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ABSTRACT 
 
The Vehicle Routing Problems (VRPs) have been extensively studied over the last two decades 
due to their applications in many logistics, supply-chain, and freight operations. Various 
extensions of VRPs, such as problems dealing with probabilistic demand, time-window 
constraint, and multi-depots have been solved in previous works. In this paper we study a special 
class of VRPs for efficient port shipment operations. We call that problem Freight Railcar 
Routing Problems with a Time Window (FRRPTW). The FRRPTW s formulated as a mixed-
integer programming and constraint programming problem in which the objective function is to 
minimize the total travel cost and the total delay cost with the constraints of time windows, 
freight car capacity and demand for ships. A heuristic approach based on Genetic Algorithms 
(GAs) is presented to solve the problem of obtaining optimal transportation routes that 
minimizes the total transportation cost. Within the GAs, two modification operators namely, 
crossover and mutation, are designed specially to solve the optimization problem.  An example 
study is presented using the real-world case of shipping metallurgic coal from the Baltimore 
harbor to some high demand Asian countries. While the results are quite promising, a sensitivity 
analysis needs to be conducted in future works to investigate the performance of the algorithm as 
the problem size grows. 
 
Key-words: vehicle routing problem, genetic algorithm, optimization, vehicle routing problem 
with time window. 
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INTRODUCTION 
 
The Vehicle Routing Problems (VRPs) have been extensively studied over the last two decades 
due to their applications in many logistics, supply-chain, and freight operations. Various 
extensions of VRPs, such as problems dealing with probabilistic demand, time-window 
constraint, and multi-depots have been solved in previous works (see for example, Samanta and 
Jha 2011). In this paper we study a special class of VRPs for efficient port shipment operations. 
We call that problem Freight Railcar Routing Problems with a Time Window (FRRPTW). The 
problem is motivated by the recent surge in the coal export through the port of Baltimore due to 
higher demands for coal in China, India, and other Asian countries. Demand from those 
countries for high-priced metallurgic coal to fuel steel production has grown so strong that ships 
are generally backed up south of the Chesapeake bay bridge waiting to gain a berth at one of 
Baltimore's two privately owned coal terminals, Consol Energy's CNX Marine Terminal in 
Southeast Baltimore and the CSX facility on Curtis Bay. Last year, consistently, the port 
exported more than double of its total recorded in 2009. The coals are shipped to the port of 
Baltimore in freight railcars from neighboring mines in Ohio, Pennsylvania, Virginia, West 
Virginia and Western Maryland. The shipment has to be quickly loaded up in the queued up 
ships in order to minimize both the loading delay costs and ship queuing delay cost.  
 
The problem of transporting coal to the Port of Baltimore can be formulated as a Vehicle 
Routing Problem with Time Window (VRPTW) since coals are shipped from multiple mines via 
freight railcars to the two port terminals. The real life vehicle routing problem with a larger 
network primarily has various issues. First, the demands at the customer nodes vary due to 
various factors, such as locational and temporal seasonal factors. Second, the imperative criterion 
for any logistics system is to provide the service within a specified time period. Hence, the time 
window concept is associated with the VRPs. This paper attempts to address the aforementioned 
pragmatic issues of ports and proposes a novel approach by means of a Genetic Algorithm (GA)-
based optimization algorithm as a decision making tool.  
 
The paper is organized as follows: a literature review is presented followed by the methodology, 
example problem, results and discussion, and conclusions and future works.  
 
LITERATURE REVIEW 
 
(Lin 2001) studied the freight routing problem of time-definite common carriers to minimize the 
sum of handling and transportation costs, while meeting service commitments and operational 
restrictions. There are two types of operational restrictions, capacity and directed in-tree rooted 
at each destination. Directed in-tree implicitly implies that there is a singular path for each 
origin–destination pair. The routing problem is an integrality constrained multi-commodity 
problem with side constraints. In addition, two major shortcomings of the LR approach are 
shown: it may fail to find any feasible solutions even though they exist, and it cannot determine 
whether the feasible set is empty or not. 
 (Hall 1987) developed a procedure for deciding whether to route a shipment through an 
intermediate transportation terminal or route it directly to its destination. The procedure applies 
to networks with many origins (e.g. 2000) and few destinations (e.g. 20, or vice versa), where 
each origin is served by exactly one terminal. This decision is difficult because of economies-to-
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scale in transportation, which cause the cost of routing a shipment through a terminal to depend 
on the routes chosen for other shipments. The optimization procedure developed here finds the 
optimal routes graphically with a one-dimensional search, and is sufficiently efficient to be 
programmed on a hand calculator or personal computer. The procedure also provides insights as 
to the sensitivity of the optimal solution to changes in model parameters. 
 (Aykin 1995) considered a hub location and routing problem in which the hub locations 
and the service types for the routes between demand points are determined together. Rather than 
aggregating the demand for the services, flows from an origin to different destination points are 
considered separately. For each origin-destination pair, one-hub-stop, two-hub-stop and, when 
permitted, direct services are considered. In the system considered, the hubs interact with each 
other and the level of interaction between them is determined by the two-hub-stop service routes. 
A mathematical formulation of the problem and an algorithm solving the hub location and the 
routing subproblems separately in an iterative manner are presented. Computational experience 
with four versions of the proposed algorithm differing in the method used for finding starting 
solutions is reported. 
 (Crainic and Rousseau 1986) examined the freight transportation problem which occurs 
when the same authority controls and plans both the supply of transportation services (modes, 
routes, frequencies for the services and classification, consolidation, transfer policies for 
terminals) and the routing of freight. We present a general modeling framework, based on a 
network optimization model, which may be used to assist and enhance the tactical and strategic 
planning process for such a system. The problem is solved by means of an algorithm, described 
in some detail, based on decomposition and column generation principles. We also present 
detailed results on the behaviour and performance of the algorithm, as observed during 
experimentation with a specific rail application. 
 (M. Gendreau, G. Laporte, and Séguin 1996) proposed a stochastic vehicle routing 
problem where customers are present at locations with some probabilities and have random 
demands. A tabu search heuristic is developed for this problem. Comparisons with known 
optimal solutions on problems whose sizes vary from 6 to 46 customers indicate that the 
heuristic produces an optimal solution in 89.45% of cases, with an average deviation of 0.38% 
from optimality. 
 (Huntley et al. 1995) described fundamental tactical operations along its rails and 
scheduling trains necessary to service the routes. The computer-aided routing and scheduling 
system (CARS) bridges the gap between these day-to-day operations and strategic planning. By 
investigating low-cost routes and schedules in a controlled environment under various cost 
scenarios, CSX Transportation's strategic planners can better account for these tactical operations 
in their long-range policies. 
 (Crainic 2000) explained Tactical planning of operations on a set of interrelated decisions 
that aim to ensure an optimal allocation and utilization of resources to achieve the economic and 
customer service goals of the company. Tactical planning is particularly vital for intercity freight 
carriers that make intensive use of consolidation operations. Railways and less-than-truckload 
motor carriers are typical examples of such systems. Service Network Design is increasingly 
used to designate the main tactical issues for this type of carriers: selection and scheduling of 
services, specification of terminal operations, routing of freight. The corresponding models 
usually take the form of network design formulations that are difficult to solve, except in the 
simplest of cases. The paper presents a state-of-the-art review of service network design 
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modeling efforts and mathematical programming developments for network design. A new 
classification of service network design problems and formulations is also introduced. 
 (Goetschalckx and Jacobs-Blecha 1989) The Vehicle Routing Problem with Backhauls is 
a pickup/delivery problem where on each route all deliveries must be made before any pickups. 
A two-phased solution methodology is proposed. In the first phase, a high quality initial feasible 
solution is generated based on spacefilling curves. In the second phase, this solution is improved 
based on optimization of the subproblems identified in a mathematical model of the problem. An 
extensive computational analysis of several initial solution algorithms is presented, which 
identifies the tradeoffs between solution quality and computational requirements. The class of 
greedy algorithms is capacity oriented, while K-median algorithms focus on distance. It is 
concluded that the greedy and K-median algorithms generate equivalent tour lengths, but that the 
greedy procedure reduces the required number of trucks and increases the truck utilization. The 
effect of exchange improvement procedures as well as optimal procedures on solution quality 
and run time is demonstrated. Comparisons with the Clark—Wright method adapted to 
backhauls are also given. 
 (G. Laporte et al. 2000) surveyed heuristics for the Vehicle Routing Problem. It is divided 
into two parts: classical and modern heuristics. The first part contains well-known schemes such 
as, the savings method, the sweep algorithm and various two-phase approaches. The second part 
is devoted to tabu search heuristics which have proved to be the most successful metaheuristic 
approach. Comparative computational results are presented. 
 (Secomandi 2000) considered a vehicle routing problem where customers’ demands are 
uncertain. The focus is on dynamically routing a single vehicle to serve the demands of a known 
set of geographically dispersed customers during real-time operations. The goal consists of 
minimizing the expected distance traveled in order to serve all customers’ demands. Since actual 
demand is revealed upon arrival of the vehicle at the location of each customer, fully exploiting 
this feature requires a dynamic approach. This work studies the suitability of the emerging field 
of neuro-dynamic programming (NDP) in providing approximate solutions to this difficult 
stochastic combinatorial optimization problem. The paper compares the performance of two 
NDP algorithms: optimistic approximate policy iteration and a rollout policy. While the former 
improves the performance of a nearest-neighbor policy by 2.3%, the computational results 
indicate that the rollout policy generates higher quality solutions. The implication for the 
practitioner is that the rollout policy is a promising candidate for vehicle routing applications 
where a dynamic approach is required. 
 (Kleywegt, Nori, and Savelsbergh 2002) studied an inventory routing problem that 
addresses the coordination of inventory management and transportation. The ability to solve the 
inventory routing problem contributes to the realization of the potential savings in inventory and 
transportation costs brought about by vendor managed inventory replenishment. The inventory 
routing problem is hard, especially if a large number of customers are involved. We formulate 
the inventory routing problem as a Markov decision process, and we propose approximation 
methods to find good solutions with reasonable computational effort. Computational results are 
presented for the inventory routing problem with direct deliveries. 
(Fukasawa et al. 2006) presented an algorithm that combines both approaches: it works over the 
intersection of two polytopes, one associated with a traditional Lagrangean relaxation over q-
routes, the other defined by bound, degree and capacity constraints. This is equivalent to a linear 
program with exponentially many variables and constraints that can lead to lower bounds that are 
superior to those given by previous methods. The resulting branch-and-cut-and-price algorithm 
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can solve to optimality all instances from the literature with up to 135 vertices. This more than 
doubles the size of the instances that can be consistently solved. 
 (Roy and Crainic 1992) pointed out that routing decisions play an important role in 
managing the operations of LTL motor carriers. They strongly interact with service and terminal 
operation policy choices and are particularly sensitive to variations in demand. We conducted 
several studies with large Canadian carriers, using a network optimization based methodology 
for tactical planning of freight transportation that we developed. We obtained results that 
illustrate the complexity of the routing decisions and the importance of tactical analysis and 
planning for the efficiency of intercity freight transportation. 
 (Alvarenga, Mateus, and De Tomi 2007) studied the Vehicle Routing Problem with Time 
Windows (VRPTW). This is a well-known and complex combinatorial problem, which has 
received considerable attention in recent years. This problem has been addressed using many 
different techniques including both exact and heuristic methods. The VRPTW benchmark 
problems of Solomon [Algorithms for the vehicle routing and scheduling problems with time 
window constraints, Operations Research 1987; 35(2): 254–65] have been most commonly 
chosen to evaluate and compare all algorithms. Results from exact methods have been improved 
considerably because of parallel implementations and modern branch-and-cut techniques. 
However, 24 out of the 56 high order instances from Solomon's original test set still remain 
unsolved. Additionally, in many cases a prohibitive time is needed to find the exact solution. 
Many of the heuristic methods developed have proved to be efficient in identifying good 
solutions in reasonable amounts of time. Unfortunately, whilst the research efforts based on 
exact methods have been focused on the total travel distance, the focus of almost all heuristic 
attempts has been on the number of vehicles. Consequently, it is more difficult to compare and 
take advantage of the strong points from each approach. This paper proposes a robust heuristic 
approach for the VRPTW using travel distance as the main objective through an efficient genetic 
algorithm and a set partitioning formulation. The tests were produced using real numbers and 
truncated data type, allowing a direct comparison of its results against previously published 
heuristic and exact methods. Furthermore, computational results show that the proposed heuristic 
approach outperforms all previously known and published heuristic methods in terms of the 
minimal travel distance. 
 (Fu, Eglese, and Li 2004) studied the open vehicle routing problem (OVRP) is studied, in 
which the vehicles are not required to return to the depot, but if they do, it must be by revisiting 
the customers assigned to them in the reverse order. By exploiting the special structure of this 
type of problem, we present a new tabu search heuristic for finding the routes that minimize two 
objectives while satisfying three constraints. The computational results are provided and 
compared with two other methods in the literature. 
 (M. Iori, Salazar-González, and Vigo 2007) considered a special case of the symmetric 
capacitated vehicle routing problem, in which a fleet of K identical vehicles must serve n 
customers, each with a given demand consisting in a set of rectangular two-dimensional 
weighted items. The vehicles have a two-dimensional loading surface and a maximum weight 
capacity. The aim is to find a partition of the customers into routes of minimum total cost and 
such that, for each vehicle, the weight capacity is taken into account and a feasible two-
dimensional allocation of the items into the loading surface exists. 
 (Doerner et al. 2002) proposed a hybrid approach for solving vehicle routing problems. 
The main idea is to combine an Ant System (AS) with a problem specific constructive heuristic, 
namely the well known Savings algorithm. This differs from previous approaches, where the 
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subordinate heuristic was the Nearest Neighbor algorithm initially proposed for the TSP. We 
compare our approach with some other classic, powerful meta-heuristics and show that our 
results are competitive. 
 (Kwon, Martland, and Sussman 1998) proposed a freight car scheduling that is taking on 
a more important role in rail operating plans as more shippers demand trip plan information for 
their procurement, production and distribution plans, and as railroads pursue operations that are 
better scheduled and planned. This paper presents several ways to improve current freight car 
scheduling practices and describes a dynamic freight car routing and scheduling model that can 
produce more achievable and market-sensitive car schedules. A time–space network 
representation technique was used to represent car moves on possible sequences of car-to-block 
and block-to-train assignments on a general-merchandise rail service network. The problem was 
formulated as a linear multicommodity flow problem; the column generation technique was used 
as a solution approach. The model was tested on a hypothetical rail network based on the sub-
network of a major U.S. railroad. 
 (Bräysy, Dullaert, and M. Gendreau 2004) surveyed the research on evolutionary 
algorithms for the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW can 
be described as the problem of designing least cost routes from a single depot to a set of 
geographically scattered points. The routes must be designed in such a way that each point is 
visited only once by exactly one vehicle within a given time interval. All routes start and end at 
the depot, and the total demands of all points on one particular route must not exceed the 
capacity of the vehicle. The main types of evolutionary algorithms for the VRPTW are genetic 
algorithms and evolution strategies. In addition to describing the basic features of each method, 
experimental results for the benchmark test problems of Solomon (1987) and Gehring and 
Homberger (1999) are presented and analyzed. 
 (Michel Gendreau et al. 2008) addressed the Capacitated Vehicle Routing Problem 
(CVRP), in the special case where the demand of a customer consists of a certain number of two-
dimensional weighted items. The problem calls for the minimization of the cost of transportation 
needed for the delivery of the goods demanded by the customers, and carried out by a fleet of 
vehicles based at a central depot. In order to accommodate all items on the vehicles, a feasibility 
check of the two-dimensional packing (2L) must be executed on each vehicle. The overall 
problem, denoted as 2L-CVRP, is NP-hard and particularly difficult to solve in practice. We 
propose a Tabu Search algorithm, in which the loading component of the problem is solved 
through heuristics, lower bounds, and a truncated branch-and-bound procedure. 
 (Bräysy and M. Gendreau 2002) surveyed the research on the Tabu Search heuristics for 
the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW can be described as 
the problem of designing least cost routes for a fleet of vehicles from one depot to a set of 
geographically scattered points. The routes must be designed in such a way that each point is 
visited only once by exactly one vehicle within a given time interval; all routes start and end at 
the depot, and the total demands of all points on one particular route must not exceed the 
capacity of the vehicle. In addition to describing basic features of each method, experimental 
results for Solomon’s benchmark test problems are presented and analyzed. 
 (Samanta and Jha 2006), and (Samanta and Jha 2011) formulated and solved a Multi 
Depot Probabilistic Vehicle Routing Problem with Time Window (MDPVRPTW). According to 
them, previous researchers had approached various components of FRRPTWseparately. The 
stochasticity in demand, the time window constraint, and the multi-depot scenario were either 
addressed individually or in the combination of two in most of the cases.  As the number of 
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variants increase with the introduction of each component, it becomes difficult to devise an 
analytical approach to obtain an optimal solution. This might be the reason for the FRRPTW to 
be unsolved, to date. The earlier works in the area did not address all the three components of the 
vehicle routing problem together, but in real life problems, they exist together in most cases. 
Sutapa and Jha (2011) developed an innovative algorithm, which was capable of handling those 
three components simultaneously and produced reasonable results. The algorithm could be 
modified and improved further in a future scope of study, but provided a good start to handle the 
unique problem in vehicle routing problem area at this stage. 
 
Methodology 
 
We formulate the FRRPTW as an extension of the Vehicle Routing Problem with Time Window 
(VRPTW). It is assumed that the freight railcars start from a common terminus, travel through 
various mines to pickup the goods from the mines and reach to the final terminus, which is a 
port, to fill up the ships. There are three logistical parts to this problem. Firstly, the capacities of 
the freight cars have to be validated during all pickups and the pickup times have to be within 
certain time windows while minimizing the routing cost or shipment cost.  The second part is to 
minimize the loading delay cost by minimizing the delay time in arrival of the freight cars to the 
port and the delay time in loading operation. The third part is to meet the demand for each ship 
within a certain time window so that the waiting time of ships can be minimized. Thus, the 
methodology consists of developing an optimization model to jointly minimize the shipment 
cost, loading and ship queuing delay costs. The data for the study is collected from the Port of 
Baltimore.  

The problem is formulated as a mixed-integer programming and constraint programming 
problem. The objective function is to minimize the total travel cost and the total delay cost with 
the constraints of time windows, freight car capacity and demand for ships. The notations are 
given as follows:  

 
Notations for parameters: 
N ൌ ሼ1,2,⋯nሽ	set	of	mines 
M ൌ ሼ1,2,⋯mሽ	set	of	vehicles	or	freight	cars 
K ൌ ሼ1,2,⋯kሽ	set	of	ships 
ሺa୧,b୧ሻ ൌ Time	window	for	mine	i 
ሺal୩,bl୩ሻ ൌ Time	window	for	shipk	for	loading 
ሺaq୩,bq୩ሻ ൌ Time	window	for	ship	k	for	queuing 
q୧ ൌ Demand	of	mine	i 
q୫ ൌ Capacity	of	freight	car	m 
c୧୨ ൌ Cost	per	unit	travel	distance 
D୫ୟ୶ ൌ Maximum	distance	which	the	vehicles	may	cover	in	a	tour 
 
Notations for decision variables: 

௜௝௥ݔ ൌ ൜
1, if	arc	ij	is	part	of	route	r
	0, otherwise																											

 d୧୨ ൌ Distance	between	customer	i	and	j 
C୵ ൌ Penalty	for	the	early	arriving	at	the	mine 
Cୢ ൌ Penalty	for	late	arriving	at	the	mine 
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t୧ ൌ Actual	arrival	time	at	node	i 
tl୩ ൌ Actual	loading	time	of	ship	k 
tq୩ ൌ Actual	departure	time	of	ship	k 
w୧ ൌ Waiting	time	at	the	mine	i 
d୧ ൌ Delay	time	at	the	mine		i 
r ൌ 	number	of	routes 
qሺmሻ ൌ 	Total	demand	picked	up	by	freight	car	m 
C୪୭ୟୢ ൌ 	Unit	cost	for	loading	delay	for	the	ship 
C୯୳ୣ୳ ൌ Unit	cost	for	queuing	delay	for	the	ship 
DT୩ ൌ Loading	delay	time	for	the	ship	݇ 
QT୧ ൌ Queuing	delay	for	the	ship 
The total expected cost of the routes formed from multiple depot is calculated considering 
factors, such as time window, and shortest routes. 
 
Travel time cost 
 
The shortest route set is developed using the GA-based heuristic discussed later this section. The 
travel time cost is calculated by multiplying the total travel time by the unit travel time cost for 
each route formed. Total travel time cost is estimated for all the routes 
 

௧ܶ௢௧௔௟ ൌ෍෍ܥ௜௝
∀௝∀௜

∙ ݀௜௝ ∙ ௜௝ (1)ݔ

 
The cost incurred due to the early arrival or delay at ith node is given by  

 
ሺܥ ௫ܶሻ ൌ ௪ܥ ൈ ௜ݓ ,ݎ݋ ൌ ௗܥ ൈ ݀௜ (2)

 
The loading delay cost for the ship is given by  

 

ሻܶܦሺܥ ൌ෍ܥ௟௢௔ௗ
௞

∙ ܦ ௞ܶ (3)

 
The queuing delay cost for the ship is given by  

 

ሺܳሻܥ ൌ෍ܥ௤௨௘௨
௞

∙ ܳ ௞ܶ (4)

 
The objective function and constraints are given as follows: 
 

ܼ	݁ݖ݅݉݅݊݅ܯ ൌ෍෍ܥ௜௝
∀௝∀௜

∙ ݀௜௝ ∙ ௜௝ݔ ൅ ௪ܥ ൈ෍ݓ௜

௜

൅ ௗܥ ൈ෍݀௜
௜

൅෍ܥ௟௢௔ௗ
௞

∙ ܦ ௞ܶ ൅෍ܥ௤௨௘௨
௞

∙ ܳ ௞ܶ (5)

                                      
subject to 
 

ሺ݉ሻݍ ൑ ܳ௠ ሺ݉ ∈ ሻ (6)ܯ
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ሺ݉ሻݍ ൑ ܳ௞ ሺ݇ ∈ ሻ (7)ܭ
 

෍෍݀௜௝
௝௜

∙ ௜௝ݔ ൑ ௠௔௫ (8)ܦ

                                                              

෍෍ݔ௜௝௥
௝௜

ൌ 1 ሺ݆ ∈ ܰሻ (9)

    

෍෍ݔ௜௝௥
௝௜

൒ 1 (10)

 

෍ݔ௜௝௥ ൌ෍ݔ௜௝௥
௝௜

ሺ݆ ∈ ܰ ∪ ,ݎ ݎ ∈ ሻ (11)ܯ

 
 

௜ݓ ൒ ܽ௜ െ ௜ݐ ሺ݅ ∈ ܰሻ (12)
 
 

݀௜ ൒ ௜ݐ െ ܾ௜ ሺ݅ ∈ ܰሻ (13)
 
 

݈݀௞ ൒ ݈ܽ௞ െ ௞݈ݐ ሺ݇ ∈ ሻ (14)ܭ
 
 

݈݀௞ ൒ ௞݈ݐ െ ܾ݈௞ ሺ݇ ∈ ሻ (15)ܭ
 
 

௞݀ݍ ൒ ௞ݍܽ െ ௞ݍݐ ሺ݇ ∈ ሻ (16)ܭ
 
 

௞݀ݍ ൒ ௞ݍݐ െ ௞ݍܾ ሺ݇ ∈ ሻ (17)ܭ
                  
The objective (Eq. 5) is to minimize the total travel cost embedded with the penalty for the delay 
and waiting at the node.  Constraints (6) and (7) are the maximum capacity of the freight cars 
and ships (Secomandi 2000), respectively. Equation (8) represents the total demand which 
consists of capacity of the freight cars. Constraints (9) and (10) impose that every customer 
belongs to one and only one route or vehicle. Constraint (11) implies that every customer is 
serviced by the same vehicle. Constraints (12) and (13) are the time window constraints (Jung 
and Haghani, 2001) for the freight cars. Constraints (14) and (15) are the time window 
constraints for loading time for the ships .Constraints (16) and (17) are the time window 
constraints for queuing time for the ships. 
 
A heuristic approach based on Genetic Algorithms is presented to solve the problem of obtaining 
optimal transportation routes that minimizes the total transportation cost. Within the GAs, two 
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modification operators namely, crossover and mutation, are designed specially to solve the 
optimization problem.  The overview of the GA methodology is shown in Figure 1. 
 
 

 
Figure 1: Overview of the proposed methodology 

 
 
The steps of the algorithm can be summarized as: 

I. Generation of initial set of solutions 
II. Evaluation 

III. Modification  
Two special modification operators, namely Crossover-mutation and Mutation-crossover are 
developed for the modification scheme, to suit the nature of the problem. 
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I. Generation of initial set of solutions: The first step presents the procedure for generating the 
initial solutions. The steps for constructing the initial feasible solution are given below: 
Step1. Initial feasible solution set will consist of the routes formed by the freight cars from the 

starting terminal. Freight cars of varying capacities are assigned to pick up the demands 
from the mines. Different sets of solutions are generated.  

Step 2. Each car starts from the same terminal. It picks up the mine nodes one by one following a 
nearest neighborhood method.  
Nearest Neighborhood method: 
The nearest neighborhood method is the simplest method used to order the nodes. In this 
method, once a node is selected, the node which has the minimum travel time from the 
previously selected node is selected as the next node from the set of unselected nodes. 
As for example, if there are 4 nodes and node 2 is selected randomly as the first node to 
form a route. The travel times from node 2 to node 1, node 3 and node 4 have to be 
evaluated. The node with the least travel time is node 4 and will be selected as the next 
node. The ravel time from node 4 to node 1 and node 3 will be evaluated and the least 
time is for mode 3 and will be chosen to be the next node. Hence the route formed by 
Nearest Neighborhood method will be 2-4-3-1. 

Step 3. As a vehicle keeps on adding the nodes, the capacity of the car gets exhausted gradually 
by adding up the demands of the picked up mine nodes.  

Step 4. Once the capacity of the car is reached, i.e., it can no longer serve any more nodes, it 
travels to the port terminal. The time window constraint has to be validated while 
forming these routes. If the total time for the route set does not fall within the time 
window, the total delay time or waiting times are calculated and associated with the 
evaluation of the solution set. 

By following the above steps, one initial set of solution is generated. Similarly, k initial set of 
solutions are generated randomly, given by:  
௜ܵ : ሼ݉ݔ௜ଵDଵA௜B௜C௜Dଶx௜ଶDଵE௜F௜Dଶx௜ଷDଵG௜H௜I௜Dଶሽ 
௝ܵ : ൛݉ݔ௝ଵDଵA௝B௝C௝Dଶx௝ଶDଵE௝F௝Dଶx௝ଷDଵG௝H௝I௝Dଶൟ 

: 
: 
ܵ௞: ሼ݉ݔ௞ଵDଵA௞B௞C௞Dଶx௞ଶDଵE௞F௞Dଶx௞ଷDଵG௞H௞I௞Dଶሽ 
 
The initial set of solutions is represented by: 
:ܫ ሼ ௜ܵ , ܵ௝ ⋯ܵ௞ൟ 
II. Evaluation: After generation of the initial solution sets, the fitness values of the solutions are 
determined. Fitness value is calculated by the total travel time cost and the penalty values 
incurred due to the waiting and delay time while picking up the deliveries at the mine nodes, 
loading and queuing delay costs of the ships at the port. The fitness function is given by Eq. (5). 

ܼ ൌ෍෍ܥ௜௝
∀௝∀௜

∙ ݀௜௝ ∙ ௜௝ݔ ൅ ௪ܥ ൈ෍ݓ௜

௜

	൅ ௗܥ ൈ෍݀௜
௜

൅෍ܥ௟௢௔ௗ
௞

∙ ܦ ௞ܶ ൅෍ܥ௤௨௘௨
௞

∙ ܳ ௞ܶ 

III. Modification: The initial set of solutions is modified to result into improved solutions. 
Various modification schemes such as, Reproduction, Crossover and Mutation are used for this 
purpose. Two unique operators are designed specially in accordance with the nature of the 
problem. The operators are i) Crossover-mutation, which is applied at the end of the crossover 
and ii) Mutation-crossover, which is applied during mutation. 
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a) Reproduction: Tournament Selection is applied for the reproduction operation. The intent 
of this operation is to duplicate good solutions and eliminate bad ones from the population. The 
steps to apply this operator are given below: 
Step 1. The value of the tournament selection of size is assumed to be p for this purpose.  
Step2. The m better solutions are chosen from the initial set of solutions based on the fitness Step 
function values. The m selected solutions are copied n times to develop the mating pool of 
population size ݉ ൈ ݊  
Step 3. From ݉ ൈ ݊ population size, p solutions are selected.  
Step 4. The best of p solutions are selected and copied p times and kept in the mating pool. Thus, 

the new mating pool will consist of ቀ
௠ൈ௡

௣
ቁ sets of solutions, each of which contain p number of 

solution sets.   
b) Crossover: Crossover takes place in a set of two solutions. New solutions are created by 
exchanging the segments of any two solutions from the mating pool. So, there will be	݌ 2ൗ  
number of crossover operations in a mating pool of p solutions. The steps to apply the crossover 
operator are given below: 

Step 1. Two solutions are picked up randomly. 
Step 2. A few nodes of one route of one solution set are selected randomly and interchanged with 
the same number of nodes of a route of another solution. The exchange takes place between the 
randomly chosen sub routes of two route sets.  
Step 3. The selected segments are exchanged provided the constraint of vehicle capacity does not 
get violated in either case. 
Crossover-mutation operator: A new operator called Crossover-Mutation operator is designed 
for the modification scheme while solving the FRRPTW with the GA heuristic. It is a post-
crossover operator. After the nodes of the sub routes of two solutions get exchanged in the 
crossover process, the sub routes except the participating sub routes in the crossover get mutated 
in order to satisfy the constraint that each node can be visited only once. The already existing 
nodes which become identical with the newly imported nodes due to crossover are eliminated 
and the exported nodes are appended to the same sub route. Thus, a modified sub route is 
generated due to the sudden change made after the crossover.  
Mutation: Application of the mutation operator is an occasional phenomenon where random 
modification takes place within the solution. A few of the nodes of one route are exchanged with 
some other nodes of another route in the same solution set. A completely new route set is 
developed by this process.  
Mutation-crossover operator:  
The mutation takes place through intra-solution crossover, hence the name of the operator is 
proposed as mutation-crossover. The nodes of two sub routes within a solution are exchanged to 
give rise to two new sub routes. The exchange of information does not take place between two 
solutions; rather it remains restricted within the same solution. The assignment of the nodes to 
the depots changes within the same solution. So, the operator can be presented as a special type 
of mutation operator.  
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Results and Discussion 
 
A hypothetical example problem is used in this section to demonstrate the concept of the 
proposed algorithm. Figure 2 shows the sketch of layout and location of the starting point, mines, 
and port. The problem includes one starting point, eight mines, and one port. Table 1 shows the 
coordinates of the individual node types. Distance from the nodes, and time needed to traverse is 
also shown in Table 1. Time to traverse is estimated based on assumed speed of freight rail cars 
as 60 miles per hour (mph). Time windows for the mines are shown in Table 1. The assumed 
values of time windows suggest that the freight rail cars are required to reach to the mines in the 
specified time windows to minimize the delays in loading and queuing. The optimization 
problem requires in obtaining the optimal value of the objective function (also finding the 
corresponding decision variables), in such a manner that all the constraints are satisfied.  
 
 

 
Figure 2: Example Problem 
 
The task was to determine the shortest path from the mine to the port in such a manner that the 
five components of the objective function should be minimized. The five components consists of 
minimizing (1) shortest path cost, (2) early arrival penalty, (3) late arrival penalty, (4) loading 
delay cost, and (5) queuing delay cost satisfying the capacity  and time window constraints. Each 
of the cost terms are shown in equation (5), and described in the methodology section. Other 
assumed parameters needed for the optimization problem is shown in Table 2.  
 
  

Port
Mine-3

Mine-2

Mine-1

Starting Point

Mine-5

Mine-4

Mine-8

Mine-7

Mine-6
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Table1: Input Data 
Node 
No. Node X Y 

Distance From Node 
(miles) 

Time to 
Traverse (min) 

Time Window 

1 Port 10.0 60.00  

2 Mine-1 80.0 85.0 28.3 28.3 9:25 - 9:35 

3 Mine-2 60.0 75.0 22.4 22.45 10:00 -10:10 

4 Mine-3 40.0 65.0 22.4 22.4 9:55 - 10:05 

5 Mine-4 70.0 55.0 31.6 31.6 9:15 - 9:25 

6 Mine-5 50.0 45.0 22.4 22.4 10:00-10:10 

7 Mine-6 70.0 20.0 54.1 54.1 9:45 - 9:55 

8 Mine-7 30.0 10.0 41.2 41.2 10:35 - 10:45 

9 Mine-8 20.0 20.0 14.1 14.1 10:40 - 10:50 

10 
Starting 

Point 
100.0 65.0 

  
 

 
Table 2 shows two components in the optimization problem. First, the number of units of freight 
cars, ships; second, unit values of distance cost, loading, queuing, waiting, and delay cost. Each 
of the items is described in the methodology section. It should be noted that, the assumed values 
of the parameters are only used to demonstrate the concept of MDPVRPTW. However, the 
values may change in a specific case study. For example, the cost for the unit distance traveled 
(Cij) is $20/mile. Similarly, other parameters Cload, Cque, Cw, and Cd are shown in Table 2.  
 
Table 2: Parameters for Analysis 
Assumption Numerical Value

# of Ports 1
# of Mines 8
# of Starting points 1
# of freight cars 3
# of ships 2
Speed of freight cars (mph) 40

Cij ($/mile) 20
Cload ($/min) 2.50
Cque ($/min) 5.00
Cw ($/min) 5.00
Cd ($/min) 1.67
 
 A population size of 10x2, and 1000 generations are used in the genetic algorithm.   
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Table 3: Path Generation and Total Cost 
Example Problem Path Path Details Total Cost ($) 

Route Set-1 

Path-1 S->1->4->P 

7633.66 

Path-2 S->2->3->P 

Path-3 S->6->5->7->8->P 

Route Set -2 

Path-1 S->1->4->6->P 

8548.70 

Path-2 S->2->3->P 

Path-3 S->5->7->8->P 

Route Set -3 

Path-1 S->1->3->P 

7490.23 

Path-2 S->4->2->5->P 

Path-3 S->6->7->8->P 

. . . . 

. . . . 

. . . . 

Optimal Route Set 

Path-1 S->1->2->3->P 

7353.71 

Path-2 S->4->5->P 

Path-3 S->6->7->8->P 
Note: “S” is the starting point, “P” is the port, numerical values 1 through 8 represent nodes, and “->” 
represents the forward direction of the path. 
 
The objective function values over all iterations are plotted in Figure 4. The objective values are 
sorted for plotting purposes and presented to view the decreasing trend. The algorithm searches 
for the best route in such a manner that the selection of path from the starting point to the port. In 
the intermediate steps optimization algorithm searches the shortest paths in such a way that the 
demand for the rail cars are met while minimizing costs involved in loading, queuing, early and 
late arrival times. The results of the example problem are used to demonstrate the concept of 
FRRPTW and can be further applied to large real world case study.  
 

  
Figure 4: Objective Function Value over all iterations 
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Conclusions and Future Works 
 
This paper presented is a special class of VRP known as Freight Railcar Routing Problems with a 
Time Window (FRRPTW). The methodology presented attempts to optimize the transportation 
and shipment problems simultaneously. The underlying attributes of the FRRPTW were 
examined and a mathematical formulation of the problem was proposed. A genetic-algorithms 
based solution framework was presented which seemed promising for the hypothetical case study 
example presented. The example problem presented in this paper can be considered as a proof of 
concept of the FRRPTW. I the example problem, various path generation sets and the 
corresponding total cost results were presented. The heuristic algorithm proposed appears robust 
in addressing FRRPTW problems. The preliminary results indicate that there may be significant 
cost savings if adequate paths are selected in such a way that the arrival, loading, and queuing 
delays are minimized. Adequate planning and optimization techniques are needed to minimize 
system level delays where time window plays a significant role. The example problem shows 
large savings when analyzed with the proposed algorithm. The proposed framework can be used 
for large scale problems of freight railcars when with time windows.  
 
Larger size real-world problems can be studied in future works. Also, various sensitivity 
analyses can be performed in future works to examine the effects of tighter and more relaxed 
time windows for loading on the quality of the solution. The values of the coefficients and the 
parameters can be fine-tuned through further sensitivity analysis. 
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