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ABSTRACT 1 

State and local agencies are becoming increasingly aware of the need to provide improved 2 

bicycle infrastructure as the number of riders has grown over the past several years. However, a 3 

lack of bike-specific planning tools makes it difficult for planners to develop ridership estimates 4 

and thus accommodate cyclists’ needs to provide better infrastructure. This paper proposes a 5 

series of empirical models and applies them to the state of Maryland in the United States. A set 6 

of spatial lag models are developed to explore land use, built environment, demographic, socio-7 

economic, and travel behavior connections to bicycle ridership. To account for geographical 8 

typologies urban, suburban and rural models are proposed. Results show that land use patterns, 9 

socioeconomic, demographic, network and travel characteristics are positively correlated with 10 

bicycle ridership. Specific types of land use, employment categories, auto ownership, and 11 

income levels have inverse relationships with bicycle ridership. The model is also applied to 12 

assess two hypothetical future land-use scenarios; in an exercise that shows how this tool may 13 

better predict future ridership and infrastructure needs. This proposed approach could be used as 14 

a tool to model and forecast bicycle demand, and to assist agencies in preparing and planning for 15 

future years.  16 
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INTRODUCTION 1 

Active travel modes, such as walking and bicycling, are typical types of physical activity that are 2 

believed to increase physical fitness and help lower the risk of chronic conditions such as 3 

obesity, high blood pressure, and diabetes (1–3). Also, it has been largely recognized by 4 

transportation scholars that, walking and bicycling  are environmentally friendly transport modes 5 

that do not produce carbon emissions, congestion and traffic noise (4, 5). The bicycle in many 6 

cases offers greater mobility, a wide range of health, travel cost and environmental benefits and 7 

flexibility to connect with public transportation. However, in a number of cases, existing 8 

transportation infrastructure is not well suited for majority of bicyclists. A major issue is a 9 

significant lack of safe riding space, particularly dedicated bicycle lanes. From safety standards, 10 

this creates a problem for bicyclists and discourages them from traveling by this mode. Planning 11 

agencies at the local and state level are starting to focus more attention on the need to provide 12 

infrastructure for bicyclists. In an effort to close the gap between bicycle demand as an active 13 

travel mode and available facilities, planning agencies are increasingly interested in measuring 14 

potential bicycle ridership demand. Past experiences suggest the factors that would explain 15 

bicycle ridership are closely related to socio-economics, demographics, public policy, and built 16 

environment attributes. Previous literature also shows that urbanization and vehicle ownership 17 

are important factors that are correlated with bicycle ridership.  18 

Accordingly, transportation researchers and practitioners have attempted to identify 19 

factors that encourage and sustain higher densities of bicycle use, influenced by local land use 20 

policy. Such factors include design principles for new subdivisions, accessibility to transit 21 

stations, and regional urban form (6–10). Transportation demand, particularly for modes outside 22 

of single occupancy vehicle use is highly context sensitive. Land use can be a major contributing 23 

factor to this demand. Measures commonly employed in travel behavior studies originate from 24 

the concept of the “three Ds” (density, diversity and design). The three factors have since been 25 

expanded to incorporate multiple other factors including accessibility, distance to transit, demand 26 

management and even demographics (11). Neighborhood type, which represents the interaction 27 

of multiple built environment dimensions, has also attracted growing interests in transportation 28 

studies (12). At a more localized level, the distribution of access to transportation can have a big 29 

impact on its utility (13). 30 

Advocates of active travel modes have promoted and incorporated these ideas in urban 31 

plans and ordinances, and in bicycle facility siting decisions. As a result, cities that incorporate a 32 

large geographic area and suffer from poor public transit service would be more likely to 33 

experience a large shift in bicycle users, should the proper infrastructure be provided. Despite a 34 

broad literature focused on the phenomenon of rising bicycle use in the U.S., there is very little 35 

research that quantitatively examines the emerging statewide trend from a transportation demand 36 

perspective. With an urgent need in many jurisdictions to nurture the growth of bicycle ridership 37 

and to facilitate a better understanding of the determinants of bicycle trip generation, further 38 

research is needed that examines why and how different factors, including socio-economics, 39 

demographics and built environment attributes, influence bicycle-based travel decisions at state 40 

level. 41 

This paper is structured as follows. In the next section, we present a thorough review to 42 

explore the connections between bicycle ridership and land use patterns to derive and frame the 43 

key planning questions. In the following section, we discuss the datasets, the rationale behind the 44 
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choice of our study area, and the modeling framework for our empirical analysis. In the next 1 

section, we present findings of this analysis and discuss implication for planning policy making 2 

at state level. In the Section of Planning Application, we apply our model to develop two 3 

scenarios for the horizon year and discuss implication for planning decisions at state level. We 4 

offer concluding remarks in the end followed by caveats and scope of future research.  5 

 6 

LITERATURE REVIEW 7 

With its far-reaching impacts on environment and health, the idea of an active travel mode, 8 

including walking and bicycling, has been examined in a substantial amount of the literature. A 9 

comprehensive review of transportation and planning literature confirms the relevance of 10 

environmental characteristics, including density (of population, housing and employment), street 11 

connectivity, and land use patterns for walking and bicycling (14). A study of bicycle-friendly 12 

cities in the U.S. identified factors that are significant in influencing bicycling including city size 13 

and density, and convenience (availability, cost, and speed) of competing modes (15). Studies 14 

conducted in an empirical context consistently showed that well connected streets and smaller 15 

city block sizes (16–18), proximity to retail activities (16), higher population density (19, 20), 16 

higher housing or residential density (21), and higher retail employment density (18) tend to 17 

induce non-automobile trips. Active travel was also examined in relation to characteristics of 18 

different types of travel mode in several studies. Evidence from these studies showed that traffic 19 

volume, highway density, congested travel time, and traffic speeds have negative effects on non-20 

automobile travel frequency (22–24).  21 

In particular, Targa and Clifton (25) applied data from the National Household Travel 22 

Survey add-on in 2001 for the Baltimore metropolitan region to estimate non-motorized person-23 

level trips; finding neighborhoods with higher densities, better access to bus service and better 24 

street connectivity were associated with greater active travel mode shares. In examining non-25 

automobile commuting in 11 Metropolitan Statistical Areas, Cervero (21) found that, non-26 

automobile commuting was positively related to household densities of different households 27 

types; and the presence of neighborhood shops turned out to be a better predictor of active 28 

commuting than residential density. When taking a closer look at land use patterns by land use 29 

category, a considerable number of studies consistently show when land use diversity increases, 30 

especially near transit stations, grocery stores, and retail stores in neighborhoods, people tend to 31 

rely on non-automobile modes more frequently (26–28). 32 

The influence of socio-economic factors including household income, living standards, 33 

and vehicle ownership over bicycle mode shares have been examined in a number of studies (24, 34 

27, 29, 30). The evidence on the correlation of bicycling with income and vehicle ownership is 35 

confounding. For example, income is inconsistently found to be variably insignificant and 36 

significant factor in determining bicycling patterns in U.S. cities (17, 31, 32). While some studies 37 

show that higher income is correlated with lower demand of active travel (24, 27, 33, 34), there 38 

were contradictory results showing that higher income has a positive influence on non-39 

automobile trip generation (25. Vehicle ownership in some cases has been found to be inversely 40 

associated with bicycling (20, 32), whereas this relationship was less clear elsewhere (17).  41 

Overall, most of the existing research applies a disaggregate analysis approach, 42 

examining non-automobile travel patterns at the household or individual level, controlling for the 43 
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effects of travelers’ characteristics, household attributes, neighborhood built environment 1 

attributes, and land use patterns. These disaggregate studies did not account for regional trends 2 

(i.e. urban, suburban, and rural) of the travel behavior investigated. This geographic limitation 3 

associated with the disaggregate approach can be addressed by an aggregate analysis approach, 4 

which relates aggregate travel data to aggregated land-use variables at certain spatial level (zone 5 

level or census tract level). Motivated by a need to understand statewide active travel patterns, 6 

we develop a series of empirical models for the State of Maryland to examine the predictors of 7 

bicycle ridership at the zone level, considering different spatial typologies, land uses, built-8 

environment attributes, socio-economic, and characteristics of transport system. This approach 9 

allows us to generate bicycle ridership estimates under different policy scenarios for future years, 10 

which can significantly aid policy makers and city planners to effectively promote active bicycle 11 

travel at a statewide level.  12 

 13 

DATA AND METHOD 14 

To develop a bicycle ridership model for the State of Maryland, we collected data from a number 15 

of national, state, and local Metropolitan Planning Organizations (MPOs). The State of Maryland 16 

consists of 23 counties and one independent city. Its total population in 2010 was 5.8 million and 17 

total employment was 3.4 million (35, 36). To develop our dataset, we subdivided the state into 18 

1,151 Statewide Modeling Zones (SMZs). The main criteria for SMZ delineation was to conform 19 

to census geographies, nesting within counties, separating traffic sheds of major roads as well as 20 

employment activity centers, and grouping of adjacent traffic analysis zones (TAZs) defined by 21 

the MPOs. The study area is displayed in Figure 1.   22 

In developing the bicycle ridership model, we explored a wide range of contributing factors to 23 

bicycling as summarized from existing literature - socio-economic, land uses and characteristics 24 

of transport system. The data was collected and aggregated at the SMZ level. For MPO regions 25 

in the Maryland and Washington metropolitan area, their socio-economic data, including the 26 

population, housing, employment, vehicle ownership and school enrollment data, were collected 27 

from the cooperative forecast datasets developed by the two state MPOs. For non-MPO 28 

designated areas, socio-economic data was collected from the Quarterly Census Employment and 29 

Wages (QCEW, formerly known as ES202), which is prepared by the Department of Labor, 30 

Licensing and Regulations (DLLR). We divided the MPO and QCEW data into four employment 31 

categories by type including retail, office, industrial, and other. Household income data was 32 

collected from the MPO datasets and the U.S. Census datasets for both MPO and non-MPO 33 

regions. The socio-economic data were normalized by acreage for each SMZ. To define the 34 

characteristics of the transport system, we developed a transportation network based on the 35 

Census Topologically Integrated Geographic Encoding and Referencing (TIGER) files. 36 

Additionally, the Maryland Department of Transportation (MDOT) datasets were referred to 37 

define the average freeway distance, average free flow speed, average congested speed, and 38 

presence of transit stop. Additionally, the Maryland Department of Planning’s (MDP) parcel 39 

dataset was used to determine specific land uses, including health care, shopping, retail, office, 40 

recreation, dining, warehouse, and other commercial establishments. The descriptive statistics for 41 

key variables considered in the empirical analysis section is presented in Table 1. In this study 42 

the bicycle ridership model developed was restricted to Maryland SMZs for year 2007. The 43 
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rationale of using 2007 as the analysis year was that all the input variables collected from 1 

different agencies in the State of Maryland were consistent for this specific year. 2 

 3 

FIGURE 1 Regions used to develop statewide modeling zones (source: Maryland Statewide 4 

Transportation Model -MSTM, State Highway Administration). 5 

 6 

The dependent variable is defined as the number of bicycle trips generated per zone per 7 

day. This data was obtained from a recently conducted Household Travel Survey (HTS)
1
 in the 8 

Baltimore-Washington region in Maryland, USA. In this paper, bicycle trips are captured from 9 

the HTS data. To account for sample versus population data the survey agency has already 10 

identified expansion factors considering household and person socio-economic and demographic 11 

characteristics. The daily bicycle trips are aggregated at zone level. The zone level daily bicycle 12 

trips are the dependent variable in the statistical analysis presented in this paper. To account for 13 

variations in the relationship between regional patterns and bicycle ridership across the state, we 14 

used a combination of household and employment densities to classify the SMZs into three 15 

spatial typologies – urban, suburban, and rural. Details on the spatial classification can be found 16 

in the author’s previous work (12).  17 

 18 

                                                      
1
 http://www.baltometro.org/regional-data-and-forecasting/household-travel-survey 
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TABLE 1 Descriptive Statistics  1 

Variables Mean S.D. Min. Max. 

Daily bicycle ridership 1.4424 1.5084 0 8.4784 

Population density  4.4222 5.6612 0 42.4043 

Household density  1.8761 2.6793 0 21.3794 

Household workers density  2.0654 2.6154 0 29.2736 

Household with zero workers density 0.0049 0.0210 0 0.5776 

Total employment density 3.7840 18.9964 0 476.0905 

Retail employment density 0.5707 2.3735 0 62.2317 

Office employment density 1.8186 11.4937 0 300.2474 

Industrial employment density 0.2817 1.0990 0 29.0244 

Other employment density 1.1130 5.4454 0 105.3763 

School enrollment density 0.6169 1.2425 0 11.8216 

Drive alone density 0.1741 0.2694 0 3.4490 

Household with 0 cars 0.1943 0.3616 0 3.0270 

Household with income over 60,000 1077.4200 905.1540 0 8737 

Average freeway distance (miles) 0.8119 1.8899 0 26.0400 

Average free flow speed (mph) 31.6387 6.4007 16.1250 55.8000 

Average congested speed 26.7107 5.8400 7.1167 51.1987 

Accessibility to transit (dummy) 0.2200 - 0 1 

Amtrak presence (dummy) 0.0100 - 0 1 

Number of retail locations 32.3400 102.1310 0 950 

Number of dinning locations 2.1000 8.4550 0 103 

Number of healthcare locations 0.2800 0.7810 0 8 

Number of office locations 3.3800 13.3760 0 157 

Number of recreation locations 0.4500 1.2620 0 13 

Number of shopping locations 8.4500 35.7500 0 462 

Number of warehouse locations 1.0800 4.4600 0 59 

Note: Unit of density variables was per acre.  2 

We estimated the relationship between explanatory variables and bicycle ridership using 3 

a spatial lag model (SLM). SLM provides a robust model where there is a high likelihood of 4 

spatial autocorrelation. Spatial autocorrelation analysis includes an assessment and visualization 5 

of both global (test for clustering) and local (test for clusters) Moran’s I statistic. The dependent 6 

variable (daily bicycle ridership) is visualized by means of a Moran scatter plot. The Moran’s I 7 

showed high autocorrelation, for Model I, and Model II-IV. In addition, the significance of 8 

autocorrelation is computed using a permutation test by generating random numbers. In this 9 

paper 999 random numbers were generated and in all cases the p-value was significant at 95 10 

percent level of confidence. Similar analysis was conducted to test for local clusters. Indication 11 

of a cluster at the local level was examined at various statistical confidence levels. If high spatial 12 

autocorrelation is detected, the SLM approach is chosen when the Lagrange Multiplier (LM) 13 

statistic test is significant for the SLM. The spatial weight matrix of the study area, which 14 

contained 1,151 SMZs, was developed by identifying the contiguity (neighboring SMZs) for 15 

each SMZ. The spatial matrix is taken as the contiguity weight factor (Lambda) in the SLM. In 16 
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our study, the SLM assumes that bicycle ridership in an SMZ is influenced by the independent 1 

variables in neighboring SMZs. The SLM also assumes the error terms are spatially correlated. 2 

The estimation of the spatial regression models is supported by means of the maximum 3 

likelihood method (37).  The SLM model was developed in software package GeoDa (38). 4 

 5 

EMPIRICAL RESULTS 6 

Results of Statistical Analysis 7 

The SLM model was estimated for the entire state and three urban typologies, respectively 8 

(Table 3). The estimated coefficient, t statistics, statistical significant test, R-square, and the 9 

weight factor Lambda are reported. Alternative model specifications (Model II, III and IV) were 10 

estimated in order to control as many socio-economic characteristics, demographic attributes, 11 

land-use patterns, built environment attributes, and traffic characteristic variables as possible. In 12 

the SLM multicollinearity is examined, as it is possible for independent variables to be 13 

correlated. The condition number is used as a measure to identify multicollinearity. In the 14 

regression process when the condition number is higher than 20, correlated variables are 15 

removed from the estimation process. The model development followed a forward selection 16 

approach, which decides the addition of each variable based on the improvement of model 17 

statistics.  18 

A number of models were developed and is described as follows: Model-I is a SLM 19 

estimated at the statewide level; Model-IA, IB, IC, are variants of Model-I estimated at the 20 

statewide level, but with additional variables assessed. Overall, Model-I shows the best goodness 21 

of fit measure among all statewide models (Model-I, Model-IA, IB, IC), as later explained in the 22 

results section. Model-II, III, and IV are three area type models representing varying degree of 23 

urban typologies. These three models are estimated with different sample sizes. The purpose of 24 

developing the last three models is to examine the effect of specific variables on daily bicycle 25 

ridership.  26 

Table 2 presents the estimated results for four model specifications with variables most 27 

expected to influence bicycle ridership. Overall, the results were intuitive and robust across all 28 

model specifications. As the demographic factors were highly correlated, they were tested by 29 

different model specifications. At the state level, bicycle ridership increased with the densities of 30 

household, population, household workers, zero-worker households, and school enrollment. The 31 

ridership was lower in SMZs with higher household income and higher household vehicle 32 

ownership.  33 
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TABLE 2 Regression Results for Bicycle Ridership Model at State Level (N = 1144) 1 

Explanatory variables  Spatial Lag Model 

 

 Model-I Model-IA Model-IB Model-IC 

Constant  -0.032 0.034 0.067 0.011 

 (-0.45) (0.270) (1.011) (0.401) 

Population density   0.033
***

    

 (6.033)    

Household density   0.062
***

   

  (7.388)   

Household workers density     0.031
***

 

    (4.667) 

Household with zero workers density  0.028  0.114
***

  

 (2.32)  (9.154)  

Industrial employment density  0.036
**

 0.030
*
 0.027 0.031

***
 

 (2.953) (1.695) (1.982) (3.306) 

Retail employment density   0.006
*
 0.010  

  (1.963) (1.649)  

Other employment density  0.007 0.007   

 (2.708) (2.309)   

School enrollment density  0.034
***

 0.038
***

 0.038
***

 0.037
***

 

 (4.338) (4.789) (4.727) (4.751) 

Household with income over $60,000  -0.000 -0.003 -0.001
***

 -0.002 

 (0.088) (0.258) (2.238) (-0.141) 

Drive alone density  -0.200
*
 -0.110   

 (-2.532) (-1.936)   

Households without cars   0.051   

  (1.266)   

Average freeway distance   -0.047 -0.004  

  (-0.955) (-1.852)  

Transit accessibility  0.087
***

 0.090
***

 0.103
***

 0.094
***

 

 (3.540) (3.751) (4.214) (3.843) 

Average congestion speed   -0.001   

  (-0.775)   

Average free flow speed  0.001  -0.003 -0.001 

 (0.637)  (-1.308) (-0.224) 

Amtrak presence  -0.277
***

 -0.260
***

 -0.314
***

 -0.283
***

 

 (-2.600) (-2.435) (-2.936) (-2.657) 

Number of Office Locations  0.004
***

  0.003
***

  

 (5.046)  (4.414)  

      

Lambda  0.852 0.871 0.884 0.877 

 (86.759) (88.371) (91.588) (90.144) 

Sample size  1144 1144 1144 1144 

R-square  0.9588 0.9586 0.9584 0.9582 

Note: Dependent Variable: Total daily bicycle ridership; T-statistics are in parenthesis 2 

*** Significant at 99%; ** Significant at 95%; * Significant at 90% 3 
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A variety of employment types uniquely impacted bicycle ridership. Industrial 1 

employment and other employment densities had negative effects on bicycle ridership while 2 

retail employment density had a positive effect. Bicycle ridership decreased with increasing 3 

drive-alone density, average congestion speed, average free flow speed, and average freeway 4 

miles in an SMZ. Consistent with our expectations, the presence of Amtrak service was 5 

negatively associated with bicycle ridership since the Amtrak stations were typically isolated 6 

from residential areas. Transit accessibility was found to be positively associated with bicycle 7 

ridership, implying the existence of multi-modal non-automobile trips in the state. Among all the 8 

land use categories (i.e. number of retail, dinning, office, recreation, and shopping jobs), only the 9 

number of office locations was found to be significantly related to bicycle ridership. Bicycle 10 

ridership increased where there was more office land use. Land use related to retail, dinning and 11 

recreation were found to be counter-intuitively insignificant factors despite being usually located 12 

close to residential and business areas. As a result, these land uses were not included in the 13 

statewide models.  Our study area has a considerable amount of rural land, which contains a 14 

highly homogeneous set of land uses. Therefore, the relationship between bicycle ridership and 15 

land use may be obscured by having a large portion of rural lands as part of our study area. This 16 

suggested the necessity to estimate the interactions between land-use patterns and bicycling 17 

activity by urban typology. The weight factor Lambda was highly significant in all SLMs and the 18 

goodness-of-fit results of the SLMs appeared robust across all model specifications. This finding 19 

suggests the importance of taking the spatial interactions and bicycle ridership interdependencies 20 

into consideration. 21 

Table 3 reports SLM results at the urban, suburban and rural area typology levels. Several 22 

important implications emerge from the results. First, the constant was positive and significant 23 

for all the models but its magnitude dropped drastically from urban models to rural models.  24 

Secondly, the number of high income households was a significant factor inversely associated 25 

with bicycle ridership across all models with similar coefficient magnitudes. Comparing the 26 

models estimated at state level and at different spatial typology levels, the directionality and 27 

magnitude of their estimated coefficients were consistent. However, some significant factors in 28 

statewide models became insignificant in the spatial topology models, including population 29 

density, school enrollment density, average freeway distance, and number of office locations. 30 

Additionally, there were some noticeable differences across the models at each spatial typology 31 

level. First, some contributing factors of bicycle ridership were only significant in urban and 32 

suburban models. In these models, the population density, school enrollment density, and the 33 

number of retail centers were positively associated with bicycle ridership and the average 34 

freeway distance was a negative factor. Second, transit accessibility (positive association) and 35 

Amtrak presence (negative association) were not significant predictors of bicycle ridership in 36 

urban models, but their relationships were significant in suburban and rural models. Third, 37 

several relationships between explanatory variables and bicycle ridership were only significant at 38 

specific spatial typologies. In urban areas, when average free flow speed or household vehicle 39 

ownership became higher, it discouraged bicycle trips all else being equal. When there were 40 

more recreation centers in urban areas, the bicycle ridership increased significantly. In suburban 41 

areas, the average congestion speed was negatively related to bicycle ridership. In rural areas, the 42 

positive influence of household density on bicycle ridership was significant.  43 

  44 
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TABLE 3 Regression Results for Bicycle Ridership Model for Three Urban Typology Models 1 

Explanatory variables  Spatial Lag Model 
 

 Model-II  

(Urban) 

Model-III Model-IV 

(Rural)  (Sub-Urban) 

Sample size  465 420 259 

Constant  0.452
***

 0.458
***

 0.197
***

 

 (2.945) (2.886) (3.848) 

Population density  0.060
***

 0.063
***

  

 (7.166) (6.017)  

Household density    0.392
***

 

   (10.396) 

Industrial employment density  0.106
***

  0.154
***

 

 (6.386)  (3.118) 

Other employment density  0.005 0.022
**

 0.054
***

 

 (1.020) (2.285) (3.332) 

School enrollment density  0.056
***

 0.132
***

  

 (3.637) (6.179)  

Household with income over $60,000  -0.001
**

 -0.079
**

 -0.088
***

 

 (-1.695) (-2.084) (-3.099) 

Drive alone density  -0.319  -1.800
***

 

 (-2.110)  (-7.101) 

Households without cars  0.062 -0.061  

 (2.025) (-0.511)  

Average freeway distance  -0.022
*
 -0.021

**
  

 (-2.091) (-1.976)  

Transit accessibility   0.560
***

 0.215
***

 

  (7.684) (3.487) 

Average congestion speed   -0.009  

  (-1.522)  

Average free flow speed  -0.010
**

   

 (-2.359)   

Amtrak presence   -1.184
***

 -1.724
***

 

  (-3.851) (-4.218) 

Number of Retail Locations  0.001
***

 0.004
***

  

 (3.618) (5.895)  

Number of Recreation Locations  0.032   

 (1.521)   

    

      

Lambda  0.746 0.7391 0.561 

 (40.133) (33.815) (14.679) 

Sample size  465 420 259 

R-square  0.9497 0.8427 0.8480 

Note: Dependent Variable: Total Daily Bicycle Ridership; T-statistics are in parenthesis 2 

*** Significant at 99%; ** Significant at 95%; * Significant at 90% 3 

The difference in the model specifications at different spatial typologies is partly the 4 

result of different land use composition in urban, suburban and rural areas. Considering the 5 

extent to which the explanatory variables exerted influence on bicycle ridership in different 6 
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spatial contexts, it justified our decision to examine the bicycle ridership correlates at different 1 

spatial levels.  2 

 3 

Results of Elasticity Estimation 4 

The model estimations developed in this paper provide an opportunity to examine the individual 5 

variables that influence bicycle ridership. The most significant variables from Model-1 were 6 

examined in this case. While the coefficients from Table 2 provide a good explanation of the 7 

magnitude of each variable that influenced bicycle ridership, elasticity is useful to examine how 8 

in a much more real-world context each variable influenced the ridership. Figure 2 provides the 9 

elasticities of bicycle ridership with respect to several key variables from the Model-1 (see Table 10 

2 for Model-I details). 11 

12 
FIGURE 2 Elasticity of bike ridership to key independent variables. 13 

The X-axis of Figure 2 represents percentage change in the independent variable and Y-14 

axis shows the corresponding change in bicycle ridership. For example, a 1 percent change in 15 

population density will result in a .85 percent change in bike ridership. Similarly, a 5 percent 16 

increase in households with number of households with income over $60,000 will result in a 3.79 17 

percent reduction in bicycle ridership. It appeared that bicycle ridership was very sensitive to 18 

population density and number of households with income over $60,000. While population 19 

density was positively related to bicycle ridership, it suggested higher population density 20 

increased the probability of having higher bicycle ridership; number of households with higher 21 

income was inversely related to bicycle ridership, suggesting higher income zones may tend to 22 

have lower bicycle ridership and vice versa. Similarly, industrial employment density and transit 23 

accessibility were positively related to bicycle ridership. The purpose of elasticity analysis is to 24 

enhance policy making and to estimate how bicycle ridership can be influenced by changes in 25 

other variables.  26 

 27 
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PLANNING APPLICATION 1 

In this section, we applied one of the abovementioned empirical models to predict bicycle 2 

ridership in two future scenarios. Based on the robustness of our key explanatory variables 3 

across different model specifications and the planning objects in the State of Maryland, we found 4 

it more appropriate to use the coefficients of the statewide Model I. To be comprehensive on 5 

demonstrating the application process, we drew framework of Maryland Scenario Project (MSP), 6 

which was conducted by the National Center of Smart Growth (NCSG) at the University of 7 

Maryland College Park (refer to 30 for detailed description). Based on this policy-making 8 

context, we characterized one set of 2030 future year scenarios as Constrained Long Range Plan 9 

(CLRP) and High Energy Price (HEP). CLRP scenario represents the visionary land use and 10 

transportation growth used for decision-making of future infrastructure investment by the state 11 

DOT. Under HEP scenario, oil prices were presumed to rise at one percent above the projected 12 

inflation rate. The data of the future scenarios was developed based on 2030 household and 13 

employment projections from the Baltimore and Washington MPOs through a process called 14 

cooperative forecasting. For areas outside the MPO regions, household and employment 15 

estimates were developed based on projections from the MDP.   16 

In order to predict the bicycle ridership in future scenarios, socioeconomic and 17 

demographic data were obtained from the process as mentioned above. Road network related 18 

variables, such as average congestion speed and free flow speed, were derived from the 2030 19 

network developed by NCSG for the Maryland Statewide Transportation Model (MSTM). All 20 

other variables, including the land-use variables for different land-use categories, transit 21 

accessibility, and Amtrak presence were assumed to be the same as they were in 2007 (because 22 

these data were not available from public data sources). This assumption can be justified by 23 

looking at Table 2 and Table 3, where those variables showed lower magnitude of impact to 24 

determining the bicycle ridership compared to other explanatory variables.  25 

Figure 3 shows bicycle ridership at the zonal level under two future scenarios. For 2030 26 

CLRP, both Washington and Baltimore metropolitan areas had higher bicycle ridership referring 27 

to larger concentration of population and employment (Figure 3(a)). 2030 HEP scenario 28 

suggested that urban areas not only had higher bicycle ridership, but the distribution of bicycle 29 

ridership concentrated in the core of urban areas (Figure 3(b)). Due to the assumed higher oil 30 

prices in 2030, the 2030 HEP scenario resulted in higher bicycle ridership and most bicycle users 31 

were expected to shift to the core of urban areas in order to remain close to both households and 32 

jobs. 33 
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FIGURE 3(a) 2030 bicycle ridership 

 

FIGURE 3(b) 2030 HEP bicycle ridership 

FIGURE 3 Bike ridership for future year scenarios. 1 

 2 

DISCUSSION AND CONCLUSIONS 3 

Despite significant amount of research in the literature where determinants of bicycling were 4 

examined, most of the past studies provide an incomplete picture about the impact of explanatory 5 

factors on bicycling ridership. In this paper we propose an aggregate framework and an array of 6 

models to help policy makers understand higher-level determinants to bicycle ridership 7 

generation at the state level. This study is directed toward analyzing the effects of various 8 

explanatory variables, including socio-economic and demographic characteristics, built 9 

environment attributes, land-use categories, and transport system attributes. The analysis is based 10 

on zonal data collected for the State of Maryland. The focus of the analysis is placed on the 11 

spatial dependency of bicycle ridership across zones in our study area. Contrary to the standard 12 

linear regression method used in a majority of related studies, a unique formulation of a spatial 13 

lag model was developed in this study to account for the phenomenon of spatial dependency. The 14 

impacts of the land-use, built-environment and transport system factors on the number of bicycle 15 

trips in a day was examined, controlling for a range of other explanatory factors including socio-16 

economic and demographic attributes. The same set of explanatory factors was examined at the 17 

state level and at three spatial topology levels to provide more accurate forecasts of spatial policy 18 

intervention on bicycle use.  19 

The result of the analysis show the urban model had the highest R-square and the rural 20 

model had the lowest R-square. The difference in the model statistics may be due to higher 21 

bicycle ridership generated in urban areas than in rural areas. The densities of household 22 

workers, zero-worker households, and retail employment were significant determinants to 23 

bicycle ridership in the statewide model but these factors lost their significance in three urban 24 

typology models. The most noteworthy findings of this study are summarized as follows.  25 

The direction of the correlation between bicycle ridership and the demographic data as 26 

well as socio-economic factors such as population density, household density, school enrollment 27 

density, industrial employment density and other employment density are all positive. This 28 
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finding is consistent with evidence from previous studies that show as the intensity of 1 

demographics and economic activity rises, so does the proportion of bicycle trips (19, 20). 2 

However, the significance and strength of these correlations vary at different spatial typologies. 3 

Urban and suburban areas are sensitive to a change in population and school enrollment but not 4 

to changes in household density, which is a significant predictor of bicycle ridership in rural 5 

areas. The impacts of employment on bicycle ridership also vary by spatial topology and by 6 

employment type. This result suggests that bicycling is more attractive in densely populated 7 

neighborhoods, where limited parking space and stringent speed limits may discourage vehicle 8 

trips (19). 9 

The results of the analysis also show that the density of higher income (over $60,000 10 

annually) households and greater levels of vehicle ownership are consistent with decreased 11 

bicycle mode shares. This piece of finding illustrates the value of the SLM approach to help 12 

decision makers evaluate the possible impact of spatial dependency of travelers’ behavior at 13 

aggregate levels as a tool to develop more effective intervention policy. 14 

In this analysis, a number of land-use variables such as the number of retail locations and 15 

the number of recreational locations had a positive influence on bicycle ridership in the urban 16 

and suburban models. This result is a positive indication consistent with the findings of other 17 

studies that if urban development provides opportunities for discretionary activities by locating 18 

retail stores and recreational centers in residential neighborhoods, it is likely to promote 19 

bicycling and improve general public health in these areas. In the context of trip making in 20 

suburban and rural areas, transit accessibility has the potential to increase bicycle trip frequency, 21 

which is also consistent with findings from past studies. Policy related to these environmental 22 

and land use elements should provide bicycling opportunities (e.g. add exclusive bicycle lanes 23 

and lower speed limit) to reach different activity destinations such as transit stops, grocery stores, 24 

and recreational centers as better access to bus stops and bus lines encourages active “bike-and-25 

ride” travel (25, 28).  26 

The variables representing intensity of the transport system had a negative impact on 27 

bicycle ridership in urban and suburban areas, confirming the commonly held view that higher 28 

traffic speeds, busier roads and the presence of more freeway right-of-way are linked with fewer 29 

bicycle trips (22–24). In suburban and rural areas, the presence of an Amtrak station is associated 30 

with lower level of bicycle ridership. This may be more an effect of the typical location of a 31 

station on non-automobile trips in non-residential locations, than the effect of the Amtrak itself.  32 

We acknowledge that there are several limitations in this research. Our analysis was 33 

developed at the zonal (SMZ) level and did not account for behavioral characteristics and the 34 

impact of climate on bicycling. This limitation can be surmounted when additional data 35 

resources become available in the future. Research presented in this paper provides a useful tool 36 

for state agencies to begin estimating bicycle ridership generation factors and their 37 

interdependencies with several exogenous attributes.  38 

  39 



Cui, Mishra, and Welch                                                                                                                              16 

ACKNOLEGEMENT 1 

The authors would like to thank the Maryland State Highway Administration (SHA) for 2 

providing data for this research. The opinions and viewpoints expressed are entirely those of the 3 

authors.  4 

REFERENCES 5 

1.  Bassett, D. R., Jr, J. Pucher, R. Buehler, D. L. Thompson, and S. E. Crouter. Walking, cycling, and 6 

obesity rates in Europe, North America, and Australia. Journal of physical activity & health, Vol. 5, 7 

No. 6, Nov. 2008, pp. 795–814. 8 

2.  Fletcher, G. F., G. Balady, S. N. Blair, J. Blumenthal, C. Caspersen, B. Chaitman, S. Epstein, E. S. 9 

S. Froelicher, V. F. Froelicher, I. L. Pina, and M. L. Pollock. Statement on Exercise: Benefits and 10 

Recommendations for Physical Activity Programs for All Americans A Statement for Health 11 

Professionals by the Committee on Exercise and Cardiac Rehabilitation of the Council on Clinical 12 

Cardiology, American Heart Association. Circulation, Vol. 94, No. 4, Aug. 1996, pp. 857–862. 13 

3.  General, U. S. P. H. S. O. of the S., N. C. for C. D. Prevention, H. P. (US), P. C. on P. Fitness, and 14 

S. (US). Physical Activity and Health: A Report of the Surgeon. Jones & Bartlett Learning, 1996. 15 

4.  Koplan, J. P., and W. H. Dietz. Caloric imbalance and public health policy. JAMA: the journal of 16 

the American Medical Association, Vol. 282, No. 16, Oct. 1999, pp. 1579–1581. 17 

5.  USDOT. The National Bicycling and Walking Study: 15-Year Status Report. United States 18 

Department of Transportation, Washington, D.C., 2010, p. 21. 19 

6.  Ewing, R., and R. Cervero. Travel and the built environment: a synthesis. Transportation Research 20 

Record: Journal of the Transportation Research Board, Vol. 1780, No. -1, 2001, pp. 87–114. 21 

7.  Heath, G. W., R. C. Brownson, J. Kruger, R. Miles, K. E. Powell, and L. T. Ramsey. The 22 

effectiveness of urban design and land use and transport policies and practices to increase physical 23 

activity: a systematic review. J Phys Act Health, Vol. 3, No. Suppl 1, 2006, pp. S55–76. 24 

8.  Krizek, K. J. Residential Relocation and Changes in Urban Travel: Does Neighborhood-Scale 25 

Urban Form Matter? Journal of the American Planning Association, Vol. 69, No. 3, 2003, pp. 265–26 

281. 27 

9.  Meijers, E., J. Hoekstra, M. Leijten, E. Louw, and M. Spaans. Connecting the periphery: distributive 28 

effects of new infrastructure. Journal of Transport Geography, Vol. 22, May 2012, pp. 187–198. 29 

10.  Miller, E. J., D. S. Krieger, and J. D. Hunt. Integrated urban models for simulation of transit and 30 

land use policies: guidelines for implementation and use. Transportation Research Board, 1999. 31 

11.  Cervero, R., and K. Kockelman. Travel demand and the 3Ds: Density, diversity, and design. 32 

Transportation Research Part D: Transport and Environment, Vol. 2, No. 3, Sep. 1997, pp. 199–33 

219. 34 

12.  Mishra, S., T. F. Welch, and A. Chakraborty. An Experiment in Mega-Regional Road Pricing Using 35 

Advanced Commuter Behavior Analysis. Journal of Urban Planning and Development, 36 

Forthcoming. 37 

13.  Welch, T. F. Equity in transport: The distribution of transit access and connectivity among 38 

affordable housing units. Transport Policy, Vol. 30, Nov. 2013, pp. 283–293. 39 

14.  Saelens, B. E., J. F. Sallis, and L. D. Frank. Environmental correlates of walking and cycling: 40 

findings from the transportation, urban design, and planning literatures. Annals of Behavioral 41 

Medicine: A Publication of the Society of Behavioral Medicine, Vol. 25, No. 2, 2003, pp. 80–91. 42 

15.  Pucher, J., C. Komanoff, and P. Schimek. Bicycling renaissance in North America?: Recent trends 43 

and alternative policies to promote bicycling. Transportation Research Part A: Policy and Practice, 44 

Vol. 33, No. 7–8, Sep. 1999, pp. 625–654. 45 

16.  Cervero, R., and M. Duncan. Walking, Bicycling, and Urban Landscapes: Evidence From the San 46 

Francisco Bay Area. American Journal of Public Health, Vol. 93, No. 9, Sep. 2003, pp. 1478–1483. 47 



Cui, Mishra, and Welch                                                                                                                              17 

17.  Dill, J., and K. Voros. Factors Affecting Bicycling Demand: Initial Survey Findings from the 1 

Portland, Oregon, Region. Transportation Research Record, Vol. 2031, No. -1, Dec. 2007, pp. 9–2 

17. 3 

18.  Guo, J., C. Bhat, and R. Copperman. Effect of the Built Environment on Motorized and 4 

Nonmotorized Trip Making: Substitutive, Complementary, or Synergistic? Transportation Research 5 

Record: Journal of the Transportation Research Board, Vol. 2010, No. -1, Jan. 2007, pp. 1–11. 6 

19.  Cervero, R., and C. Radisch. Travel choices in pedestrian versus automobile oriented 7 

neighborhoods. Transport Policy, Vol. 3, No. 3, 1996, pp. 127–141. 8 

20.  Parkin, J., M. Wardman, and M. Page. Estimation of the determinants of bicycle mode share for the 9 

journey to work using census data. Transportation, Vol. 35, No. 1, Jan. 2008, pp. 93–109. 10 

21.  Cervero, R. Mixed land-uses and commuting: Evidence from the American Housing Survey. 11 

Transportation Research Part A: Policy and Practice, Vol. 30, No. 5, Sep. 1996, pp. 361–377. 12 

22.  Antonakos, C. L. Environmental and travel preferences of cyclists. 1994. 13 

23.  Hunt, J. D., and J. E. Abraham. Influences on bicycle use. Transportation, Vol. 34, Dec. 2006, pp. 14 

453–470. 15 

24.  Sehatzadeh, B., R. B. Noland, and M. D. Weiner. Walking frequency, cars, dogs, and the built 16 

environment. Transportation Research Part A: Policy and Practice, Vol. 45, No. 8, Oct. 2011, pp. 17 

741–754. 18 

25.  TARGA, F., and K. J. CLIFTON. Built environment and nonmotorized travel: evidence from 19 

Baltimore city using the NHTS. Journal of Transportation and Statistics, Vol. 8, No. 3, 2005, p. 55. 20 

26.  Giles-Corti, B., and R. J. Donovan. Relative Influences of Individual, Social Environmental, and 21 

Physical Environmental Correlates of Walking. American Journal of Public Health, Vol. 93, No. 9, 22 

Sep. 2003, pp. 1583–1589. 23 

27.  Handy, S. L., and K. J. Clifton. Local shopping as a strategy for reducing automobile travel. 24 

Transportation, Vol. 28, No. 4, 2001, pp. 317–346. 25 

28.  McConville, M. E., D. A. Rodríguez, K. Clifton, G. Cho, and S. Fleischhacker. Disaggregate land 26 

uses and walking. American journal of preventive medicine, Vol. 40, No. 1, Jan. 2011, pp. 25–32. 27 

29.  Ferdous, N., R. Pendyala, C. Bhat, and K. Konduri. Modeling the Influence of Family, Social 28 

Context, and Spatial Proximity on Use of Nonmotorized Transport Mode. Transportation Research 29 

Record: Journal of the Transportation Research Board, Vol. 2230, No. -1, Dec. 2011, pp. 111–120. 30 

30.   odr  guez, D. A., and J. Joo. The relationship between non-motorized mode choice and the local 31 

physical environment. Transportation Research Part D: Transport and Environment, Vol. 9, No. 2, 32 

Mar. 2004, pp. 151–173. 33 

31.  Baltes, M. M. The Many Faces of Dependency in Old Age. Cambridge University Press, 1996. 34 

32.  Dill, J., and T. Carr. Bicycle Commuting and Facilities in Major U.S. Cities: If You Build Them, 35 

Commuters Will Use Them. Transportation Research Record: Journal of the Transportation 36 

Research Board, Vol. 1828, No. -1, Jan. 2003, pp. 116–123. 37 

33.  Ortúzar, J. de D., A. Iacobelli, and C. Valeze. Estimating demand for a cycle-way network. 38 

Transportation Research Part A: Policy and Practice, Vol. 34, No. 5, Jun. 2000, pp. 353–373. 39 

34.  Guo, J., C. Bhat, and R. Copperman. Effect of the Built Environment on Motorized and 40 

Nonmotorized Trip Making: Substitutive, Complementary, or Synergistic? Transportation Research 41 

Record: Journal of the Transportation Research Board, Vol. 2010, No. -1, Jan. 2007, pp. 1–11. 42 

35.  DeNavas-Walt, C., B. D. Proctor, and J. C. Smith. Income, poverty, and health insurance coverage 43 

in the United States: 2009. Washington (DC), 2010. 44 

36.  DeNavas-Walt, C., B. D. Proctor, and J. C. Smith. US Census Bureau, Current Population Reports, 45 

P60-238. Income, poverty, and health insurance coverage in the United States: 2009, 2010. 46 

37.  Anselin, L., and A. K. Bera. Spatial dependence in linear regression models with an introduction to 47 

spatial econometrics. STATISTICS TEXTBOOKS AND MONOGRAPHS, Vol. 155, 1998, pp. 237–48 

290. 49 

38.  Anselin, L., I. Syabri, and Y. Kho. GeoDa: An Introduction to Spatial Data Analysis. Geographical 50 

Analysis, Vol. 38, No. 1, 2006, pp. 5–22. 51 


