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1.    Introduction 1 

The U.S. Congress passed the Commercial Motor Vehicle Safety Act of 1986 to establish uniform 2 

standards for testing and licensing of operators of commercial motor vehicles (Commercial Motor 3 

Vehicle Safety Act of 1986, 1986). This Act prohibits any person from operating a Commercial Motor 4 

Vehicle (CMV) without a valid a commercial driver’s license (CDL). This study aims to analyze factors 5 

contributing to the level of injury severity sustained by commercially-licensed drivers involved in single-6 

vehicle crashes. A MGORP model was adopted to investigate potential heterogeneous effects associated 7 

with the set of explanatory variables being investigated (Eluru et al., 2008). It was essential to consider 8 

the differences among various drivers’ age groups for modeling injury severity outcomes of single-9 

vehicle crashes involving CDL holders. For example, older drivers tend to have longer reaction times and 10 

likely to be more vulnerable in a crash occurrence. In contrast, younger drivers may have less driving 11 

experience and likely to drive aggressively compared to other age groups (Lee and Mannering, 2002). In 12 

this paper, we specifically analyzed potential heterogeneous effects due to “age” on the injury severity 13 

outcomes through segmenting the variable effects by drivers’ age groups.  14 

The Federal Motor Carrier Safety Administration (FMCSA) states that drivers are required to have a 15 

CDL in order to operate certain commercial vehicles since April of 1992 (FMCSA, 2014a). FMCSA has 16 

developed standards to be adopted by the different States when issuing commercial licenses. A CDL is 17 

issued when the potential driver passes a set of knowledge and skills tests administered by the State, 18 

which directly corresponds to the specific type of vehicle a driver is seeking to operate. Three types of 19 

CDLs are classified by FMCSA (Class A, B, and C) depending on the vehicle’s gross weight and the 20 

different combinations of units or trailers. According to the U.S. Department of Transportation (USDOT), 21 

in 2013, there were approximately 3.9 million registered commercially-licensed drivers operating in the 22 

U.S. (FMCSA, 2014a). Between 2009 and 2013, there were approximately 650,000 commercially-23 

licensed drivers involved in roadway crashes, although this statistic only accounts for large trucks and 24 

buses only (FMCSA, 2014b). In 2016 alone, there were approximately 165,000 commercial crashes that 25 
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involved nearly 4,700 fatalities and more than 91,000 injuries (U.S. Department of Transportation, 2017). 1 

The economic impact is substantial; the FMCSA states that in 2011, commercial crashes costs equated to 2 

$87 Billion (adjusted to 2012 dollars) (Zaloshnja and Miller, 2002). However, the economic impacts of 3 

crashes involving commercially- licensed drivers are outside the scope of this study. 4 

A review of the dataset utilized in this study reveals that CDL holders are involved in more than just 5 

crashes in commercial vehicles; to include privately owned passenger-vehicles; possibly outside of work 6 

hours. Regardless of the type of vehicle being operated, CDL holders are likely operating on the road for 7 

longer periods of times and for greater distances, which may lead to higher risks of fatigue; raising the 8 

possibility of crash occurrence compared to non-CDL holders (Park et al., 2017).  CDL holders are 9 

individuals who possess a higher level of knowledge, experience, skills, and physical abilities compared 10 

to standard driver’s license holders. Serious traffic violations committed by CDL holders can affect their 11 

ability to maintain their certification (FMCSA, 2014a). Due to the possible differences in behavior 12 

between both CDL and non-CDL holders and the different nature of crashes both categories may be 13 

involved in, this study aims to target all commercial and non-commercial crashes involving drivers who, 14 

at the time of the crash, held a valid commercial driver’s license.  15 

The primary reasons to focus on commercially-licensed drivers involved in single-vehicle crashes are 16 

threefold: (1) the characteristics of multi-vehicle crashes are potentially different, (2) a multi-vehicle 17 

crash involves interactions between a CDL holder and likely a non-CDL holder with possible behavioral 18 

differences, and (3) a separate study that accounts for the role of the driver’s age in the interaction 19 

between multiple vehicles in a crash (CDL to CDL, or CDL to non-CDL) is needed. This study aims 20 

more to specify how commercial drivers involved in single-vehicle crashes interact with the roadway, 21 

vehicle, temporal, and environmental factors, while accounting for age group differences and possible 22 

heterogeneous effects of the risk factors. To our knowledge, this study would be the first to analyze injury 23 

severity of commercially-licensed drivers involved in single-vehicle crashes. This study attempts to 24 

contribute to the literature of CDL driver’s safety by adopting econometric models to investigate possible 25 
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contributing factors to the severity of drivers involved, while investigating potential unobserved 1 

heterogeneity in the covariates as well as the differences across age groups. 2 

The remainder of this paper is structured as follows. A literature review is presented in the next 3 

section followed by the methodology section presenting an overview of the econometric approach 4 

adopted and its statistical interpretation. The data section presents the dataset utilized and the final 5 

estimation sample assembly process. The results section presents an overview of the estimation results, 6 

statistical measures-of-fit, elasticity effects, and implications of variables’ effects and recommendations. 7 

Finally, the conclusion section provides an overall summary of this research along with major findings, 8 

limitations, and future scope of research.  9 

2. Literature Review 10 

Literature shows a number of past studies analyzed severity of single-vehicle crashes in different 11 

settings, while other studies analyzed single-vehicle versus multi-vehicle crashes (Geedipally and Lord, 12 

2010, p.; Martensen and Dupont, 2013; Yu and Abdel-Aty, 2013). Various studies identified the different 13 

types of roadways where single-vehicle crashes have occurred  (Gong and Fan, 2017a; Rusli et al., 2017a; 14 

Wu et al., 2016b; Xie et al., 2012). Other studies identified the effects of specific factors (for example: 15 

age, gender, time, curb, etc.) on the severity of a single-vehicle crash (Anderson and Searson, 2015; Gong 16 

and Fan, 2017a; Jiang et al., 2013; Kim et al., 2013; Martensen and Dupont, 2013; Wu et al., 2016a). 17 

Several studies identified the type-of-crash as a rollover crash for single-vehicles (Anarkooli et al., 2017; 18 

Bambach et al., 2013; Fréchède et al., 2011).      19 

On the contrary, literature exclusively examining CDL holders irrespective of what type of vehicle 20 

being operated within the context of injury severity is scarce. Most of large truck or bus crash injury 21 

severity studies account for crashes only involving those types of vehicles, yet limited to reflect the 22 

remaining of all possible combinations of vehicle types in the commercial fleet (Al-Bdairi and 23 

Hernandez, 2017; Chang and Chien, 2013; Chang and Mannering, 1999; Chen and Chen, 2011; Dong et 24 

al., 2015; Duncan et al., 1998; Islam and Hernandez, 2013; Khattak and Targa, 2004; Khorashadi et al., 25 
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2005; Lemp et al., 2011; Pahukula et al., 2015; Wang and Shi, 2013; Zhu and Srinivasan, 2011a, 2011b). 1 

In terms of studies specifically addressing injury severity of CMV, one study used a cross-classified 2 

multilevel model to investigate the severity of CMVs while addressing heterogeneity among firms and 3 

regions (Park et al., 2017). Another study analyzed the medical condition and the severity of CMV drivers 4 

but not specifically in a single-vehicle crash setting (Laberge-Nadeau et al., 1996). Other studies 5 

addressed seatbelt usage among CMV drivers in Utah (Cook et al., 2008; Eby et al., 2002; Kim and 6 

Yamashita, 2007). Few studies addressed sleeping quality, duration, and patterns (Bunn et al., 2005; Chen 7 

et al., 2016; Hanowski et al., 2007; Lemke et al., 2016; Sparrow et al., 2016). Based on the review of the 8 

literature that focused on commercially-licensed drivers, a gap in the literature certainly exists with 9 

respect to injury severity analysis. So, additional research is needed to understand the factors that 10 

influence the injury severity of CDL holders in the event of a crash.  11 

3. Methodology 12 

Several different modeling methods have been employed to analyze crash severity data. Typically 13 

these methods can be grouped into two categories – unordered (Chang and Mannering, 1999; Holdridge et 14 

al., 2005; Savolainen and Mannering, 2007; Shankar et al., 1996; Ulfarsson and Mannering, 2004) and 15 

ordered (Eluru et al., 2008; Wang et al., 2010; Zhu and Srinivasan, 2011a). With respect to the unordered 16 

frameworks, the multinomial logit model has been widely used in injury severity literature. The 17 

multinomial logit model brings constraints such as the “independence of irrelevant alternatives (IIA)” 18 

which is, in the literature, known as the red bus/blue bus problem (McFadden, 1973). The multinomial 19 

logit model also ignores the natural ordering of injury severity outcomes which can account for 20 

misleading or inaccurate results.   21 

In the ordered response framework (such as the ordered probit model), a single latent propensity 22 

function is assumed to be translated into the observed severity outcome depending on the value of the 23 

propensity function relative to threshold parameters (number of thresholds = number of possible severity 24 

outcomes – 1). The latent propensity function is specified as a function of different factors along with a 25 
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stochastic component to account for all unobserved factors that influence injury severity. The parameters 1 

in the single propensity equation and the thresholds constitute the set of parameters that are estimated 2 

using methods such as the maximum likelihood (ML). An ordered probit model is constrained to find 3 

only one coefficient on each variable that is also in one direction, towards either higher or lower injury 4 

severity levels; a constraint that is relaxed by the MNL model. Eluru et al. (2008) extended the standard 5 

ordered response framework to develop Generalized Ordered Response (GOR) models that allow 6 

parameterization of the threshold parameters providing additional flexibility to the ordinal models (Eluru 7 

et al., 2008). So, it is not surprising that a recent comparison analysis of unordered and ordered 8 

frameworks that considers generalized version of ordered models found minor differences between the 9 

two models (Anowar et al., 2014). 10 

Injury severity conditional on crash occurrence can depend on numerous factors all of which are most 11 

certainly not observed in crash databases. These unobserved factors can moderate the influence of other 12 

observed covariates in the model leading to variation in the parameter effects across different 13 

observations. These unobserved variations are referred to as “unobserved heterogeneity”, which is of 14 

considerable importance in injury severity analysis. One important feature of the MGORP model is that it 15 

addresses possible heterogeneity in covariates. Mannering et al. (2016) describes this issue in greater 16 

detail and present alternate modeling methods available in the literature for handling the problem 17 

(Mannering et al., 2016). Among these methods, the random parameters approaches are the most 18 

prominent. 19 

Consistent with the recommendation of Eluru et al (2008), we adopted the Mixed Generalized 20 

Ordered Probit model to explore the effects of several contributing factors on the injury severity levels of 21 

commercially-licensed drivers involved in single-vehicle crashes (Eluru et al., 2008). For comparison 22 

reasons we initially estimated an ORP model, which also served as a starting point for developing the 23 

MGORP model. A brief overview of the MGORP model follows. 24 

Let n(n = 1,2, … , N) be an index that represents occupants and i(i = 1,2, … , I) is the index representing 25 

injury severity categories. In the context of this study, index i will take the value “no injury” (i = 1), 26 



7 

 

“injury” (i = 2), and “severe injury” (i = 3). The MGORP model starts as a standard ORP. The equation 1 

system for the ORP model is (McKelvey and Zavoina, 1975): 2 

yn
∗ = β′Xn + εn 

yn = i if (ψi−1 < yn
∗ < ψi)         (1) 3 

where yn
∗  is the latent propensity for occupant n in a given crash, which is translated into observed 4 

severity outcomes yn by threshold parameters ψi. Xn is K × 1 vector of covariates and β is the 5 

corresponding K × 1 vector of coefficients; ψi
′s are threshold parameters; ψ0 = −∞ and ψI+1 = ∞. εn is 6 

a random error term capturing the effects of unobserved factors on the injury severity propensity. For 7 

model identification purposes, this error term εn is assumed to be independently and identically standard 8 

normal distributed across the crashes which leads to the ordered probit model (ORP). The model structure 9 

requires that the thresholds to be strictly ordered for the partitioning of the latent risk propensity measure 10 

into the ordered injury severity categories (i. e. , −∞ < ψ1 < ψ2 < ⋯ < ψI−1 < ∞) for each occupant n.  11 

The enhancement of the ORP model to a MGORP is characterized by the enabling β vector and ψ 12 

thresholds to vary across observations. This is accomplished through subscripting these parameters with 13 

the index n. The MGORP equation system can then be written as follows: 14 

yn
∗ = β′nXn + εn 

yn = i if (ψn,i−1 < yn
∗ < ψn,i)         (2) 15 

To account for unobserved heterogeneity, the βn vector is assumed to a realization from a multivariate 16 

normal distribution with mean β and covariance Σ.  Now, Equation (2) can be re-written as follows: 17 

yn
∗ = βnXn + ε̃n where ε̃n~N(0, Xn

′ ΣXn) 18 

yn = i if (ψn,i−1 < yn
∗ < ψn,i)         (3) 19 

Also, a specific non-linear functional form was used for parameterizing thresholds to ensure that the 20 

ordinal criterion is met (−∞ < ψn,1 < ψn,2 < ⋯ < ψn,I−1 < ∞) for each driver n: 21 

ψn,i = ψn,i−1 + exp(αn,i + γn,i
′ Zni)         (4) 22 
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where Zni is a set of exogenous variables associated with the ith threshold excluding the constant; γn,iis 1 

the corresponding vector of coefficients, and αn,i is a parameter associated with injury severity level  2 

i = 1,2, … , I − 1. ψn,1 is specified as exp(α1) for identification reasons. Moreover, γn,i vector is assumed 3 

a realization from a multivariate normal distribution with mean γi  and covariance Ωi. Let γn  and γ  be 4 

the vertically stacked column vectors of all γni and γi  vectors. 5 

The probability of observed injury severity i of occupant n conditional on γn  is given by 6 

Pn(i|γn ) = Φ (
ψn,i−β′nXn

√Xn
′ ΣXn

) − Φ (
ψn,i−1−β′nXn

√Xn
′ ΣXn

)       (5) 7 

The unconditional probability can be obtained by integrating out the random components of γn  using 8 

simulation. The resulting model parameters were estimated using the maximum simulated likelihood 9 

(MSL) inference approach and 150 Halton draws (Bhat, 2001).  10 

In addition to direct effect on severity outcomes, driver’s age can have moderating influence on the 11 

effect of several covariates. Aging in general is directly related to losing some of the abilities a driver 12 

once had; however this happens with varying degrees across the population. Age as a number may not 13 

contribute much as a modeling variable, yet it can be concluded that the younger age group is more 14 

uniform than the older age group, with some of the older driver population being able to drive and 15 

function with medical impairment (Meuser et al., 2009). The importance of accounting for heterogeneity 16 

with age was shown in previous studies for pedestrians (Kim et al., 2010). 17 

In addition to exploring heterogeneity in the different covariates through the random parameter 18 

framework of the MGORP model, we further addressed heterogeneity due to “age” through interaction 19 

terms between age groups (driver age groups: 16–24, 25–64, 65+) and all other covariates. An interaction 20 

term is created by multiplying the age group indicator with each of the covariates. Interaction variables 21 

represent a complexity of their own and therefore, filling the model with interaction terms can potentially 22 



9 

 

yield a complex model that is difficult to interpret. So, interaction terms were kept to a minimum and only 1 

when found statistically significant and intuitively meaningful.  2 

Differential impacts of the independent variables on the severity level were examined and the final 3 

specification for the presented model was based on a logical process of building a standard ORP, 4 

followed by the development of a generalized ordered response probit (GORP) model that allows each 5 

variable’s effect to vary across observations while removing the statistically insignificant variables and 6 

combining other variables when their effects were statistically equal. Also, we extensively tested for 7 

potential unobserved heterogeneity effects of the injury severity determinants on the latent injury risk 8 

propensity due to unobserved factors. Thus, our final model specification became a partially segmented 9 

mixed generalized ordered response probit (MGORP) model. It terms of investigating the potential effects 10 

imposed by the drivers’ age groups, we followed a systematic approach of interacting all statistically 11 

significant variables with each of the three age groups specified in this study. Final modeling process, 12 

simulation, and elasticity calculations for MGORP were carried out in Gauss programming language that 13 

is specifically suited for econometric modeling (Gauss 15). R statistical software was used for initial 14 

modeling process (ORP and GORP) and variable selection. SAS 9.4 statistical analysis software was also 15 

utilized for data cleaning and descriptive statistics.   16 

4. Data 17 

Data on commercially-licensed drivers in single-vehicle crashes was collected from all reported 18 

crashes in the State of Minnesota occurred during the years 2012-2015. In this paper, we define a crash as 19 

a roadway single-vehicle accident involving a motorized vehicle being operated by a commercially-20 

licensed driver. In the remainder of this paper, “crash” and “driver” will refer to a single-vehicle crash 21 

involving a vehicle operated by a driver who is commercially-licensed. Data was obtained from the HSIS 22 

database and an initial review of the dataset revealed 7,165 single-vehicle crashes involving 23 

commercially-licensed drivers. Upon removing incomplete observations and excluding crashes involving 24 

pedestrians, motorcycles, and similar-in-nature non-vehicular motorized or non-motorized transportation 25 
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means, the final dataset contained 6,427 unique single-vehicle crashes involving commercially-licensed 1 

drivers. In order to explore the dataset descriptively, it was categorized into age groups. Young drivers 2 

were those under 25 years old (490 observations – 7.62%), mid-age drivers ranged from 25-64 years old 3 

(5366 observations – 8.88%), and older drivers were those of age 65 years old and above (571 4 

observations – 83.49%).  5 

Table 1 presents the frequency distribution and number of observations of key variables classified by 6 

injury severity levels. Injury severity levels (dependent variable) of commercially-licensed drivers were 7 

initially represented in the original dataset with categories that followed the KABCO scale where: 8 

K=killed, A=incapacitating injury, B=non-incapacitating injury, C=possible injury, and O=no injury. 9 

While this research aims to investigate the injury severity levels of drivers, including added interactions 10 

of age groups with the different covariates can considerably reduce the frequency of some of the 11 

interacted covariates within each of the injury severity levels depicted.  Due to both the specific nature of 12 

the observations in this study (CDL drivers) compared to an injury severity study for all drivers (non CDL 13 

or both CDL and non CDL combined), and the higher levels of training and precision of commercial 14 

drivers relative to standard driver license holders, it was not surprising the lower levels of higher injury 15 

severity outcomes in the dataset utilized. Therefore, and due to the initial lower frequency of some of the 16 

higher severity levels, some of the severity categories were combined to be able to balance the frequency 17 

of observations within each severity category. Combining injury severity categories will provide more 18 

confidence in the integrity of this research while obtaining a sound model with unbiased results. The 19 

combined injury severity categories are shown in Table 1. Fatal, incapacitating, and non-incapacitating 20 

severity levels were combined into one severity level referred to as “Injury” (I). “Possible injury” (PI), 21 

and “no injury” (NI) categories were kept as is. Similarly, Table 2 presents frequency distributions and 22 

number of observation of key variables classified by classified by the different age groups. Both Table 1 23 

and Table 2 also present the percent of each category of each variable across injury severity levels and 24 

age groups respectively while also providing the row percent for all variables.    25 



11 

 

TABLE 1 Descriptive statistics for key variables classified by injury severity 1 

Frequency  Explanatory Injury Severity Explanatory Injury Severity Explanatory Injury Severity 
Percent  Variable NI PI I Total Variable NI PI I Total Variable NI PI I Total 
Row (%)                 

  Driver      Collision      Two-lane     

N
I 

=
 N

o
 I

n
ju

ry
 

P
I 

=
 P

o
ss

ib
le

 I
n

ju
ry

 

I 
=

 I
n

ju
ry

 
 age     with      2615 244 334 3193 

 Young 385 42 63 490  758 15 49 822 No 40.69 3.8 5.2 49.68 

 < 25 years 

old 
5.99 0.65 0.98 7.62 Animal 11.79 0.23 0.76 12.79  81.9 7.64 10.46   

  78.57 8.57 12.86   92.21 1.82 5.96    2511 323 400 3234 

 Mid-age 4281 473 612 5366 Fixed 622 100 110 832 Yes 39.07 5.03 6.22 50.32 

 25-64 years 

old 

66.61 7.36 9.52 83.49 object 9.68 1.56 1.71 12.95  77.64 9.99 12.37   

  79.78 8.81 11.41   74.76 12.02 13.22   Undivided     
 Old 460 52 59 571  3746 452 575 4773  1295 108 159 1562 

  >=65 years 

old 

7.16 0.81 0.92 8.88 Other 58.29 7.03 8.95 74.26 No 20.15 1.68 2.47 24.3 

   80.56 9.11 10.33   78.48 9.47 12.05    82.91 6.91 10.18   

  Gender     Contributing       3831 459 575 4865 

   370 45 85 500 factor     Yes 59.61 7.14 8.95 75.7 

  Female 5.76 0.7 1.32 7.78  810 139 184 1133  78.75 9.43 11.82   

   74 9 17  Distracted 12.6 2.16 2.86 17.63 Speed limit     
   4756 522 649 5927  71.49 12.27 16.24    1725 113 178 2016 

  Male 74 8.12 10.1 92.22 Improper  528 52 70 650 < 55 mph 26.84 1.76 2.77 31.37 

   80.24 8.81 10.95  move 8.22 0.81 1.09 10.11  85.57 5.61 8.83   

  Seatbelt       81.23 8 10.77    3401 454 556 4411 

  used      1413 76 125 1614 >= 55 mph 52.92 7.06 8.65 68.63 

   789 211 138 1138 None 21.99 1.18 1.94 25.11  77.1 10.29 12.6   

  No 12.28 3.28 2.15 17.71  87.55 4.71 7.74   Urban     
   69.33 18.54 12.13   1537 163 219 1919  2732 369 428 3529 

   4337 356 596 5289 Other 23.91 2.54 3.41 29.86 No 42.51 5.74 6.66 54.91 

  Yes 67.48 5.54 9.27 82.29  80.09 8.49 11.41    77.42 10.46 12.13   

   82 6.73 11.27   838 137 136 1111  2394 198 306 2898 

  CDL      Speeding 13.04 2.13 2.12 17.29 Yes 37.25 3.08 4.76 45.09 

  out-of-state      75.43 12.33 12.24    82.61 6.83 10.56   

   3738 457 592 4787 Freeway     Surface 

condition 

    
  No 58.16 7.11 9.21 74.48  3854 469 589 4912 condition     
   78.09 9.55 12.37  No 59.97 7.3 9.16 76.43  2736 368 442 3546 

   1388 110 142 1640  78.46 9.55 11.99   Dry 42.57 5.73 6.88 55.17 

  Yes 21.6 1.71 2.21 25.52  1272 98 145 1515  77.16 10.38 12.46   

   84.63 6.71 8.66  Yes 19.79 1.52 2.26 23.57  2390 199 292 2881 

        83.96 6.47 9.57   Wet 37.19 3.1 4.54 44.83 

        3854 469 589 4912  82.96 6.91 10.14   
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 TABLE 1 continued 1 

Frequency  Explanatory CDL driver age group Explanatory CDL driver age group 
Percent  Variable NI PI I Total Variable NI PI I Total 

Row (%)            

  Curved     Day of week  
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=
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=
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I 
=
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ry

 

  3995 374 484 4853  1085 132 169 1386 
 No 62.16 5.82 7.53 75.51 Weekend 16.88 2.05 2.63 21.57 

  82.32 7.71 9.97    78.28 9.52 12.19   

  1131 193 250 1574 Weather     

 Yes 17.6 3 3.89 24.49  2528 324 378 3230 

  71.86 12.26 15.88   Clear 39.33 5.04 5.88 50.26 

 Vehicle age      78.27 10.03 11.7   

  2547 210 293 3050  1112 125 179 1416 

  <= 10 years 39.63 3.27 4.56 47.46 Cloudy 17.3 1.94 2.79 22.03 

   83.51 6.89 9.61    78.53 8.83 12.64   

   2579 357 441 3377  482 54 56 592 

  > 10 years 40.13 5.55 6.86 52.54 Rainy 7.5 0.84 0.87 9.21 

   76.37 10.57 13.06    81.42 9.12 9.46   

  Vehicle type      876 44 93 1013 

   1048 114 178 1340 Snowy 13.63 0.68 1.45 15.76 

  Car 16.31 1.77 2.77 20.85  86.48 4.34 9.18   

   78.21 8.51 13.28    128 20 28 176 

  Truck- 2257 220 258 2735 Windy 1.99 0.31 0.44 2.74 

  heavy duty 35.12 3.42 4.01 42.55  72.73 11.36 15.91   

   82.52 8.04 9.43   Time of day     

  Truck- 1821 233 298 2352  2889 312 408 3609 

  light duty 28.33 3.63 4.64 36.6 Daylight 44.95 4.85 6.35 56.15 

   77.42 9.91 12.67    80.05 8.65 11.31   

  School bus      406 35 48 489 

   4727 560 714 6001 Dusk/dawn 6.32 0.54 0.75 7.61 

  No 73.55 8.71 11.11 93.37  83.03 7.16 9.82   

   78.77 9.33 11.9    1831 220 278 2329 

   399 7 20 426 Night 28.49 3.42 4.33 36.24 

  Yes 6.21 0.11 0.31 6.63  78.62 9.45 11.94   

   93.66 1.64 4.69   Driver cited     

  Day of week 

 

 

 

 

     4312 398 543 5253 

   4041 435 565 5041 No 67.09 6.19 8.45 81.73 

  Weekday 62.88 6.77 8.79 78.43  82.09 7.58 10.34   

   80.16 8.63 11.21    814 169 191 1174 

       Yes 12.67 2.63 2.97 18.27 

        69.34 14.4 16.27   
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TABLE 2 Descriptive statistics for key variables classified by age group 1 

Frequency  Explanatory Age Group Explanatory Age Group Explanatory Age Group 
Percent  Variable Young Mid Old Total Variable Young Mid Old Total Variable Young Mid Old Total 
Row (%)   (< 25) (25-64) (>=65)   (< 25) (25-64) (>=65)   (< 25) (25-64) (>=65)  

  Injury      Collision      Two-lane     
  severity     with      229 2714 250 3193 

   385 4281 460 5126  36 694 92 822 No 3.56 3.89 42.23 49.68 

  No injury 5.99 66.61 7.16 79.76 Animal 0.56 10.80 1.43 12.79  7.17 85 7.83  
   7.51 83.52 8.97   4.38 84.43 11.19   261 2652 321 3234 

   63 612 59 734  56 694 82 832 Yes 4.06 41.26 4.99 50.32 

  Possible  0.98 9.52 0.92 11.42 Fixed 

object 
0.87 10.80 1.28 12.95  8.07 82 9.93  

  injury 8.58 83.38 8.04  object 6.73 83.41 9.86  Undivided     
   42 473 52 567  398 3978 397 4773  94 1339 129 1562 
  Injury 0.65 0.81 7.36 8.82 Other 6.19 61.90 6.18 74.26 No 1.46 2.01 20.83 24.30 

   7.41 83.42 9.17   8.34 83.34 8.32   6.02 85.72 8.26  

  Gender     Contributing       396 4027 442 4865 

   58 407 35 500 factor     Yes 6.16 62.66 6.88 75.70 

  Female 0.90 6.33 0.54 7.78  89 925 119 1133  8.14 82.77 9.09  
   11.6 81.4 7  Distracted 1.38 14.39 1.85 17.63 Speed limit     
   432 4959 536 5927  7.86 81.64 10.5   140 1688 188 2016 

  Male 6.72 77.16 8.34 92.22 Improper  60 534 56 650 < 55 mph 2.18 26.26 2.93 31.37 

   7.29 83.67 9.04  move 0.93 8.31 0.87 10.11  6.94 83.73 9.33  

  Seatbelt       9.23 82.15 8.62   350 3678 383 4411 

  used      81 1361 172 1614 >= 55 mph 5.45 57.23 5.96 68.63 

   81 969 88 1138 None 1.26 21.18 2.68 25.11  7.93 83.38 8.68  
  No 1.26 15.08 1.37 17.71  5.02 84.32 10.66  Urban     
   7.12 85.15 7.73   158 1616 145 1919  274 2918 337 3529 

   409 4397 483 5289 Other 2.46 25.14 2.26 29.86 No 4.26 5.24 45.40 54.91 

  Yes 6.36 68.41 7.52 82.29  8.23 84.21 7.56   7.76 82.69 9.55  

   7.73 83.13 9.13   102 930 79 1111  216 2448 234 2898 

  CDL      Speeding 1.59 14.47 1.23 17.29 Yes 3.36 38.09 3.64 45.09 

  out-of-state      9.18 83.71 7.11   7.45 84.47 8.07  

   352 3975 460 4787 Freeway     Surface 

condition 

    
  No 5.48 61.85 7.16 74.48  385 4064 463 4912 condition     
   7.35 83.04 9.61  No 5.99 63.23 7.20 76.42  279 2930 337 3546 

   138 1391 111 1640  7.84 82.74 9.43  Dry 4.34 45.59 5.24 55.17 

  Yes 2.15 21.64 1.73 25.52  105 1302 108 4912  7.87 82.63 9.5  

   8.41 84.82 6.77  Yes 1.63 20.26 1.68 23.57  211 2436 234 2881 

        6.93 85.94 7.13  Wet 3.28 37.90 3.64 44.83 

             7.32 84.55 8.12  
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 TABLE 2 continued 1 

Frequency  Explanatory Age Group Explanatory Age Group 
Percent  Variable Young Mid Old Total Variable Young Mid Old Total 

Row (%)   (< 25) (25-64) (>=65)   (< 25) (25-64) (>=65)  

  Curved     Day-of-week  

 

 

 

    
   336 4063 454 4853  147 1136 103 1386 
  No 5.23 63.22 7.06 75.51 Weekend 2.29 17.68 1.60 21.57 

   6.92 83.72 9.36   10.61 81.96 7.43  

   154 1303 117 1574 

 
Weather     

  Yes 2.40 20.27 1.82 24.49  269 2685 276 3230 
   9.78 82.78 7.43  Clear 4.19 41.78 4.29 50.26 

  Vehicle age      8.33 83.13 8.54  

   195 2594 261 3050  96 1179 141 1416 

  <= 10 years 3.03 40.36 4.06 47.46 Cloudy 1.49 18.34 2.19 22.03 

   6.39 85.05 8.56   6.78 83.26 9.96  

   295 2772 310 3377  31 513 48 592 

  > 10 years 4.59 43.13 4.82 52.54 Rainy 0.48 7.98 0.75 9.21 

   8.74 82.08 9.18   5.24 86.66 8.11  

  Vehicle type      76 844 93 1013 
   170 1048 122 1340 Snowy 1.18 13.13 1.45 15.76 

  Car 2.65 16.31 1.90 20.85  7.5 83.32 9.18  

   12.69 78.21 9.1   18 145 13 176 

  Truck- 158 2390 187 2735 Windy 0.28 2.26 0.20 2.74 

  heavy duty 2.46 37.19 2.91 42.55  10.23 82.39 7.39  

   5.78 87.39 6.84  Time-of-day     
  Truck- 162 1928 262 2352  245 3000 364 3609 
  light duty 2.52 30.00 4.08 36.60 Daylight 3.81 46.68 5.66 56.15 

   6.89 81.97 11.14   6.79 83.13 10.09  

  School bus      31 415 43 489 

   481 5016 504 6001 Dusk/dawn 0.48 6.46 0.67 7.61 

  No 7.48 78.05 7.84 93.37  6.34 84.87 8.79  

   8.02 83.59 8.40   214 1951 164 2329 

   9 350 67 426 Night 3.33 30.36 2.55 36.24 

  Yes 0.14 5.45 1.04 6.63  9.19 83.77 7.04  

   2.11 82.16 15.73  Driver cited     
  Day-of-week 

 

 

 

 

     365 4389 499 5253 
   343 4230 468 5041 No 5.68 68.29 7.76 81.73 

  Weekday 5.34 65.82 7.28 78.43  6.95 83.55 9.5  

   6.8 83.91 9.28   125 977 72 1174 

       Yes 1.94 15.20 1.12 18.27 

        10.65 83.22 6.13  
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5. Estimation Results 1 

Table 3 presents the estimation results of the MGORP model. The first column of Table 3 presents 2 

the explanatory variables, while the second and third columns present two sets of variable coefficient 3 

parameters corresponding to the different injury severity levels. The second column presents each 4 

variable in the latent risk propensity function. The third column presents variables that entered the 5 

threshold specification function between the “possible injury” and “injury” outcomes. Positive (+) 6 

threshold parameter values indicate larger region of “possible injury” vs. “injury” under an injury severity 7 

probability curve (Eluru et al., 2008), while negative (-) parameter values indicate larger “injury” vs. 8 

“possible injury” outcomes. The respective t-values of the estimated coefficients are shown in 9 

parentheses. Table 3 also presents initial log-likelihood value, the log-likelihood value at convergence, the 10 

McFadden R2, and the total number of observations in the dataset. In the “variable” column, each 11 

variable found statistically significant is followed by its potential interactions with each of the three age 12 

groups. Variable names in the first column which are followed by a standard deviation (SD) (for example: 13 

female) indicate statistically significant unobserved heterogeneity in the corresponding parameter.  14 

In the initial modeling process, each independent variable was regressed as a “standalone” variable to 15 

test for the statistical significance of its effect across all age groups, followed by its additional interaction 16 

effects across each individual age group. This partially segmented approach uncovers the differences 17 

imposed by the different age groups on each of the covariates initially found statistically significant in the 18 

MGORP model before the introduction of any interaction terms.  19 

5.1. Driver characteristics 20 

Relative to males, all female drivers (across all age groups) were associated with a higher injury 21 

propensity relative to no injury (female parameter: + 0.212). A positive threshold value for “female” 22 

indicated that females are likely to sustain possible injuries relative to injuries (+ 0.357). Perhaps the 23 

  24 
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TABLE 3 MGORP model results 1 

 2 

 3 

 MGORP 

Explanatory Variables Injury 

Propensity 

Threshold: PI | I 

Driver   

Gender (base: male)   

Female 

Standard deviation 

0.212 (1.353) 

0.802 (1.98) 

0.357 (2.13) 

Seatbelt Usage (base: used)   

Not used 0.488 (7.48) -0.392 (-4.43) 

CDL origin state (base: in-state)   

Out-of-state -0.253 (-3.54) -0.110 (-1.16) 

Accident   

Collision with (base: other)   

Animal 

Standard deviation 

-1.267 (-4.43) 

0.757 (2.51) 
- 

Fixed object 0.132 (1.93) - 

Contributing factor (base: none, improper move, other)   

Speeding 0.391 (5.05) -0.121 (-1.26) 

Distracted 

Standard deviation 

0.129 (1.35) 

0.643 (2.32) 
0.241 (1.99) 

Improper move 

Young  - 

Mid-age -0.096 (-1.11) - 

Old   - 

Freeway (base: not on freeway)   

On freeway 

Standard deviation 

-1.599 (-2.84) 

2.193 (3.34) 
0.606 (2.56) 

Roadway   

Number of lanes (base: multi-lane)   

Two-lane -0.180 (-2.23) - 

Multi-lane 

Young   

Mid-age   

Old  -0.233 (-1.43) - 

Roadway division (base: divided)   

Undivided 0.217 (2.50) - 

Undivided 

Young   

Mid-age   

Old  0.217 (1.94) - 

Speed limit (base: ≥ 55 mph)   

< 55 mph -0.602 (-8.37) - 

Area type (base: rural)   

Urban -0.211 (-2.92) 0.121 (1.69) 

Surface condition (base: dry)   

Wet -0.352 (-5.81) -0.121 (-1.49) 
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TABLE 3 Continued  1 

 2 

 3 

 MGORP 

Explanatory Variables Injury  

Propensity 
Threshold: PI | I 

Curvature (base: straight)   

Curved 0.300 (4.88) 0.157 (2.12) 

Curved 

Young   

Mid-age   

Old  0.201 (1.05) - 

Vehicle age (base: < 5 years, 5-10 years)   

> 10 years 

Standard deviation 

0.100 (1.37) 

0.462 (2.31) 
- 

Vehicle type (base: car, truck-light duty)   

Truck-heavy duty -0.275 (-4.52) -0.199 (-2.51) 

Car 

Young   

Mid-age   

Old  -0.240 (-1.26) - 

Truck-heavy 

duty 

Young -0.259 (-1.54) - 

Mid-age   

Old    

School bus involved (base: not involved)   

Involved -0.588 (-4.29) - 

Temporal   

Weather (base: clear, cloudy, rain)   

Snow 

Standard deviation 

-1.877 (-3.43) 

1.537  (3.53) 
0.634 (3.32) 

Snow 

Young   

Mid-age 0.883 (2.59) - 

Old    

Wind 0.226 (1.68) 0.208 (1.17) 

Time-of-day (base: day, dusk/dawn)   

Night 0.052 (1.01) - 

Dusk/dawn 

Young -0.624 (-1.47) - 

Mid-age   

Old    

Day-of-week (base: weekend)   

Weekday 0.069  (1.18) - 

Constants  

Threshold 1 (no injury | injury) -0.5135 (-2.92) 

Threshold 2 (injury | severe injury) -0.333 (-3.39) 

Log-Likelihood at zero -4,128.63 

Log-Likelihood at convergence -3,684.02 

McFadden 𝑹𝟐 0.1077 

Number of observations 6,427 
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female physiological and behavioral differences, compared to male, may contribute to the higher 1 

vulnerability to higher injury severity levels. Other studies on single-vehicle crashes (non-CDL) indicated 2 

similar results for both standard vehicles and large trucks (Anarkooli et al., 2017; Chen and Chen, 2011), 3 

although large trucks are only a portion of the CDL population. The female indicator was found to be 4 

heterogeneous around the mean of the estimated parameter with a t-statistic for the standard deviation of 5 

(+1.98). 6 

The indicator variable for not wearing a seatbelt was found to be strongly associated with higher 7 

injury severity levels, indicated by the positive injury propensity value (+0.488) and a t-statistic of 8 

(+7.48). The negative threshold parameter, (-0.392) and a t-statistic of (-4.43), further indicated that a 9 

CDL driver would sustain an injury relative to possible injury. Being unrestrained within a vehicle likely 10 

leads to ejection or increases the chances for impacting other objects; both could have severe outcomes. 11 

Similar results were found in the literature for large truck injury severity studies (Chang and Chien, 2013; 12 

Chang and Mannering, 1999). 13 

Out-of-state drivers were associated with lower injury propensities given the negative parameter of (-14 

0.253) compared to in-state drivers. Although the negative threshold value for out-of-state driver 15 

indicated that in the event of a crash, a CDL driver would likely be injured. Out-of-state drivers are 16 

expected to be more cautious on unfamiliar roadways and likely paying additional attention to the specific 17 

geometrics of the road segment being crossed. According to past literature, higher severity levels were 18 

reported for single occupant truck-involved crashes when drivers resided within 15 miles on crash 19 

location, although not necessarily CDL holders (Chang and Mannering, 1999). On the contrary, other 20 

researchers reported lower severity levels for in-state drivers of large trucks (Islam and Hernandez, 2013). 21 

5.2. Accident characteristics 22 

Compared to colliding with other objects on the roadway, collision with an animal was found to be 23 

associated with lower injury propensity given the negative coefficient parameter of (-1.267); although this 24 

variable was found to be heterogeneous around the mean of the estimated parameter with a t-statistic for 25 
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its standard deviation of (+2.51). Past studies indicted similar behavior for collisions with animals among 1 

truck drivers, but not necessarily commercially licensed drivers (Chen and Chen, 2011). On the contrary, 2 

a collision with fixed object was associated with severe outcomes for CDL drivers. Comparable results 3 

were found in the large truck injury severity literature (Zhu and Srinivasan, 2011a, 2011b).  4 

Speeding was found to be highly significant across age groups, indicated by its positive injury 5 

propensity parameter (parameter: 0.391, t-value: 5.05). A negative threshold value indicated that speeding 6 

CDL holders will likely sustain severe outcomes. This result may encourage law enforcement to enforce 7 

higher penalties for those drivers found guilty of driving above speed limits. Similar results were found in 8 

studies for the severity of commercial motor vehicles (Park et al., 2017). 9 

Among other contributing factors to a crash involving a CDL holder, distracted driving was 10 

associated with higher injury propensity in the event of a crash. Although this variable was found to be 11 

heterogeneous around the mean of the coefficient parameter. Zhu and Srinivasan (2011) found similar 12 

results for distracted driving (Zhu and Srinivasan, 2011b). Making an improper move among mid-age 13 

CDL holders was associated with the lowest injury propensity compared other age groups. Younger 14 

drivers are likely to lack experience, while older drivers may have longer reaction times to either making 15 

a maneuver or recovering back from it, in the case of a possible crash. Freeways as a crash environment 16 

was associated with lower risk propensities compared to non-freeways. CDL drivers are likely to sustain 17 

possible injuries rather than injuries. The “freeway” indicator was found to be heterogeneous with a t-18 

value for its standard deviation of (+3.34). Compared to non-freeways, freeways have fewer distractions 19 

to drivers, mostly wider travel lanes, and fewer conflict points. Not specifically controlling for CDL 20 

drivers, past studies found that large truck crashes were more severe on freeways (Lemp et al., 2011; Zhu 21 

and Srinivasan, 2011a).                        22 

5.3. Roadway characteristics 23 

Crashes on two-lane roadways were associated with lower injury propensities across all age groups 24 

(parameter: -1.180, t-value: -2.23). Additionally, age group interactions with “two-lanes” indicated that 25 
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older drivers had the lowest risk compared to other age groups. Although these results may not just be 1 

specific to CDL drivers as a number of past studies also found that lower injury severities were associated 2 

with the decreased number of lanes in single vehicle crashes in both urban and rural settings (Gong and 3 

Fan, 2017a; Wu et al., 2016b). Although, a study of large-truck injury severity found that more lanes were 4 

less severe (Zhu and Srinivasan, 2011b).   5 

Undivided roadways contributed significantly to higher severity outcomes indicted by the positive 6 

propensity (parameter: 0.217, t-value: 2.50) across all age groups, with the older driver associated with 7 

the highest risk compared to other age groups. This is logical as drivers on undivided roadways are likely 8 

exposed to opposing traffic, which increases distraction, compared to divided roadways. Similar studies 9 

that included both CDL and non-CDL holders found similar results in both single and multiple vehicle 10 

crashes  (Kim et al., 2013; Morgan and Mannering, 2011).   11 

 Lower speed limits (less than 55 mph) contributed significantly to reduced injury severity outcomes 12 

across all age groups, as would be expected (parameter: -0.602, t-value: -8.37). Reduced speeds will 13 

always allow for more reaction time and careful maneuvers avoiding the occurrence of a crash.  14 

Urban roadways were less severe for CDL drivers compared to rural roadways. This result is 15 

anticipated as urban roadways are likely associated with lower speeds, while rural roadways may pose 16 

higher risk, especially to vehicles involved in single-vehicle crashes such as running off the road and 17 

particularly at rural higher speeds. Past passenger-car and large truck studies have found similar results 18 

(Dong et al., 2015; Duncan et al., 1998).  19 

Wet surface was associated with lower injury propensities across all age groups. Although in the 20 

event of a crash, the MGORP model negative threshold coefficient indicated severe outcomes. It seems as 21 

if drivers are more cautious driving at lower speeds and maintaining safe headways when driving on wet 22 

surface; such behavior has been suggested by past large-truck injury severity research (Chen and Chen, 23 

2011; Duncan et al., 1998; Lemp et al., 2011; Zhu and Srinivasan, 2011a, 2011b). 24 

Curved roadways were more risky for CDL drivers (parameter: +0.300, t-value: 4.88). Similar results 25 

were found in the literature for single-vehicle run off the road crashes (Gong and Fan, 2017a; Roque et 26 
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al., 2015). Yet, a positive threshold parameter (+0.157) suggested that in the event of a crash, the outcome 1 

will likely be a possible injury but not an injury. This non-monotonic effect of road curvature suggest that  2 

in some cases, it seems that roadway curves are dangerous and can lead to severe outcomes while in few 3 

other cases, higher driver awareness and cautious driving, while maneuvering curved roadways, reduces 4 

the chances of injuries, in the event of crash (Lemp et al., 2011).  Interactions of age groups with the 5 

curved roadways indicator revealed that older age drivers had the highest risk of injuries among other age 6 

groups. 7 

Older vehicles were associated with higher severity levels across all age groups. The indicator 8 

variable for vehicles over 10 years of age was found to be heterogeneous around the mean of the 9 

estimated parameter with a t-value for its standard deviation of (+2.31). The severity of the driver’s injury 10 

is likely associated with the vehicle’s body and frame material composition. The automotive industry and 11 

manufacturers have been leaning towards utilizing light-weight materials in newer vehicles for benefits in 12 

fuel economy, drivability, and performance (Cole and Sherman, 1995). It is intuitive that in the event of a 13 

crash, a more solid-built vehicle (i.e. steel or cast iron) would have a heavier impacts relative to light-14 

weight vehicles (i.e. aluminum and magnesium alloy) (Cole and Sherman, 1995; Miller et al., 2000). 15 

CDL holders operating heavy-duty trucks were associated with lower injury propensities, yet the 16 

threshold specification suggested that in the event of a crash severe outcomes are expected across all age 17 

groups, with the young driver posing the least risk among other age groups. Young drivers are likely to 18 

have faster reaction time avoiding roadway obstacles. Interactions of other vehicle types and age groups 19 

indicated that older drivers in passenger-cars were associated with the lowest injury propensity among 20 

other age groups. Compared to larger vehicles, older drivers operating passenger-cars possess more 21 

commercial driving experience and likely to pay great attention to speed limits reducing the risk of severe 22 

single-vehicle crashes, especially in smaller vehicles. 23 

A commercial driver operating a school bus was found to have a significant association with lower 24 

injury propensities (parameter: -0.588, t-value: -4.29). This result was intuitive and as expected for school 25 

bus drivers as they  are typically well-trained and qualified to carry children to and from schools. School 26 
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bus drivers are likely to be more cautious paying higher levels of attention to surroundings, street signs, 1 

and signals, operating at or below speed limits. A review of literature to-date has revealed a major 2 

deficiency in studies specifically analyzing school bus driver in the context of injury severity. 3 

5.4. Temporal characteristics 4 

Snowy conditions, compared to other weather conditions were associated with lower injury 5 

propensities across all age groups (parameter: -1.877, t-value: -3.43). Such results were also indicated 6 

through the positive threshold specification for the “snow” indicator (+0.634) in the event of a crash. The 7 

indicator variable for “snow” was found to be heterogeneous around the mean of the estimated parameter 8 

with a t-value for its standard deviation of (+3.53). Mid-age CDL drivers had the least risk compared 9 

other age groups driving in snowy conditions. With higher levels of training and precision of commercial 10 

drivers relative to standard driver license holders, CDL drivers are likely to be more cautious during 11 

adverse weather conditions, likely driving at slower speeds. The mid-age driver is more experienced than 12 

a younger driver with faster response to crash-developing situations, compared to older drivers. Similar 13 

results for snowy conditions were found in past studies for both single-vehicle and large truck crashes 14 

alike (Chen and Chen, 2011; Gong and Fan, 2017a; Lemp et al., 2011). Windy conditions slightly 15 

increased the injury propensity across all age groups. Crashes due wind do not necessarily involve 16 

impacting an object or a structure on the roadway.  17 

Crashes occurring at nighttime, compared to daylight and dusk/dawn, increased the injury propensity 18 

across all age groups. Interactions of age groups with the “time-of-day” variable categories indicated that 19 

younger drivers were less risky during dusk/dawn conditions compared to other age groups.  20 

Crashes on the weekdays were more severe compared to weekends across all age groups. Volumes of 21 

traffic on weekdays are likely higher compared to weekends representing more distractions and 22 

interactions crossing a segment of the roadway. Intuitively, if higher traffic volumes can lead to slower 23 

speeds; it can also lead to more distractions along the roadway. In the context of large truck crashes, 24 

Chang and Mannering (1999) found that weekend crashes increased the likelihood of a property-damage-25 
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only crash versus higher injury severity levels, however large trucks only account for a portion of CDL 1 

drivers (Chang and Mannering, 1999). 2 

5.4. Measures of fit  3 

 4 
To investigate the statistical significance of the MGORP model as compared to the standard ORP and 5 

its generalized version the GORP,  likelihood ratio (LR) tests were conducted (McFadden, 1973). For 6 

more information regarding the LR test, readers are encouraged to refer to (Washington et al., 2003). In 7 

comparing two statistical models, the log-likelihood (LL) values at convergence for each unrestricted 8 

model (full model with all covariates) are compared to one another. Similarly, a LR test between an 9 

unrestricted model and its restricted version (same model with constants only and no covariates) is 10 

utilized to test the predictive power of each statistical model (ORP, GORP, and MGORP). The resulting 11 

test statistic is chi-square distributed, with degrees of freedom being equal to the difference in the 12 

numbers of parameters between the models being compared (Washington et al., 2003). Additionally, the 13 

Akaike information criterion (AIC) and the Bayesian information criterion (BIC) tests were conducted 14 

between the ORP, GORP, and the MGORP to test for model over-fitting. Tests such as AIC and BIC 15 

control for over-fitting in a model by introducing a penalty term in its calculation, which essentially 16 

grows with adding more parameters to the estimated model (Akaike, 1987; Schwarz, 1978). The model 17 

with the lowest AIC and BIC values is essentially the best-fit among all.    18 

Table 4 summarizes the LR tests conducted between models as well as the AIC and the BIC statistics 19 

for the ORP, GORP, and MGORP models. Table 4 presents the LL values for the unrestricted and the 20 

restricted versions of each of the OPR, GOPR, and MGORP models. Additionally, Table 4 presents LR 21 

tests results between the ORP and the GORP, the GORP and the MGORP, and the ORP and the MGORP 22 

models. Table 4 also indicates all of the corresponding degrees of freedoms as well as the level of 23 

confidence (99.99% or more). Critical chi-squared values for each LR test conducted is shown in 24 

parenthesis next to the LR statistic value for each test. 25 

  It can be seen from the table of comparisons that the MGORP model is in fact superior to both the 26 
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TABLE 4 Measure-of-fit results and model comparisons 1 

 ORP GORP MGORP 

Number of Parameters 30 41 49 

LL - Null Model -4128.63 -4128.63 -4128.63 

LL - Converged Model -3814.47 -3720.37 -3684.02 

LR (each model vs. its restricted version) 628.32 (56.892)
*
 816.52 (72.055)

*
 889.22 (82.720)

*
 

LR ORP vs. GORP (df=11) 188.20 (31.264)
*
 

LR GORP vs. MGORP (df=8) 72.70 (26.124)
*
 

LR ORP vs. MGORP (df=19) 260.90 (43.82)
*
 

AIC  7688.94 7522.74 7466.04 

BIC 7891.99 7800.24 7797.69 
*Value in parenthesis is the critical chi-squared value for the corresponding model degrees of freedom at 99.99% 2 

ORP and the GORP models based on LR tests and the AIC and BIC values. As the MGORP is considered 3 

a generalized version of the ORP model, both AIC and BIC values for the MGORP model of 7466.04 and 4 

7797.69 respectively were the lowest values amongst all models which indicated a better fit of the 5 

MGORP to the dataset utilized in this study.  6 

6. Elasticity Effects 7 

The magnitude of the effects of the covariates on injury severity outcomes is not directly provided by 8 

the model’s parameter estimates. In order to clearly quantify the impacts of these variables, some of 9 

which appear in both the risk propensity and the threshold functions for the MGORP model, it is 10 

necessary to compute their corresponding elasticity effects. Elasticity effects can be interpreted as the 11 

percent effect of a 1% change in a variable has on the severity outcome probability (Khorashadi et al., 12 

2005). Elasticity calculations are not applicable to indicator variables; therefore an average direct pseudo-13 

elasticity was calculated (Chen et al., 2015; Gong and Fan, 2017b; Islam et al., 2014; Islam and Brown, 14 

2017; Li and Bai, 2008; Rusli et al., 2017b; Sarker et al., 2017; Washington et al., 2011; Wong et al., 15 

2011; Wu et al., 2014; Yamamoto et al., 2008; Zhu and Srinivasan, 2011b).  The pseudo-elasticity of a 16 

variable represents the average percent change in the probability of an outcome category when the value 17 

of that variable changes from 0 to 1. The elasticity results from the MGORP model are shown in Table 3. 18 

 19 
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6.1. Elasticity effects of MGORP model 1 

In Table 5, elasticity effects were calculated for standalone variables across all injury severity outcomes. 2 

Cases where variables differed across age groups, elasticity effects were calculated for interaction terms 3 

but not the main variable as effects of main variables were already included in the effects of its 4 

corresponding interactions with the different age groups. Elasticity effects of the “main variable” 5 

(variable does not vary across age groups) are presented and interpreted horizontally in Table 5 across the 6 

different injury severity outcomes, while interaction effects are presented and interpreted vertically across 7 

age groups within each column corresponding to each injury severity level. For example, elasticity effects 8 

of the “female” variable, which is a “main variable”, indicate that females are 51.77% more likely to be 9 

possibly injured versus a reduction of that likelihood by 9.48% and 4.48% in the “injury” and “no injury” 10 

categories, respectively. Similarly, the value of 204.08 which corresponds to “seatbelt” not being utilized 11 

indicates that commercially-licensed drivers not using their seatbelt are 208.04% more likely to be injured 12 

in the event of a crash. The likelihood for “seatbelt” not being utilized was also increased in the “possible 13 

injury” severity outcome by 17.06% while reduced by 10.56% in the “no injury” category.   For 14 

illustration purposes, curved roadways represent an example of a variable that varies across age groups. 15 

Elasticity effects indicate that, in the event of a crash, older drivers were 108.13% more likely to be 16 

injured, 56.41% more to be possibly injured, and a reduction of 11.07% of no injury (interpretation is 17 

captured horizontally in Table 5 across injury severity outcomes). In terms of interactions across age 18 

groups for curved roadways, the likelihood for injuries was increased by 108.13% for the “older” age 19 

group versus an increase of only 57.80% for both the “mid-age” and “younger” age groups alike. Since 20 

the “curved” indicator is found statistically significant as a standalone variable (before interactions), its 21 

effects were carried along for the “younger” and “mid-age” age groups, while additional effects of the 22 

“older” age interaction with “curve” produces the added risks imposed by older age drivers (additional 23 

effects for older drivers: 108.13% - 57.80% = 50.33%). Within each of the three columns of Table 5 24 

(representing the three injury severity outcomes), elasticity effects of other interaction variables within 25 

any desired injury severity categories can be interpreted in a similar fashion.  26 
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TABLE 5 Elasticity effects of MGORP model across injury severity outcomes and age groups 1 

 Elasticity (%) 

Explanatory Variables Injury Possible Injury No Injury 

Driver    

Gender (base: male)    

Female -9.48 51.77 -4.48 

Seatbelt Usage (base: used)    

Not used 204.08 17.06 -10.56 

CDL origin state (base: in-state)    

Out-of-state -24.90 -28.29 4.79 

Accident    

Collision with (base: other)    

Animal -91.22 -82.48 17.47 

Fixed object 21.94 13.35 -2.69 

Contributing factor (base: none, improper move, other)    

Speeding 98.77 30.06 -8.48 

Distracted -6.27 32.01 -2.63 

Improper move 

Young 0.00 0.00 0.00 

Mid-age -13.78 -9.12 1.84 

Old  0.00 0.00 0.00 

Freeway (base: not on freeway)    

On freeway -98.95 -89.22 21.36 

Roadway    

Number of lanes (base: multi-lane)    

Two-lane -23.60 -15.63 3.69 

Multi-lane 

Young 0.00 0.00 0.00 

Mid-age 0.00 0.00 0.00 

Old  -30.95 -21.60 4.24 

Roadway division (base: divided)    

Undivided - - - 

Undivided 

Young 41.05 25.19 -3.91 

Mid-age 41.05 25.19 -3.91 

Old  93.82 52.33 -8.51 

Speed limit (base: ≥ 55 mph)    

< 55 mph -62.70 -47.08 12.06 

Area type (base: rural)    

Urban -36.76 -12.58 4.27 

Surface condition (base: dry)    

Wet -34.67 -35.32 7.02 

Curvature (base: straight)    

Curved - - - 

Curved 

Young 57.80 33.17 -6.20 

Mid-age 57.80 33.17 -6.20 

Old  108.13 56.41 -11.07 

Vehicle age (base: < 5 years, 5-10 years)    

> 10 years 16.68 10.39 -1.96 

Vehicle type (base: car, truck-light duty)    

Truck-heavy duty - - - 
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TABLE 5 Continued 1 

 2 

According to elasticity effects presented in Table 5, the most important variables that impose the 3 

highest risks of injuries across all age groups are seatbelt usage, speeding, roadway curvature, and 4 

roadway division. Variables effects that increase risks for the “possible injury” category are roadway 5 

curvature, roadway division, females, windy conditions, distracted driving, and speeding. Variables 6 

varying across age groups with the highest risks for older drivers sustaining possible injuries or injuries 7 

include curved and undivided roadways. Other variables also varying across age groups that decreased 8 

risks for a specific age group versus other age groups include snowy conditions, dusk/dawn, truck heavy-9 

duty, passenger car, and multilane roadways. 10 

6.2. Implications of variable effects and recommendations 11 

Variable effects have important implications that can assist the FMCSA in fine-tuning current CDL 12 

standards, law enforcement, as well as shareholders and owners of businesses operating commercial 13 

 Elasticity (%) 

Explanatory Variables Injury Possible Injury No Injury 

Truck-heavy duty 

Young -58.38 -43.96 9.72 

Mid-age -34.94 -24.04 5.55 

Old  -34.94 -24.04 5.55 

Car 

Young 0.00 0.00 0.00 

Mid-age 0.00 0.00 0.00 

Old  -31.76 -22.20 4.35 

School bus involved (base: not involved)    

Involved -63.25 -49.62 9.43 

Temporal    

Weather (base: clear, cloudy, rain)    

Snow - - - 

Snow 

Young -98.08 -95.06 18.44 

Mid-age -83.72 -72.34 14.71 

Old  -98.08 -95.06 18.44 

Wind 11.62 40.47 -4.83 

Time-of-day (base: day, dusk/dawn)    

Night 8.29 5.19 -1.04 

Dusk/dawn 

Young -65.57 -51.92 9.57 

Mid-age 0.00 0.00 0.00 

Old  0.00 0.00 0.00 

Day-of-week (base: weekend)    

Weekday 11.19 7.05 -1.34 
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vehicles. These implications can certainly benefit CDL drivers as well as other motorists sharing the 1 

roadway through the potential benefits of avoiding a crash or reducing the injury severity in the event of 2 

one.  Implications can also be extended to training and education of commercially-licensed drivers.  3 

In terms of CDL implications across all age groups, the modeling results and elasticity effects suggest 4 

periodic training and continuous enforcement of seatbelt usage. Law enforcement agencies should apply 5 

heftier fines on those who are drive without a seatbelt. Regulations that allow retesting of CDL holders, in 6 

the event that a citation regarding lack of seatbelt usage exists, are highly encouraged.  7 

Speeding is generally considered a high risk factor that applies to both CDL and non-CDL holders 8 

alike. Most States have their own disciplinary system when a speeding violation occurs. For example, 9 

some States apply a point system that tracks dangerous or reckless drivers, while other States may simply 10 

take actions against holding the commercial license itself. These differences across the different States 11 

may function best if drivers are only allowed to drive within the boundary of the license’s issuing state, 12 

yet this is not the case for most drivers. It is highly recommended that the FMCSA apply nationwide 13 

disciplinary rules along with additional disciplinary actions for individual States. Considering that CDL 14 

holders are generally drivers who obtain a higher level of knowledge, possess higher levels of skills and 15 

experience, higher fine rates and/or additional points should be applied to those who drive above speed 16 

limits.  17 

Curved roadways presented higher risks for both “possible injury” and “injury” crashes when it 18 

comes to single-vehicle crashes, especially for the “older” age group. Additional driving tests on curved 19 

roadways should be mandated at the time of obtaining for a new commercial license. Additional training 20 

on curved roadways should be considered in the preparation of obtaining a CDL license. Furthermore, it 21 

is also suggested that specific lower speed limit signs added to curved segments of roadways that are 22 

based on the degree of the curvature and specifically aimed (specific speed limits) at commercial license 23 

holders.  24 

Elasticity effects indicated that crashes on undivided roadways had higher risks for injuries, 25 

especially for the “older” age group. It would be beneficial if commercial traffic is routed to divided 26 
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roadways through a specific routing mechanism. It is intuitive that some States may consider it extreme to 1 

nationally mandate the types of roadways utilized by commercially-licensed drivers, yet minimizing the 2 

usage of undivided routes may reduce the likelihood of the occurrence of a single-vehicle crash.  3 

It is highly unlikely to believe that the set of skills, experiences, and the trainings received during the 4 

process of obtaining a CDL license will differ among males and females, yet due to the physiological 5 

gender differences, and in the event of a crash, female drivers are more susceptible to higher injury 6 

severity levels. The MGORP elasticity results for females are intuitive and suggest that commercially-7 

licensed female drivers should learn more about the factors that specifically increase the risks of single-8 

vehicle crash occurrence and be more cautious when traveling on the road.  9 

Driving through windy conditions contributed to a higher likelihood of a “possible injury” crash. 10 

CDL drivers should be required to attain specific training on the potential weather conditions that can lead 11 

to higher risks of injury crashes. It is suggested that drivers reduce their speeds in windy conditions or 12 

avoid driving when specific wind speeds are forecasted.  13 

CDL holder should be more cautious and avoid distracted driving at all times. Law enforcement 14 

should apply additional fines to those who are not found in compliance. Rules such as those mandated 15 

effectively on October 27, 2010, by the FMCSA which was published to limit the use of wireless 16 

communication devices while operating on interstate commerce (The Federal Motor Carrier Safety 17 

Administration (FMCSA), 2010). Such policies should be enforced to the highest levels.  18 

7. Conclusions 19 

Past research that focused on specifically the injury severity of commercially-licensed drivers is 20 

almost non-existent. Particularly, commercially-licensed drivers involved in single vehicle crashes are 21 

underrepresented in the injury severity literature.  Factors contributing to the severity of single-vehicle 22 

crashes involving CDL holder are most certainly different in nature due to the higher level of knowledge, 23 

experience, skills, and physical abilities compared to the holders of a standard driver’s license. Different 24 

age groups behave differently while on-the-road due to certain physical abilities, years of experience, and 25 
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physiological differences. This research effort aims to fill this gap in the literature by undertaking an 1 

extensive empirical analysis of single-vehicle crashes involving commercially-licensed drivers by using 2 

four years of crash databases in the State of Minnesota. The authors investigated the factors affecting the 3 

injury severity level of CDL holders. The empirical analysis employed the mixed generalized ordered 4 

response probit (MGORP) model that recognized the ordinal nature of the severity outcomes while 5 

allowing for heterogeneity to capture the effects of unobserved factors. The primary focus of this study is 6 

to uncover the potential interaction effects that the different age groups impose on the factors contributing 7 

to a single-vehicle crash. To the authors’ knowledge, this is the first study to explore such factors 8 

affecting the injury severity of commercially-licensed drivers involved in single-vehicle crashes while 9 

investigating the moderating effects of the drivers’ age groups on the covariates considered in the study.   10 

The MGORP model that accounts for unobserved heterogeneity and threshold heterogeneity across 11 

crashes was found to fit the data better compared to the fixed parameters ORP model. The MGORP 12 

model elasticity effects indicates that key factors that increase the likelihood of severe crashes for 13 

commercially-licensed drivers across all age groups include: lack of seatbelt usage, speeding, curved 14 

roadways, undivided roadways, collision with a fixed object, vehicle age of 11 or more years, wind, 15 

weekdays, night time, and females. With regards to variations across the different age groups, significant 16 

differences were observed in the effects of the following factors – improper move, multi-lane highways, 17 

undivided roadways, curved roadways, passenger car, heavy-duty trucks, snow, and dusk/dawn. In terms 18 

of the limitations of this study, there were very few variables in the database describing different types 19 

driver actions or maneuvers prior to crash occurrence (for example, traveling straight, making a right or 20 

left turn, backing, parking, etc.). Future scope of research may include the collection of a comprehensive 21 

multi-state dataset could be beneficial to test spatial transferability of the model developed in this study. 22 

Future research may also include the specific testing requirements and the type or class of the CDL 23 

license being obtained can be investigated to gain further insights on the factors contributing the each 24 

license’s class. Also, a non-behavioral comparison between CDL and non-CDL drivers in the context of 25 

injury severity analysis can be considered a future research to be explored. Due to the as-is complexity of 26 
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interaction terms, their interpretation, and elasticities to be introduced within one research study, another 1 

venue for future work can include the moderating effects (interactions) of other factors, such as gender, 2 

on the injury severity of single-vehicle crashes involving CDL holders.  3 
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