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planning process. Empirically observed travel time data from INRIX are used in an introduced method to 19 

measure Origin Destination (OD)-based reliability. OD-based reliability is a valuable concept, since it can 20 

be easily incorporated in most travel models. The measured reliability is utilized to find the value of 21 

reliability for a specific mode choice problem and to establish the relationship between travel time and 22 

reliability. This relationship is useful to forecast reliability in future scenarios. Findings are combined with 23 

Maryland Statewide Transportation Model to find the value of reliability savings by improving the network 24 

in a case study. The Inter-County Connector is used as the case study to show the significance of reliability 25 
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INTRODUCTION 30 

An appropriate travel demand model is expected to predict travelers’ choices with adequate accuracy. These 31 

choices primarily consist of departure time choice, mode choice, path choice and en-path diversion choice. 32 

Unpredictable variation in travel times of a specific mode, path, or time is one of the most important 33 

attributes considered by travelers. Travel time reliability (TTR) is defined as “the consistency or 34 

dependability in travel times, as measured from day-to-day and/or across different times of the day” 35 

(FHWA 2009). The concept of TTR has been raised and employed in different studies to define and measure 36 

this unpredictable variation of travel time. According to Bhat and Sardesai (Bhat and Sardesai 2006), 37 

travelers consider reliability for two main reasons. First, commuters may be faced with timing requirements, 38 

and there are consequences associated with early or late arrival. Second, they inherently feel uncomfortable 39 

with unreliability because it brings worry and pressure. This behavioral consideration has been noted in 40 

many studies where it is observed that some travelers accept longer travel times in order to make their trip 41 

more reliable (Jackson and Jucker 1982).  42 

Reliability has become a significant part of travel models since early studies (Gaver Jr 1968; 43 

Prashker 1979). Many theoretical and experimental studies have considered reliability in their departure 44 

time choice, path choice or mode choice models, using stated preference (SP) or revealed preference (RP) 45 

surveys. While SP surveys describe a hypothetical situation for respondents, RP surveys ask about their 46 

actual choice and do not contain usual perception errors found in SP surveys. While there are a number of 47 

reliability studies using SP surveys, there are few studies that utilize RP surveys due to the lack of 48 

experimental settings that have significant differences among alternatives, and hardships in planning and 49 

deploying these surveys and gathering the data (Carrion and Levinson 2012). Bates et al. (Bates et al. 2001) 50 

claimed it was virtually impossible to find RP situations with sufficient perceived variation in reliability 51 

and other appropriately compensating components of journey utility. Although there are some good 52 

examples of departure time choice and path choice research using RP surveys (Carrion and Levinson 2010, 53 

2012; Lam and Small 2001; Small 1992), they all analyze TTR in link-level or path-level. There is no 54 

previous study about Origin-Destination (OD)-level TTR, even though OD level studies are extensively 55 
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used in the literature (Alam 2009; Alam et al. 2010; Raphael 1998; Thompson 1998). Since trip-based and 56 

activity-based travel demand analysis and modeling are usually conducted at the zone level, OD-level TTR 57 

measure would be of great value in incorporating reliability into current planning process.  58 

The main contribution of this study is introducing an OD-based reliability approach on empirically 59 

observed data to be used in planning process. OD-based reliability is important because it can easily be 60 

incorporated in planning processes or travel models. Additionally, reliability and its value are measured 61 

and estimated using empirically observed travel times and household travel surveys, which can be easily 62 

available. This is very valuable since conducting new SP surveys for reliability is costly, and estimates 63 

based on SP surveys contain perception errors. The objective of this paper is to develop a framework to (1) 64 

measure travel time reliability, (2) determine the value of reliability, (3) incorporate reliability in 65 

transportation planning models, and (4) estimate changes in reliability because of new or proposed 66 

transportation infrastructure investments. This paper discusses various steps on how to consider reliability 67 

as a performance measure in planning and the decision-making process by making the best utilization of 68 

available data sources and planning models. Its application is also demonstrated in a real-world case study.  69 

The remainder of the paper is organized as follows. In the next section, literature review of 70 

reliability estimation is presented, followed by a suggested methodology that can be easily adapted by 71 

planning agencies. The case study section describes application of the proposed methodology in a real world 72 

planning model. The result section discusses the importance of considering VoTR in the planning process. 73 

The conclusion section summarizes the proposed research and discusses future directions.   74 

 75 

LITERATURE REVIEW 76 

To date a number of studies and research papers have been published, where the value of reliability was 77 

measured using SP survey, RP survey, corridor travel times, and an assessment of the impact of reliability 78 

in demand (trip based or activity based) and capacity (network cost based) models. In the review presented 79 

herein, literature is classified in four groups (1) reliability in travel demand models, (2) data sources used 80 
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for modeling reliability, (3) valuation of travel time reliability, and (4) reliability application and 81 

performance measures.  82 

 83 

Reliability in Travel Demand Models 84 

Reliability was introduced to travel models in early studies. Gaver Jr (Gaver Jr 1968) proposed a departure 85 

time choice model and mentioned that travelers predict variance of their travel time and depart with a safety 86 

margin, which he called “Head start time”. Polak (Polak 1987) stated that reliability should be an explicit 87 

term in the models, and added a reliability variable to a mode choice model, which showed statistically 88 

significant improvement. The path choice model developed by Jackson and Juker (Jackson and Jucker 89 

1982) can be considered as the first study that utilized expected utility theory and the concept of reliability 90 

together. Jackson and Juker (Jackson and Jucker 1982) stated that travel time unreliability is a source of 91 

disutility in addition to travel time, and used a SP survey to assess the respondents’ tradeoffs between travel 92 

time and reliability, and also calculated user’s degree of risk aversion. The same method is used in other 93 

studies but with a different form of utility function (Polak 1987; Senna 1994). Reliability has also gone 94 

through network traffic equilibrium models  where Mirchandani and Soroush (Mirchandani and Soroush 95 

1987) incorporated travel time variance in the utility function, and showed how users shifted their path to 96 

more reliable ones. 97 

It is clear that reliability is an important measure of the health of the transportation system in a 98 

region, as state Departments of Transportation (DOTs) and Metropolitan Planning Organizations (MPOs) 99 

prepare to manage, operate and plan for future improvements. Travel time reliability, depicted in the form 100 

of descriptive statistics derived from the distribution of travel times is a critical indication of the operating 101 

conditions of any road. Considering its importance, transportation planners are inclined to include reliability 102 

as a performance measure to alleviate congestion. To investigate the use of travel time reliability in 103 

transportation planning, Lyman and Bertini (Lyman and Bertini 2008) analyzed twenty Regional 104 

Transportation Plans (RTPs) of metropolitan planning organizations (MPOs) in the U.S. None of the RTPs 105 

used reliability in a comprehensive way, though a few mentioned goals of improving regional travel time 106 

reliability. Even though many studies have tried to measure behavioral response to reliability, their 107 
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application in a transportation-planning context is limited. Studies were conducted to understand the 108 

reliability of specific paths (Chen et al. 2003; Levinson 2003; Liu et al. 2004; Tilahun and Levinson 2010). 109 

Specifically, reliability measures are studied for freeway corridors through empirical analysis and 110 

simulation approaches were also applied (Chen et al. 2000; Levinson et al. 2004; Rakha et al. 2006; Sumalee 111 

and Watling 2008; Zhang 2012). However, freeway corridors only encompass a portion of a real-life 112 

multimodal transportation network. A planning agency trying to evaluate the effect of various policies 113 

(other than freeways) may not be able to fully utilize such information to estimate the value of travel-time 114 

reliability savings on an overall network level. In the planning stage, agencies often are not ready to collect 115 

new data, but would like to utilize available resources to estimate travel time reliability using existing tools 116 

such as using the travel demand model; Hence, a framework to measure OD-based reliability to calculate 117 

network-wide reliability savings using available data will be very useful, and is currently lacking in the 118 

literature. 119 

 120 

Data Sources for Modeling Reliability 121 

Data for reliability studies are usually obtained from surveys. Qualitative questionnaires were the first 122 

surveys used in reliability studies where respondents were asked to rank the foremost reasons of their path 123 

choice, including some reasons that were related to reliability (Chang and Stopher 1981; Prashker 1979; 124 

Vaziri and Lam 1983). Then, gradually quantitative SP surveys became dominant in the field and were 125 

utilized in numerous studies (Abdel-Aty et al. 1997; Jackson and Jucker 1982) is one example. In a path 126 

choice study, Abdel-Aty et al. (Abdel-Aty et al. 1997) offered two paths to the respondents; one with fixed 127 

travel time every day, and the other with a possibility that the travel time increases on some day(s). The 128 

results showed that males are more willing to choose uncertain paths. In the scheduling study of Small 129 

(Small 1999), respondents were given two options with different travel time distributions and travel costs 130 

based on their preferred arrival time. Small (Small 1999) found that unreliability had higher disutility for 131 

respondents with children and respondents with higher income. Some other studies (Koskenoja 1996; Small 132 

et al. 2005) added nonlinearities in the scheduling models. SP surveys evolved later (Bates et al. 2001; Cook 133 

et al. 1999) showed how the presentation of travel time variability can have a significant impact on the 134 
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estimation; their work was followed in different reliability studies (Asensio and Matas 2008; Copley and 135 

Murphy 2002; Hensher 2001; Hollander 2006; Tilahun and Levinson 2010). While there are many examples 136 

of reliability studies using SP data in the literature, RP studies are limited. Carrion and Levinson (2012) 137 

related this scarcity to a lack of experimental settings showing significant difference among alternatives 138 

and costs associated with planning, deploying and gathering data from these surveys (Carrion and Levinson 139 

2012). 140 

 141 

Valuation of Travel Time Reliability 142 

Value of Travel Time (VoT) and Value of Travel Time Reliability (VoTR) are two important parameters 143 

used in transportation planning and travel demand studies. VoT refers to the monetary value travelers place 144 

on reducing their travel time. Similarly, VoTR denotes the monetary value travelers place on reducing the 145 

variability of their travel time or improving the predictability. Over the years, VoT has a long established 146 

history through the formulation of time allocation models from a consumer theory background (Jara-Díaz 147 

2007; Mishra et al. 2014; Mishra and Welch 2012; Small and Verhoef 2007; Welch and Mishra 2013, 148 

2014). Various models and their review in the mainstream of travel demand modeling are thoroughly 149 

discussed in the literature (Abrantes and Wardman 2011; Shires and de Jong 2009; Zamparini and Reggiani 150 

2007). In contrast, VoTR has been gaining significant attention in the field. However, despite increased 151 

attention, the procedures for quantifying it are still a topic of debate, and a number of researchers and 152 

practitioners have proposed numerous aspects, such as: experimental design (e.g. presentation of reliability 153 

to the public in stated preference (SP) investigations); theoretical framework (e.g. scheduling vs. centrality-154 

dispersion); variability (unreliability) measures (e.g. interquartile range, standard deviation; a requirement 155 

in the centrality-dispersion framework); data source (e.g. RP vs. SP); and others (Carrion and Levinson 156 

2012; Koppelman 2013; Mahmassani et al. 2013; Shams et al. 2017). As a consequence, VoTR estimates 157 

exhibit a significant variation across studies.  158 

Reliability Application and Performance Measures 159 

Some of the applications of reliability include path choice studies for State Route 91 (Small et al. 2005, 160 

2006), High Occupancy Toll lanes in Interstate 15, San Diego (Ghosh 2001), travelers’ path choice between 161 
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an un-tolled lane, a tolled lane and a signalized arterial parallel to them in Minneapolis (Carrion and 162 

Levinson 2010), ranking of recurring bottlenecks at the network level (Linfeng and Wei (David), Fan 2017), 163 

prediction of future traffic conditions using GPS data (Wang et al. 2017), freeway travel time using radar 164 

sensor data (Lu and Dong 2017), travel time reliability in developing country conditions using Bluetooth 165 

sensors(Mathew et al. 2016), congestion measures during disasters (Faturechi Reza and Miller-Hooks Elise 166 

2015), and a bridge choice model using GPS data for Interstate 35W (Carrion and Levinson 2012). Some 167 

of the initial performance measures of reliability were percent variation, misery index and buffer time index 168 

(Lomax et al. 2003). In subsequent studies by the Federal Highway Administration and in the National 169 

Cooperative Highway Research Program (NCHRP), 90th or 95th percentile travel time, buffer index, 170 

planning time index, percent variation, percent on-time arrival and misery index are recommended as travel 171 

time reliability measures (Systematics 2008). Pu (2011) compared various measures of travel time 172 

reliability and suggested that standard deviation as a robust estimate. Recent Strategic Highway Research 173 

Program research recommended a list of five reliability measures similar to those found in the NCHRP 174 

report, with skew statistic replacing the percent variation (Systematics 2013). Liang et al. (Liang et al. 2015) 175 

studied the impacted of travel time reliability in travelers’ mode choice decision and built models using 176 

three reliability measures: standard deviation, 90th minus 50th percentile of travel time and 80th minus 50th 177 

percentile of travel time. The three reliability measures were all able to capture the effect of travel time 178 

reliability in travelers’ mode choice and were similar in performance. 179 

 180 

Summary of Literature Review  181 

In reviewing previous literature, it is evident that a model using a reliable source of travel-time measurement 182 

data supplementing a RP survey (e.g. household travel survey) for TTR that can be utilized in planning 183 

process is not available in the literature. Besides, none of the studies have considered OD-based TTR. By 184 

using probe and individual vehicle travel time data, TTR estimation can be significantly improved. In this 185 

paper, empirically observed travel time data are used to estimate OD-based level TTR measures. The OD 186 

level TTR measures are combined in a household travel survey to provide a comprehensive RP dataset, 187 

which is used to develop discrete choice models to obtain the value of reliability. The reliability data are 188 
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combined with travel time data to explore the relationship between travel time and travel time reliability in 189 

order to forecast the reliability. All these findings are combined in a travel demand model to demonstrate 190 

how OD-based reliability can be incorporated in planning and decision making. In the next section, we 191 

describe the proposed methodology. 192 

METHODOLOGY  193 

While origin-destination-based shortest path travel time is available from number of sources, path-based 194 

reliability is not readily available. The “Observed TT Data” part of the framework shown in the middle 195 

rectangle of Figure 1 utilizes observed travel time data to capture path-based reliability. The reliability data 196 

obtained from this part are combined with the socio-demographic variables in “Random Utility Model” part 197 

of framework shown in the left rectangle where a random utility choice model (an example could be mode 198 

choice) is developed in order to find Value of Reliability. Path-based reliability and travel time data 199 

obtained in “Observed TT Data” part are also used to develop a relationship between travel time and travel 200 

time reliability. This relationship is essential since planning models usually output travel times, but 201 

reliability data is not reported. Finally, the Value of reliability and Reliability-Travel time relationship are 202 

used in the “planning model” part of the framework to obtain value travel time reliability savings in a 203 

transportation planning or travel demand model, which is the final goal of this paper. Each part of the 204 

framework is explained in greater detail later in the paper. 205 

Reliability and Mode Choice 206 

The first task is to identify the population of travelers with desired origins, destinations, and activity times 207 

reflecting their daily activity schedules and recognize network of links and nodes representing the study 208 

area. Typically, this information is obtained in a regional Household Travel Survey (HHTS) or any RP 209 

survey. The survey would provide the activity-scheduling process, containing trips with known origins, 210 

destinations, and departure times. Given a time-varying network G = (N, A), where N is a finite set of nodes 211 

and A is a finite set of directed links, the time period of interest is discretized into a set of small time 212 

intervals. The time-dependent zonal demand represents the number of individual travelers of an Origin-213 

Destination (OD) pair q (q∈Q) at departure time t (t ∈T), choosing path r (r ∈R). The set of available modes 214 
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are denoted as M (m∈M). A key behavioral assumption for the mode choice decision is that in a random 215 

utility maximization framework, where each traveler chooses a mode that maximizes his or her perceived 216 

utility. With no loss of generality, the choice probability of each mode can be given by 217 

𝑈(𝑚) = 𝛼𝑇𝑇𝑟,𝑚
𝑞𝑡

+ 𝛽𝑇𝐶𝑟,𝑚
𝑞𝑡

+ 𝛾𝑇𝑇𝑅𝑟,𝑚
𝑞𝑡

+ 𝜃𝑖𝐷𝐶𝑖+ ∈, ∀𝑟 ∈ 𝑅(𝑞, 𝑡, 𝑚) (1) 

Where,  218 

TT = path travel time 219 

TC = Travel cost 220 

TTR = Travel time reliability (example: coefficient of variation) 221 

DCi = Decision maker’s ith characteristics 222 

 α = coefficient of travel time 223 

β = coefficient of travel cost 224 

γ = coefficient of reliability 225 

𝜃𝑖= coefficient of decision maker’s ith characteristic 226 

α / β = value of time 227 

γ / β = value of travel time reliability 228 

γ / α =reliability ratio 229 

 230 

The mode choice model provides the relative fractions of users of different modes, including those 231 

whose choices entail automobile use as driver or passenger on the transportation network. In the case study, 232 

the mode choice model between driving and rail is considered. The main features of the problem addressed 233 

here entail the response of users not only to attributes of the travel time experienced on average by travelers 234 

on a particular path at a given time, but also to the prices or tolls encountered and the reliability of travel 235 

time. Accordingly, users are assumed to choose a path that minimizes a generalized cost or disutility that 236 

includes three main path attributes: travel time, monetary cost, and a measure of variability to capture 237 

reliability of travel. In the above generalized cost expression, the parameters α and β represent individual 238 

trip maker’s preferences in the valuation of the corresponding attributes. The preferences vary across 239 

travelers in systematic ways that may be captured through user socio demographic or trip-related attributes 240 

(variable DCi) or in ways that may not be directly observable. To realistically capture the effect of reliability 241 

on different user groups (heterogeneity), it is essential to represent the variation of user preferences in 242 

response to cost in each mode, captured here through the parameter α. Accordingly, the focus is on capturing 243 

heterogeneous VoT preferences across the population of highway users. Preferences for reliability may also 244 

reflect heterogeneity, and the same approach used here for VOT may be extended to incorporate both. 245 
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<<Figure 1 Here>> 246 

Estimating Reliability Measure 247 

The first task would be to obtain travel time data for a region on selected OD pairs. The travel time data 248 

could be of two types: (1) designed path travel times, and (2) variation on travel times. The travel time 249 

variation should capture the actual travel times taken by the vehicles. A relationship between travel time 250 

and travel time reliability must be developed. This relationship is needed because in regional planning 251 

models, a typical day path travel time is reported and variation cannot be captured. In another study, we 252 

used the impact of travel time reliability in travelers’ mode choice decision and built models using three 253 

reliability measures: standard deviation, 90th minus 50th percentile of travel time and 80th minus 50th 254 

percentile of travel time (Tanget al. 2015). The three reliability measures were all able to capture the effect 255 

of travel time reliability in travelers’ mode choice and were similar in performance. In this study, we 256 

consider standard deviation as the reliability measure as it is suggested to be a robust estimate (Pu 2011), 257 

but other reliability measures should also work like 90th minus 50th percentile of travel time or 80th minus 258 

50th percentile of travel time. Further research needs to be done to see the effect of using other reliability 259 

measures like buffer index, planning time index, percent variation. While establishing reliability measure, 260 

it would be important to describe all origins and destinations and pick the shortest path between each OD 261 

pair to estimate travel times. For capturing travel time variation, one year (or similar time frame) travel time 262 

data for the study region should be collected. An appropriate time period should be defined (say, minute by 263 

minute travel times in AM or PM hour), and the times on pre-defined paths need to be estimated as described 264 

in the case study. TTR estimation for this paper is discussed in “Case Study” section under “Measuring 265 

OD-based reliability. A relationship (such as multiple regression or similar technique) between mean travel 266 

time and travel time variation can be established. How this relationship will be useful is described in the 267 

next section.  268 

 269 

Estimating VoTR and integration in planning models  270 

VoTR can be estimated using any random utility model with a variable indicating reliability and travel time. 271 

In this paper we use mode choice model as an example. From the mode choice estimation VoTR can be 272 
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determined as the ratio of coefficient of reliability and travel cost (γ / β). In planning models OD based 273 

travel times are considered, but not their variations.  Without considering variation of travel times, the 274 

reliability of travel times is often not represented in planning models.” To capture variation and to obtain 275 

reliability of each path the relationship mentioned in the previous step will be useful here. For each OD 276 

pair, reliability measure can be determined using the regression relationship between mean travel time and 277 

reliability. Once the reliability of the path is known for before and after improvement, then the savings in 278 

reliability can be computed as the demand is known for the before and after scenario.  279 

DATA  280 

A number of data sources are collected including (1) Household travel survey, (2) path travel times, and (3) 281 

statewide and MPO travel demand models. Each of these data sets is explained below.  282 

Household Travel Survey 283 

The 2007/2008 Transportation Planning Board- Baltimore Metropolitan Council Household Travel Survey 284 

is used in the paper for mode choice modeling. This survey contains four types of information which include 285 

person characteristics, household characteristics, trip characteristics and vehicle characteristics. The dataset 286 

contains 108,111 trips and their details including trip start time, distance of each trip, experienced travel 287 

time of the trip, and reported mode, along with socio-economic and demographics. The socio-economic 288 

and demographic characteristics are obtained from the person, household, and vehicle characteristics of the 289 

household travel survey. Start time is used for getting the reliability of the path since reliability will vary in 290 

different times of day.  291 

 292 

Path Travel Time 293 

Travel time data for various paths are obtained from INRIX. Traffic Message Channels (TMCs) are the 294 

spatial units of INRIX data. In this study, INRIX historical data is obtained for a whole year in five minute 295 

increments, for specific paths and aggregated for every hour. Reliability measure (standard deviation of 296 

travel time) for each hour of the day is calculated from one-year data, as a measure of unreliability. Travel 297 

time observations that were 10 times greater than the average travel time for each segment were considered 298 

outliers, and thus excluded from the study. INRIX does not cover all the functional classes of roadways, 299 
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but it contains most of the major and minor arterials, along with a full representation of freeways, interstates, 300 

and expressways.   301 

 302 

Travel Demand Model 303 

The Maryland Statewide Transportation Model (MSTM) is considered as the travel demand model to 304 

demonstrate the benefits of VoTR from new infrastructure investment. MSTM is a traditional four-step 305 

travel demand model that is well-calibrated and validated, and is currently being used for various policy 306 

and planning applications in Maryland. Details of the model structure is presented in the literature (Mishra 307 

et al. 2011, 2013).  308 

In the state of Maryland majority of trips origins are destinations occur in the metropolitan areas of 309 

Baltimore and District of Columbia. Out of 24 counties in the state, 12 counties are covered by the two 310 

metropolitan areas. The remainder 12 counties are considered as mostly rural located in the eastern shore 311 

and western part of state. While automobile is the primary mode of travel, the metropolitan areas consists 312 

of extensive transit service and more than 10 percent of trips are by transit. Figure 2(a) shows the highway 313 

and transit network. The highway network consists of all major functional classes, and transit network 314 

consists of services provided by Maryland transit administration, Washington Metropolitan Area Transit 315 

Authority (WMATA), and inter-city commuter rail. Figure 2(b) shows location of all transit stops including 316 

all bus and rail services. As it is evident from the figure transit service is primarily available in the metro 317 

areas, and not in rest of the state.  318 

To estimate reliability savings because of recent network investment, we consider the Inter County 319 

Connector (ICC) as a part of the case study. More on ICC can be found in the literature (Zhang et al. 2013). 320 

Figure 2(c) shows a detailed view of ICC along with other major facilities in the southern Maryland. ICC 321 

is one of the most significant and high-profile highway projects in Maryland since the completion of the 322 

existing Interstate freeway system several decades ago. The ICC connects existing and proposed 323 

development areas between the I-270/I-370 and I-95/US-1 corridors within central and eastern Montgomery 324 
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County and northwestern Prince George's County (the two most populous counties in Maryland). ICC 325 

opened to traffic in the year 2011. The impact of TTR and VOTR on other major facilities because of newly 326 

opened ICC is further presented in the result section.  327 

MWCOG model is used to provide travel cost information of different modes for trips in HHTS 328 

data. Information like transit fares between zones, parking costs, and auto operating cost from MWCOG 329 

model are used to calculate travel cost for transit and driving. Since the MWCOG model shares the same 330 

zoning structure with HHTS data, the travel cost generated from MWCOG model can be easily incorporated 331 

with HHTS data. 332 

<<Figure 2 Here>> 333 

Scenarios Considered 334 

To demonstrate the VoTR savings, four scenarios are developed: Base year build, base year no-build, future 335 

year build, and future year no-build. The base year build and no-build scenarios reflect ICC and other minor 336 

network improvements between 2007 and 2013. The future year build scenario consists of improvements 337 

as reported in the constrained long range plan. In the future year build scenario a number of improvements 338 

are considered, such as the I-270 expansion, I-695 expansion, a network of toll roads, purple line transit 339 

and red line transit. The future year no-build scenario considers the base year network and with future year 340 

demand (socioeconomic and demographic).  341 

 342 

CASE STUDY 343 

The case study section is arranged in four subsections. These subsections include (1) measuring OD-based 344 

reliability, (2) forecasting OD-based reliability, and development of a mode choice model to obtain RR, 345 

and VOTR.  346 

Measuring OD-based Reliability 347 

 348 

In this study, OD pairs that have both rail and driving trips recorded in Washington DC area travel survey. 349 

The rationale for selecting these OD pairs is because these OD pairs both travel modes are available and 350 

are competing with each other. In total, there were 161 OD pairs with both rail and driving trip records. In 351 
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two of these OD pairs, INRIX data was not available. The rest 159 OD pairs are used for collecting INRIX 352 

data this paper to compute value of travel time reliability. To develop a mode choice model, household data 353 

was required in addition to INRIX travel time and travel time reliability data. The household 354 

socioeconomic, demographic, and travel characteristics were obtained from HHTS. From the HHTS 554 355 

trips were found encompassing 159 OD pairs.  356 

The INRIX travel time data is processed in five steps as shown in Figure 3. The first step constitutes 357 

identification of shortest path. In this paper Google Map is used to identify the shorted path between OD 358 

pairs and travel time is considered as the criteria for selecting shortest path. The second step obtains INRIX 359 

travel time data on the selected shortest paths. Average travel time for each hour of the day (24 values) for 360 

one year (365 days) is collected. Weekend data is deleted at this point since the respondents were required 361 

to record activities on a weekday in the HHTS. In the third step all available INRIX travel time data along 362 

the shortest path are added to calculate travel time on the shortest path for different time of day. In the 363 

fourth step, travel time calculated in step three are extended to the full path. Road segments are divided into 364 

two categories: freeway and non-freeway. Road segments belong to the same category are assumed to have 365 

similar average speed. Travel time for segments that are missing from INRIX are then estimated using 366 

available data in the same category, either freeway or non-freeway. The fifth step estimates TTR for 367 

different time of day. 368 

<<Figure 3 Here>> 369 

Forecasting Reliability 370 

Typical planning models report static travel times at each time of day. They do not report the variation of 371 

travel times. The estimated OD level travel times and travel time reliabilities were used to establish the 372 

relationship between travel time and travel time reliability. This relationship is useful because it can be 373 

incorporated with OD travel time matrices to find out the OD reliability matrices. The network-wide value 374 

of reliability saving can be easily calculated using OD reliability matrices. 375 

To establish this relationship various types of regression using different reliability measures as 376 

dependent variable, different travel time and congestion measures as independent variable, and different 377 



 

 

16 

 

forms of regression were tried. Finally, standard deviation per mile which indicates amount of unreliability 378 

normalized by distance is regressed with percent deviation of congested travel time from free flow travel 379 

time. The regression model uses all 159 collected OD pairs’ data. Each OD pair, has 24 data points 380 

regarding reliability and congestion measure of each hour, which sums up to 3816 data points. A number 381 

of outliers were removed from the regression estimation. The Logarithmic relationship was found to provide 382 

the best goodness of fit. The parameters are estimated using non-linear least square approach, and the result 383 

is shown in Figure 4.  The resulting r-square is 0.7675. This relationship will be used to find the change in 384 

reliability for any two given scenarios to calculate reliability savings. 385 

<<Figure 4 Here>> 386 

 387 

Development of a Mode Choice Model 388 

Drivers tend to dislike high travel time variations because of various reasons, such as accidents, bad 389 

weather, roadwork, fluctuation in demand, etc. On the other hand, rail usually has much more reliable travel 390 

times since it operates following a fixed schedule. So it would be interesting to explore how this difference 391 

in TTR would affect traveler’s choice between these two modes. In this study, OD pairs that have both rail 392 

and driving trips recorded in 2007-2008 travel survey in Washington, D.C.,  area are selected and studied 393 

since in these OD pairs both travel modes are available and are competing with each other. In these 159 394 

OD pairs, 261 rail trips, 291 driving trips, and only 2 trips of other travel modes can be observed, as shown 395 

in Table 1. Thus, in these OD pairs, it would be appropriate to assume that rail and driving are the only 396 

available alternatives. 397 

<<Table 1 Here>> 398 

 399 

Explanatory variables used in the mode choice model are shown in Table 2. Travel cost information 400 

is provided by MWCOG model. Travel time reliability for driving is calculated from INRIX data, while 401 

rail is assumed to be highly reliable and has no variation in travel time. Other information comes from 402 

HHTS data. The travel time of driving and transit is estimated by averaging the reported travel time of all 403 

the trips in the same OD pair using that mode.  404 

<<Table 2 Here>> 405 
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 406 

The model specification adopted in this paper is shown below: 407 

𝑈𝑑 = 𝛽0 + 𝛽𝑣𝑒ℎ ∗ 𝑉𝑒ℎ + 𝛽𝑎𝑔𝑒 ∗ 𝐴𝑔𝑒 + 𝛽𝑑𝑖𝑠𝑐 ∗ 𝐷𝑖𝑠𝑐 + 𝛽𝑇𝑇 ∗ 𝑇𝑇𝑑 + 𝛽𝑐𝑜𝑠𝑡 ∗ 𝐶𝑜𝑠𝑡𝑑

+ 𝛽𝑇𝑇𝑅 ∗ 𝑇𝑇𝑅 + 𝜀𝑑 

 

(2) 

𝑈𝑟 = 𝛽𝑇𝑇 ∗ 𝑇𝑇𝑟 + 𝛽𝑐𝑜𝑠𝑡 ∗ 𝐶𝑜𝑠𝑡𝑟 + 𝜀𝑟 

 

(3) 

where Ud is the utility of driving and Ur is the utility of rail. Veh, Age and Disc are explained in Table 2. 408 

TTd and TTr denote travel time for driving and rail. Costd and Costr represent travel cost for driving and 409 

rail. TTR is the TTR for driving. β0 denotes mode-specific constant. βVeh, βAge, βTT, βCost, βTTR are coefficients 410 

for corresponding explanatory variables.  411 

Based on the model specification, value of reliability (VOR) can be calculated: 412 

𝑉𝑜𝑅 =  
𝛽𝑇𝑇𝑅

𝛽𝑐𝑜𝑠𝑡
 

(4) 

Reliability ratio (RR) can be calculated by using VOR divided by value of time (VOT): 413 

𝑅𝑅 =
𝑉𝑂𝑅

𝑉𝑂𝑇
 

(5) 

The results of two mode choice models are shown in Table 3. Travel time reliability is not included in the 414 

first model. Since driving is not a possible choice for people without a driver license, those trips are not 415 

included in the model. This consideration excludes 32 trips.  416 

<<Table 3 Here>> 417 

 418 

Based on the results, the coefficients of the variables Household Vehicles, Age of the Driver, and 419 

Discretionary Trips are significant with positive sign, which means that older people owning more cars tend 420 

to drive more. Besides, people will drive more for discretionary trips. The coefficients of Travel Time and 421 

Travel Cost are negative, which shows that people will drive less if driving will take longer or cost more 422 

compared to rail. Travel Time is not significant, which may be caused by the method of how travel time is 423 

calculated. As described earlier, travel time of the alternative mode is estimated by averaging the reported 424 

travel time of all the trips in the same OD pair using that mode. However, there is a gap between the 425 

calculated travel time and the real travel time, which may lead to the insignificance of travel time in the 426 

model.  427 
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In the second model, the coefficient of the TTR variables is significantly negative, which shows 428 

that people tend to drive less when travel time variation of driving increases. The value of travel time 429 

reliability (VOR) and its 95 percent confidence interval (CI) are also calculated and shown in Table 3.  430 

Based on MSTM, the average value of time in Maryland is $14/hour. The RR can then be estimated using 431 

VOR divided by VOT, which is 4.02. It is larger than RRs in the previous literature which usually vary 432 

from 0.10~ 2.51 (Carrion and Levinson 2012a) This may be caused by several reasons. First of all, reported 433 

travel times in the survey do not show a significant difference between rail and auto. But in reality, rail has 434 

longer travel time with higher reliability. This is the reason why the model relates auto travels to lower cost 435 

of auto, and relates rail travels to higher reliability of rail; but it cannot find a significant effect of travel 436 

time, because travel time is not significantly different between alternatives. As a result, travel time becomes 437 

insignificant, and value of time is estimated to be very low. Second, the mode choice model in this study 438 

only considers rail and driving, while other modes exist in reality, such as bus, carpool or bike. Third, TTR 439 

in this study is calculated by user-experienced data in the Washington, D.C., area. Instead, most previous 440 

studies used SP survey to collect reliability information. The use of SP and RP data often cause different 441 

estimations (Ghosh 2001). Moreover, the use of different time intervals will lead to different travel time 442 

variations. Since a 1-hour time interval is used in this study for reliability, the TTR measures estimated will 443 

be much lower than using smaller time intervals, thus leading to a higher estimation of reliability ratio. 444 

Finally, different reliability measures will lead to different RR estimations. For these reasons, the RR value 445 

may vary a lot when using different reliability measures or different estimation methods. 446 

RESULTS AND DISCUSSION 447 

The results presented are for four scenarios and two planning years. The four scenarios include base year 448 

build, base year no-build, future year build, and future year no-build, and two planning years include 2010 449 

(base year), and 2030 (future year). Travel time savings and travel time reliability savings are computed for 450 

base year and future year. For comparison, average travel time by OD pair and by time of day before and 451 

after system enhancement are captured. Then the system benefits are estimated resulting from improved 452 

travel reliability. The base year comparison shows benefits because of ICC, and the future year comparison 453 
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will show benefits resulted from the projects included in long range plan. The findings are summarized at 454 

varying geographic levels: statewide, county, zone and corridor. The statewide, county and zone refers to 455 

corresponding geographic boundaries of the state, individual counties and traffic analysis zones. However, 456 

a corridor refers to specific segment of a roadway section in the transportation network. The size of the 457 

origin destination matrix changes while computing travel time and travel time reliability savings at state, 458 

county and zone level. For example, at the state level, the statewide OD matrix is used, while at the county 459 

level the size of the OD matrix is smaller than the state and corresponds to the geographic boundaries of 460 

the county. Similarly, at zone level, the size of the OD matrix consists of one row as origin and rest of the 461 

zones as columns referring destinations. At the corridor level, we consider the shortest path between two 462 

zones that possibly use the specific corridor of interest. Both travel time savings and travel time reliability 463 

savings are computed at these geographic levels for all four scenarios considering AM peak period only.  464 

 465 

Statewide Findings 466 

Statewide findings are estimated by taking travel time improvements for all OD pairs when multiplied by 467 

corresponding trips. Findings suggest that both base and future year cases receive savings when compared 468 

to their no-build counterparts (Table 4). Future year savings are higher than base year, as expected. At the 469 

statewide level, travel-time reliability savings are approximately ten percent that of travel time for base 470 

year. Table 4 shows statewide travel time and travel time reliability savings for a typical AM peak hour. It 471 

is expected that the future year will have larger savings because of a greater number of new projects 472 

introduced in the long range plan.  473 

<<Table 4 Here>> 474 

County Level Findings 475 

Travel time savings for the base and future years are shown in Figure 5(a), and travel time reliability savings 476 

are plotted at the county level in Figure 5(b). County level savings are shown for a typical day in AM peak 477 

period. In the base year, Montgomery and Prince George’s county received higher savings. These savings 478 

are because of ICC in the base year build scenario. In the future year, Anne Arundel and Baltimore counties 479 

received higher savings, as justified by constrained long-range plan projects in these counties.   480 
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<<Figure 5 Here>> 481 

 482 

 483 

Corridor Level Findings 484 

Base and future year path travel times between specific OD pair in the two ends of various corridors are 485 

considered in the reliability estimation. Travel time reliability savings are estimated for six corridors: I-270, 486 

I-95, I-495, I-695, ICC, and Purple line. The results shown in Figure 6 suggests that the travel time 487 

reliability savings are higher in the peak direction compared to off-peak direction. Among six corridors 488 

considered, ICC and purple line corridor shows higher reliability savings. When reliability savings are 489 

computed for all the travelers using these corridors for all time periods of the day and for a planning period 490 

of 20 to 30 years, such savings would be substantial to be used in the decision-making process.  491 

<<Figure 6 Here>> 492 

CONCLUSIONS 493 

Reliability is a major parameter that describes the performance of transportation network. When the current 494 

condition of the network is being monitored, reliability should be among performance measures, because 495 

travelers value reliability, and consider it in their choices. In addition, when benefits and costs of proposed 496 

or current projects are being evaluated, reliability should not be neglected, since the value of reliability 497 

savings can affect the results. In this paper, a framework was proposed to measure the value, forecast, and 498 

incorporate reliability in the transportation planning process. Measuring reliability of trips between OD 499 

pairs was done using empirically observed historical data. Some assumptions (see measuring OD-based 500 

reliability sub-section for details) made it possible to convert link travel times into OD travel times, and 501 

standard deviation of travel time was calculated using between day variations of the data as a reliability 502 

measure. OD-based reliability introduced in the paper is useful and important, because it can be easily 503 

incorporated in travel models. Afterward, these data were used to estimate a mode choice model between 504 

two competing alternatives with reliability as an independent variable. The estimated coefficient of 505 

reliability made it possible to find reliability ratio and value of travel time reliability (RR and VoTR). This 506 

value is unique, since it is based on empirically observed OD-based reliability in mode choice context. The 507 
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reliability data were also combined with travel time data to obtain the relationship between travel time and 508 

travel time reliability. A nonlinear regression was used to regress travel time reliability on travel time. This 509 

regression was useful for obtaining reliability matrices when travel time matrices are available. These 510 

findings were combined with MSTM in four different scenarios to find the economic benefits of building 511 

ICC in the base year, and some more extensive network improvements in the future year. Value of reliability 512 

savings by these improvements was calculated and presented in four different levels; state, county, zone, 513 

and corridor level. 514 

The case study findings showed a considerable amount of reliability savings that should not be 515 

neglected. State level findings illustrated that reliability savings were about 10 percent of travel time 516 

savings. It also displayed that more comprehensive improvements in year 2030 will result in a larger value 517 

of reliability savings. County level results demonstrated that counties that benefit from network 518 

improvements also have higher reliability savings. Counties with the highest reliability savings showed to 519 

be different between a base year and future year due to the geographical pattern of network improvements. 520 

Zone level results displayed that future savings are more spread out in the state. Corridor level findings 521 

demonstrated considerable value of reliability savings per traveler for some major corridors. The results in 522 

different levels suggested that reliability should not be neglected in the planning process because it can 523 

have significant effects on a vast geographical area. The framework used in this study can help any planning 524 

agency to incorporate reliability in their planning process by using available local data. 525 

This work can be improved in the future. The mode choice model can be substituted with any other 526 

type of choice models based on utility maximization. Results from different choice models can be compared 527 

to assess how the value of reliability differs in different choices. Another interesting comparison is 528 

comparing the model estimated with reported travel times versus the model with MWCOG travel times. 529 

Besides, the choice of reliability measure will affect the computed VOR and RR values (Carrion and 530 

Levinson 2012). Other reliability measures instead of standard deviation (for example, buffer index, 531 

planning time index, percent variation) can be used to analyze how it affects the results. One-hour intervals 532 

for reliability data can also be changed with smaller intervals to see the effect. The reliability forecasting 533 
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part can be improved by adding weather or crash data to the regression. The mode choice model itself has 534 

many aspects that can be improved. Other modes such as bus may also be added in the future by collecting 535 

bus reliability data. By adding more modes, other types of discrete choice models such as mixed logit or 536 

nested logit should be tried to consider correlation between modes. Regarding incorporation with planning 537 

process, this study used value of reliability as a post processor to calculate reliability savings. One major 538 

future work is to incorporate reliability within planning models for enhanced sensitiveness. This requires a 539 

huge amount of reliability data for model estimation and calibration, but eventually it can improve the 540 

model’s behavioral response significantly. 541 
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Table 1. Trips records in the 159 OD pairs in HHTS 700 

Travel Mode Rail Driving Other Sum 

Number of Trips 261 291 2 554 

Percent 47.1% 52.5% 0.4% 100.0% 
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Table 2. Explanatory variables 702 

Variable Definition Values 

Veh 
Number of household vehicles 

From HHTS 
0 = 0; 1 = 1; 2 = 2; 3 = 3+ 

Lic 
Have driver license?(Persons 16+)  

From HHTS 

1 = YES; 2 = NO;  

-9 = Not Applicable 

Age 
Age in years 

From HHTS 
Continuous (years) 

Disc 

Is the trip a discretionary trip or not (Trips with trip 

purpose other than home, work and school are 

considered discretionary trips) 

From HHTS 

1 = YES; 2 = NO 

TT 
Travel time 

From HHTS 
Continuous (min) 

Cost 
Travel cost 

From MWCOG 
Continuous (cent) 

TTR 

Travel time reliability, which may be the 90th minus 

50th percentile of travel time, standard deviation, 

and whole-day standard deviation From INRIX 

Continuous (min) 

 703 
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Table 3. Model estimation results 705 

Variable 
No TTR Standard Deviation 

Coefficient t-Stat Coefficient t-Stat 

Constant 

(driving) 
-1.830 -3.94 -1.660 -3.54 

Veh 0.720 5.46 0.757 5.63 

Age 0.217 3.14 0.203 2.90 

Disc 0.941 4.35 0.869 3.98 

TT -0.005 -1.10 -0.007 -1.57 

Cost -0.001 -5.23 -0.001 -4.94 

TTR - - -0.122 -2.48 

Summary Statistics  

Number of observations 521 521 

Likelihood Ratio Test 118.99 125.51 

Final log-likelihood -301.64 -298.37 

Rho-square 0.165 0.174 

AIC 615.27 610.75 

Correlation between T and TTR - 0.37 

P-value of the correlation - 9.37 

VOR - 56.31$/h 

95% CI of VOR - (54.14$/h, 58.51$/h) 

RR - 4.02 
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Table 4. Statewide AM peak hour savings for base and future years 707 

Year Total Savings Travel Time Savings (Minutes) Travel Time Savings ($) 

Base Year 
Travel Time 1,434,002 334,552 

Travel Time Reliability 144,255 180,191 

Future 

Year 

Travel Time 4,512,147 1,052,682 

Travel Time Reliability 454,639 569,313 
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 709 

Fig. 1. Proposed methodology for VoTR estimation and integration in planning models 710 
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 712 
Fig. 2 (a). The state of Maryland highway and transit network.  713 

 714 
Fig. 2 (b). The state of Maryland transit stops. 715 
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 717 

Fig. 2(c). ICC and other interstates in Maryland 718 

Fig. 2. Maryland highway and transit network 719 

(Note: WMATA-Washington Metropolitan Area Transit Authority, MTA-Maryland Transit Authority, 720 

SMZ-Statewide modeling zones MSTM-Maryland Statewide Transportation Model) 721 
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 723 

Fig. 3. Proposed OD level TTR estimation method 724 

  725 
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 726 
Fig. 4. Regression of standard deviation per mile with percent deviation from free flow time travel time 727 
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 729 

(a): County level travel time savings with base year build and future year build  730 

 731 

 732 
(b) County level travel time reliability savings with base year build and future year build 733 

Note: Counties not listed are: Wicomico, Worcester, Queen Anne's, Talbot, Dorchester, Caroline, Allegany, Kent, and Garrett 734 

Fig. 5. County level travel time and travel time reliability savings 735 
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 736 

Fig. 6. Travel time reliability savings for sample interstate corridors the future year when compared to the 737 

no-build scenario (AM peak) 738 
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