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  1

ABSTRACT 1 

Worsening highway congestion is a challenge to mega-regional competitiveness; and changing 2 

regional geographies and development location decisions, among other factors, demand that 3 

public policy responses go beyond traditional demand management approaches. Congestion 4 

pricing has been suggested as a remedy. In this article, we analyze the outcomes of multiple 5 

congestion pricing approaches for the Capital Mega-region that spans the following five 6 

Metropolitan Planning Organization regions: Washington (DC-MD-VA), Baltimore (MD), 7 

Wilmington (DE), Fredericksburg (VA), and Frederick (MD) and counties in adjoining states of 8 

NJ, PA and WV. Using a mega-regional travel demand model, we incorporate different values-9 

of-time for travelers under different conditions. However, our value-of-time estimates are not 10 

limited to income categories. Our estimates also include trip purposes across a number of 11 

scenarios. We demonstrate that adding trip-purpose to congestion price determination leads to 12 

different outcomes at the mega-regional level and also for individual sub-regions. We conclude 13 

with implications for adopting this approach and ideas for implementing them in a complex 14 

institutional set-up. 15 

 16 

Keywords: value of time, elasticity, commuter travel, congestion pricing, megaregion  17 

18 

INTRODUCTION 19 

The right scale for transportation planning has been a subject of considerable analysis. For 20 

example, a number of studies have shown the limitations of traditional Metropolitan Planning 21 

Organization (MPO)-level decisions in addressing larger regional issues (Amekudzi et al. 2007, 22 

Barbour and Teitz 2006, Bollens 1997, Wheeler 2009 and Wheeler 2002). They range from 23 

difficulties in accounting for extra-territorial spillovers (Bento et al. 2009 and Downs 1994), 24 

setting boundaries amidst shifting economic geographies (Dewar and Epstein 2007) and the 25 

institutional complexities of formulating and implementing coherent supra-regional policies 26 

(Friedmann and Weaver 1979, Katz 2000, Teitz and Barbour 2007, and Womersley 2006). With 27 

the emergence of mega-regional clusters as engines of economic growth and competitiveness, 28 

planners, policymakers and researchers need to consider how transportation systems can aid 29 

regional development, mitigate the challenges resulting from shifting regional travel demands, 30 

and facilitate robust decision-making that can withstand future uncertainties.  31 

One such challenge is transportation related congestion. With the decentralization of 32 

employment in the last two decades and increased suburb-to-suburb trips, congestion has become 33 

a spatially broader issue (Ewing and Cervero 2001 and Orfield 2002). In many metropolitan 34 

areas, severe highway congestion problems are expected to exacerbate if the current trends 35 

continue (Cervero 2003, Downs 2004 and TRB 2009) This has implications for mega-regional 36 



 

competitiveness and thus congestion mitigation approaches and their mega-regional outcomes 1 

deserve closer attention (Keil and Young 2008).  2 

So far, tolls and occupancy controls have been the most commonly used instruments for 3 

regulating highway use. However, with better modeling techniques and improvements in 4 

Intelligent Transportation Systems, more real-time, demand-driven congestion pricing 5 

approaches are being considered (Giuliano 1992). While congestion pricing shares many 6 

common characteristics with traditional toll assessment, its potentially dynamic nature and focus 7 

on congestion mitigation over infrastructure financing, offer new opportunities and challenges. 8 

Apart from political and institutional complexities, a host of factors go into congestion price 9 

analysis including, travel demand, infrastructure supply, and commuting patterns, A central 10 

tenant of this process is commuter behavior, i.e. the elasticity of travel demand with respect to 11 

congestion and price. Travelers may elect to pay a cost based on whether there is a 12 

corresponding time savings, convenience or available alternative modes or routes. A key 13 

parameter in this analysis is the estimated value of time (VOT). The VOT literature has 14 

traditionally focused on income distribution among all trips (Hensher 2001 and Lisco 1968). 15 

However, extending the notion of VOT using travel demand models to include trip purpose has 16 

the potential to enrich VOT based analysis. It can also add a more explicit spatial component to 17 

the analysis thus allowing us to test pricing approaches at large scales. This is what we do in this 18 

paper. Specifically, we ask 1) whether congestion pricing determination can be improved using 19 

an enhanced Value-of-Time determination approach that accounts for both income and trip-20 

purpose of the commuters, 2) how mega-regional pricing approaches using congestion pricing 21 

differs in outcome from traditional MPO based approaches and 3) how different conditions in 22 

future can affect the congestion outcomes differently under traditional MPO-based or mega-23 

regional approaches. 24 

We use the Capital Megaregion to demonstrate the value of our approach. We define this mega-25 

region to span the following five Metropolitan Planning Organization (MPO) regions: 26 

Washington (DC-MD-VA), Baltimore (MD), Wilmington (DE), Fredericksburg (VA), and 27 

Frederick (MD). In addition, the mega-region includes a number of counties adjoining the above 28 

regions including those in southern New Jersey and Pennsylvania and northeastern West 29 

Virginia.  The unifying characteristics for this mega-region besides commute-shed linkages are 30 

the presence of a large number of federal and other government-related jobs and environmental 31 

systems connectivity, especially at the watershed level. 32 

We proceed as follows. In the next section, we discuss the practices and research on how value-33 

of-time is incorporated in travel behavior models and what that tells us about congestion pricing 34 

and issues of scale. In the following section, we establish our framework to develop and analyze 35 

mega-regional scenarios. This process involves the use of multi-level transportation models that 36 

are sensitive to congestion pricing and variations in future travel demand. Next, we generate 37 

estimates of VOT using different approaches viz. income only, income and trip purpose, and 38 



 

income and trip purpose and variable travel demand; using an example problem on a small 1 

network, we demonstrate the value of using trip-purpose in VOT estimation. In the following 2 

section, we present the results of applying this approach on our case study: the Capital Mega-3 

region. We conclude with specific implications for mega-regional decision-making. 4 

 5 

LITERATURE REVIEW 6 

In this section, we look at the literature on approaches used for analyzing commuter and non-7 

commuter travel behavior using differential VOT, further cross-classified by income and trip 8 

purpose. We then look at their limitations to establish a foundation for our work. Finally we draw 9 

evidence from existing research on how these approaches can aid mega-regional decision-10 

making.  11 

From the early 1990s, a series of projects in the United States has demonstrated the applicability 12 

of congestion pricing. Many transportation projects have combined pricing with priority for 13 

high-occupancy vehicles in the form of “High Occupancy Vehicle (HOV) and High Occupancy 14 

Toll (HOT)” lanes. In this scheme, a set of express lanes on an otherwise free and congested road 15 

offers high-quality service to people who are willing to pay a time-varying toll and/or who ride 16 

in carpools. These projects provide an opportunity to study some behavioral parameters that are 17 

central to the evaluation of transportation projects. The most important is the VOT, i.e. the 18 

marginal rate of substitution of travel time for money, which measures willingness to pay for 19 

reductions in the day-to-day variability of travel times facing a particular type of trip (Small and 20 

Yan 2001). A commuter traveling between any origin and destination points can pay higher tolls 21 

to save on travel time, or use alternative routes and/or modes to avoid tolls but travel for a longer 22 

time. In theory, the right toll can reduce peak hour congestion; thus, travelers who highly value 23 

time and who want to travel at peak periods can shift to toll roads. The relationship between toll, 24 

and travel time can raise a fundamental question regarding the travelers’ willingness to pay so as 25 

to save travel time, i.e., commuters’ value of travel time. 26 

The concept of VOT and travel behavior has been researched extensively. In the early 27 

applications of 1960, the notion of value of time was used to develop the theory of time 28 

allocation and in practice to estimate, say, the time savings in cost-benefit analysis of highway 29 

investment decisions (Warner 1962; Lisco 1967 and Thomas, 1967). With advances in theory, 30 

particularly random utility theory, and methodologies, especially discreet choice models, and 31 

improvement in computing, the VOT literature has shifted to focus on individual behavior.  32 

Small (1982) generalized from a review of many estimates that the average VOT for journeys to 33 

work is about 50% of the gross wage rate. In most studies since then, VOT of commuters have 34 

been developed using discrete choice models (e.g., binary logit, mixed logit, multinomial logit, 35 

and nested logit) and based on traveler survey data (Small and Rosen 1981; Leurent and Wagner 36 



 

2009; Sullivan 2002; Hultkrantz and Mortazavi 2001; Brownstone et al. 2003; Cirillo and 1 

Axhausen 2006; Brownstone and Small 20005).  2 

While the above approaches provide a useful framework for estimating congestion pricing, they 3 

have several limitations. Generalized measures of VOT are inherently regressive in nature and 4 

may lead to inequitable distribution of costs and benefits among users (Mackie et al. 2001). 5 

Extending the characterization of VOT to include income groups (Hensher 2001; Gunn 2001) 6 

addresses this to an extent, although congestion pricing remains regressive, adding fuel to the 7 

political opposition to many such measures. Another limitation of this approach is the lack of 8 

emphasis on travel behavior in VOT estimation. To address this Jara-Diaz (2003) suggested 9 

extending the concept from using one VOT for all non-work activities to using specific value for 10 

each activity. Activity-based estimates promise to advance the value of VOT and associate it 11 

with longer distance commutes and interregional travel.  12 

Travel demand models can be useful in this regard. Unlike travel surveys and econometric 13 

models that provide commuters’ willingness to pay, travel demand models can provide useful 14 

information on travel behavior and, by extension, connect it with VOT. The sensitiveness of 15 

VOT in such models can vary across two dimensions; income category and trip purpose. For 16 

example, a commuter during the peak period may be willing to pay more than a non-commuter. 17 

If so, when a non-toll road is converted to a toll road, the marginal rate of substitution for the 18 

commuters can be expected to be lower than that of the non-commuter. These impacts are similar 19 

in effect with income-based categorization where the marginal rate of substitution for a high-20 

income traveler will likely be lower than that of lower income traveler. In practice however, it is 21 

a combination of these effects but their implications are not very clearly studied in the literature. 22 

This, as we demonstrate later, presents a gap in mega-regional congestion pricing that this 23 

research attempts to address.  24 

In summary, the notion of value of time has become central to transportation economics, 25 

modeling and policy. It allows us to incorporate the time dimension of travel into capital 26 

decisions and use pricing mechanisms to influence behavior. In this section, we synthesized the 27 

established literature on how value-of-time is estimated and how it affects congestion price 28 

determination. We find that income-only approaches provide limited estimate of the value-of-29 

time and factoring trip-purpose in such estimation can be a more robust approach. Due to the role 30 

of value-of-time in congestion price determination and the promise of congestion pricing in 31 

mega-regional transportation planning, analyzing these issues at such scales can illuminate 32 

possible efficiencies.  33 

 34 

METHODOLOGY 35 

Effective modeling efforts have in the past focused on incorporating road pricing into the 36 

highway assignment algorithm via Waldrop’s User Equilibrium (UE) objective function and a 37 



 

Frank-Wolf (FW) solution approach. In the mega-regional context travel behavior, especially 1 

route choice can be studied with the user equilibrium method. A set of models are proposed in 2 

Table 1 and described in the following paragraphs. 3 

A base-case, which represents the current mega-regional conditions, without any pricing, is 4 

analyzed using user-equilibrium. In Table 1, the objective function of the Base-case shows 5 

assignment of flows occur as per Wardrop's first principle, which denotes that “no user can 6 

experience a lower travel time by unilaterally changing routes” (Sheffi 1985). In simple terms, 7 

the equilibrium is achieved when the travel cost on all used paths is equal. The three terms in 8 

equation (1) represent the total travel cost. The first term, ݐ௔, is the travel time for link a, which 9 

is a function of link flow ݔ௔. The sum of these two terms in equation (1) can be referred as user 10 

cost for link a (ݑ௔ ൌ  ௔ሻሻ. Equation (2) is a flow conservation constraint to ensure that flow 11ݔ௔ሺݐ

on all paths r, connecting each Origin-Destination (O-D) pair (i-j) is equal to the corresponding 12 

demand. In other words, all O-D trips must be assigned to the network. Equation (3) represents 13 

the definitional relationship of link flow from path flows.  14 

Table 1: Summary of Proposed Models 15 

 16 

Equation (4) is a non-negativity constraint for flow and demand. The travel time function ta(.) is 17 

specific to a given link ‘a’  and the most widely used model is the Bureau of Public Roads (BPR) 18 

function given by 19 

௔ሻݔ௔ሺݐ ൌ 	 ௢ݐ ൭1 ൅ ௔ߙ ൬
௔ݔ
௔ܥ
൰൱

ఉೌ

 (5) 

 20 

where to(.) is free flow time on link ‘a’, and ߙ௔ and ߚ௔ are constants (and vary by facility type). 21 

 ௔ is the capacity for link a. In the Base-case the objective is the minimization of user travel 22ܥ

time. In this Base-case, the multiclass UE assignment considers VOT for each by income but not 23 

trip purpose.  24 

Model-1 is distinguished from the Base-case with the implementation of congestion pricing on 25 

specific links. Like the Base-case a unique VOT is specified for each income class, but does not 26 

Model Objective Function Constraints 
Base-
case 

	݁ݖ݅݉݅݊݅ܯ ∑ ׬ ௔ሻݔ௔ሺݐ
௫ೌ
଴௔                                               (1) 

∑ ௜݂௝
௥

௥ ൌ  ௜௝                 (2)ݍ
௔ݔ ൌ ∑ ∑ ∑ ௜݂௝

௥
௥௝௜ ௔,௜௝ߜ

௥  (3) 
 ௜݂௝
௥, ௜௝ݍ

௥ ൒ 0                  (4) 
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൰
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௫ೌ
଴௔ െ ∑ ׬ ௜௝ܦ

ିଵሺ
௤೔ೕ
଴௜௝  ௔ሻ  (8)ݔ



 

vary by trip purpose. Specification of a VOT for each income class means the perceived toll 1 

values vary for users by income class. In general practice, toll values are modeled to reflect 2 

varying values-of-time. This can be achieved in each model by adding a term for the toll value 3 

scaled by the corresponding VOT by income to the objective function shown in Equation (1). 4 

The revised equation reflects this change, and is shown in Equation (6).   5 

While the objective function in Model-1 (equation-6) is changed compared to the Base-case 6 

(equation-1), the equilibrium constraints remain the same. The Base-case model is not suited for 7 

congestion pricing analysis, but the Model-1 is capable of doing so where VOT varies by income 8 

category.  9 

Often, a traveler’s VOT varies depending on the type of trip that is being considered. For 10 

example, when a trip is being made for the purpose of commuting to work, the value of time is 11 

higher than a trip that is made for shopping or recreational purposes. The objective function for 12 

Model-2 shown in Equation (7) incorporates this principle. The second term, (
ఛೌሺ௫ೌሻ

ఊ೔
೛ ) represents 13 

the cost of travel for toll value of ߬௔ and is weighted with VOT by income group i, and purpose p 14 

௜ߛ )
௣).  15 

Model-3 builds on the income and purpose classified VOT in Model-2 but adds inverse demand 16 

based highway assignment. Link (Model-1) and purpose differentiated pricing (Model-2) provide 17 

a good understanding of shifting routes and modes (discussed later in the paper). However, both 18 

Model-1 and Model-2 do not consider the variability of demand because of changes in network 19 

conditions as a result of changes in link pricing. Alternatively, highway users are not elastic to 20 

the pricing strategy. Demand elasticity can be incorporated into the models by introducing an 21 

inverse demand function in the objective function. Modeling variable demand completely 22 

changes the objective function. 23 

This formulation of variable demand allows the decision maker to model the elasticity of the user 24 

behavior. The constraints for the variable demand model remain the same as in the Base-case 25 

(see equations 2-4). The inverse demand function ܦ௜௝
ିଵሺ. ሻ is associated with O-D pair i-j. An 26 

exponential demand function is then used which is a function of potential demand and least user 27 

cost paths to determine the new demand ݀௜௝
ఝ൫ݔ௜௝൯ between O-D pairs is given by 28 

݀௜௝
ఝ൫ݔ௜௝൯ ൌ መ݀

௜௝
ఝexp൫െ߱ ∗ ௜௝ݑ

௖ ൯ ∀ ݅, ݆, ߬  (9) 

 

where መ݀௜௝
ఝ  is the potential demand between i-j,  ݑ௜௝

௖  is the least cost path between O-D pairs i-j 29 

and ߱ is a positive constant. This new demand is then fed back into the highway assignment 30 

model. The users in the i-j O-D pair are now elastic to the cost of travel (ݑ௜௝
௖ ). Alternatively, as 31 

the cost increases the willingness to travel decreases.  32 



 

 1 

Measures of User Response to Pricing 2 

We construct a two dimensional framework to analyze traveler response to congestion pricing. 3 

The first dimension is an economic approach that measures travel demand response to changes in 4 

road price. The second dimension of analysis measures changes in network conditions as a result 5 

of pricing, utilizing measures commonly reported in a traffic demand modeling context.   6 

Price Elasticity of Demand  7 

To analyze the likely travel behavior response to pricing mechanisms in the mega-regional 8 

context, we use an analytical framework common in economics to measure change in both an 9 

example problem and case study. Our framework is based on price elasticity of demand, where 10 

the change in quantity of a good demanded (in this case, travel on a given highway link) is 11 

measured relative to the change in the price of that good. Measuring behavioral change in this 12 

way allows planners and policy makers to determine how several important components of 13 

traveler response to road pricing are affected, including likely traffic volume, impact on each 14 

income group, response by users with different trip purposes and possible revenue from pricing.     15 

Determination of price elasticity of demand in a mega-region in our paper is aided by the 16 

application of the previously discussed models to an existing validated multistate transportation 17 

demand model. Using an existing validated model allows us to change the price of travel in 18 

multiple metropolitan areas (each with their own unique characteristics) to determine how 19 

drivers will likely react to the pricing, based on income and trip purpose. These changes model 20 

probabilistic demand elasticity to road pricing.  21 

We use the arc elasticity formula to model user response. Arc elasticity, using the midpoint 22 

formula is simply: 23 

ௗܧ ൌ
ଵܸ െ ଴ܸ

ቀ௏బା௏భ
ଶ
ቁ
ൊ ଵܲ െ ଴ܲ

ቀ௉బା௉భ
ଶ
ቁ

 

 

(12) 

where ଴ܲ is the initial toll price on the set of city links, ଵܲ is the new price with the VMT based 24 

toll, ଴ܸ is the original volume on all tolled links in the designated area and ଵܸ is the volume after 25 

the VMT toll is initiated. The resulting elasticities provide a measure of traveler sensitivity to 26 

road pricing within multiple metropolitan areas and for two key user characteristics: income and 27 

trip purpose.  28 

There are five types of elasticity. Where ܧௗ is equal to 0, the user response in demand to price 29 

change is known as perfectly inelastic; where users do not change the quantity demanded when 30 

the price changes. Second is perfect elastic demand, when ܧௗ is equal to (negative) infinity, users 31 

are perfectly elastic. This means that a tiny change in price will drive a large change in demand. 32 

Third is when ܧௗ is equal to one, this is called unit elasticity, where change in demand is exactly 33 



 

proportional to the change in price. The final two elasticities are termed elastic demand when ܧௗ 1 

is greater than one and inelastic demand when ܧௗ is less than one. Elastic demand means that 2 

there is a proportionally greater change in quantity demand than the change in price while 3 

inelastic demand means there was a proportionally greater change in price than quantity 4 

demanded.    5 

Other Network Statistics 6 

Another common and useful measure of user response to road pricing is the amount of travel in a 7 

given area, measured by link travel volume and link distance, known as vehicle miles travelled 8 

(VMT). Another measure is the time a road user spends driving, which is the time in hours it 9 

takes all road users to reach their destination, or vehicle hour travelled (VHT). Finally, the miles 10 

of road where the amount of traffic volume on a given link as a ratio of the link’s capacity 11 

exceeds .75 is an indicator of network conditions called congested lane mile (CLM). Each of 12 

these measures is reported for the case study.  13 

 14 

SOLUTION APPROACH 15 

The recently conducted Household Travel Survey (HTS) in the Washington-Baltimore region 16 

was used to determine VOT. Five income groups are considered from the survey and presented 17 

in Table 2. The value of time in cents per minute and dollars per hour used for each category is 18 

presented in the fourth and fifth column. The dollars per hour income is converted to dollars per 19 

year by assuming 2080 working hours per year. 20 

Table 2 Value of Travel Time  21 

Income Group Lower Bound ($) Upper Bound ($) cents/minute $/Hour $/Year 

Income Group 1 0 20,000 8.40 5.04 10,483 

Income Group 2 20,001 40,000 25.00 15.00 31,200 

Income Group 3 40,001 60,000 41.70 25.02 52,042 

Income Group 4 60,001 100,000 50.40 30.24 62,899 

Income Group 5 100,001 Higher 106.40 63.84 132,787 

 22 

Link costs are further categorized by purpose, type of travel and user class. There are 18 trip 23 

purposes when classified by income. The trip purposes are classified as Home Based Work 24 

(HBW), Home Based Shopping (HBS), and Home Based Other (HBO), each classified in five 25 

income categories (i.e. 3*5 = 15 purposes); and journey at work (JAW), journey to work (JTW), 26 



 

and non-home based (3 purposes). Further the five long distance trips: commercial, medium 1 

truck, heavy truck, regional auto and regional truck are included in the trips.  2 

The trip purposes are classified as commuter, non-commuter, and regional based on their travel 3 

objective. HBW and JAW are considered as a commuter trip, while as HBS, HBO, JTW, and 4 

NHB are considered as non-commuter trip. Modes are single occupancy vehicle (SOV), high 5 

occupancy vehicle (HOV) with 2 occupants, and HOV with 3 or more occupants. The VOT for 6 

different trip purpose, income category and vehicle class is presented in Table 3. For instance, 7 

“cost a1” is the value of travel time for income group 1 for HBW trip purpose, and “cost a2” is 8 

the VOT for income category 2 for HBO and HBS trip purpose. Further, HBW is classified as 9 

commuters, where as HBS, and HBO are classified as “non-commuters”. JTW is considered as a 10 

commuter trip purpose (“cost c1”), and the average income is considered for JTW. JAW and 11 

NHB trip purposes are considered as non-commuter trip purpose with average income (“cost 12 

c2”).  A total of 20 user classes are defined, which are further categorized as three trip purposes 13 

such as commuter, non-commuter and regional. The regional trips are external trips long distance 14 

commercial vehicle, auto and truck trips. All the regional trips are considered as higher income 15 

category with non-commuter trip purpose (“cost e2”).  16 

  17 



 

Table 3 Value of time by income, trip purpose, and user class 1 
Sl. 
No 

User 
Class Trip Purpose Income Travel Type Auto Type VOT 

1 1 Home Based Work Income 1 Commuter SOV, HOV-2, HOV-3+ cost a1 
2 2   Income 2 Commuter SOV, HOV-2, HOV-3+ cost b1
3 3   Income 3 Commuter SOV, HOV-2, HOV-3+ cost c1 
4 4   Income 4 Commuter SOV, HOV-2, HOV-3+ cost d1
5 5   Income 5 Commuter SOV, HOV-2, HOV-3+ cost e1 
6 6 Home Based Shopping Income 1 Non-Commuter SOV, HOV-2, HOV-3+ cost a2 
7 7   Income 2 Non-Commuter SOV, HOV-2, HOV-3+ cost b2
8 8   Income 3 Non-Commuter SOV, HOV-2, HOV-3+ cost c2 
9 9   Income 4 Non-Commuter SOV, HOV-2, HOV-3+ cost d2
10 10   Income 5 Non-Commuter SOV, HOV-2, HOV-3+ cost e2 
11 11 Home Based Other Income 1 Non-Commuter SOV, HOV-2, HOV-3+ cost a2 
12 12   Income 2 Non-Commuter SOV, HOV-2, HOV-3+ cost b2
13 13   Income 3 Non-Commuter SOV, HOV-2, HOV-3+ cost c2 
14 14   Income 4 Non-Commuter SOV, HOV-2, HOV-3+ cost d2
15 15   Income 5 Non-Commuter SOV, HOV-2, HOV-3+ cost e2 
16 3 Journey to Work* All Commuter SOV, HOV-2, HOV-3+ cost c1 
17 8 Journey at Work** All Non-Commuter SOV, HOV-2, HOV-3+ cost c2 
18 8 Non Home Based** All Non-Commuter SOV, HOV-2, HOV-3+ cost c2 
19 16  Long Distance  All Regional Commercial cost e2 
20 17   All Regional Medium Truck cost e2 
21 18   All Regional Heavy Truck cost e2 
22 19   All Regional Regional autos cost e2 
23 20   All Regional Regional trucks cost e2 

Note: *: Considered as a home based trip with income category 3; **: Considered as a non-home 2 

based trip with income category 3 3 

CASE STUDY 4 

The case study applies the model methodologies developed earlier in our paper to analyze 5 

commuter behavior for multiple sub-regions in the Capital mega-region. Figure 1 shows the 6 

geography of the study area, which is subdivided into 1,607 Mega-region Modeling (Traffic) 7 

zones (MMZ). The complete model also includes a zone super structure of 131 National 8 

Modeling Zones (NMZ) which covers the rest of the United States. The regional zones are 9 

included in the model to incorporate long distance and regional travel originating or destine for 10 

zones outside of the mega-regional study area. The model is constructed with a generalized 11 

highway network with several levels of facility types including all interstates, major highways 12 

and many arterials. The network consists of over 167,000 links with 20 facility types including 13 

both highway and transit.  14 



 

 1 
Figure 1 Mega-region (Traffic) Modeling Zones  2 

To demonstrate how highway users behave in response to priced links in locations with unique 3 

characteristics, we further divided the Capital mega-region into six metropolitan areas. These six 4 

metropolitan areas vary in terms of population, density, geographic scope, average income and 5 

highway network complexity. The network and zone system of the six metropolitan areas 6 

selected for analysis is shown in Figure 2. The locations are arranged (from “a” to “f”) in order 7 

of descending size, density, and complexity. The first two (“a” and “b”) metropolitan areas are 8 

the largest mega-region, Washington DC and Baltimore (city). The next largest area is 9 

Alexandria which is situated just south of Washington DC. Wilmington (“d”) is located in the 10 

northeast corner of Delaware. Frederick (“e”) is the second largest city in Maryland, after 11 

Baltimore. Finally, Fredericksburg is rural but rapidly growing independent city about 50 miles 12 

south of Washington in Virginia.  13 



 

(a)Washington DC (b) Baltimore 

(d) Alexandria (c) Wilmington  

(e) Frederick  (f) Fredericksburg 
Figure 2 Zone System and Networks of Six Major Metropolitan Areas in Mega-Region 1 



 

The case study follows that same methodology developed in earlier parts of this paper and in the 1 

example problem. A Base-case is specified which represents current highway network travel 2 

activity and three models with tolling and differing levels of VOT are developed. A toll of $0.50 3 

per mile is applied to interstate facilities that intersect the border of each of the six mega-regional 4 

metropolitan areas. In the cases of Washington DC and Baltimore the toll is also applied to 5 

interstate beltways that surround the city border but to not enter into the city. The toll is 6 

equivalent to a congestion charge as the pricing mechanism is implemented only during the peak 7 

AM and peak PM periods.  8 

 9 

RESULTS AND DISCUSSION 10 

We constructed a Base-case and three models to illustrate user response to road charges with a 11 

typical multiclass assignment model specification where users’ value-of-time is based only on 12 

their income categories and then with trip purpose differentiated VOT. For the purpose of this 13 

case study, there are two types of trips differentiated. The first trip purpose is for commuting and 14 

the other is for non-commute trips. The distinction in VOT between these trips is that VOT for 15 

commuting trips in each income category is twice (similar to the example problem) the VOT for 16 

non-commuting trips.  17 

 18 

Assignment Results and Elasticity 19 

The Base-case scenario is used as a reference point to measure how users respond to road 20 

charges in each of the three models. The results for the Base-case and three models are presented 21 

from the PM peak period. For brevity, AM, Mid-day, and Nighttime period results are not 22 

presented. However, it should be noted that the model produces outputs for all time periods. 23 

Table 4 shows the number of commute trips without a VMT based toll and with VOT by income 24 

class only. In the six selected cities there are a total of about 3.2 million vehicle trips on specific 25 

interstates that will be subjected to congestion charging in the models. On these facilities in the 26 

Base-case nearly 50% of all travel is composed of commute trips. The composition of income in 27 

each of these trip purposes is significantly different; for commuter trip purposes the majority of 28 

trips are in the lower income groups while the majority of trips in the non-commute purpose are 29 

in the higher income categories. For example, among all regions analyzed, Income group-3 has 30 

the highest number of commuters (916,647) where income group-4 and group-5 carry the lowest 31 

number of commuter trips. In contrast, for non-commuter trips, income group-4 has the highest 32 

number of trips (1,133,449) and income group-1 has the lowest number of non-commuter trips.  33 

TABLE 4 Base-case Highway Vehicle Trip Volumes 34 



 

 1 

Model-1 institutes the $0.50 per mile congestion charge on major interstate corridors within or 2 

near each if the six metropolitan areas. Table 5 presents the elasticity of demand from the 3 

pricing. The results indicate how pricing affects route taking decisions especially where VOT is 4 

low (income groups 1-3). The results show that users in the lowest income categories are the 5 

only group that is elastic to changes in pricing. In other words, higher income group travelers 6 

continue to use the same path even when the link is priced. Other income groups have a VOT 7 

high enough that the pricing of a road segment along a selected path does not significantly affect 8 

the path selection process.  9 

The results of our model have some implications on a mega-regional scale. Areas of higher 10 

density tend have a higher elasticity of demand in terms of toll, with some exceptions. In Model-11 

1 where all road users are not differentiated by trip purpose, the elasticity of all six areas 12 

combined ranges from .99 for the lowest income group to .28 for the highest income group for 13 

commute trips. For non-commute trips, elasticity for the lowest to highest income group ranges 14 

from .99 to .30 respectively. The smaller cities of Fredericksburg and Wilmington display 15 

unitary elasticity for lower income travelers both commuting and non-commuting. This indicates 16 

that users are more responsive to changes in road cost in these areas compared more dense 17 

locations. The larger cities of Frederick and Washington DC are relatively inelastic to toll 18 

charges even for lower income groups. This is likely because the demand for travel in these areas 19 

is such that it is more efficient to pay a toll than select another route. The cities of Baltimore and 20 

Alexandria present a different scenario. In these areas there was already a road charge on at least 21 

one road section prior to the new VMT based toll. When the new toll is instituted, users are 22 

elastic to further increases in travel costs. The reason for this higher elasticity is that tolls are 23 

already in place on high demand facilities were there are few alternative routes; instituting an 24 

additional toll on these facilities increases cost, but because initial demand is so high the toll cost 25 

plus travel time makes many lower income users seek alternatives while higher income users 26 

take advantage of lower travel time.   27 

Model-2 uses the same congestion charging system as in Model-1, but in this case both income 28 

groups and trip purposes (commuter and non-commuter) have different values-of-time. When 29 

commuters are faced with a toll, they tend to accept the toll rather than seek substitutes. The 30 

combined elasticity for all six cites went from a range of .99 to .29 in Model-1 from each income 31 

INC 1 INC 2 INC 3 INC 4 INC 5 INC 1 INC 2 INC 3 INC 4 INC 5

Washington DC 45,049 143,272 326,008 7,281 23,726 6,293 12,595 22,307 806,619 133,999

Baltimore 89,815 250,366 488,380 7,397 27,327 16,934 26,075 36,783 910,128 141,212

Wilmington 5,324 12,929 22,712 759 2,730 1,649 2,365 4,021 58,031 5,992

Fredericksburg 374 950 2,173 393 581 239 360 830 6,574 985

Alexandria 7,080 24,652 54,577 2,313 5,250 1,280 2,617 4,562 105,471 22,795

Frederick 4,223 11,588 22,797 1,060 5,118 1,978 3,426 6,571 53,245 8,844

TOTAL 151,865 443,757 916,647 19,203 64,733 28,373 47,437 75,075 1,133,449 313,826

Non-commute TripsLocation

Base-case

Commute Trips



 

group a range of .95 to .17. Non-commuters in most cases were slightly more elastic to pricing. 1 

In locations where a there was an additional pre-existing toll, road users remained elastic to the 2 

pricing. This suggests that even when users have very high VOT, they are still sensitive to very 3 

expensive road prices. Road conditions are a complex phenomenon and some of this complexity 4 

is picked up in in the Model-2 elasticity results. Commuters in the higher income class appear to 5 

become more sensitive to tolls when the commuter trip purpose VOT increases. This occurs 6 

because as lower income commuters become less elastic to pricing, road conditions become 7 

worse. As traffic flow decreases higher income commuters seek out faster and cheaper 8 

alternatives at a greater rate. This has an important implication for equity concerns over 9 

congestion charging. While higher income groups to have a lower elasticity to pricing, when all 10 

commuters face the same toll, the disparity of travel costs between income groups shrinks, 11 

reducing the differential impact of tolls on each income group.  12 

Model-3 is formulated in the same way that model-2 is constructed but models variable demand 13 

rather than static demand. In the previous models, users were sensitive to trip cost only in 14 

selecting a route. In Model-3 users are sensitive to price not only when selecting a route, but also 15 

when deciding whether or not to take a trip and by which mode. The results show the somewhat 16 

paradoxical effect of user decision making under variable demand conditions (cells shaded in 17 

gray). For higher income commuters the elasticity of demand for tolled roads appear to mimic a 18 

Giffen good, that is, when the toll cost of the facility increases, the demand for travel on the 19 

facility for higher income groups, increases. This is an example of the complexity of the highway 20 

network. Users in lower income groups and especially non-commuters are much more elastic to 21 

tolling. Under variable demand when the price to travel on the road increases, users simply 22 

decide not to travel or seek alternative modes. This in turn reduces the travel time on the tolled 23 

roads making the road more attractive to commuters.   24 

  25 



 

TABLE 5 Elasticity of Demand for $0.50/mile toll 1 

 2 

Cross Price Elasticity  3 

Table 6 provides that cross-elasticity of demand for non-tolled alternatives. These elasticities 4 

represent the demand for non-interstate facilities in each of the six cities when a toll is initiated 5 

on the interstates. As expected, since the elasticity of demand in most areas is below one, the 6 

substitution of interstate routes is low as well. In Wilmington, one of the two most remote cities, 7 

the substitution effect is high for the lower income group but is roughly the average for all other 8 

income groups. This indicates that many of the other routes within Wilmington that offer a 9 

substitute are substantially time consuming. In most other cases, there is a lack of quality 10 

substitutes for interstate travel. As a result, planners in a mega-regional context will likely not 11 

have to worry about local roads congesting if a moderate VMT based toll is instituted on 12 

interstates.  13 

The cross elasticities for Model-2 behave as expected. In Wilmington commuters still seek out 14 

local road to avoid toll charges as is the case with Alexandria where there is a pre-existing toll. 15 

Non-commuters do not appear to seek out alternatives, rather they avoid the area altogether. The 16 

Giffen effect is preserved in Model-3 even for non-tolled alternatives. Some users find the time-17 

cost of travel on non-interstates too high and select not to make a trip. This in-turn makes travel 18 

on these routes relatively more attractive so higher income users travel on these roads.   19 

 20 

 21 

 22 

 23 

INC 1 INC 2 INC 3 INC 4 INC 5 INC 1 INC 2 INC 3 INC 4 INC 5

Washington DC -0.91 -0.67 -0.34 -0.20 -0.22 -0.92 -0.63 -0.31 -0.34 -0.25

Baltimore -1.02 -0.86 -0.54 -0.40 -0.36 -1.01 -0.84 -0.48 -0.51 -0.38

Wilmington -1.00 -0.74 -0.20 -0.25 -0.19 -1.00 -0.75 -0.27 -0.23 -0.17

Fredericksburg -1.00 -0.41 -0.12 -0.08 -0.09 -1.00 -0.36 -0.17 -0.13 -0.10

Alexandria -1.28 -0.44 -0.20 -0.27 -0.25 -1.30 -0.70 -0.36 -0.30 -0.18

Frederick -0.87 -0.55 -0.27 -0.35 -0.29 -0.90 -0.64 -0.39 -0.34 -0.22

TOTAL -0.99 -0.75 -0.42 -0.29 -0.28 -0.99 -0.75 -0.40 -0.15 -0.30

Washington DC -0.81 -0.28 -0.11 -0.23 -0.25 -0.92 -0.65 -0.34 -0.37 -0.28

Baltimore -1.02 -0.43 -0.23 -0.43 -0.39 -1.01 -0.85 -0.50 -0.53 -0.40

Wilmington -0.96 -0.16 -0.06 -0.30 -0.20 -1.00 -0.76 -0.31 -0.27 -0.19

Fredericksburg -0.64 -0.10 -0.04 -0.09 -0.13 -1.00 -0.34 -0.17 -0.13 -0.11

Alexandria -1.31 -0.22 -0.07 -0.42 -0.40 -1.35 -0.74 -0.40 -0.33 -0.21

Frederick -0.69 -0.23 -0.08 -0.35 -0.29 -0.90 -0.66 -0.39 -0.34 -0.22

TOTAL -0.95 -0.35 -0.17 -0.32 -0.31 -0.99 -0.76 -0.42 -0.18 -0.32

Washington DC -0.88 -0.50 -0.38 0.92 0.84 -0.94 -0.75 -0.54 -0.98 -0.79

Baltimore -1.05 -0.66 -0.51 0.98 0.79 -1.02 -0.92 -0.71 -1.02 -0.89

Wilmington -0.98 -0.34 -0.27 0.87 0.59 -1.00 -0.84 -0.46 -0.96 -0.68

Fredericksburg -0.75 -0.25 -0.26 0.51 0.28 -1.00 -0.35 -0.25 -0.90 -0.65

Alexandria -1.59 -0.69 -0.56 1.73 1.53 -1.40 -0.96 -0.74 -1.38 -1.09

Frederick -0.85 -0.51 -0.37 0.80 0.25 -0.96 -0.83 -0.66 -0.95 -0.71

TOTAL -1.01 -0.59 -0.45 0.98 0.84 -1.01 -0.86 -0.63 -1.00 -0.84

Model Location

Elasticity of Demand with Respect to Tolls

Commute Trips Non-commute Trips

Model-1

Model-2

Model-3



 

TABLE 6 Cross-elasticity of Demand 1 

 2 

Tolls and Road Conditions 3 

While tolling has a differential impact on each income group and trip purpose, there is a net 4 

impact on the road network when modeling response to tolls, shown in Table 7. Model-1 shows a 5 

30% reduction in VMT, a 36% reduction in VHT and a 70% reduction in congested lane miles 6 

(CLM). Model-2 shows a smaller effect with a 24% reduction in VMT, a 29% reduction on VHT 7 

and a 62% reduction on CLM. Finally, Model-3 has the largest impact on network conditions. 8 

When interstates in the six cities are tolled and user response is modeled with variable demand, 9 

there is a 39% reduction on VMT, a 46% reduction in VHT and an 86% reduction in CLM.  10 

TABLE 7 Network effects 11 

 12 

SYNTHESIS OF RESULTS 13 

The results of the Base-case and three models show that users are not as elastic to price as one 14 

would assume, however users in different income groups and travelling for different purposes 15 

widely vary in response. This is partly due to the lack of available substitutes for interstates and 16 

partially due to the composition of income within trip purposes. Non-commuters have a 17 

INC 1 INC 2 INC 3 INC 4 INC 5 INC 1 INC 2 INC 3 INC 4 INC 5

Washington DC 0.05 0.04 0.04 0.01 0.01 0.01 0.01 0.01 0.02 0.03

Baltimore 0.13 0.14 0.13 0.02 0.04 0.04 0.05 0.04 0.08 0.09

Wilmington 0.33 0.28 0.07 0.04 0.03 0.14 0.12 0.04 0.04 0.03

Fredericksburg 0.02 0.03 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00

Alexandria 0.28 0.22 0.15 0.05 0.05 0.10 0.09 0.06 0.10 0.07

Frederick 0.15 0.10 0.06 0.04 0.03 0.06 0.05 0.04 0.05 0.04

TOTAL 0.11 0.10 0.08 0.02 0.02 0.03 0.04 0.03 0.05 0.05

Washington DC 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.03

Baltimore 0.12 0.09 0.08 0.02 0.05 0.04 0.05 0.04 0.08 0.09

Wilmington 0.32 0.05 0.00 0.06 0.03 0.14 0.12 0.06 0.06 0.03

Fredericksburg 0.03 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.00

Alexandria 0.45 0.13 0.07 0.09 0.07 0.09 0.09 0.06 0.11 0.08

Frederick 0.12 0.05 0.02 0.03 0.04 0.06 0.06 0.04 0.05 0.05

TOTAL 0.11 0.06 0.05 0.02 0.03 0.04 0.04 0.03 0.05 0.06

Washington DC -0.24 -0.22 -0.25 0.73 0.51 -0.24 -0.23 -0.25 -0.95 -0.62

Baltimore -0.18 -0.16 -0.19 0.76 0.42 -0.22 -0.20 -0.21 -0.99 -0.79

Wilmington 0.05 -0.29 -0.36 0.39 -0.12 -0.11 -0.12 -0.24 -0.94 -0.53

Fredericksburg -0.23 -0.22 -0.24 0.51 -0.12 -0.24 -0.22 -0.23 -0.83 -0.46

Alexandria -0.07 -0.30 -0.45 1.17 0.22 -0.26 -0.25 -0.29 -1.29 -0.89

Frederick -0.17 -0.20 -0.24 0.67 -0.08 -0.20 -0.20 -0.22 -0.87 -0.48

TOTAL -0.20 -0.20 -0.24 0.76 0.45 -0.22 -0.21 -0.23 -0.99 -0.69

Model-3

Cross-Price Elasticity

Time of Day Location Commute Trips Non-commute Trips

Model-1

Model-2

VMT VHT CLM VMT VHT CLM VMT VHT CLM VMT VHT CLM

Washington DC 2,042,528 54,405 189 -25% -34% -58% -19% -27% -49% -35% -47% -81%

Baltimore 1,797,002 39,952 100 -40% -43% -100% -32% -35% -96% -47% -50% -100%

Wilmington 169,501 3,548 0 -20% -20% N/A -17% -18% N/A -29% -29% N/A

Fredericksburg 95,532 2,164 11 -7% -15% 0% -5% -12% 0% -7% -18% 0%

Alexandria 265,089 6,296 27 -25% -29% -68% -19% -23% -58% -38% -44% -100%

Frederick 145,520 2,872 5 -25% -28% -71% -21% -23% -71% -36% -40% -88%

TOTAL 4,515,173 109,236 333 -30% -36% -70% -24% -29% -62% -39% -46% -86%

Location
Base-case Model-1 Model-2 Model-3



 

generally lower value of time especially when VOT for commute trips is doubled, but the effect 1 

in elasticity of demand appears somewhat muted by a substantially higher level of upper income 2 

trips taken for non-commuting purposes. This is just one of the complexities of user response to 3 

highway network congestion charging. Understanding user elasticity to tolling is also important 4 

for policy-makers and planners to determine how non-tolled facilities will be impacted by tolls 5 

and the potential for revenue generation. The results indicate that areas of higher density tend to 6 

have a higher elasticity of demand in terms of tolls. In terms of cross-price elasticity between 7 

tolled interstates and non-tolled alternatives, there seems to be very little substitution. Modeling 8 

the unique effects of tolls in different sized cities in the context of a mega-region provides new 9 

insight on how road users in different metropolitan areas are likely to respond to tolls and how a 10 

large mega-regional network is impacted by toll policy 11 

The results of the models show that in non-purpose differentiated VOT models, users in the 12 

lowest income categories are the only group that are elastic to changes in road pricing. Lower 13 

income travelers are elastic to new tolls on existing tolled facilities, while higher income 14 

travelers take advantage of the absence of lower income travelers on these facilities. The 15 

representation of road users with different trip purposes and corresponding VOT, measures how 16 

each group of road user will respond to changes in road cost. This segmentation of users has 17 

important implications for policy. 18 

When purpose differentiated congestion charging is applied to a mega-region, commuters in the 19 

higher income classes appear to become more sensitive to charges when the commuter trip 20 

purpose VOT increases. This occurs because as lower income commuters become less elastic to 21 

pricing and road conditions become worse. When all commuters face the same charge, the 22 

disparity of travel costs between income groups shrinks, reducing the differential impact of tolls 23 

on each income group. When a variable demand model is implemented to capture user trip 24 

decision making, a somewhat paradoxical effect occurs for commute travelers. For higher 25 

income commuters the elasticity of demand for tolled roads appears to mimic a Giffen good, that 26 

is, when the toll cost of the facility increases the demand for travel on the facility for higher 27 

income groups, increases. This provides an example of the complexity involved with toll policy 28 

and network effects, which only grows more complex in a mega-regional context. 29 

  30 

CONCLUSION 31 

Congestion pricing for the purpose of travel demand management has become a hot topic of 32 

debate among transportation planning agencies. In the US, a number of metropolitan areas have 33 

studied their potential implications, and some have implemented these policies on a limited 34 

number of links. Internationally, a few places such as, Stockholm and London, have 35 

implemented area-wide congestion pricing, and preliminary evaluation of their outcomes have 36 

presented valuable lessons in assessing user behavior. At the mega-regional level however, 37 



 

added computational and institutional challenges add to the complexity of assessing and 1 

implementing congestion pricing. In advancing the use of VOT, we tackle a key such challenge 2 

in this paper. 3 

In this paper, two contributions are made. First, a methodology is presented to examine 4 

commuter/non-commuter travel behavior using VOT cross-classified by income and trip 5 

purpose. Second, the methodology is applied to the Capital mega-region, and travel behavior is 6 

studied for its six sub-regions. We used a trip based four-step travel demand model for the 7 

analysis with a Base-case and different three models. Mid-point arc elasticity was used to 8 

compare the model performances to that of the Base-case. Cross price elasticity was used to 9 

compare the performance between the toll and non-toll cases. Finally aggregate measures such as 10 

VMT, VHT, and CLM were used to compare all four scenarios.  11 

The proposed tools can be very useful for engineers, planners, and policy makers to examine 12 

travel behavior when congestion pricing is considered and travel behavior is analyzed using 13 

VOT by income and trip purpose. In the future scope of work, we will derive the VOT by 14 

income and trip purpose from a specially designed survey and then analyze the travel behavior in 15 

a mega-regional context. We also plan to use the travel model to answer other questions such as 16 

first/second best toll, highway capacity expansion, freight alone corridor, and highway financing.  17 

Overall, our analysis adds to the argument that simply expanding regional boundaries to meet the 18 

extents of ever-changing economic systems and applying traditional methods at new scales will 19 

not be adequate to resolve key issues in the long run. Institutionally, new frameworks are needed 20 

in which federal dollars can accurately target projects that cross existing planning spheres (be it 21 

MPO, State, or other) and intergovernmental decision-making is encouraged. At the same time, 22 

improved analytical approaches are needed to better realize the potential for mega-regional 23 

planning decisions.  24 

 25 
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