop-
off requests, which will be counted at nodes other than pick-up 
and drop-off nodes of the request concerned. The third 
component reflects the wait time due to congestion. The fourth 
component represents a wait time penalty for unassigned 
passengers to account for the requests that could not be matched 
with available drivers.  

This matching-objective function is subjected to the following 
constraints:  

 𝑇𝑇𝑙𝑙𝑙𝑙𝑖𝑖 ≥  𝑇𝑇𝐿𝐿𝑛𝑛, 
𝑃𝑃 𝑜𝑜𝑖𝑖

  where ∀𝑣𝑣𝑡𝑡𝑡𝑡 ∈ V, ∀ i ∈ R         (1)                                                                                 

 where ∀𝑣𝑣𝑡𝑡𝑡𝑡 ∈ V, ∀ i ∈ R   (2)                                                                            

 ∑  𝑦𝑦𝑖𝑖 ,𝑣𝑣𝑡𝑡𝑡𝑡 +  𝑍𝑍𝑖𝑖  = 1  where ∀𝑣𝑣𝑡𝑡𝑡𝑡 ∈ V, ∀ i ∈ R   (3)                                                                                        
𝑇𝑇𝐿𝐿𝑛𝑛, 

𝑃𝑃 𝑑𝑑𝑖𝑖
- 𝑇𝑇𝐿𝐿𝑛𝑛, 

𝑃𝑃 𝑜𝑜𝑖𝑖
≤ 𝑇𝑇𝑖𝑖𝑀𝑀where ∀𝑣𝑣𝑡𝑡𝑡𝑡∈V, ∀i∈R  (4)                                                                  

𝑇𝑇𝐿𝐿𝑛𝑛,
𝑃𝑃 𝑑𝑑𝑣𝑣𝑡𝑡𝑡𝑡

 ≤ 𝑇𝑇𝑙𝑙𝑙𝑙𝑣𝑣𝑡𝑡𝑡𝑡  where ∀𝑣𝑣𝑡𝑡𝑡𝑡 ∈ V    (5)                                                                                                        

 Constraint (1) guarantees that the latest pick-up time 
acceptable to each request is not violated. Constraint (2) ensures 
that the sum of existing onboard passengers in a vehicle and 
passengers in the new request assigned to the same vehicle 
never exceeds vehicle seating capacity. Constraint (3) is used to 
ensure that each request will be fulfilled by one vehicle. 
Constraint (4) assures that the total ride time of any request does 
not exceed the maximum acceptable ride time. Constraint (5) is 
used to confirm that the driver’s acceptable arrival time at 
his/her destination is not violated. 

Matching-objective 2: Minimization of system-wide VMT  

min ∑ ∑  [ {𝑦𝑦𝑖𝑖,𝑣𝑣𝑡𝑡𝑡𝑡 ∗ (∑ 𝑙𝑙𝐿𝐿𝑛𝑛𝑃𝑃 ,𝐿𝐿𝑛𝑛 (𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡)
𝑃𝑃 )} + { 𝑍𝑍𝑖𝑖 ∗

 𝐿𝐿𝑛𝑛,
𝑃𝑃 𝑑𝑑𝑣𝑣𝑡𝑡𝑡𝑡  

 𝐿𝐿𝑛𝑛,
𝑃𝑃 𝑜𝑜𝑣𝑣𝑡𝑡𝑡𝑡

𝑣𝑣𝑡𝑡𝑡𝑡∈V𝑖𝑖∈R

 𝐷𝐷𝐹𝐹 ∗ (∑ 𝑙𝑙𝐿𝐿𝑛𝑛𝑃𝑃 ,𝐿𝐿𝑛𝑛 (𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡)
𝑃𝑃 )}𝐿𝐿𝑛𝑛, 

𝑃𝑃 𝑑𝑑𝑖𝑖
𝐿𝐿𝑛𝑛, 
𝑃𝑃 𝑜𝑜𝑖𝑖

]   

The first component of this matching-objective 
function represents VMT by all assigned requests, and the 
second part represents the VMT by all unassigned requests. 
This matching-objective function is also subjected to 
constraints (1) to (5). 
Matching-objective 3: Minimization of system-wide detour 
distance  
𝑚𝑚𝑚𝑚𝑚𝑚 ∑ ∑ [{ 𝑇𝑇𝐷𝐷 𝐿𝐿𝑛𝑛,

𝑃𝑃 𝑜𝑜𝑣𝑣𝑡𝑡𝑡𝑡 ,  𝐿𝐿𝑛𝑛, 
𝑃𝑃 𝑑𝑑𝑣𝑣𝑡𝑡𝑡𝑡(𝑙𝑙𝑎𝑎𝑡𝑡𝑛𝑛𝑎𝑎) −𝑣𝑣𝑡𝑡𝑡𝑡∈V𝑖𝑖∈R  

 𝑇𝑇𝐷𝐷 𝐿𝐿𝑛𝑛,
𝑃𝑃 𝑜𝑜𝑣𝑣𝑡𝑡𝑡𝑡 ,  𝐿𝐿𝑛𝑛, 

𝑃𝑃 𝑑𝑑𝑣𝑣𝑡𝑡𝑡𝑡(𝑏𝑏𝑛𝑛𝑎𝑎𝑜𝑜𝑎𝑎𝑛𝑛)} ∗ 𝑦𝑦𝑖𝑖,𝑣𝑣𝑡𝑡𝑡𝑡  

 +( 𝑇𝑇𝐷𝐷 𝐿𝐿𝑛𝑛, 
𝑃𝑃 𝑜𝑜𝑖𝑖 ,𝐿𝐿𝑛𝑛, 𝑑𝑑𝑖𝑖 

𝑃𝑃
 
* 𝑍𝑍𝑖𝑖 *  𝐷𝐷𝐷𝐷𝐹𝐹)] 

This matching-objective function is the sum of total 
detour distance traveled by all drivers and unassigned passenger 
requests. This matching-objective function is also subjected to 
constraints (1) to (5). 

 
Matching-objective 4: Maximization of system-wide drivers’ 
Profit 

max  P ∗ ∑ ∑ [𝑣𝑣𝑡𝑡𝑡𝑡∈V  𝑖𝑖∈R  ∑ {𝑅𝑅𝑅𝑅𝐿𝐿𝑛𝑛𝑃𝑃 ,𝑣𝑣𝑡𝑡𝑡𝑡 ∗ 𝑙𝑙𝐿𝐿𝑛𝑛,  
𝑃𝑃 𝐿𝐿𝑛𝑛 (𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡) 

𝑃𝑃 ∗
𝐿𝐿𝑛𝑛,
𝑃𝑃 𝑑𝑑𝑣𝑣𝑡𝑡𝑡𝑡 

𝐿𝐿𝑛𝑛,
𝑃𝑃 𝑜𝑜𝑣𝑣𝑡𝑡𝑡𝑡

𝑁𝑁𝐿𝐿𝑛𝑛𝑃𝑃 ,𝑣𝑣𝑡𝑡𝑡𝑡 ∗ (1 + α)}] 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝑅𝑅𝑅𝑅𝐿𝐿𝑛𝑛𝑃𝑃,𝑣𝑣𝑡𝑡𝑡𝑡 =
𝑙𝑙𝐿𝐿𝑛𝑛,  
𝑃𝑃 𝐿𝐿𝑛𝑛 (𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡)

𝑃𝑃 ∗(𝐹𝐹−𝑓𝑓)

𝑁𝑁𝐿𝐿𝑛𝑛𝑃𝑃,𝑣𝑣𝑡𝑡𝑡𝑡
+1  

   (6)                                                                                                         

The total base fare of a trip between two nodes is 
evenly distributed among onboard passengers and the driver. In 

 ∑𝑦𝑦𝑖𝑖,𝑣𝑣𝑡𝑡𝑡𝑡 ∗𝑁𝑁
𝑖𝑖 + 𝑁𝑁𝐸𝐸  ≤  𝑣𝑣𝑡𝑡𝑡𝑡𝑐𝑐  
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commercial ridesharing, the total fare is distributed only among 
passengers. In this study, we have assumed that drivers will also 
carry an equal portion of the fare with the concept that drivers 
share the seat of their vehicles with passengers between their 
origin and destination. This matching-objective function is also 
subjected to constraints (1) to (5) with one additional constraint 
corresponding to the fare inflation factor (constraint 7) [26]. 

 
α ≥ 0  where α ∈ (0,1) is the fare inflation factor      (7)                                                                                 

 The fare inflation factor increases the total true trip 
fare by a certain percentage to ensure drivers’ monetary benefit 
for providing ridesharing service. These additional fares 
(beyond the true trip cost) collected from riders could act as an 
incentive for drivers to participate in a ridesharing service. 
However, the fare inflation factor should be adjusted in such a 
way that there will be sufficient number of drivers and riders in 
the system to provide reliable service while ensuring monetary 
benefit to drivers and cost savings to riders. An inappropriate 
fare inflation factor may result in supplementary ridesharing 
drivers or ridesharing riders rather than a balanced proportion 
of drivers and riders that can satisfy all trips.  

3.5 Matching and Routing Solution Development Method  
As explained before, ridesharing matching and routing  

problem consists of matching  and generating routes for 
passengers and  available drivers in the system by satisfying a 
set of constraints. The objective of this study was to determine 
the approximate solution for this complex problem. The 
solution of matching and routing problem was based on 
clustering passenger requests around each driver at first and 
then generating drivers’ routes by satisfying optimization 
constraints. After clustering of passenger requests for the 
available drivers, a combination of routes was selected for 
drivers so that constraint 1 to constraint 5 were satisfied. Two 
strategies presented in Herbawi and Weber [6] were used to 
generate alternative matching and routing combinations- (i) 
reassigning passengers among drivers, and (ii) altering routes 
of drivers to serve unmatched passengers. An example of 
generating matching and routing combinations for four drivers 
(donated by A, B, C, D) and twelve passenger requests 
(denotated by number 1 to 12) in a ridesharing scenario is 
illusteated in Table 2. Initially a matching and routing 
combination of drivers A, B, C, and D is generated (matching 
and routing combination 1). In the matching and routing 
combination 2, passenger request 2 is reassigned to driver B 
from driver C, and passenger request 4 is reassigned to driver C 
from driver B. In the matching and routing combination 3, 
passenger request 10 is assigned to driver A by replacing 
passenger requests 6 and 9. Similarly, all alternative matching 
and routing combinations of drivers and passengers can be 
developed. Example matching and routing combinations 1, 2, 
and 3 accommodated 10,10, and 9 passenger requests, 
respectively. 
 For this study, Floyd algorithm was implemented in 
Matlab to generate shortest routes between drivers’ origins and 
destinations. Considering the shortest routes and passenger 
requests, matching with passenger requests and drivers’ routes 

were selected  so that drivers do not need to deviate much from 
the shortest routes. All alternative matching and routing 
combinations of available drivers and passengers were used to 
estimate the value of the four objective functions. Evaluating 
all alternative matching and routing combinations, optimized 
value for each objective function was selected. Optimization of 
four objective functions provided four different matching and 
routing combinations (i.e., separate matching and routing 
combination for each objective function). The matching and 
routing combination from each matching-objective function’s 
optimization was the best from the set of generated matching 
and routing combinations. 
 
Table 2. Example ridesharing matching and routing 
combinations between 4 drivers and 12 passenger requests 
ridesharing scenario. +/- denote the pick-up/drop-off of 
passenger requests or origin/destination of drivers. 
 

Matching 
and routing 
combination 

1 

Driver A A+ 1+ 6+ 9+ 6- 1- 9- A-  

Driver B B+ 4+ 4- 3+ 3- B-     

Driver C C+ 2+ 11+ 11- 2- C-     

Driver D D+ 5+ 8+ 5- 7+ 7- 8- D- 

Matching 
and routing 
combination 

2 

Driver A A+ 1+ 6+ 9+ 6- 1- 9- A- 

Driver B B+ 2+ 3+ 2- 3- B-     

Driver C C+ 4+ 11+ 11- 4- C-     

Driver D D+ 5+ 8+ 5- 7+ 7- 8- D- 

Matching 
and routing 
combination 

3 

Driver A A+ 1+ 10+ 1- 10- A-     

Driver B B+ 4+ 4- 3+ 3- B-     

Driver C C+ 2+ 11+ 11- 2- C-     

Driver D D+ 5+ 8+ 5- 7+ 7- 8- D- 

 
 4. Study Case 

For numerical experiments and demonstration of four 
matching-objective models, we used a hypothetical grid 
roadway network to evaluate the performance of four matching-
objectives in providing ridesharing service (Fig. 1). The size of 
the grid network is 10 miles × 10 miles with one-mile spacing 
between parallel links (i.e., roadways). It was assumed that all 
121 nodes where cross streets intersect can be used for 
passenger pick-ups and drop-offs (i.e., meeting points). The 
length of each link between two consecutive nodes is one mile. 
The hypothetical ridesharing system had 16 ride requests 
consisting of 24 passengers (8 requests with single rider and 8 
requests with two riders), where six drivers were available to 
serve those requests. The passenger capacity of each vehicle 
was limited to four excluding the driver. The assumed average 
travel speed between any two nodes was 40 mph.  The pick-up 
and drop-off locations for ride requests’ and drivers’ origins and 
destinations were chosen randomly before developing drivers’ 
and riders’ matching and routing combinations. Pick-up and 
drop-off time at any node was assumed as 30 seconds. Fig. 1 
illustrates the hypothetical grid roadway network along with 



7 
 

each drivers’ trip O-D and each passenger or passengers’ 
requested pick-up and drop-off location at the beginning of 
ride-matching.  

To accommodate ridesharing, both drivers and riders 
need to allow extra time for detours required to pick-up and 
drop-off passengers. Between drivers and passengers, drivers 
require longer trip time as they need to cover all detours, pick-
ups, and drop-offs during the trip and reach their destination 
after serving all assigned trips.  Amey [27] identified 
ridesharing drivers within MIT community, who allowed a 
maximum 150% increase of direct travel time between their 
origin and destination. For this analysis, we assumed that 
drivers and passengers will allow a maximum 100% and 70% 
extra ride time respectively to accommodate ridesharing.  
Further, it was assumed that there was no congestion on the 
roadways. The maximum wait time acceptable by passengers at 
pick-up points was assumed to be 15 minutes.  A 2016 survey 
in Ohio reported that more than 50% of the public transit riders 
routinely waited more than 30 minutes [28]. This hypothetical 
ridesharing system was assumed to cut 50% of transit riders’ 
wait time. Fare and fuel cost per mile were assumed as $2 [29] 
and 10 cents [30], respectively. On fare sharing, Uber and Lyft 
distribute fare to drivers after keeping 25% and 20% of fare, 
respectively [31]. This study assumed that the matching agency 
will keep 20% of the fare. The fare inflation factor was assumed 
to be 0.4 [26].  
 

 

Fig.1. Hypothetical grid roadway network, drivers’ O-D and 
passenger(s)’ requested O-D used in drivers’ and passengers’ 
matching optimization 
 
5. Analysis and Results 
5.1 Performance Comparison of Four Matching-objectives 

 Matching of ridesharing drivers and riders may vary 
if all foreseeable interests of stakeholders are considered. These 
numerous interests cannot be achieved at the same time because 
of the computational complexity. For this reason, we focus on 
some overarching matching-objectives that can, in general, 
fulfill the other interests of stakeholders too.  However, it is 
very difficult to obtain a single optimal solution for a problem 
where multiple matching-objectives are involved. Usually, 
there exists no single solution that optimizes each matching-
objective function simultaneously. The solution found from the 
optimization of one matching-objective function may have 
negative effects on other matching-objective functions because 
of their conflicting nature. For instance, maximizing profit for 
drivers (matching-objective 4) in ridesharing may increase 
VMT in the system (matching-objective 2). In this section, we 
compared the ridesharing system performance, when the 
system was optimized for one matching-objective by 
considering the tradeoffs that needed to be accepted in terms of 
the other three matching-objectives. Quantification of tradeoff 
values will help planners to select the best matching-objective 
that minimizes tradeoffs in terms of the other three matching-
objectives when each of the four matching-objectives was 
considered important. While determining avearage tradeoff of 
selecting one of the four  matching-objectives (presented in 
table 3), absolute values of individual tradeoffs with equal 
weight were used. 
 
5.1.1 Minimization of System-wide Passengers’ Wait Time as 
the Matching-objective: Optimization of the ridesharing 
matching service considering minimization of system-wide 
passengers’ wait time (matching-objective 1) increased system-
wide detour distance by 40.4% from the lowest detour distance 
value found for the set of generated matching and routing 
combinations and four matching-objectives’ optimization.  
Although optimizing the service by minimizing system-wide 
passengers’ wait time is favorable to passengers, as they wait 
less at pick-up locations, drivers may be less motivated as they 
need to do take longer detours to serve passengers. In addition, 
drivers incurred 7.5% profit reduction compared to the best 
profit level in this example ridesharing scenario. Compensating 
drivers in terms of additional profits and onboard passengers in 
terms of lower trip costs for longer detours could be an option 
to encourage longer detours for passenger pick-ups and drop-
offs. A detour-based pricing scheme can be considered in this 
regard, which will improve both drivers and onboard 
passengers' service satisfaction. This scheme will incentivize 
detouring, increase profit for drivers, save travel costs for 
passengers, and minimize passengers’ wait time. However, as 
optimization of ridesharing drivers’ and riders’ matching under 
this matching-objective increased system-wide VMT by only 
2.09% from the lowest VMT value, selection of this matching-
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objective can ensure nearly minimum use of fuel and 
transportation infrastructure. 
 
5.1.2 Minimization of System-wide VMT as the Matching-
objective: System-wide VMT minimization (matching-
objective 2) performed relatively well as tradeoffs for the other 
three matching-objectives were relatively low. The solution 
from optimization of this matching-objective increased system-
wide passengers’ wait time (11.0%), and system-wide detour 
distance (21.2%). These were the least possible tradeoffs from 
the respective lowest values found for the set of generated 
matching and routing combinations and all four matching-
objectives’ optimization. Optimizing the ridesharing service in 
terms of VMT reduced drivers’ profit by 8.7% from the best 
profit level as drivers were not allowed to pick-up more 
passengers by additional/longer detours which could increase 
system-wide VMT. A detour-based pricing scheme can limit 
tradeoffs related to drivers’ profit and, at the same time, 
incentivize detouring among drivers and passengers [32]. 
 
5.1.3 Minimization of System-wide Detour Distance as the 
Matching-objective: System-wide detour distance 
minimization (matching-objective 3) increased system-wide 
VMT by 3.58% compared to the lowest VMT found in 
evaluation (i.e., when the system was optimized for 
minimization of VMT). In this drivers’ and riders’ matching 
optimization scenario, the system-wide wait time of passengers 
(matching-objective 1) increased by 19.9% and system-wide 
drivers’ profit (matching-objective 4) declined by 20.8% from 
their respective best values. In this scenario, ride requests could 
be fulfilled by minimizing detour distance through minimum 
deviation from the shortest path between drivers’ origin and 
destination. Although minimization of the detour distance 
matching-objective did not increase VMT much from the 
lowest VMT level, the minimum number of requests were 
served and the passengers of unassigned requests need to look 
for alternative travel options other than ridesharing. Moreover, 
minimization of the detour distance matching-objective 
reduced drivers’ profits, as fewer passengers shared rides due 
to minimum detour distance. Applying this matching-objective 
could demotivate drivers due to a lower monetary incentive. 
 
5.1.4 Maximization of System-wide Drivers’ Profit as the 
Matching-objective: Performances of the other three matching-
objectives were relatively poor under the system-wide drivers’ 
profit maximization (matching-objective 4) scenario. The 
possible reason was that to maximize profit, drivers needed to 

travel greater detour distances to serve more passengers, which 
increased system-wide VMT. When the system-wide drivers’ 
profit maximization matching-objective was applied, system-
wide VMT and detour distance increased by 8.1% and 76.8% 
respectively from their respective lowest values. As a single 
driver needs to accommodate multiple passengers’ requests, 
overall passengers’ wait time also increased. In this case, 
overall system-wide passengers waited 145.5 minutes, which 
was 23.3% longer than the lowest wait time scenario (found 
from optimization with matching-objective 1). From the 
perspective of governmental transportation agencies, the 
increased value of system-wide VMT under this matching-
objective could increase congestion levels in already congested 
cities. However, using a system-wide drivers’ profit 
maximization matching-objective for drivers and passengers 
matching may reduce passenger’s travel cost as more 
passengers share the trip cost. This scenario could also act as a 
monetary incentive for riders who will continue ridesharing at 
the expense of a higher system-wide VMT, detour distance, and 
wait time.  
 Comparison of matching-objectives revealed that 
minimization of VMT generated the least average tradeoff 
(13.6%) compared to the other three matching-objectives’ 
respective best values for the set of generated matching and 
routing combinations (Table 3). This matching-objective can be 
selected as the best matching-objective based on this tradeoff 
analysis. In contrast, system-wide drivers’ profit maximization 
generated the largest average tradeoff (36%) compared to the 
other three matching-objectives’ respective best values. The 
solution generated from the optimization of this matching-
objective has the greatest impact on the performance of the 
other three matching-objectives.  
 
5.2 Relative Effectiveness of Ridesharing Matching-objectives 
towards Achieving Multiple Stakeholders’ Interest 

The development of any mobility service has 
consequences and can affect many stakeholders within the 
service jurisdiction. For example, while ride-hailing services 
provide a new form of mobility through a mobile app, these 
services often contribute to congestion in major cities [33]. 
Thus, although ride-hailing meets travel demand, it fails to meet 
expectations of government transportation agencies, which 
primarily regarded this service as an alternative to personal 
vehicles and as a mean to lessen system-wide VMT and 
congestion.  Thus, before implementing any mobility service, it 
is important to assess its relative tradeoffs in terms of utility 
among diverse stakeholders to ensure that some stakeholders 

Table 3 Summary of percentage tradeoff values with the adoption of one matching-objective with respect to the other three 
matching objectives 
 

Matching-objective considered 
for optimization 

Percentage tradeoff in terms of matching-objectives Absolute value of 
average tradeoff 

(%) 
System-wide  
passengers' 
wait time 

System-wide  
VMT 

System-wide  
detour distance 

System-wide 
 drivers' 
profit 

System-wide passengers' wait time 0 2.1 40.4 -7.5 16.7 
System-wide VMT 11 0 21.2 -8.7 13.6 

System-wide detour distance 19.9 3.6 0 -20.8 14.8 
System-wide drivers' profit 23.3 8.1 76.8 0 36.0 
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are not adversely affected. This study has selected four 
stakeholders related to ridesharing: passengers, drivers, 
matching agencies, and government transportation agencies. 
For all of the four matching-objectives, the relative tradeoffs 
from the best values in terms of stakeholders’ expected utility 
from ridesharing are discussed in this section. 
  
5.2.1 Evaluation of Ridesharing Matching-objectives from 
Passengers’ Perspective: Passengers are the most important 
stakeholders in ridesharing. Other stakeholders in ridesharing 
are derived to serve the trip purposes of passengers. To establish 
ridesharing as a sustainable mode of transportation, passengers 
of personal vehicles should be given sufficient incentives for 
sharing a ride to foster this mode over single-occupant vehicles. 
Passengers in ridesharing generally offer the least flexibility in 
terms of their expected wait time and trip time. Moreover, they 
envisage a reduction in travel costs for using ridesharing 
service. Three performance measures (i.e., passengers’ wait 
time, trip time, and travel cost) were selected for the evaluation 
of ridesharing matching-objectives. The performance of the 
four matching-objectives in terms of passengers’ wait time was 
measured through a wait time index [2]. Wait time index is the 
ratio of average passengers’ wait time at the pick-up locations 
for ridesharing service and average ride time between 
passengers’ O-D without any delay in a no ridesharing 
condition. In no ridesharing condition, passengers are assumed 
to reach their destinations without any delay involved in 
ridesharing (i.e., minimum travel time). Here delay accounts for 
the extra riding time occurred in ridesharing (e.g., delay due to 
pick-up and drop-off, congestion and detour) compared to ideal 
travel condition. Minimization of system-wide passengers’ wait 
time (matching-objective 1) performed best in terms of wait 
time index. For the ridesharing service system scenario 
considered in this study, average passengers’ wait time at pick-
up locations was equivalent to the 39% of average direct travel 
time between trips’ origins and destinations under ideal 
condition (Fig. 2). 
 

 
Fig. 2. Wait time index of different drivers’ and riders’ 
matching-objectives 

This excessive system-wide wait time could discourage 
passengers from participating in ridesharing. However, this 
higher wait time index was primarily due to relatively short 
travel distances between O-D pairs considered in this example 
ridesharing scenario. For the same amount of wait time and 
longer travel distances, the wait time index will be lower and 
will be less discouraging to passengers. A ride time index (ratio 

of ridesharing passengers’ average ride time between O-D to 
the average ride time of passengers between O-D in ideal 
condition without any delay in a no ridesharing scenario) was 
used to evaluate ridesharing passengers’ trip time for four 
matching-objectives of drivers and riders. System-wide detour 
distance minimization (matching-objective 3) performed best in 
terms of the ride time index. Passengers incurred approximately 
16% more travel time for participating in ridesharing service, 
which was the lowest compared to the other three matching-
objectives (Fig. 3). 
 

 
Fig. 3. Ride time index of different drivers’ and riders’ 
matching-objectives 

Minimization of system-wide VMT also performed well among 
the four matching-objectives in terms of the ride time index 
(1.18). On the contrary, system-wide passengers’ wait time 
minimization and system-wide drivers’ profit maximization 
performed relatively worse (1.24 and 1.23 respectively) as 
matching-objectives. Travel cost savings in a ridesharing 
environment primarily depends on the number of ridesharing 
passengers, fare per mile, fuel cost per mile, and the fare 
inflation factor. Performance evaluation of the four matching-
objectives considered in this research revealed that the 
maximization of system-wide drivers’ profit (matching-
objective 4) provided maximum cost savings to passengers 
(Fig. 4).  
 

 
Fig. 4. Average travel cost saved by each passenger for 
different drivers’ and riders’ matching-objectives 

In this case, the ridesharing system optimized by using 
matching-objective 4 generated $10.34 per passenger savings 
compared to a direct taxi service between passengers’ origin 
and destination. To gain maximum profit, drivers usually 
needed to share rides with the maximum number of passengers 
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(not exceeding vehicle capacity), and passengers saved travel 
costs as more passengers shared total trip costs which made per 
person travel cost lower. System-wide passengers’ wait time 
minimization (matching-objective 1) provided the least savings 
($8.73 per passenger). Optimization of the ridesharing service 
for matching-objective 1 prevented drivers from providing rides 
to those passengers who required a significant amount of pick-
up time due to long detours which led to fewer passengers in 
each vehicle to share the total trip cost. The average tradeoff 
value of the four matching-objectives revealed that system-
wide passengers’ wait time minimization (matching-objective 
1) can be selected as matching-objective if planners want to 
benefit or prioritize passengers in the system (Table 4(a)). For 
average tradeoff determination, it was assumed that the three 
performance measures are equally important to passengers. 
System-wide passengers’ wait-time minimization generated the 
lowest tradeoff (7.49%) in terms of the three performance 
measures from their respective best results. Passengers saved 
minimum in terms of trip cost when system-wide passengers’ 
wait-time minimization was used as the matching-objective. 
However, they waited less for rides. System-wide detour 
distance minimization generated the highest tradeoff (10.93%) 
in terms of the three performance measures from their 
respective best results, and thus generated least benefit for 
passengers in the system. Though less detour reduced trip time 
between origin and destination, less number of passengers were 
served in this scenario. The unmatched passengers increased 
system-wide wait time, as they needed to look for alternative 
transportation modes (e.g., public transit).  
 
5.2.2 Evaluation of Ridesharing Matching-objectives from 
Drivers’ Perspective: Rather than allocating dedicated drivers, 
this study assumed that drivers in this example ridesharing 
scenario will perform ridesharing during their own trip. For this 
reason, they have limited flexibility in terms of trip distance and 
most importantly, trip time. Moreover, ridesharing systems 
should provide sufficient monetary incentives to drivers. These 
incentives will help drivers to accommodate inconveniences of 
ridesharing, e.g., passengers’ pick-up and drop-off delays, in-
vehicle travel inconveniences, additional travel time, and detour 
distance. Drivers’ interest in ridesharing was evaluated 
considering two performance measures i.e., drivers’ travel time 
and drivers’ profit. The highest profit for drivers was achieved 
with the highest travel time (matching-objective 4) (Fig. 5 and 
Fig. 6).  
 

 

Fig. 5. Drivers’ travel time for different drivers’ and riders’ 
matching-objectives 

 

 
Fig. 6. Drivers’ profit for different drivers’ and riders’ 
matching-objectives 

 
However, drivers, as a stakeholder, prefer to incur minimum 
travel time between their O-D pairs. Average tradeoff analysis 
revealed that, although optimization with the matching-
objective 3 and matching-objective 4 could result in maximum 
benefit for drivers through minimizing travel time and 
maximizing profit, respectively, none of the two matching-
objectives’ optimization can be recommended as a matching-
objective from drivers’ perspective (Table 4(b)). These two 
matching-objectives generated higher average tradeoffs 
compared to optimization of matching-objective 2 (System-
wide VMT minimization). System-wide VMT minimization as 
a matching-objective provided a balance between drivers’ 
incurred travel time and earned profit in ridesharing.  

 
5.2.3 Evaluation of Ridesharing Matching-objectives from 
Matching Agencies’ Perspective: The goal of matching 
agencies is to ensure the maximum number of matching among 
drivers and riders while maximizing profit to remain in 
business. In terms of passenger handling capacity, 
minimization of system-wide wait time of passengers 
(matching-objective 1) and minimization of system-wide VMT 
(matching-objective 2) both served 75% of the total requests. 
System-wide detour distance minimization (matching-objective 
3) served the least percentage of passengers (~67%) as this 
matching-objective allowed limited flexibility in terms of 
detours (Fig. 7).  
 

 
Fig. 7. Percentage of passengers served through optimization 
of different drivers’ and riders’ matching-objectives 
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Maximization of system-wide drivers’ profit had a positive 
correlation with the matching agency’s monetary gains, as the 
matching agency was assumed to claim a fixed portion of total 
profit (Fig. 8).  
 

 
 
Fig. 8. Matching agency’s monetary gains from ridesharing 
trips for different drivers’ and riders’ matching-objectives 

Thus, this matching-objective resulted in maximum monetary 
gains for the matching agency, too. Average tradeoff analysis 
in terms of these two performance measures revealed that 
system-wide drivers’ profit maximization as a matching-
objective generated the lowest average tradeoff (Table 4(c)). 
Maximization of drivers’ profit required a higher number of 
matching among drivers and riders. Thus, this matching-
objective served matching agencies best compared to the other 
three-matching objectives. System-wide detour distance 
minimization as a matching-objective generated the highest 
average tradeoff. As minimum detour resulted in a minimum 
number of matches among drivers and riders, matching 
agencies gained less profit from ridesharing trips. 
 

5.2.4 Evaluation of Ridesharing Matching-objectives from 
Government Transportation Agencies’ Perspective: Rapid 
increases in personal single-occupancy vehicle usage generate 
the necessity to implement ridesharing programs. Organizations 
involved in transportation-system related decision making see 
ridesharing as a means of vehicle reduction. When multiple 
passengers’ requests are handled in a single-vehicle, ridesharing 
has the potential to reduce VMT and, thereby, congestion. This 
study selected the percentage of vehicle reduction and system-
wide VMT reduction as performance measures of ridesharing 
from government transportation agencies’ perspective. 
Optimization of system-wide detour distance led to the smallest 
reduction in vehicles (50%) compared to a scenario where each 
participant of ridesharing travel in a single-vehicle (Fig. 9).  
 

 
Fig. 9. Percentage reduction in vehicle due to ridesharing for 
different drivers’ and riders’ matching-objectives 

All of the other three matching-objectives reduced vehicles by 
55%. System-wide minimization of VMT as a matching-
objective produced maximum VMT reduction (31.28%) (Fig. 
10).  
 

  
Fig. 10. System-wide VMT reduction due to ridesharing for 
different drivers’ and riders’ matching-objectives 

 
In contrast, system-wide maximization of drivers’ profits had 
the smallest impact on VMT, as drivers generating maximum 
profit needed to serve more passengers which generated 
additional VMT in the system. System-wide minimization of 
VMT provided the best results in average tradeoff analysis in 
terms of vehicle and VMT reduction (Table 4(d)). This 
matching-objective performed best from government 
transportation agencies’ perspective as a lower number of 
vehicles and VMT reduce congestion level. On the contrary, 
maximizing drivers’ profit (matching-objective 4) could not 
serve the purpose of government transportation agencies. 
However, government transportation agencies to serve their 
own interests in ridesharing need to sacrifice drivers’ monetary 
incentives. 
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6. Implications in Ridesharing Policy 
Interests of ridesharing stakeholders were found to be 
accommodated by the selection of different drivers’ and riders’ 
matching-objectives. Though implementation of multiple 
matching-objectives is not practical in the same region, the 
results of this study could be implemented if decision-makers 
want to prioritize a particular group of stakeholders in the 
system. Moreover, tradeoffs in terms of other matching- 
objectives and ridesharing stakeholders’ interests 
corresponding to the implementation of a single matching-
objective could also be used during decision making. System-
wide drivers’ profit maximization showed highest tradeoffs in 
terms of the other three matching-objectives (Table 3), but this 
matching-objective generated the highest monetary incentive 
for both drivers and riders in the system (Fig. 4 and Fig. 6). 

Therefore, before the selection of matching-objective for 
implementation, a comprehensive ridesharing user expectation 
survey should be performed to understand the user perspective. 
Ride time index determined for all four matching-objectives 
although ranked system-wide detour distance minimization as 
the best (Fig. 3), this matching-objective however, generated 
the least number of matching among drivers and riders (Fig. 7). 
System-wide VMT minimization, in contrast, could be 
implemented by sacrificing some trip time while providing the 
maximum number of matching.  

None of the matching-objectives selected in this study 
could serve all the passenger requests satisfying optimization 
model constraints associated with each matching-objective 
function. Therefore, three potential strategies can be considered 
to serve more passenger requests: (i) Rather than achieving an 

Table 4  Tradeoff (in percentage) in terms of stakeholders’ interests when each matching-objective was optimized 
 

(a) Tradeoff considering passengers’ interests in ridesharing 

Matching-objective 
Passengers’ 
wait time 

(%) 

Passengers’ trip 
time (%) 

Passengers’ 
average travel 
cost savings 

(%) 

Absolute value of 
average tradeoff (%) 

System-wide passengers' wait time 0 6.89 -15.57 7.49 
System-wide VMT 12.82 1.72 -12.19 8.91 

System-wide detour distance 20.51 0 -12.28 10.93 
System-wide drivers' profit 17.94 6.03 0 7.99 

(b) Tradeoff considering drivers’ interests in ridesharing 

Matching-objective 
Drivers’ 

travel time 
(%) 

Drivers’ profit (%) Absolute value of 
average tradeoff (%) 

System-wide passengers' wait time 10.42 -8.07 9.25 
System-wide VMT 6.51 -8.67 7.59 

System-wide detour distance 0 -20.81 10.41 
System-wide drivers' profit 18.24 0 9.12 

(c) Tradeoff considering matching agencies’ interests in ridesharing 

Matching-objective 

Percentage 
of 

passengers 
served (%) 

Monetary gains 
 from ridesharing (%) 

Absolute value of 
average tradeoff (%) 

System-wide passengers' wait time 0 -7.54 3.77 
System-wide VMT 0 -8.43 4.22 

System-wide detour distance 11.1 -20.63 15.87 
System-wide drivers' profit 5.56 0 2.78 

(d) Tradeoff considering government transportation agencies’ interests in ridesharing 

Matching-objective 
Percentage 
of vehicle 

reduced (%) 
VMT reduction (%) Absolute value of 

average tradeoff (%) 

System-wide passengers' wait time 0 4.57 2.29 
System-wide VMT 0 0 0 

System-wide detour distance 9 7.86 8.43 
System-wide drivers' profit 0 17.71 8.86 
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optimal solution, a near-optimal solution can be used to serve 
more passengers by accepting a certain amount of sacrifice 
from the optimal performance of each matching-objective [15]. 
Though this strategy may not generate optimal performance, it 
can lead to mobility equity for passengers without personal 
vehicles who rely on ridesharing. (ii) The “switching role 
concept” can be used to maintain the balance between riders 
and available drivers to serve ride requests. In this concept, 
some users of the ridesharing system switch their roles between 
drivers and passengers to serve the demand [5]. For example, 
some passengers can take the role of drivers to increase the 
availability of drivers to fulfill unmet ride requests.  (iii) The 
matching agencies can adjust fares among different locations to 
divert drivers towards high demand locations. Price should be 
adjusted in a way that does not discourage passengers. In 
today’s ridesharing context, this concept is known as “surge 
pricing”. When there is high demand in a particular area, 
ridesharing companies increase trip cost to encourage more 
drivers to get to that area to serve more passengers [34], [35]. 
The selection of drivers’ destination and travel time constraint 
during matching optimization is not suitable for regions where 
high demand for rides exist compared to driver volume. This 
study, however, developed drivers’ and riders’ matching 
optimization models focusing on the reduction of redundant 
drivers in the system. 
 
7. Conclusions 
Ridesharing services have a strong potential to improve the 
performance of the transportation system by serving 
transportation demand with a relatively small number of 
vehicles. The most common challenge in developing an 
efficient ridesharing service is the selection of appropriate 
matching-objective(s) to achieve certain system-level 
performance. The matching of drivers and riders based on 
different matching-objectives reflecting multiple stakeholders’ 
concerns have different levels of system performance 
efficiencies. This study considered four matching-objectives 
and evaluated tradeoffs considering only one matching-
objective over the other three matching-objectives in a 
hypothetical ridesharing scenario. Also, the relative 
effectiveness of four ridesharing matching-objectives was 
demonstrated considering diverse stakeholders’ interests. 
Tradeoff evaluation of matching-objectives revealed that 
system-wide VMT minimization matching-objective 
performed best with least sacrifices on the other three objectives 
from their respective best performance levels for the set of 
generated matching and routing combinations. On the contrary, 
system-wide drivers’ profit maximization matching-objective 
imposed highest sacrifices on the other three matching-
objectives from their respective best performance level, though 
this matching-objective provided the highest monetary 
incentives for drivers and riders. System-wide minimization of 
detour distance was found to be least flexible in providing 
shared rides. Relative performance analysis of matching-
objectives from multiple stakeholders’ perspectives revealed 
that the system-wide VMT minimization as matching-objective 
could be implemented to benefit both drivers and government 
transportation agencies. System-wide minimization of 

passengers’ wait time and system-wide maximization of 
drivers’ profit could be implemented as matching-objective to 
benefit passengers and matching agencies, respectively.  

In this research, a ridesharing system was optimized, 
considering one matching-objective at a time. A multi-objective 
optimization technique can be used to consider multiple 
matching-objectives simultaneously. Also in future research, 
matching-objective models and algorithms that accommodate 
real-time ride requests should be used. Moreover, a real-world 
transportation network and  ridesharing service demand and 
supply data should be used to evaluate the ridesharing system 
performance, which will provide more reliable insights on the 
relative effectiveness of the matching-objectives and the 
proposed models. The findings of this research will help 
researchers and practitioners to execute ridesharing services 
considering multiple matching-objectives and meeting 
stakeholders’ expectations.  
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