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Abstract 1	
All-Red (AR) interval is designed as a method of clearance interval to safely clear 2	
vehicles that enter the intersection dilemma zone. The provision of AR is generally 3	
expected to reduce the occurrence of crashes, though there are situations that AR is not 4	
proved to be effective because it is used at intersections with a higher potential for 5	
crashes. This controversial result however, does not indicate that the AR interval is a 6	
contributing cause of crashes. Therefore, the self-selection bias of signal designs needs to 7	
be corrected when estimating their effect in improving safety.  8	

To address the selection-bias problem at signalized intersections, a Heckman two-9	
stage approach is adapted. First, a probit model is developed to explain the 10	
interrelationship between the AR interval and highway geometry, traffic volume, and 11	
environmental variables. Second, the selection bias term (or Heckman correction) is 12	
included in the second stage to build two negative binomial models for locations with and 13	
without an AR interval. Further, average treatment effects (ATE) and effect of treatment 14	
on the treated (TT) are estimated to examine the effect of AR intervals on the whole 15	
sample and treated sample, respectively. Three-year crash data on urban signalized 16	
intersections in the Detroit metro area is used to validate the proposed models. The 17	
results show that a random intersection with an AR interval will reduce crashes by 36 18	
percent when compared to a non-AR interval intersection. For treated intersections (with 19	
AR interval) there is a 51 percent reduction of total crashes compared to intersections 20	
without treatment (if not designed with AR interval).  The AR interval is a meaningful 21	
advance in reducing crashes by 15 percent.  22	

 23	

Keywords: Self-selection bias, Heckman Two-step correction model, All-Red Interval, 24	
Probit Model, Negative Binomial Model  25	
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1. Introduction 1	
Intersections are a critical subject in traffic control and operation. According to the 2	
National Highway Traffic Safety Administration’s (NHTSA) Traffic Safety Facts 2009 3	
Report, there were more than 2.2 million reported intersection-related crashes, resulting 4	
in 7,043 fatalities (20.8% of total fatalities) in 2009 (1). Among the intersection crashes, 5	
1.06 million (around 50%) crashes took place at traffic-signalized intersections. To 6	
improve intersection safety, crash causation study is a popular approach to investigate the 7	
impact of traffic, geometry, and environmental factors.  Traffic signal timing design 8	
should further be concerned with signalized intersections, because the majority of crashes 9	
are caused by red light running and signal timing issues at these locations.  10	

All-Red (AR) clearance intervals, in which all movements receive a red 11	
indication, were implemented to reduce crashes by providing additional time for vehicles 12	
to clear the intersection before conflicting traffic movements are released. AR may also 13	
be useful in mitigating amber dilemma zone problems, particularly at high speed 14	
intersections. Without an AR clearance interval, the yellow interval is followed 15	
immediately by a green interval for the opposing movements. This allows conflicting 16	
movements to start directly after the yellow interval. Kim and Washington (2006) proved 17	
that crashes, particularly those related to signal violations at signalized intersections 18	
could be reduced by an AR clearance interval. While, inadequate AR interval may cause 19	
intersection crashes if there is a deviation from the recommended signal timing practices 20	
(2). A study by Zador et al. (1985) found that AR intervals at signalized intersections are 21	
commonly ignored and there is a statistically significant relationship between AR 22	
intervals that are too short and an increasing number of crashes (3). Moreover, some 23	
locations with AR intervals are not effective in reducing crashes (4). A study by the 24	
Minnesota Department of Transportation shows that short-term improvement (up to one 25	
year before-and-after implementation of an AR clearance interval) is beneficial in 26	
reducing intersection crashes related to signal violations. On the other hand, long-term 27	
(more than two years before-and-after implementation of the AR clearance interval) 28	
research findings indicate that the short-term benefits are not sustained.  29	

To investigate the effect of an AR interval in reducing the occurrence of 30	
intersection crashes, the issue of a self-selection bias1 needs to be addressed first. For 31	
example, the crash occurrence rate at an intersection is expected to be less with AR than 32	
without AR intervals. On the other hand, the AR intervals are also applied at intersections 33	
with more complex traffic and geometry design or higher potential for conflicts. Then, 34	
crashes at some intersections with AR may be greater than similar intersections without 35	
AR. The situation does not mean that AR interval is one of the causes of crashes, due to 36	
the nature of the self-selection bias. The intersection in question may have already had a 37	
higher crash rate which necessitated the use of an of AR design.  38	

In this paper, we seek a method to capture the effect of signal timing on crash 39	
exposure, using AR intervals at urban intersections as a case study.  In the next section, 40	
the literature on crash occurrence and their associated variables is discussed. Then, the 41	
																																																								
1	Self‐selection	bias	appears	where	observations	in	the	data	select	themselves	into	a	group,	causing	a	
biased	sample.	It	arises	where	the	characteristics	of	the	observations	which	cause	them	to	select	
themselves	in	the	group	create	abnormal	or	undesirable	conditions	in	the	group	(Heckman	1979).	
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methodology is presented for applying a two-step procedure (introduced by Heckman 1	
(2001)) to negative binomial models, to correct self-selection bias (5). The data for this 2	
case study is summarized in the following section and empirical analysis is conducted to 3	
examine the signal timing and roadway design effect in reducing the number of crashes. 4	
Finally, we conclude with a discussion on the importance of this approach and its useful 5	
implications for intersection safety. 6	

 7	

2. Literature review 8	
To examine the effect of an AR interval and other factors (such as traffic and geometry 9	
design) on crash occurrence, causal factors are widely studied by crash prediction 10	
models. In this section, various studies to mitigate crash occurrence are discussed based 11	
on objectives, methods, and explanatory variables.  12	

 13	

2.1 Objectives for Crash Occurrence Study 14	
Crash occurrence has long been studied for mid blocks and intersections. Rural 15	
intersections, such as Abdel-Aty and Nawathe (2006), and Kim et al. (2007) ( 6-7), and 16	
urban intersections, such as Lord and Persuad (2003) and  Greibe (2003) (8-9), are both 17	
commonly studied. But, there are different focuses between rural and urban areas because 18	
of the nature of density of development in the vicinity. Driver behavior changes by the 19	
access points in terms of cluster of developments around the intersections. Other 20	
locations, such as rural two-lane highways (see Ma et al., 2007) are also studied (10). In 21	
addition, there are various targets in past studies. For example, Songchitruksa and Tarko 22	
(2006) studied the right-angle crashes at signalized intersections (11). Wang and Abdel-23	
Aty (2008) modeled the detailed left-turn crash occurrence according to conflict patterns 24	
(12). Lee and Abdel-Aty (2005) focused on vehicle-pedestrian crashes only in their study 25	
(13).  26	

 27	

2.2. Methods for Crash Occurrence Study 28	
The most frequent and widely accepted approach in past studies is using Poisson and 29	
Binomial regression models (10, 14). Recently, there have been some improvements 30	
based on this approach such as random effect negative binomial applied by Chin and 31	
Quddus (2003) (15). Lord et al.  (2005) compared the Poisson, Poisson-gamma and zero-32	
inflated regression models in crash occurrence (16). Other than this basic approach, 33	
researchers have applied several statistical models as well; such as generalized estimating 34	
equations (GEE) (8), Generalized Linear Modeling (GLIM) (17), and Analysis of 35	
Variance (ANOVA) (18). In addition, Abdel-Aty and Nawathe (2006) proposed a neural 36	
networks method as a novel approach in crash prediction model (6). Other more 37	
complicated models have been developed to fit multiple tasks in the research. For 38	
example, Kweon and Kockelman (2003) studied crash exposure and severity 39	
simultaneously by ordered probit model, conditioned on Poisson (19). Huang and Abdel- 40	
aty (2010) developed a Bayesian analysis to fit multilevel data from macro analysis 41	
(geographic region) to micro analysis (occupant injury) (20). 42	
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2.3 Factors Affecting Crash Occurrence 1	
Generally, traffic, geometry and environmental factors are taken into account while 2	
developing crash causation studies. For instance, Annual Average Daily Traffic (AADT) 3	
has proven to be highly correlated with crash occurrence (7, 21, 22). Left turn lanes are 4	
addressed to reduce number of crashes in several studies by Kim et al. (2006), Oh et al. 5	
(2003), and Harwood et al. (2000) (21-23).  6	

Guo et al., (2010) found that the size of the intersection, the traffic conditions by 7	
turning movement, and the coordination of signal phase have significant impacts on 8	
intersection safety (25). Wang and Abdel Aty (2006) found that having a large number of 9	
phases per cycle, i.e. indicated by the left-turn protection on the minor roadway, with 10	
high speed limits on the major roadway, and in high population areas are correlated with 11	
high rear-end crash frequencies (12). But the effect of signal timing on intersection safety 12	
is limited in the literature. An investigation of effects of signal timing information in the 13	
crash occurrence is discussed in this paper. 14	

In conclusion, Poisson and negative binomial regression are still preferred 15	
methods to model crashes occurrence and prediction. The causal relationship between 16	
signal timing of urban intersections and crashes has received limited attention in the 17	
literature.  In this research, we will use the two-step Heckman correction approach 18	
adjusted for a negative binomial model to study the crash occurrence. In addition to 19	
controlling for roadway design, the research will focus on signal timing (AR interval). 20	

  21	

3. Methodology 22	
The approach used in this study is adapted from a standard Heckman two-step procedure, 23	
introduced by Heckman (1979 and 2001) (5, 26) and applied by Zhou and Kockelman 24	
(2007) (27). Instead of the Ordinary Least Square (OLS) model coupled with the 25	
deduction effect found in previous research, the negative binomial model is used in the 26	
second procedure and the ratio treatment effect is calculated in this study. This method 27	
provides consistent estimates of explanatory variables by correcting self-selection bias. 28	
Simple closed-form expressions for treatment parameters: the average treatment effect 29	
(ATE) and the effect of treatment on the treated (TT) are derived to quantify the effects 30	
of individuals’ self-selection.    31	

 32	

3.1 Model Specification 33	
Negative Binomial (NB) Regression is a common approach in crash occurrence/exposure 34	
studies. The negative binomial model is employed to relax the restriction on the variance 35	
of ݕ in the Poisson model. The formulation is  36	

 37	
,௜ߤሺܤܰ~௜ݕ  ሻ (1)ߢ

 
௜ߤ݃݋݈ ൌ ௜ܺߚ 

(2) 
The treatment effects of AR design need to be estimated by comparing the 38	

number of crashes at intersections with and without AR intervals.  39	
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An AR interval is assigned for a particular intersection (receives treatment) if the 1	
utility ܦ௜

∗of doing so is positive and not assigned if the utility is negative.  2	

 3	

௜ܦ ൌ ൜1 if ௜ܦ
∗ ൒ 0

0 otherwise
 (3) 

  
௜ܦ
∗ ൌ ܼ௜ߠ ൅ ௜ߝ

஽ 
 

(4) 

where ܦ௜ denotes the observed treatment decision of the intersection ݅ (ܦ௜ ൌ 1 for 4	
intersections with AR and ܦ௜ ൌ 0 for intersections without AR); ܼ௜  is a row vector of 5	
explanatory variables for intersection ݅; ߝ௜

஽  is the error term for unobserved variables. 6	
Crash occurrence at AR and non- non-AR intersections are assigned to follow two NB 7	
distributions. The model is formulated as follows. 8	

 9	
௜ݕ
ଵ~ܰܤሺߤ௜

ଵ, ௜ߤ݃݋݈ ଵሻߢ
ଵ ൌ ௜ܺߚଵ ൅ ௜ߝ

ଵ 
 

(5) 

௜ݕ
଴~ܰܤሺߤ௜

ଵ, ௜ߤ݃݋݈ ଴ሻߢ
଴ ൌ ௜ܺߚ଴ ൅ ௜ߝ

଴ 
 

(6) 

	 
௜ݕ
ଵ and ݕ௜

଴ are the number of crashes at AR and non-AR intersections following 10	
the negative binomial distributions with a mean of ߤ௜

ଵ and ߤ௜
଴, respectively; ௜ܺ is a row 11	

vector of the explanatory variables for intersection ݅ ௜ߝ ;
ଵ  and ߝ௜

଴   are error terms for 12	
unobserved variables.  13	

Under the assumption of joint normal distribution across the three error terms, the 14	
two step estimation procedure applied to a negative binomial model is summarized as 15	
follows based on the application of an Ordinary Least Square (OLS) model by 16	
Heckman(2001) and Zhou and Kockelman (2007) (5, 27): 17	

(i) Obtain ߠ෠  from a probit model on the decision to take the treatment from 18	
equation (4) 19	

(ii) Use ߠ෠ to compute the selection-correction terms 20	

,෠ߠ௜ݖ஽หߝ൫ܧ ௜ܦ ൌ 1൯ ൌ
߶ሺݖ௜ߠ෠ሻ

Φሺݖ௜ߠ෠ሻ
 

 

 
(7) 

,෠ߠ௜ݖ஽หߝ൫ܧ ௜ܦ ൌ 0൯ ൌ െ
߶ሺݖ௜ߠ෠ሻ

1 െ Φሺݖ௜ߠ෠ሻ
 

 

 
(8) 

(iii) Instead of OLS, estimate two negative binomial models for groups with 21	
treatment and without treatment, respectively, with the inclusion of the 22	
appropriate selection-correction terms obtained from (ii). 23	
 24	

௜ߤ݃݋݈
ଵ ൌ ௜ܺߚଵ ൅ ଵߪଵߩ

థሺ௭೔ఏ෡ሻ

஍ሺ௭೔ఏ෡ሻ
൅ ௜ߝ

ଵ  

 

(9) 
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௜ߤ݃݋݈
଴ ൌ ௜ܺߚ଴ ൅ ଴ሺെߪ଴ߩ

߶൫ݖ௜ߠ෠൯

1 െ ෠൯ߠ௜ݖ൫ߔ
ሻ ൅ ௜ߝ

଴ 

 

(10) 

(iv) Use the estimation result of  ߚመଵ, ,መ଴ߚ ෟ	ଵߪଵߩ , and ߩ଴ߪ଴	ෟ obtained from step (iii) 1	
and ߠ෠ from step (i) to obtain point estimates of ratio treatment parameters 2	
ATE and TT. 3	
 4	

ሻݔሺܧܶܣ ൌ
௜ߤ̂
ଵ

௜ߤ̂
଴ ൌ

expሺߚݔመଵሻ

expሺߚݔመ଴ሻ
ൌ expሾݔ൫ߚመଵ െ  መ଴൯ሿߚ

  
 

(11) 

ܶܶሺݔ, ,ݖ ሿݖሾܦ ൌ 1ሻ ൌ expሾݔ൫ߚመଵ െ መ଴൯ߚ ൅ ሺߩଵߪଵෟ െߩ଴ߪ଴ෟሻ
߶ሺݖ௜ߠ෠ሻ

Φሺݖ௜ߠ෠ሻ
ሿ 

 

(12) 

ATE is the average treatment effect evaluated for a random sample. It represents 5	
the ratio change in the number of crashes when turning a random intersection from non-6	
AR design to AR design. ATE >1 means intersections with AR have more crashes than 7	
without AR, and vice versa. TT is the expected ratio change from the treatment for those 8	
selected to be treated. Similarly to ATE, if TT>1, a treated intersection (with AR) has 9	
more crashes than if this intersection is without AR, and vice versa. A comparison of 10	
ATE and TT values can estimate the treatment effect. Implications of ATE and TT are 11	
discussed in the result section.  12	

 13	

4. Data 14	
Data is collected on number of signalized intersection variables for the research 15	
including, (a) crash data, (b) traffic data, (c) highway geometry and (d) traffic signal data.  16	

Crash data for this study is collected from the South Eastern Michigan Council of 17	
Governments (SEMCOG) for the years 2002 to 2004. The crash data collected contains 18	
information on crashes involving fatalities, injuries, and property damage for the Wayne 19	
county area, in Detroit, Michigan. The crash database consists of information such as the 20	
location, number and types of vehicles involved in the crash, speed limit, weather 21	
conditions under which the crash occurred, time of day of the crash, type of crash (angle, 22	
rear-end, side-swipe), and severity of crash. Exposure data is collected from the Wayne 23	
County 2008 traffic volume database and state of Michigan traffic volume database2. The 24	
county database consists of traffic volume for major and minor arterials, and the state 25	
database consists of traffic volume for major arterials, interstates, and expressways. The 26	
traffic volume data is prepared for study all locations in conjunction with the county and 27	
the state databases. Both the county and state prepare and maintain annual traffic volume 28	
data. Figure 1 shows the locations of all intersections used in the analysis.  29	

 30	

																																																								
2	The	county	database	did	not	consist	of	traffic	volume	on	all	major	arterials,	so	the	state	traffic	
volume	database	is	used	in	such	cases.		
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 1	

 2	
Figure 1 Signalized Intersections with Crash data in Wayne County, Michigan (2002-3	
2004)  4	
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Highway geometry data is collected from the county asset management database 1	
and from satellite visuals in the absence of available data. The asset management 2	
database captures all improvements performed in the countywide highway network so the 3	
highway geometry data corresponds with crash data from a specific year. Highway 4	
geometry data consists of characteristics for major and minor streets including the total 5	
number of lanes; number of through, right, and left turn lanes, exclusive left and right 6	
turn lanes; presence of a median, including median type and width; parking availability; 7	
shoulder width; speed limit; and sight distance. Hazard ratings have been added in the 8	
database, information that was not originally found in the collected data. The 9	
methodology for hazard rating developed by Zegeer et al. (1994) is used in this research 10	
(28). The hazard rating ranges from one (best) to seven (worst). The highway geometry 11	
data is collected within 250 feet of the intersection.  12	

 13	

The Wayne county signal database is used to extract signal timings of crash 14	
locations. The database consists of cycle length, green interval, yellow interval (amber), 15	
red interval, all red interval, phase diagrams, actuated or pre-timed signal control, size of 16	
the signal head, pedestrian walk time, and signal phases including exclusive turn (right or 17	
left) phase timing. The signal timing data is collected for one location at a time. The 18	
database is restricted to signalized intersections and only to the Wayne county area. To 19	
eliminate bias in the database, locations with no crashes for the three-year study period 20	
are also added. Definitions and descriptive statistics for the variables used in the analysis 21	
are presented in Table 1(a) and Table 1(b). In Table 1(a) descriptive statistics of 22	
continuous variables are shown and in Table 1(b) descriptive statistics of categorical 23	
variables is presented. Further, the descriptive statistics of AR interval and non-AR 24	
interval are shown separately in each Table.    25	
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Table 1(a) Descriptive Statistics for Continuous Variables 1	

 Continuous Variable Street AR Intersections (137) Non-AR Intersections (48) 

Min. Mean Max. Min. Mean Max. 

Total Crashes Total 0.00 18.79 54.00 3.00 20.56 51.00 

Fatality 0.00 0.04 3.00 0.00 0.03 4.00 

Injury 0.00 5.15 21.00 0.00 4.50 21.00 

PDO 0.00 13.60 45.00 0.00 16.06 45.00 

loge (AADT) Major 5.42 9.32 10.71 7.68 9.53 10.90

Minor 5.34 8.33 10.11 6.47 8.44 9.71 

# of Driveways Major 0.00 2.13 10.00 0.00 2.00 9.00

Minor 0.00 1.97 12.00 0.00 2.04 8.00 

# of Lanes Major 2.00 3.66 9.00 0.00 3.81 7.00

Minor 2.00 2.58 8.00 2.00 2.83 8.00 

# of Left Turn Lanes Major 0.00 0.27 1.00 0.00 0.21 1.00

Minor 0.00 0.32 1.00 0.00 0.40 1.00 

# of Right Turn Lanes Major 0.00 0.32 1.00 0.00 0.40 1.00

Minor 0.00 0.11 1.00 0.00 0.10 1.00 

Median Width (feet) Major 0.00 4.74 37.00 0.00 6.48 46.00

Minor 0.00 2.93 46.00 0.00 5.81 50.00 

Shoulder Width (ft) Major 0.00 3.95 11.00 0.00 4.42 11.00

Minor 0.00 3.69 12.00 0.00 3.60 11.00 

Posted Speed Limit 
(mph) 

Major 
15.00 31.02 55.00 25.00 31.98 35.00 

Cycle Length (sec) Intersection 50.00 59.34 90.00 50.00 59.58 80.00

All Red Phase (sec) 
Major 

1.00 1.17 3.00 0.00 0.04 1.00

Minor 1.00 1.18 2.00 0.00 0.13 1.00 

Amber Phase (sec) Major 4.00 4.18 6.00 4.00 4.25 5.00

Minor 4.00 4.23 5.00 4.00 4.38 5.00 

 2	
  3	
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A total of 185 observations are used to generate descriptive statistics, and further 1	
used in the analysis procedure. Total crashes for a three-year period are examined, 2	
excluding pedestrian crashes. Table 1(a) shows the crash data for AR and non-AR 3	
signalized intersections. AR intersections consist with AR intervals on both approaches. 4	
The remaining intersections are categorized as “Non-AR Intersections”. Total crashes 5	
(the dependent variable) is a sum of the fatality, injury (three types), and property damage 6	
only (PDO). It is evident that the average number of PDO crashes at locations with AR is 7	
less than non-AR locations. There are very minor differences in the number of Injury and 8	
Fatal crashes. When compared to the total number of crashes, AR locations have fewer 9	
crashes than non-AR locations. Averages for exposure variables such as Annual Average 10	
Daily Traffic (AADT), highway geometry such as number of right and left turning lanes, 11	
protected left and right turns, median width, median type, number of driveways, hazard 12	
rating, acceleration leg, parking lanes, shoulder width are considered. 13	

 14	
Table 1(b) Descriptive Statistics for Categorical Variables 15	

Categorical Variable Street 

AR Intersections 
(%) 

Non-AR Intersections 
(%) 

No Yes No Yes 

Painted Median 
Major 26.27 73.73 97.91 2.09 

Minor 0.03 97.97 97.91 2.09 

Curbed Median 
Major 83.21 16.79 91.19 8.81 

Minor 92.71 7.29 89.58 10.42 

No Median 
Major 90.51 9.49 25.00 75.00 

Minor 9.00 91.00 16.67 83.33 

Speed Limit Less than 30mph Intersection 35.76 64.24 52.08 47.92 

Non Freeway Section Intersection 0.06 0.94 10.41 89.59 

Left Turn Protection on Major Street Intersection 82.48 17.52 62.50 37.50 
Number of Lanes 3 or Less on Major 
Street 

Intersection 70.80 29.20 77.08 21.92 

Physical Divider on Major Street Intersection 59.12 39.88 56.25 43.75 

Physical Divider Without Barrier Intersection 74.45 25.55 77.08 22.92 

Cycle Length Over 60 sec Intersection 76.64 23.36 79.16 20.84 

Acceleration Leg 
Major 95.62 4.38 0.00 0.00 

Minor 91.97 8.03 87.50 12.50 

Parking Lane 
Major 19.70 80.30 27.08 72.92 

Minor 80.29 19.71 72.91 27.09 

Sight Distance 
Major 63.50 36.50 70.83 29.17 

Minor 68.61 31.39 68.75 31.25 

Hazard Rating >3 
Major 12.40 87.60 12.50 87.50 

Minor 36.49 63.51 37.50 62.50 

Exclusive Left Turn Phase 
Major 92.70 7.30 95.83 4.17 

Minor 91.97 8.03 97.91 2.09 

 16	
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Among the environmental variables available, sight distance and roadway type 1	
are considered. A number of signal timing variables such as cycle length, amber time, 2	
pedestrian crossing time, presence and absence of protected and permitted left turns are 3	
considered in the analysis. 4	

 5	

5. Results 6	
 7	
In this section, we first present the results of the probit model along with a description of 8	
its corresponding significant variables. Second, the negative binomial results are 9	
discussed and explained. The treatment effect of an AR interval is then compared and 10	
explained.  11	

The first step analyzes the choice of AR design on both major and minor 12	
approaches using a binary probit model. The sign of the coefficients in Table 2 are as 13	
expected and reasonable. The results show that the presence of protected left turn signal 14	
on the major street of a signalized intersection reduces the probability of having an AR 15	
interval. This refers to the case of a protected left turn where the vehicles are only 16	
permitted to make a left then within a designated time, signaled by a green arrow. In 17	
contrast, for permissive left turn locations, vehicles can make a left even when there is no 18	
green arrow for the left turn, but the signal is green for the opposite through movement. A 19	
painted median warrants an AR interval because with no physical barrier separating two 20	
opposite movements there might be a tendency on the part of the driver to cross the 21	
intersection dilemma zone at a yellow interval.  The tendency to cross the intersection is 22	
the result of a reduced intersection island distance, in the case of a painted median on the 23	
major street. A major street speed limit, for instance less than 30 miles per hour, increases 24	
the probability of a required AR interval. Note that the intersections analyzed in this 25	
study are located in an urban Central Business District area where traffic volume is very 26	
high and intersections are separated by smaller distances. A number of other variables 27	
were tested but were found to be not significant.   28	
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Table 2 Result for Binary Probit Model on All-Red Design Location Choice 1	

Variable Coefficient t-stat 

Constant 0.485 **     2.679   

Left Turn Protection on Major Street -0.538* -2.300 

Painted Median on Major Street 1.074*      2.033   

Major Street Speed Limit Less than 31mph 0.420* 1.972 

   

R2 0.07  

   

Sample Size 185  

Note: ***=significant at 99%; **=significant at 95%; *=significant at 90% 2	
 3	

Table 3 shows negative binomial model results for (1) AR Model, and (2) Non-4	
AR Model. A set of common variables are used for both models. For the AR intersections 5	
the result is shown in column 2 and 3. Ln(AADT) for major and minor streets is 6	
positively correlated with the total number of crashes. It is observed that if AADT on the 7	
major or minor street increases, then the total number of crashes in an urban signalized 8	
intersection increases. Non-freeway sections are the intersections not close to a freeway 9	
ramp, transition area, weigh station or rest area. These locations are likely to have more 10	
crashes at AR intersections. The probability of crash occurrence decreases if the 11	
intersection approaches have fewer lanes. Intuitively, lower volume intersections have 12	
fewer crashes than higher volume intersections.  The selection-correction term is not 13	
significant for the AR Model.  14	



14	
	

Table 3 Results of Negative Binomial Models for Number of Crashes at All-Red and 1	
Non-All-Red Intersections 2	

 All Red Model Non-All Red Model 

Variable Coefficient t-stat Coefficient t-stat 

Constant -0.1532 -0.207 2.5570 1.887 

ln (AADT Major) 0.1428 ** 1.987 -0.0327 -0.264 

ln (AADT Minor) 0.1930*** 3.207 0.1335 1.534 

Non Freeway Section 0.4580* 1.709 0.3108 1.176 

Number of Lanes 3 or less -0.4052 ** -3.163 -0.6610*** -3.402 

Selection-correction term -0.1959 -0.568 0.4214 1.445 

     

R2 0.19   0.30 

Sample Size 137   48 
Note: ***=significant at 99%; **=significant at 95%; *=significant at 90%; others not significant 3	
 4	

All of the variables used in the AR model are also used for the Non-All Red 5	
Model. But only the indicator of three or less lanes is significant. This suggests that when 6	
the number of lanes is three or less on the Non-All Red intersections, the probability of 7	
occurrence of crashes decreases. The selection-correction term is also not significant for 8	
the Non-All Red Model. Other variables tested but found to be not significant in the NB 9	
model include sight distance on the major street (both left and right turn), divider without 10	
barrier, hazard rating more than three on the major street, and parking on the major street.  11	

The magnitude of treatment effects is shown in Table 4. ATE and TT parameters 12	
are estimated using equation (9) and (10). The ATE value of signalized intersections with 13	
an AR interval will have an average crash rate of 64% compared to intersections with no 14	
AR. Alternatively, AR intersections will, on average reduce the crash rate by 35.65 15	
percent (i.e. 1-0.6435) compared to non-AR intersections. The TT value shows that for 16	
intersections already designed with AR the number of crashes experienced is 49.58 17	
percent compared to non-AR intersections. The effect of AR on the treated intersections 18	
shows savings of 50.42 (i.e. 1-0.4958) percent of crashes. AR effect accounts for a 14.77 19	
percent reduction in crashes (0.5042-0.3565).  20	

 21	
  22	
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Table 4 Treatment Effect 1	
Parameter Value Effect =(1-Value) 
ATE 0.6435 0.3565 
TT 0.4958 0.5042 
Difference (=ATE-TT)                                      0.1477 

 2	

6. Conclusions 3	
In this paper, we propose a two-stage approach to examine the effect of AR signal design 4	
in reducing the number of crashes. In the first stage, a probit model demonstrates the 5	
interdependence between AR and other geometry variables. In the second stage, negative 6	
binomial models analyze the crash causal factors including a self-selection bias 7	
correction term. Additionally, two treatment parameters (ATE and TT) are estimated to 8	
examine the effect on AR for all intersections, and treatment intersections. Three years of 9	
crash data is used for analysis of selected signalized intersections in the Detroit Metro 10	
area consisting of 185 samples. Within this dataset there are 137 treated samples and 48 11	
untreated samples. 12	

The probit model results show AR interval design is negatively correlated with 13	
protected left turns on major streets, and positively correlated on painted medians, and a 14	
lower speed limit on major streets. In the negative binomial model for the treated sample, 15	
AADT (both on the major and minor street) and roadway locations away from freeways 16	
are positively correlated with total intersection crashes. In the same sample, major streets 17	
with three or fewer lanes are negatively correlated with total intersection crashes. For 18	
untreated variables only major streets with three or fewer lanes is significantly related to 19	
total crashes. The AR effect accounts for a 14.77 percent reduction in the total number of 20	
crashes while controlling for traffic and geometry variables.  21	

In addition to correcting the self-selection bias of an AR interval, this approach 22	
provides methodological implications to analyze other variables with selection bias. For 23	
some of Before-After studies in traffic safety, researchers need to collect crash data for a 24	
long duration before and after an event to evaluate a treatment. It is not always 25	
appropriate to do the before-after experiment considering the risk of crash caused by the 26	
experiment. With method developed in this paper, researchers do not need to wait for the 27	
outcome with treatment and risk to apply the treatment. Based on the current sample, 28	
with and without treatment, the treatment effect could be calculated with correction of 29	
selection bias and control of other variables. Furthermore, it should be noted that 30	
selection bias estimation and correction rely on the assumptions of a joint normal 31	
distribution, and may not be robust for departures from this distributional assumption 32	
(Heckman et al. 2001). More robust approaches tend to be nonparametric in nature. 33	
Future research should incorporate nonparametric distribution in the estimation of 34	
selection bias terms. 35	
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