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ABSTRACT 1 
Secondary crash (SC) occurrences are non-recurrent in nature and lead to significant increase in traffic 2 

delay and reduced safety. National, state, and local agencies are investing substantial amount of resources 3 

to identify and mitigate secondary crashes, reduce congestion, related fatalities, injuries, and property 4 

damages. Though a relatively small portion of all crashes are secondary, their identification along with 5 

the primary contributing factors is imperative. The objective of this study is to develop a procedure to 6 

identify SCs using a static and a dynamic approach in a large-scale multimodal transportation network. 7 

The static approach is based on pre-specified temporal and spatial thresholds while the dynamic is based 8 

on shockwave principles. The procedure is applied in the State of Tennessee and results show that the 9 

dynamic approach can identify secondary crashes with better accuracy and consistency.   10 
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INTRODUCTION 1 
Traffic crashes are a major source of congestion on freeway and arterial systems. A “primary crash (PC)” 2 

leads to reduction of roadway capacity and may result in what is known as a “secondary crash (SC)”. In 3 

this paper, the terms ‘crashes’ and ‘incidents’ are used interchangeably. SCs are defined as crashes that 4 

occur in close proximity of the primary incident’s location as a result of either queuing (in the same 5 

direction) or driver distraction (in the opposite direction) (1). Earlier studies suggest that up to 15% of 6 

reported crashes have occurred partly or entirely as the result of a PC (2). Though a relatively small 7 

percentage of all crashes are secondary, it is important to identify contributing factors and characteristics, 8 

and mitigate their effect on congestion, delay, fuel consumption and emission. SCs are non-recurring in 9 

nature and contribute up to 50% of congestion in urban areas (3–5). Reducing the occurrence of SCs is a 10 

major concern for traffic incident management (TIM) agencies, especially when dispatching rescue 11 

vehicles to clear the affected traffic lanes
1
 (6, 7). U.S. DOT estimates that 18% of freeway traffic related 12 

fatalities are attributed to SCs (8). Limiting the impact of nonrecurring events, such as SCs and disabled 13 

vehicles, through effective incident management is one of the objectives of emergency response 14 

professionals (9). Understanding the characteristics of primary and secondary crashes can help decision-15 

makers select better traffic operation practices and safety programs. The first step towards achieving such 16 

benefits is to identify SCs and their contributing factors such as crash severity, clearance time, and facility 17 

type. It is extremely important that SCs are identified with great accuracy otherwise any steps taken 18 

towards mitigation might prove inefficient.  19 

Past research on SCs considered freeways with a large portion on short segments in small 20 

regional scales for easier delineation of direction, and spatial and temporal thresholds. The most 21 

challenging task  was identification of SCs in terms of temporal and spatial thresholds, and directional 22 

criteria (10). The latter, often a complex process, is the task of attaching the precise location of the crash 23 

to a specific lane. Often precise lane and direction identification is relatively easier for freeways, but 24 

poses a challenge for undivided medians. Therefore, arterials were excluded in most of the published 25 

research studies. In contrast, arterials encounter a significant number of SCs and their identification 26 

warrants further research.  27 

The purpose of this paper is to develop a procedure to identify SCs in a relatively large 28 

transportation network with multiple roadway facility types using a static and a dynamic approach. The 29 

former approach assumes pre-specified temporal and spatial thresholds, based on past experience or 30 

engineering judgment, while the latter determines these thresholds based on real-time traffic conditions. 31 

This paper has two major contributions in the area of identification of SCs: a) development of a procedure 32 

to identify SCs in large networks with limited data and within acceptable computational times, and b) 33 

development of a dynamic queue length based approach to identify SCs in a large scale multi-facility type 34 

highway network using crash, traffic, incident management, and roadway network data.  35 

The rest of the paper is organized as follows. The next section discusses practices and published 36 

research on identifying SCs. The third section, presents the proposed methodology followed by a case 37 

study in the fourth section. The fifth section compares SC identification accuracy and consistency from 38 

the static and dynamic approach. The final section concludes the paper, summarizing the findings, and 39 

presents future research directions.  40 

 41 

LITERATURE REVIEW 42 
In this section, the relevant literature on SCs identification is presented.  43 

 44 

Temporal and Spatial Threshold 45 
The first step in defining a SC is selection of temporal and spatial thresholds (relative to a PC). Two types 46 

of thresholds have been prominent in the literature: static (predefined) and dynamic (varies based on 47 

incident characteristics and queuing of vehicles). Several studies (11–19) illustrate the use of static 48 

                                                           
1
 Recently, one of the performance measures used by TIM agencies is reduction of SCs. 
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thresholds in SCs classification (reaching up to 2 miles and 2 hours after the occurrence of a PC) with 1 

some studies only considering crashes in the same direction as the primary incident (12, 16).  2 

The dynamic approach, on the other hand, has been used to identify SCs based on the influence 3 

area of the primary incident that depends on vehicle queue length, and other incident and traffic data (20–4 

22). An Incident Progression Curve (IPC) was proposed in 2007 and 2010 by Sun and Chilukuri (23, 24), 5 

to identify the dynamic impact area of a PC. Dynamic thresholds were modeled as a multivariate function 6 

of various parameters (e.g. primary incident duration, number of blocked lanes etc.). The use of IPC 7 

reduced SC misclassification (false positive and negative) significantly. Other studies developed queuing 8 

models to determine the impact area of a primary incident using estimated queue length and incident 9 

duration (25).  10 

The likelihood of SC occurrence is commonly associated with primary incidents by using a 11 

certain predefined spatial and temporal criteria. Most studies developed a correlation between incident 12 

duration and SC likelihood, considering the influence area to be independent of prevailing traffic 13 

conditions and incident characteristics. However, recently published research (26, 27) identified real time 14 

traffic conditions as critical component in the accurate estimation of the influence areas. 15 

 16 

SCs Identification Using Recent Techniques 17 
Yang et al. (28) identified SCs using speed contour plots with approximately 75% and 50% of SCs 18 

occurring within two hours after and two miles upstream of the PC respectively (29). Overall, 42% of SCs 19 

were found to occur within two hours of the onset of a PC and within a distance of two miles upstream. 20 

58% of SCs happened beyond these frequently used spatio-temporal thresholds. In addition, more than 21 

half of the SCs occurred from PC-induced queues lasting more than two hours. Results also revealed that 22 

rear-end crashes were the dominant SC type and that the major contributing factor was “following too 23 

closely”. Other significant contributing factors included improper lane change, distracted driving and 24 

unsafe speeds (29). Speed contour plot analysis limits the scope of SC identification to urban freeways as 25 

real time network speeds are needed. Obtaining such data is challenging for arterials and, even more so, 26 

for suburban freeways. 27 

Hirunyanitiwattana and Mattingly (16) compared differences in the characteristics of secondary 28 

and primary crashes with respect to time-of-day, roadway classification, primary collision factors, 29 

severity level and type of crash. The study revealed a higher SC rate (expectation) in regions with high 30 

traffic volumes during morning and evening peak hours. The study concluded that a PC occurring in an 31 

urban area on a high speed facility is likely to have a high probability of inducing SCs. Sensitivity 32 

analysis measuring the impact of queue length and clearance time on the estimated number of SCs 33 

revealed that reduction in queue clearance time from 60 to 15 minutes reduced the number of SCs by 34 

approximately 43%.  35 

The literature review reveals that in the very early stages, when the concept of “secondary crash” 36 

was introduced, studies proposed temporal and spatial thresholds, independent of facility type, crash 37 

severity, clearance time, and flow characteristics; all of which are crucial determinants of SCs as the 38 

relevant literature revealed. While implementing static thresholds is relatively simpler and not 39 

computation-intensive, it comes with the risk of identifying SCs with significantly high numbers of false 40 

positive and negative (types I and II errors respectively). Next, we present the proposed methodology to 41 

identify SCs on freeways and arterials in large size networks that eliminates such assumptions and errors.  42 

 43 

METHODOLOGY 44 
A pictorial representation of the proposed methodology and a step-by-step workflow is shown in Figure 1 45 

and described in the following subsections. Before we proceed with the methodology description we 46 

present the notation used throughout the paper.  47 
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 Notation Description 

abf,s Backward-forming shockwave speed in the same direction 

afr,s Forward-recovery shockwave speed in the same direction 

abf,o Backward-forming shockwave speed in the opposite direction 

afr,o Forward-recovery shockwave speed in the opposite direction 

BLM Beginning log mile 

d Impact area 

dS Distance between two paired crashes  

dT Time interval between two paired crashes 

i A primary crash 

j A potential secondary crash 

(kini)s , (qini)s (uini)s Density, flow, and speed of lane in the same direction prior to primary crash 

(kjam)s ,(qjam)s,(ujam)s Density, flow, and speed of lane in the same direction after primary crash but 

prior to clearance (jam condition) 

(ksat)s ,(qsat)s, (usat)s Density, flow, and speed of lane in the same direction representing optimal 

(saturated) condition 

(kini)o ,(qini)o ,(uini)o Density, flow, and speed of lane in the opposite direction prior to primary crash 

(kjam)o ,(qjam)o,(ujam)o Density, flow, and speed of lane in the opposite direction after primary crash but 

prior to clearance (jam condition) 

(ksat)o ,(qsat)o, (usat)o Density, flow, and speed of lane in the opposite direction representing optimal 

(saturated) condition 

Prij Primary crash for the identified secondary crash j 

ql1 End of impact area at the time of crash j 

ql2 Start of impact are, at the time of crash j 

t Duration between primary and  secondary crash occurrence 

t1 Time of occurrence of primary crash 

t2 Time of occurrence of secondary crash 

Tc Primary crash clearance duration 

 1 

Static Approach 2 
Identification of SCs using a static approach requires selection of pre-specified temporal and spatial 3 

threshold values. In addition, directionality and location (impact region) of a PC play a crucial role and 4 

needs to be predefined. Directionality refers to the direction of the PC as compared to the SC (i.e. same or 5 

opposite direction). Location refers to the upstream or downstream location of the SC with respect to the 6 

direction of flow and location of PC. For the static approach, five possible combinations of directionality 7 

and location were considered (graphically depicted in figure 2), capturing all possible types of SCs. These 8 

five cases are defined as follows: 9 

 Case-1: Same Direction-Upstream: SC occurs in the upstream same direction of the PC, 10 

 Case-2: Opposite Direction-Upstream: SC occurs in the upstream opposite direction of the PC,  11 

 Case-3: Opposite Direction-Downstream: SC occurs in the downstream opposite direction of the PC, 12 

 Case-4: (Combination of cases 1 and 2): SC occurs either in the downstream or upstream opposite 13 

direction of the PC, 14 

 Case-5: Cases 1, 2, and 3 combined.  15 
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 1 
FIGURE 1 Flow chart showing the methodology. 2 

 3 
For the static approach, in all five cases, temporal and spatial thresholds are predefined by the 4 

user. As an example, one can consider a one mile/one hour space and time threshold. For Cases-2 and 3, 5 

spatial threshold is applied in the opposite direction to account for ‘rubbernecking’ effect. Rubbernecking 6 

represents the phenomenon when drivers in the opposite direction slow down to observe the PC causing 7 

congestion, reduction in capacity and associated delays (30). Rubbernecking effects depends on the 8 

facility type, traffic conditions, type and severity of an incident, and has a significant potential of inducing 9 

SCs in the opposite direction of a PC (30). 10 
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 1 

FIGURE 2 Pictorial representation of directionality and locations of SCs. 2 

 3 

Dynamic Approach 4 
The dynamic approach in SC identification aims to better capture effects of traffic characteristics (e.g. 5 

flow, speed, and density), that change over time and space, and affect queue formation after a PC 6 

occurrence. With a given traffic state and lane specific traffic flow parameters, continuously monitored by 7 

closely spaced sensors or other devices near the crash location (flow, density, speed, number of lanes, 8 

location of the crash on a specific lane etc.), it is possible to calculate queue lengths using shockwave 9 

theory (31). In this subsection we present a dynamic threshold SC incident identification approach to 10 

estimate the impact area of a PC created by a backward-forming and forward-recovery shockwave. 11 

Backward-forming shockwave affects the growth rate of the queue formed by the PC. Once the PC is 12 

cleared, a forward-recovery shockwave is set in motion and eventually catches up with the backward-13 

forming shockwave resulting in dissipation of the queue. Next we discuss the steps required to estimate 14 

the impact area using the shockwave principle. 15 

 16 

Estimation of backward- forming and forward-recovery shockwaves 17 

Figure 3(a) shows a generalized density-flow plot where (kini)s and (qini)s are initial conditions of density 18 

and flow. Slope at this point will be the initial speed, (uini)s. If one or more lanes are completely closed 19 

(often the case) due to a PC, then the traffic state is represented by (kjam)s, and (qjam)s (until the clearance 20 

period),where (kjam)s represents jam density and both flow ((qjam)s) and speed ((ujam)s) are zero. However, 21 

if density at this state is not equal to (kjam)s, any another flow/density state, represented by the parabola, 22 

can be used. Speed of the backward-forming shockwave, is equal to: 23 

 24 

       
(    )   (    ) 
(    )   (    ) 
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 1 
(a) Determining shockwave speed in same direction using traffic flow characteristics. 2 

 3 

 4 
(b) Determining shockwave speed in opposite direction using traffic flow characteristics. 5 

 6 

FIGURE 3 Shockwave speed for single and bi-directional traffic. 7 
 8 

Once the PC is cleared, the queued traffic state will try to reach optimal conditions ((ksat)s, (qsat)s and 9 

(usat)s) forming a forward-recovery shockwave with a speed of: 10 
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A similar approach can be adopted to analyze shockwaves in the opposite direction. Figure 3(b) 1 

demonstrates traffic states for bi-directional traffic where (kini)o, (kjam)o and (ksat)o represent current, jam 2 

and optimal density states for the opposite direction, and (qini)o, (qjam)o, and (qsat)o are the respective flow 3 

states.  4 

 5 

Impact Area Estimation 6 

Determining the impact area of a PC requires the clearance time (Tc) and the time difference between PC 7 

and the “potential” SC (t = t2- t1). The impact area (d) is defined as: 8 

  9 

afr,s × (t-Tc) ≤ d ≤ abf,s × t, when t > Tc 10 

 11 

0 ≤ d ≤ abf,s × t, when t < Tc 12 

 13 

In this paper, when estimating the impact area, clearance time for the primary incident was 14 

determined using the incident management database. Clearance time varies and depends on crash type, 15 

severity, number of vehicles involved, number of lanes, and availability of shoulder area etc. Figure 4 16 

shows the impact area (shaded area between the backward-forming and forward-recovery shockwaves) 17 

which captures the portion of the queue, from the primary incident, which can induce a SC. Note that: a) 18 

the forward recovery shockwave does not set off until the primary incident is cleared (i.e. size of the 19 

impact area is analogous to the PC clearance time), and b) higher recovery shockwave speed results in 20 

faster queue dissipation.  21 

 22 

 23 
FIGURE 4 Graphical representation of impact area. 24 
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CASE STUDY 1 
The transportation network of Shelby County, Tennessee (TN), in the United States (U.S.) is considered 2 

as the case study area to apply and evaluate the proposed methodology. Shelby County is the most 3 

populous county in the state of TN, home to one the largest freight intermodal hubs in the US, and the 4 

largest metropolitan planning organization in the tri-state encompassing portions of Tennessee, Arkansas 5 

and Mississippi, with a significant portion of inter-state traffic. The following describes the various data 6 

collected for the case study:  7 

 Crash data: Three years (2010-2012) of crash data, from the Tennessee Roadway Information 8 

Management System (TRIMS); a total of 91,325 crashes.  9 

 Freeway Traffic Data: Lane specific traffic data by minute (speed, flow, occupancy etc.) 10 

aggregated into 15 minute intervals.  11 

 Arterial Traffic Data: Traffic data on arterials were not available in such detailed manner as 12 

freeways. Link speed and flow were obtained from the Metropolitan Planning Organization 13 

(MPO) travel demand model.  14 

 Incident Management data: Data on all reported incidents (e.g. time of crash occurrence, time 15 

taken for the rescue vehicle to reach incident location, clearance time, etc.) were available from 16 

the incident management system in TN. 17 

 Roadway Network: A detailed transportation network (20,289 links/1,619 miles) with 20 18 

different functional classes of roadways (1,337 miles of arterials and 282 miles of freeways) was 19 

available from TDOT.  20 

 21 

A geodatabase was developed using these five data sets with facility types categorized into two 22 

groups: freeways or arterials. In this study, rural and urban interstates, and expressways were grouped into 23 

the freeways category, while rural and urban principal and minor arterials were grouped into the arterials 24 

category. 25 

 26 

Secondary Crash Identification Algorithm (SCIA)  27 
The algorithm developed to identify SC (SCIA) involves two major steps: a) crash pairing, and b) SC 28 

identification and is described in detail next.  29 

Step 1: Crash Pairing 30 
The first step of SCIA involves crash pairing using various criteria such as day of occurrence, route, and a 31 

temporal and spatial threshold. Pairing accuracy is crucial in reducing the complexity of the remaining 32 

steps of the algorithm. During the first step, any crash (i) is considered as primary and an identification 33 

process is performed by querying crash (i) against all the remaining crashes in the database (j) to obtain a 34 

list of potential SCs (j). Each crash is associated with a day and time of occurrence, and the associated log 35 

mile. Distance between crashes was determined using the absolute difference in Beginning Log Mile 36 

(BLM) (as a reference point). The position of the paired crashes, with respect to each other, was 37 

determined using their direction, BLM and their respective coordinates.  38 

Step 2: SC Identification 39 
Once crash pairing is complete, SCs are identified using both the static and dynamic approach. For the 40 

static approach, only spatial and temporal thresholds were considered as criteria for identifying a SC. 41 

These thresholds for static approach can be set by the user. For the dynamic approach, traffic flow 42 

characteristics before the occurrence of a PC were required to estimate the impact area. These data were 43 

obtained either from detector datasets (for freeway) or the regional MPO travel demand model (for 44 

arterials). After the PC occurrence, one or more lanes are completely closed for the duration of the 45 

clearance time (Tc) and hence, jam condition is assumed. For this condition, we considered [(qjam)s , 46 

(ujam)s]=0 (i.e. there is no flow of traffic), and (kjam)s = 5280/25 = 211 veh/mi/lane assuming average 47 

vehicle length of 25 ft. including 5 ft. of safety distance between lead and following vehicle. After the 48 

primary incident is cleared, flow conditions will eventually reach saturated condition where (qsat)s , (usat)s 49 
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are assumed to be 1900 veh/hr/lane, 65 mph (for freeway) or 1800 veh/hr/lane, 45 mph respectively (for 1 

arterial). (ksat)s is calculated accordingly using the basic density-flow-speed formula ((ksat)s = (qsat)s 2 

/(usat)s). 3 

 4 

RESULTS 5 
SCs were classified into two categories based on facility type (i.e. SCs on freeways or arterials) to 6 

account for the significant differences in flow, speed and density between the two facility types. 7 

Additionally, incident management on urban arterial roadways area is considerably different than on 8 

freeways and will effect SC occurrence (9). For the static approach different temporal and spatial 9 

thresholds were used to determine sensitivity and to assess over/under estimation of SC identification 10 

when compared to the dynamic approach. Temporal thresholds of 30, 60, 120, 180 and 300 minutes were 11 

used along with spatial thresholds of 0.5, 1, 2, 3 and 5 miles. Larger thresholds (e.g. over 120 minutes and 12 

2 miles) were used to accommodate freeway queuing during peak periods.  13 

Static Approach 14 
Figure 5 presents SCs for all five directionality/location cases for the different temporal and spatial 15 

threshold values by facility type (freeway and arterial). We observe that SC occurrences increase as the 16 

spatial threshold increases (for all cases and facility types). In general, higher number of SCs and higher 17 

rates are observed on arterials than freeways, which can be explained by the larger number of lane-miles 18 

covered by arterials. Note that Case-1 (same direction-upstream) has a significantly larger number of SCs 19 

for both facilities types when compared to Cases-2 and 3.  20 

Dynamic Approach   21 
Frequencies of SCs, identified using the dynamic approach, for all five directionality/location cases for 22 

freeways and arterials, are shown in Table 1. For freeways, Case-1 exhibits a higher number of SCs when 23 

compared to Cases 2 and 3 combined, while SCs for Case-3 results in a higher frequency than Case-2 24 

(142 SCs identified on freeways for Case-1 as compared to 45 and 68 for Cases- 2 and 3 respectively.). 25 

The same trend doesn’t apply to arterials as the rubbernecking effect is more prominent. A total of 1,179 26 

SCs (freeways and arterials combined) are identified using the dynamic approach (Figure 6) which is 27 

comparable to the 1,095 crashes (Case-5) identified for one mile and one hour of the static threshold 28 

(Figure 5).  29 

 30 

TABLE 1 Dynamic Threshold Based SCs (Freeways and Arterials) 31 

 
Freeways Arterials Total 

Case-1 142 418 560 

Case-2 45 267 312 

Case-3 68 256 324 

Case-4 112 521 633 

Case-5 250 929 1179 

 32 

Static vs. Dynamic Approach: SC Frequencies 33 

Figure 6 presents the differences between SCs identified by both approaches. Results shown in figures 6a 34 

(freeways) and 6b (arterials) reveal that the static approach over-estimates SC frequencies as the 35 

thresholds (both spatial and temporal) increase. As expected, for low spatial/temporal thresholds (e.g. 36 

30,60min and 0.5, 1mile) the static approach underestimates SC frequencies. Overall, when comparing 37 

results from the static and dynamic approach, the number of SCs identified using the latter are 38 

significantly less when compared to SCs for larger thresholds used by the static approach. 39 
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1 

 2 
a) SCs on Freeways 3 

4 

 5 
b) SCs on Arterials 6 

FIGURE 5 SCs identified using static approach (freeways and arterials). 7 
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1 

 2 
a) Freeways 3 

4 

 5 
b) Arterials 6 

FIGURE 6 Static vs. Dynamic approach SC comparison.7 
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Dynamic Approach: SC Distribution by Time of Day 1 

Figure 7 shows the time of day distribution of SCs obtained from the dynamic case on both freeways and 2 

arterials. Due to space limitations, only results for Case-1 are shown. Freeway facilities exhibit two 3 

distinct peaks: AM peak (between 8am- 9am), and PM peak (between 5pm-7pm). Both peak periods 4 

account for 59% of the total number of identified SCs for Case-1. On the other hand, arterials exhibit a 5 

very prominent PM peak (4pm-6pm) when compared to AM peak. SCs identified in the PM peak for 6 

arterials account for 48% of all SCs for Case-1. The reason that arterials have only one noticeable peak 7 

can be explained by the larger number of PCs occurring in the PM peak as compared to the AM peak. 8 

These results are in line with findings from the reviewed literature (16). Note that the majority of SCs 9 

observed late at night (10pm-3am) occurred during the last week of December and might be the results of 10 

high traffic from special event (Christmas break, winter weather etc.). 11 

 12 

 13 

FIGURE 7 SCs (Case-1) by time of day using dynamic approach. 14 

SCs Hotspots Map 15 
SCs hotspots map can be a useful visualization tool for various agencies and can assist in faster 16 

identification of problematic facilities as well as dissemination of results and recommendations to a less 17 

technical audience. Using the dynamic approach for SC identification, hotspots maps were developed for 18 

Shelby County. Due to space limitation only one example (for Case-5) is shown in Figure 8 where the 19 

highest SC density occurs on two major arterials. Though traffic volume on those arterials is significantly 20 

less than on what usually observed on freeways, flow characteristics along with other primary 21 

contributing factors (e.g. geometric design and traffic operations) may have led to the high frequency of 22 

SCs. There are also some prominent hotspots on freeways, covering a relatively smaller region.  23 
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 1 
FIGURE 8 SCs hotspot map in Shelby County (Case-5). 2 

 3 

CONCLUSIONS 4 
This study proposed a procedure to identify SCs in a large-scale multimodal transportation network using 5 

two approaches (static and dynamic). Past studies utilized static and dynamic approaches to identify SCs 6 

but a robust methodology had not been proposed to identify SCs with considerable accuracy on large 7 

networks. For the static approach, temporal thresholds of 30, 60, 120, 180 and 300 minutes were used 8 

along with spatial thresholds of 0.5, 1, 2, 3, and 5 miles. The dynamic approach proposed was based on 9 

the shockwave principle and impact area analysis where a crash was identified as secondary if it occurred 10 

within the impact area of the PC. The proposed methodology was implemented in Shelby County, TN. 11 

SCs were identified for two types of facilities: freeway and arterials to account for the different traffic 12 

conditions and data availability of each. Analysis revealed that the static approach consistently under- or 13 

over-estimates SC frequencies (depending on the spatio-temporal threshold used). Based on the density of 14 

SCs a hotspot map was generated for the study area which shows the locations where SCs are more likely 15 

to occur and supports identification of problematic facilities. Future research could focus on identifying 16 

primary contributing factors of SCs and development of prediction models for incident duration, 17 

probability of SC occurrence, associated delays and queue lengths. 18 
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