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ABSTRACT 
 
In this paper, the authors present a single-stage optimization model that can be used to 
allocate limited resources among transit agencies for the purchase of new buses and for 
rehabilitation of the existing buses. The model is formulated as a non-linear optimization 
problem of maximizing the total weighted average remaining life of the fleet subject to 
budgetary and other constraints. The constrained problem is transformed into an 
equivalent unconstrained one using the penalty function method and solved using mixed 
integer programming (MIP). This single-stage optimization model has a compact 
formulation, but requires large number of variables. The application of this decision 
support system is demonstrated through a case study utilizing actual transit fleet data 
from the Michigan Department of Transportation.   
  This proposed model is an extension of earlier work of the first author and his 
colleagues, on a two-stage sequential optimization method.  The respective models are 
solved by linear programming (LP) and the output from stage I serves as input to the 
stage II.  The limitation of the two-stage model is that while local optima may be attained 
by the respective models, a global optimum is not guaranteed.  The model presented in 
this paper is expected to deliver a global optimum. 
 A comparison of the results by the two models shows that while both approaches 
are viable, they result in different solutions suggesting multiple optima, even though the 
same input data is used for both cases. The model needs to be expanded as a decision 
support system for resource allocation over multiple years. Further research is 
recommended to identify specific conditions under which one model may perform better 
than the other. 
 
Keywords: transit, resource allocation, linear programming, optimization, mixed integer 
programming, decision support system 
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INTRODUCTION 
 
The addition of new buses to the existing fleet of any transit agency is a capital intensive 
process. In the US, the Federal Government provides a bulk of the capital funds needed 
to replace the aging transit fleet, with the requirement of a minimum matching support 
(usually 20%) from non-federal sources.  The cost of replacing the aging transit fleet in 
the US to maintain current performance levels is estimated to exceed one billion dollars 
annually (1). Many state Departments of Transportation (DOT) that provide such 
matching funds to local agencies are duly concerned about the escalating costs of new 
busses.  
 
PROBLEM STATEMENT 
 
While the state DOT’s may not have enough capital funds to procure new buses for its 
constituent agencies, it may be possible for them to allocate capital funds partly for the 
purchase of new buses, and partly for rehabilitation of existing buses, and to distribute the 
funds in an equitable manner.  If one looks upon the statewide transit fleet as a major 
investment by the tax payers, the resolution of the above questions of allocation and 
distribution would require the development of an asset management strategy.  
Unfortunately, very little research is reported in the literature on an efficient management 
strategy to allocate scarce resources to meet the fleet requirements by a combination of 
new and rebuilt buses.  
 
BACKGROUND INFORMATION 
 
The combined fleet size of the transit agencies in Michigan is approximately 3,000 buses, 
with a net worth of at least $400 million.  Every year, buses that complete their minimum 
normal service life (MNSL) requirement, as specified by the Federal Government, 
become eligible for funds.  However, because of budget constraints, only a portion of 
these buses are replaced.  The MNSL for medium sized buses, the subject of this paper, 
as prescribed by federal guidelines is 320,000 km (200,000 miles) or 7 years of service.  
For the purpose of this paper, the following terms are adapted from the literature.  

• Replacement (REPL): Process of retiring an existing vehicle and procuring a 
completely new vehicle. Buses replaced using federal dollars must have 
completed their MNSL requirements.  

• Rehabilitation (REHAB): Process by which an existing bus is rebuilt to the 
original manufacturer’s specification, with primary focus on the vehicle interior 
and mechanical system. 

• Remanufacturing (REMANF): Process by which the structural integrity of the bus 
is restored to original design standards. This includes remanufacturing the bus 
body, the chassis, the drive train, and the vehicle interior and mechanical system. 

 
Note in the remainder of this paper, the generic term ‘REBUILD’ has been used to mean 
REHAB and/or REMANF. 
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LITERATURE REVIEW 
 
A brief literature review on three relevant topics: REHAB/REMANF, Transit Asset 
Management and Use of Optimization in Transit is presented below. A more complete 
review was presented by Khasnabis et al. in an earlier TRB paper (2). 
 
REHAB and REMANF Issues 
 
The topics of REPL, REHAB, and REMANF practices and polices received significant 
research attention in the 1980s and renewed research interest in the late 1990s (3–6). The 
literature review clearly showed that remanufacturing and rehabilitating buses, if done 
properly, can be a cost-effective option. Little research is reported on allocation of capital 
funds for the dual purpose of REPL, and REBUILD of the existing buses. 
 
Asset Management Issues 
 
Asset management concepts have been used in the transportation field with varying 
degrees of success. Asset management is defined as a “systematic process of operating, 
maintaining, and upgrading physical assets cost-effectively. It combines engineering and 
mathematical analyses with sound business practice and economic theory” (7). 
Management systems have been applied to pavement, rebuilding infrastructures, human 
resources, bridges, traffic, and safety (8, 9). Very little research, other than the work by 
Berrang et al. (9), is reported in the literature on asset management involving transit 
properties.  
 
Use of Optimization Tools in Transit 
 
Mathematical programming has been used for the allocation of limited resources, 
primarily in the defense industry. The problem usually involves the maximization or 
minimization of an objective function comprising a set of variables called decision 
variables (10, 11). The variables are then subject to various constraints, expressed in the 
form of inequalities or equalities. Different optimization techniques exist, such as linear 
programming (LP), integer programming, nonlinear programming, and dynamic 
programming (12). The review of the transit literature indicates that the use of 
optimization techniques in transit fleet management has been very limited, even though 
optimization has been used successfully in computer aided scheduling and dispatching 
support tools for transit operation.  
 
FIRST GENERATION MODEL 
 
As a part of the USDOT study, Khasnabis et al. developed a two-stage optimization 
model (termed as the First Generation Model) with two sub-models, one for each stage as 
described below (13). 

• Annual allocation of capital dollars for the dual purpose of purchasing new buses 
and rebuilding existing buses, duly taking into account the ‘maturation’ process. 
(Stage 1) 
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• Annual distribution of capital dollars among the constituent agencies in an 
equitable manner. (Stage 2) 

 Stage 1 represents an optimization model where the objective is to maximize the 
weighted fleet life of the buses being replaced and rebuilt within the constraints of a fixed 
budget.  The optimization algorithm used in stage 2 is based upon the premise that funds 
should be distributed among the constituent agencies that will maximize the sum total of 
the weighted average remaining life of the fleet of all the constituent agencies.   
 The two stage approach developed by Khasnabis et al is based upon linear 
optimization, and the output from stage 1 serves as an input to stage 2. This research was 
conducted by Khasnabis et al. at Wayne State University during 2002-2003, with funding 
provided by the US DOT through the University Transportation Center Program at the 
University of Wisconsin, Madison (13-15). The structure of the two stage model is 
presented in detail in an earlier TRB paper, and is not reported here for brevity (16). The 
Second Generation Model reported in this paper builds upon the knowledge generated in 
the development of the earlier work.  
 
SECOND GENERATION MODEL 
 
In this paper, the authors present a single-stage optimization model, termed as the Second 
Generation Model that can be used to allocate resources among the constituent agencies 
directly for the replacement and/or rebuilding of existing buses.  Research on the Second 
Generation Model was initiated in 2004 while the principal author served as a visiting 
faculty at the Indian Institute of Technology Bombay, India, as a Fulbright research 
scholar. The impetus for this work was the perception that the First Generation Model, 
while it achieved local optimum at each of the two stages, may not have achieved global 
optimum. The Second Generation model uses a mixed integer programming based 
optimization for resource allocation and can serve as a decision support system for state 
DOTs. Note, the Second Generation Model, unlike its predecessor, completely bypasses 
the intermediate step of allocating resources among new buses and rebuilt buses.  Rather, 
it is a direct allocation process among the different program areas among the constituent 
agencies. Thus there are two major differences between the two models, namely in 
structure (Two-Stage vs Single-Stage) and in the solution methodology (Linear 
Programming (LP) vs Mixed Integer Programming (MIP)). An earlier effort by 
Khasnabis and Mathew to develop a single stage model using Genetic Algorithm showed 
little difference in the results (17). 
 
Formulation: 
 
The Second Generation Model is formulated as a single stage optimization problem 
where the objective is to minimize the total weighted average remaining life (TWARL) 
for all the agencies. First, the notations are introduced. Let  
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Other notations used in the paper are: 
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The objective function (1) is the sum total of the weighted average remaining life 

of the fleet of all the constituent agencies. The equation (2) gives the budget constraint. 
The Constraint specified in equation (3) ensures that all the buses that have completed 
their MNSL requirements will be either remodified or replaced. Equation (4) is a non-
negativity constraint, which makes sure that the options chosen for improvement of buses 
of zero service life are never negative. Equation (5) is a definitional constraint. According 
to this constraint, life of the buses are improved by either 2, 3, 4, or 7 years for the 
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remodified bus. Other buses in the system will have no additional years added. As 
explained later in the document, the REBUILD option extends the life of the bus by two, 
three and four years, while the REPL option provides a new bus with seven years of 
expected life. Hence the value of iky  can be 2, 3, 4 or 7 years 
 
Implementation: 
 
The above optimization problem is large in terms of the number of variables and is 
solved using Generalized Reduced Gradient (GRG) Solver (18). Branch and Bound 
method was used to deal with integer variables and constraints, which increases the 
chances to find an optimal solution. "Branch and Bound" and "Branch and Cut" strategies 
help to cut down on this exponential growth and to reduce the operation time for mixed-
integer programming (MIP). The Branch & Bound method begins by finding the optimal 
solution to the relaxation of the integer problem, ignoring the integer constraints. If the 
decision variables with integer constraints already have integer solutions, no further work 
is required. If one or more integer variables have non-integer solutions, the Branch & 
Bound method chooses one such variable and creates two new sub problems where the 
value of that variable is more tightly constrained. These sub problems are solved and the 
process is repeated, until a solution is found where all of the integer variables have 
integer values (to within a small tolerance) (12, 19).     
 Cut generation derives from so-called cutting plane methods that were among the 
earliest methods applied to integer programming problems, but they combine the 
advantages of these methods with the Branch & Bound method to yield a highly effective 
approach, often referred to as a Branch & Cut Algorithm.  A cut is an automatically 
generated linear constraint for the problem, in addition to the constraints specified. Cut 
generation enables the overall Branch & Cut algorithm to more quickly discover integer 
solutions, and to eliminate branches that cannot lead to better solutions than the best one 
already known. Branch & Bound algorithm can guarantee that a solution is optimal or is 
within a given percentage of the optimal solution. GRG nonlinear Solver is augmented 
with "multistart" and "clustering" methods for global optimization (18).  It can be 
automatically run many times from judiciously chosen starting points, and the best 
solution found will be returned as the optimal solution.   
 
RESULTS 
 
The application of the two models (First Generation and Second Generation) is 
demonstrated through a comprehensive case study utilizing actual fleet data from the 
Michigan Department of Transportation (MDOT).  The same database used in the First 
Generation model was used in the Second Generation model to permit a direct 
comparison of results. Hence the First Generation model results are adapted from the 
original report (13). Results of the Second Generation model represent the most recent 
work by the authors. The case study presented is for medium sized-medium duty buses 
for a total fleet size of 720 for 93 agencies that receive capital assistance from MDOT.  
The same strategy can be applied on a different subset of the agencies comprising 
specific peer groups if necessary, or buses of a different size. 
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 The fleet data used in this study is derived from the Public Transportation 
Management System (PTMS), developed by MDOT.  Table 1 shows the distribution of 
the Remaining Life (RL) in years of the fleet for a few of the 93 agencies for the base 
year 2002.  A complete listing of the RL of all agencies is available in the project report.  
Since the MNSL of the buses are seven years, a “seven” year RL is indicative of new 
buses.  Similarly, a “zero” year RL would be indicative of those buses that have fulfilled 
their MNSL obligations, and hence are eligible for replacement.  For the purpose of this 
demonstration, four possible program areas, replacement, and three levels of rebuilding, 
REHAB1, REHAB2 and REMANF, were used in the following feature: 
 
REPL  Cost (Cmax ) $81,540, expected life 7 years 
REHAB1 Cost (Cmax ) $17,800, extended life 2 years 
REHAB2 Cost (Cmax ) $24,500, extended life 3 years 
REMANF Cost (Cmax ) $30,320, extended life 4 years 
 

The last row of Table 1 shows that of the total fleet of 720, 235 buses have “zero” 
year RL, (33%), needing immediate replacement.  The Weighted Average Remaining 
Life (WARL) of this fleet, that has a range between 0 (all buses needing replacement) to 
seven (all new buses) years, is 2.68 years, computed as the weighted average of the entire 
matrix.  Smaller WARL’s would be indicative of increasingly older fleet and vice-versa. 
 MDOT projected an available annual budget of $5.79 million for the base year 
2002, which is far short of the capital needed to replace all the 235 buses ($19.17 million 
@ $81,540 per bus).  A prerequisite to the application of the two models is establishing 
an estimate of Cmax, the maximum investment that can be justified for the three program 
options REHAB1, REHAB2, and REMANF considered in the study.  The procedure for 
estimating Cmax values developed by Khasnabis et al in an earlier study yielded the 
Cmax values stated above (20). The Microsoft Excel Solver Program was used for the 
First Generation Model (21).  
 
Results of First Generation Model 
 
Application of the model resulted in a combination of 107 REHAB1 buses for 2 years of 
extended life, and 128 REMANF buses for four years of extended life with no new buses 
purchased in stage I. Further, this combination results in a weighted fleet life of 3.09 
years for the 235 buses (representing the maximum of all possible combinations under 
the stated constraints), for a total investment of $5.786 million (stage-1 output).  The 
reader is referred to the literature for detailed results (2, 13, and 16).Table 2 shows the 
distribution of the RL for a few sample agencies after the allocation of the resources for 
the year 2002 as an output from stage II.  Recall in stage I, the model allocated 107 
REHAB1 buses for two years and 128 REMANF buses for four years of extended lives.  
Table 2 shows that the total number of buses with 2 years of RL, have increased from 44 
(Table 1) to 151 (Table 2) for an increase of 107, and buses with four years of RL have 
increased from 63 to 191 for an increase of 128 buses.  Similarly, buses with “0” years of 
RL have been reduced from 235 in Table one to zero in Table 2, further attesting to the 
fact that the needs of all the buses with “zero” years of RL have been addressed by the 
model.  All other columns in Table 2 remain unchanged compared to Table 1.  Note that 
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the allocation of the buses among the 93 agencies is made in such a manner that the grand 
total of the weighted lives of all agencies, TNWARL, i.e. i

i
NWARL∑ , is maximized to 

376.22 years (Table 2), compared to the value of 225.33 years prior to the assignment 
(Table 1).  Similarly, the WARL value has increased from 2.68 years from Table 1 to 
3.69 years in Table 2, indicating that the allocation has resulted in an increase of 1.01 
years RL per bus.  Also note that the total fleet size remains unchanged between Table 1 
and 2. 
 
Results of Proposed Second Generation Model  
 
The solution of the second generation model is given in Table 3. The decision variables 
for the problem are denoted as x1, x2, x3, and x4 corresponding to four program areas 
namely REPL (X1), REHAB1 (X ), REHAB2 (X ), and REMANF (X2 3 4) and for all the 93 
agencies. Therefore, the total decision variable for a year is 372 (93x4). The Second 
Generation Model provides their values at the end of the model run. For instance, the first 
row of the Table 3 shows the fleet assigned to a different program area for the first 
agency. It shows that one bus has been assigned to the X4 category (REMANF) for a RL 
of four years. The total fleet size of the first agency is three. The other two vehicles of 
that agency have remaining life seven years and require no up-gradation. Therefore, the 
cost of this option is 1 x 30,320=30, 320. The NWARL is computed by the objective 
function of the Program I for i=1 is (1x4 +2x7)/(1+2)=6.0. Similarly, the program areas 
and cost implication for all the agencies are shown in the Table 3. The last row of the 
table sums for all other agencies, that is the number of buses chosen for REPL, REHAB1, 
REHAB2, and REMANF are respectively 18, 180, 1, and 36 respectively. The total cost 
of this option is $5,787,740 which is $1,260 less than the budget of $5,789,000. Table 3 
also shows the final objective function value which is the TNWARL, i.e.  as 

409.07. The last row of the table also shows the distribution of the total remaining life of 
all the agencies.  

i
i

NWARL∑

 
Synthesis of Two Approaches 
 
A comparative summary of the output from the two models is presented in Tables 4 and 
5.  Table 4 shows that both the models resulted in replacing 235 buses from the fleet by 
different combinations of vehicles.  The First Generation Model results in a 
recommended investment of 107 vehicles to be rehabilitated for an extended life of 2 
years and 128 vehicles to be remanufactured for an extended life of 4 years for a total 
investment of $5,785,560.  The Second Generation Model results in a recommended 
investment of 18 new vehicles, and 180 and 1 rehabilitated vehicles for extended lives of 
two and three years respectively, and 36 remanufactured vehicles for an extended life of 
4 years, for a total investment of $5,787,740.  

The distribution of funds among the 93 agencies by the two methods, are already 
presented in Tables 2 and 3.  Table 5 shows a summarized version of these two 
distributions by the RL-value of the bus fleet along with the base-year figures before 
assignment.  The First Generation model attains a WARL value of 3.69 years and a 
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TNWARL value of 376.72 years.  The corresponding values by the Second Generation 
Model are 3.56 years and 409.07 years respectively 
 
TABLE 1  2002 Distribution of RL for a number of sample agencies for Medium 
Sized Buses before Allocation of Resources 

Distribution of Remaining Life 
Agency 0 1 2 3 4 5 6 7 

Fleet 
Size 

EWARLi 
(years) 

1 1 0 0 0 0 0 0 2 3 4.67 
2 1 0 0 0 0 0 0 0 1 0.00 
3 1 0 0 0 0 0 0 0 1 0.00 
4 0 0 0 0 3 3 0 1 7 4.86 
5 4 0 0 2 4 2 0 1 13 3.00 
6 1 0 0 0 1 6 0 1 9 4.70 
7 1 0 0 0 2 1 1 0 5 3.80 
8 2 0 0 0 0 0 1 0 3 0.00 
9 2 0 0 0 0 0 0 0 2 0.00 
10 18 4 0 0 0 0 0 0 22 0.18 
11 3 0 0 0 0 0 0 0 3 0.00 
. 
. 

. 

. 
. 
. 

. 

. 
. 
. 

. 

. 
. 
. 

. 

. 
. 
. 

. 

. 
. 
. 

90 0 4 2 0 1 0 6 6 19 4.74 
91 0 1 0 0 0 0 1 0 2 3.50 
92 2 1 0 0 1 1 0 3 8 3.88 
93 2 0 0 0 1 3 1 0 7 3.57 

Total 235 122 44 23 63 77 78 78 720 225.23 
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TABLE 2  2002 Distribution of number of RL for a number of sample agencies for 
Medium Sized Buses after Allocation of Resources 

Distribution of Remaining 
Life Options 

Agency 
0 1 2 3 4 5 6 7

Fleet 
Size 

NWARLi 
(years) X2

(2 yrs)
X4     

(4 yrs) 

Total 
Nos. 

Cost 
($) 

1 0 0 0 0 1 0 0 2 3 6 0 1 1 30320 
2 0 0 0 0 1 0 0 0 1 4 0 1 1 30320 
3 0 0 0 0 1 0 0 0 1 4 0 1 1 30320 
4 0 0 0 0 3 3 0 1 7 4.86 0 0 0 0 
5 0 0 0 2 8 2 0 1 13 4.23 0 4 4 121280 
6 0 0 0 0 2 6 1 1 10 5.1 0 1 1 30320 
7 0 0 0 0 3 1 1 0 5 4.6 0 1 1 30320 
8 0 0 0 0 2 0 0 0 2 4 0 2 2 60640 
9 0 0 0 0 2 0 0 0 2 4 0 2 2 60640 
10 0 4 18 0 0 0 0 0 22 1.82 18 0 18 320400 
11 0 0 0 0 3 0 0 0 3 4 0 3 3 90960 
. . . . . . . . . . . . . . . 
90 0 4 2 0 1 0 6 6 19 4.74 0 0 0 0 
91 0 1 0 0 0 0 1 0 2 3.5 0 0 0 0 
92 0 1 0 0 3 1 0 3 8 4.87 0 2 2 60640 
93 0 0 0 0 3 3 1 0 7 4.71 0 2 2 60640 
Total 0 122 151 23 191 77 78 78 720 376.72 107 128 235 5,785,560
WARL=3.69 years/bus, TNWARL=376.72 years 



Khasnabis, Mathew, and Mishra 12

TABLE 3  Results of the Second Generation Model 
Distribution of remaining life 

(years) Options 
Agency 

0 1 2 3 4 5 6 7 

Fleet 
Size

NWARLi 
(years) X1

(7yrs)
X2

(2yrs) (3yrs) 
X3 X4

(4yrs)

Total 
Nos

Cost 
($) 

1 0 0 0 0 1 0 0 2 3 6.00 0 0 0 1 1 30320 
2 0 0 0 0 0 0 0 1 1 7.00 1 0 0 0 1 81540 
3 0 0 0 0 0 0 0 1 1 7.00 1 0 0 0 1 81540 
4 0 0 0 0 3 3 0 1 7 4.86 0 0 0 0 0 0 
5 0 0 4 2 4 2 0 1 13 3.62 0 4 0 0 4 71200 
6 0 0 1 0 1 6 1 1 10 4.90 0 1 0 0 1 17800 
7 0 0 0 0 3 1 1 0 5 4.60 0 0 0 1 1 30320 
8 0 0 0 0 1 0 0 1 2 5.50 1 0 0 1 2 111860 
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 
86 0 40 49 0 2 0 4 0 95 1.79 0 47 0 0 47 836600 
87 0 2 0 0 2 0 0 0 4 2.50 0 0 0 0 0 0 
88 0 0 0 0 2 0 0 0 2 4.00 0 0 0 2 2 60640 
89 0 0 0 2 0 5 0 2 9 5.00 0 0 0 0 0 0 
90 0 4 2 0 1 0 6 6 19 4.74 0 0 0 0 0 0 
91 0 1 0 0 0 0 1 0 2 3.50 0 0 0 0 0 0 
92 0 1 2 0 1 1 0 3 8 4.38 0 2 0 0 2 35600 
93 0 0 2 0 1 3 1 0 7 4.14 0 2 0 0 2 35600 

Total 0 122 224 24 99 77 78 96 720 409.07 18 180 1 36 235 5,787,740
WARL= 3.56 years/bus, TNWARL=409.07 years 
 
TABLE 4  Comparison of the Resource Allocation Output by the Two Models  

Assignment of Resource in the 
Program Areas 

Model X1 @ 
$81,540 
(7 yrs) 

X2 @ 
$17,800
(2 yrs) 

X3 @ 
$24,500
(3 yrs)

X4 @ 
$30,320
(4 yrs)

Total 
Number 
of Buses

Amount 
Spent ($) 

Budget 
($) 

Weighted 
Fleet 
Life1

First Generation 0 107 0 128 235 5,785,566 5,789,000 309 
Second Generation 18 180 1 36 235 5,787,740 5,789,000 NA 
1Weighted Fleet Life of Buses being replaced, rehabilitated and remanufactured  
  (Stage-1 output)
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TABLE 5  Comparison of RL Distribution by the Two Models   

Distribution of Remaining Life (yrs)Model 
0 1 2 3 4 5 6 7 Total

WARL
(yrs) 

 TWARL 
(yrs) 

TNWARL 
(yrs) 

Base Year (2002) 
Prior to 
Assignment 

235 122 44 23 63 77 78 78 720 2.68 225.23  

First Generation 0 122 151 23 191 77 78 78 720 3.69  376.72 
Second Generation 0 122 224 24 99 77 78 96 720 3.56  409.07 
 
CONCLUSION 
 
As indicated earlier, the Second Generation Model was initiated as a collaborative work 
between the first two authors from two institutions to explore the issue of local vs global 
optimum. The Second Generation Model resulted in higher TNWARL, the object of 
optimization (409.07 vs 376.72) and slightly lower WARL value (3.56 vs 3.69) attained 
by MIP compared to the First Generation Model results attained by LP. In both cases the 
investment needed was within the budget, being $5.785 million and $5.787 million for 
the LP and MIP models respectively, against an allocated budget of $5.789 million. It 
appears that the Second Generation model attained a global maximum and all constraints 
are satisfied and the model converged to the reported value after 1000 iterations. Whether 
or not the solution attained the global optimum cannot be guaranteed without additional 
tests. 
 One can conclude that both the First Generation and Second Generation model are 
viable. On a macroscopic basis (TNWARL, WARL, etc.), little difference is observed 
between the results so far, although on a microscopic basis (distribution of fleet among 
constituent agencies by RL), there are significant differences. Intuitively, the Second 
Generation Model appears more robust because of its single-stage structure making the 
attainment of the global maximum more feasible. 
 The major contribution of this study is the development of a unified methodology 
for the determining the budget investment strategy under the framework of program 
option specified. This study demonstrated the strategy for one year, and thus represents 
only a framework for analysis. Further research is needed to extend the methodology to a 
minimum of seven years representing the MNSL enabling the agency to formulate 
strategy for long-term implementation. Genetic algorithm could be explored in this 
context in spite of the explosion of variables and complex formulation (17, 19, and 22).  
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