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on Seismic Hazard Assessment
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Abstract An analytical point-source-based approach is presented to convert the
Joyner–Boore (RJB) distance to various source-to-site distance metrics for a given
tectonic region. The analytical-based approach is combined with the effects of the
region-specific propagation path to define a new effective distance-conversion equa-
tion for use in ground-motion simulations and the existing stochastic-based ground-
motion prediction equations (GMPEs), in which the effect of extended-fault rupture
on the ground motions is ignored. The proposed region-specific distance-conversion
approach may also be used to capture the effect of extended-fault sources on ground-
motion amplitudes in the probabilistic seismic hazard analysis (PSHA) studies in
which earthquake occurrences are modeled as point-source models. In this approach,
virtual sites are defined on a bathtub-shaped surface around an extended-fault source
on which all sites have identical RJB distances. The source-to-site distances are ana-
lytically derived using the law of sines and cosines. The distance-conversion process is
then combined with region-specific geometrical spreading and attenuation functions
to improve and adjust the point-source distance metrics into new effective epicentral
distance or hypocentral distance metrics, and to mimic the effect of extended-fault
sources at close distances.

A general effective point-source-based distance-conversion equation is developed
in this study, which can be employed for any arbitrary input parameters and functions,
such as the relations between the fault dimensions and magnitude, location of the fault
with respect to virtual sites, probability distribution of focal depths, and geometrical
spreading and anelastic attenuation functions corresponding to the region under study.
As an application for the hazard analysis, a simple PSHA study is performed within a
circular areal source zone using a published RRUP-based GMPE and the source-to-site
distance-conversion equations developed in this study to demonstrate the effect of
using inconsistent source-to-site distance metrics on the seismic hazard curves at a
given site.

Electronic Supplement: Tabular data and MATLAB code to estimate the
effective hypocentral and epicentral distances.

Introduction

The Joyner–Boore distance (the closest distance to the
surface projection of an extended fault, RJB) or rupture dis-
tance (the closest distance to an extended fault, RRUP) are
commonly used in ground-motion prediction equations
(GMPEs) to capture the effect of finite-fault ruptures, par-
ticularly for near-source recordings. In probabilistic seismic

hazard analysis (PSHA), the spatial distribution of earth-
quakes within a large areal seismic source, where the traces
of faults are unknown, is described by associating them with
point-source models. Therefore, it is necessary to convert the
point-source-based distance measures such as epicentral
(REPI) or hypocentral (RHYP) distances into the extended
fault-based distance metrics defined in GMPEs for use in
PSHA. In other words, in the PSHA integrals, each potential
event has a distance REPI from the site, but to predict ground
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motions for that event, the REPI must be converted into an
RJB for that event, and the adjusted RJB is then used in
the extended fault-based GMPE to estimate ground-motion
amplitudes. Various methods have been proposed to convert
point-source distance metrics into extended-fault source
distance metrics and vice versa.

Scherbaum et al. (2004) developed the empirical
distance-conversion relations for three types of generic,
strike-slip, and all dipping fault scenarios using simulated
fault ruptures and observation points around the faults. In
the Scherbaum et al. (2004) approach, the extended-fault
rupture scenarios are generated based on the magnitude,
the selected dip angle, and the hypocenter location on the
fault rupture, which is randomly chosen from a truncated
normal distribution. Then, the observation points for the
simulated extended fault are randomly and uniformly chosen
between 0° and 360° about the fault rupture to calculate vari-
ous distance measures (e.g., REPI from the site) with respect
to RJB distance and earthquake magnitude. Because the RJB

distance is always smaller than or equal to other distance
measures, the positive residuals between various measures
of distance and RJB distance are used to determine the dis-
tance-conversion relations. To this end, polynomial func-
tional forms are provided to estimate the mean converted
distance metrics as well as their standard errors by fitting
a gamma probability distribution function to residuals, which
are defined as the difference between the RJB distance and
REPI or RHYP distances. This simulation-based approach cal-
culates the converted REPI or RHYP distances for a given RJB

distance by ignoring the effect of wave propagation path
from each portion of the entire fault to the site. The wave
propagation path affects the mean converted distance, par-
ticularly for large fault ruptures by assigning nonuniform
weighting factors (e.g., R−γ propagation decay, in which γ
is the geometrical spreading exponent) to source-to-site dis-
tances. The Scherbaum et al. (2004) approach predicts large
values of other distance measures near the fault ruptures,
such as REPI, for an initial-fixed value of RJB, compared with
those approaches that involve GMPEs in the process of aver-
aging possible epicenter or hypocenter distances (e.g., Elec-
tric Power Research Institute [EPRI], 2004). Therefore, the
direct use of these distance-conversion relations may not be
considered suitable for evaluating ground-motion ampli-
tudes, particularly for the areal seismic source models used
in PSHA studies.

EPRI (2004) used GMPEs developed for central and
eastern United States (CEUS) to provide the empirical
point-source distance-conversion equations for various mea-
sures of distance defined in the CEUS GMPEs. These dis-
tance-conversion equations are used to adjust various
source-to-site distances in areal seismic sources with un-
known traces of faulting for PSHA studies in the CEUS.
In the EPRI (2004) approach, unknown extended-fault rup-
tures within a given areal seismic source are modeled to be an
equal combination of vertical strike-slip faults and 40° dip
reverse faults, with uniform random orientations distributed

in azimuth from 0° to 360° about the earthquake epicenter
and with uniform random depth constrained to a maximum
depth of 25 km. Then, the two most widely used distances,
the RJB distance and the RRUP distance, are calculated using
an appropriate geometry for each randomly simulated fault
rupture about the earthquake with moment magnitude of M
and epicentral distance of REPI from the site. Because seismic
energy is released from the entire extended-fault rupture dur-
ing a large earthquake, RJB or RRUP distances are used in
appropriate RJB- or RRUP-based GMPEs to compute the geo-
metric-mean ground-motion intensity measure (GMIM) of
interest, such as peak ground acceleration as a measure of
energy intensity of shaking for both strike-slip or reverse-
fault rupture models. The expected geometric-mean GMIM
is used in those corresponding GMPEs to backcalculate the
appropriate average RJB or RRUP distance and associated un-
certainties with respect to the GMIM of interest. The EPRI
(2004) distance-conversion relations may be sensitive to the
selection of GMPEs and the frequency of ground motions.
These GMPE-based conversion equations also need to be
modified for areal seismic sources where a preferred
fault orientation or explicit modeling of finite ruptures is
warranted.

The U.S. Geological Survey (USGS) distance-conver-
sion approach used in the USGS hazard maps for the CEUS
(Petersen et al., 2008) assumes that seismic energy is
released from the earthquake epicenter rather than the crust
around the entire fault rupture during a large earthquake. In
the USGS hazard maps, areal seismic source models are de-
fined to account for future random earthquakes in areas with
little or no historical seismicity for the PSHA study. Within
areal source zones, a virtual vertical strike-slip fault is de-
fined for each grid cell of source zones, and the fault rupture
is located on the center of each grid cell. The fault strike is
randomly oriented in azimuth from 0° to 360° about the
earthquake epicenter, and the mean RJB distance is calculated
for a fixed REPI distance using the law of sines and cosines.
The dimension of a fault rupture varies for each magnitude
increment and is obtained from the Wells and Coppersmith
(1994) empirical relationships. The USGS distance-
conversion relationships are only applicable for vertical fault
ruptures and may not be used for dipping fault ruptures and
the regions with various geologic structures.

Bommer and Akkar (2012) suggested to directly
develop pairs of GMPEs for both point- and extended-source
distance measures from the same ground-motion dataset.
They performed a simple PSHA study and demonstrated that
GMIMs obtained from the RJB-based ground-motion models
relative to REPI-based ground-motion models underestimate
the hazard for areal seismic sources. The current GMPEs
developed for the United States have often used the RJB or
RRUP distances from extended-fault sources of moderate-to-
large magnitude earthquakes. To use these extended fault-
based GMPEs for the case of areal seismic sources within the
low-to-moderate seismicity region, which tend to dominate
hazard models in a PSHA study, the point-source distances
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(REPI or RHYP) should be converted into the extended-fault
distances to adjust distances in the extended fault-based
GMPEs if the point-source-based GMPE models are not
available.

The objective of this study is to develop an analytical-
based approach to adjust the distance measures defined for
the extended-fault source-based GMPEs based on various
point-source-based distance metrics for use in the PSHA
studies and stochastic ground-motion simulations. The ana-
lytical-based approach can be used directly to adjust distan-
ces in current extended-fault source-based GMPEs that are
developed based on real recorded data. For existing
stochastic-based GMPEs in which the effect of extended-
fault sources is ignored, and for developing new point-
source-based GMPE models, the analytical-based approach
developed in this study can be combined with the effects of
the region-specific propagation path to define a new effective
distance (REFF) to adjust distances in such GMPEs. The REFF

distance is the distance between a given virtual site and an
equivalent point source on a fault that can substitute the
extended-fault rupture with a point source and mimic its
characteristic. This distance metric is defined in such a way
that the seismic energy intensity provided at the given site
from the equivalent point source is identical to the energy
intensity provided from the extended-fault rupture during
a large earthquake.

The USGS and EPRI approaches use the REPI distance
as a reference distance metric and the RJB distance as a target
distance metric to link for two distance metrics between a
point source and an extended-fault source. In contrast with
the EPRI and USGS approaches, we define Joyner–Boore
(JB) surfaces containing virtual sites on a bathtub shape with
identical RJB distances around an extended-fault source as a
reference distance and then analytically derive the average
REPI and RHYP using the law of sines and cosines.

In this study, instead of using virtual faults, which are
randomly oriented about a fixed earthquake epicenter (e.g.,
USGS and EPRI approaches), virtual sites with a constant
RJB distance are taken around a fixed fault to improve the
computational efficiency in the hazard models. The averag-
ing distance-conversion process is combined with region-
specific geometrical spreading and anelastic attenuation
functions following the Boore (2009) approach to assign a
suitable weighting factor for distance conversion and to
adjust the resultant point-source distance metrics into new
effective REPI or RHYP distance metrics that may be entered
in current extended-fault source-based GMPEs to adjust the
distances for use in the PSHA studies as well as in stochastic
ground-motion simulations.

The analytical-based distance-conversion equations
developed in this study are generic and can be used for any
arbitrary input parameters and functions, such as the empiri-
cal relations between fault dimensions and magnitude, loca-
tion of the fault with respect to virtual sites, fault dips, fault
strikes, and probability distribution of focal depths. The pro-
posed approach is able to model the effects of the region-

specific propagation path on seismic waves along the desired
range of strikes and dip angles from available information
about the tectonic region, which are not accounted for in
the other available methods.

As an implementation in the seismic hazard assessment,
a simple PSHA study is performed within a circular areal
source zone associated with both low- and high-seismicity
scenarios using a suite of published RRUP-based GMPEs
to demonstrate the effect of using inconsistent source-to-site
distance metrics on hazard curves at a given site.

General Distance-Conversion Equations

The RJB distance is chosen as the primary reference met-
ric in this study and the other distance matrices are converted
as target distance metrics using the law of sines and cosines.
The general distance-conversion equations are analytically
derived for both vertical and dipping fault rupture scenarios.
The analytical-based distance-conversion approach devel-
oped in this study has two different aspects compared with
the USGS approach.

First, the proposed analytical-based approach is ob-
tained based on positioning virtual sites around an arbitrary
fault rupture, whereas the USGS approach simulates
random-oriented vertical fault ruptures for a given site to ob-
tain distance-conversion equations. In essence, the distance-
conversion results should be insensitive, either if the site is
constant and the fault rotates around the center of the fault
(virtual faults model) or if the fault is constant and the site
rotates around the fault (virtual sites model). However, using
the model of virtual sites would improve the computational
efficiency in the hazard analysis.

Second, the USGS approach fixes the epicentral
distance on the center of fault and then derives the distance-
conversion equations to obtain the average RJB distance. On
the other hand, in the proposed analytical-based approach,
the RJB distance is fixed, and then the distance-conversion
equations are derived for various distance metrics. The
advantage of using a fixed RJB distance for a known fault and
a given azimuth is that there is only one station for an RJB

distance, but the station for a fixed epicentral distance can be
moved, based on the location of epicenter. Because of this
difficulty, the USGS approach limits itself by assuming that
the epicenter is always in the center of the fault.

The JB surface has a significant advantage that allows us
to choose directly the RJB distance defined in the RJB-based
GMPEs as the primary reference metric to convert to all other
distance metrics. Figure 1 shows the JB surface about a
vertical strike-slip fault and earthquake hypocenter locations,
which are dependent on the moment magnitude and are
defined by a truncated normal distribution. The location of
possible observation points (virtual sites) having the same
RJB distances from an extended fault with a vertical dip angle
is modeled with two semicircles with radius of RJB at the end
points of the fault and two straight lines parallel to the fault.
All the virtual sites on this bathtub-shaped JB surface have an
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identical RJB distance to the fault. In this figure, the param-
eter θ0 is defined as the angle between the fault trace and the
line that connects the center of the fault to the intersection of
the parallel lines to the fault trace and semicircles (see Fig. 1).
The JB surface becomes more complicated for dipping faults
because there is a surface projection for the width of the fault.
Figure 2 shows the JB surface around a dipping fault. For an
extended fault with a width of W and a dip angle of δ, the
surface projection of the fault has a width ofW cos�δ�. In this
case, the location of possible observation points having the
same RJB distances is modeled with four quarter-circles with
radius RJB and two parallel lines along the fault length and
two parallel lines to the width projection on the ground sur-
face. All the observation points on this JB surface have an
identical RJB distance to the fault surface projection.

In Figure 2, the parameter of θ0 is defined as the angle
between the line passing the center of the fault projection in
the fault direction and the line that connects the center of the

fault projection to the intersection of the parallel lines to the
fault length and quarter-circles. The parameter of θ1 is
defined as the angle between the line passing the center

of the fault projection in the fault direction and the line that
connects the center of the fault projection to the intersection
of the parallel lines to the fault width projection and quarter-
circles.

Vertical Strike-Slip Faults

Suppose that we have an arbitrary extended-fault rupture
produced by a given earthquake and observation points (vir-
tual sites) with a constant RJB distance of interest (see Fig. 1)
on the JB surface. We begin with a relationship between RJB

and RHYP, which is controlled by the depth of the earthquake
as a function of moment magnitude, and the influence of the
depth is decreased with increasing distance.

For each observation point with a particular azimuth (θ),
the geometry relation between RJB distance and RHYP dis-
tance using the law of sines and cosines is expressed by the
following equation:

EQ-TARGET;temp:intralink-;df1;55;159 < RHYP >θ�
Z

ZTOR�W

ZTOR

Z
L=2

−L=2

�����������������������������������������������������������������
��R2

C � x2 − 2xRC cos�θ�� � z2�
q

p�x�p�z�dxdz; �1�

in which < RHYP >θ is the mean RHYP distance for a particu-
lar θ, and RC is an auxiliary distance between the center of
the fault and the observation point, which is defined as

L/2 L/2

θ
RJB

θ0

Virtual Site

W

LZTOR

Surface

Figure 1. (Top) Joyner–Boore (JB) surface for a vertical strike-
slip fault. The line in the middle of the JB surface is the fault length
of L. The triangle is the locations of possible observation points
(sites or stations) having the same RJB distances from the extended
fault. (Bottom) The earthquake hypocenter locations are defined by
a truncated normal distribution; however, any probability density
function of the hypocenter (e.g., Weibull distribution), in which
the hypocenter is weighted toward the bottom of the fault, not cen-
tered can be used in the distance-conversion approach. The color
version of this figure is available only in the electronic edition.
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Wcos(δ )/2WcWW os

θ1

L/2 L/2

θ

RJB

θ0

Virtual footwall site

θ
θ′

Wcos(δ )/2

RC

WcWW osθ
θ

RC

L/2 L/2

Virtual hanging wall site for the case θ1 < θ < θ0
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Figure 2. JB surface for a dipping fault. The rectangular inside
is the fault projection on the surface. The triangles are the locations
of possible observation points (sites or stations) having the same
RJB distances from the extended fault.
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EQ-TARGET;temp:intralink-;df2;55;733RC �

8>><
>>:

�����������������������������������������������������������������������������������������������������������������������������������
�L=2�2 � R2

JB − 2�L=2�RJB cos
�
180 −

�
θ� arcsin

�
sin�θ�L=2

RJB

���s
if 0 ≤ θ < θ0

RJB= sin�θ� if θ0 ≤ θ < 90;

�2�

in which θ0 � arctan�RJB
L=2�, x is a variable on the fault length,

and z is a variable on the fault depth with probability distri-
bution functions of p�x� and p�z�, respectively. These prob-
ability distribution functions can be defined somehow to
mimic the characteristics of the fault rupture. The term
ZTOR for the limits of integral is the depth to the top of a
vertical fault rupture with a width of W and a length of L.
The variance for the RHYP distance < RHYP >θ can be
obtained using the following equation:
EQ-TARGET;temp:intralink-;df3;55;556

σ2<RHYP>θ
�
Z

zTOR�W

zTOR

Z
L=2

−L=2

� ��������������������������������������������������������������
��R2

C�x2−2xRC cos�θ���z2�
q

−<RHYP >θ

�
2

p�x�p�z�dxdz: �3�
If the azimuth angle of the site is unknown, the variance and
the average distance over all virtual sites are estimated by
integrating over all possible azimuth angles, which are
defined as the following expression:

EQ-TARGET;temp:intralink-;df4;55;416

< RHYP > �
Z

2π

0

< RHYP >θ p�θ�dθ

σ2<RHYP>
�
Z

2π

0

Z
ZTOR�W

ZTOR

Z
L=2

−L=2

� ��������������������������������������������������������������
�R2

C � x2 − 2xRC cos�θ�� � z2
q

�− < RHYP >θ

�
2

p�x�p�z�p�θ�dxdzdθ; �4�

in which < RHYP > is the mean RHYP distance over all
azimuth angles, and p�θ� is the probability distribution of
azimuth θ. To obtain the exact function for p�θ�, the JB sur-
face around the fault should be divided into equal segments.
Because p�θ� is a complex function, and it has no close-form
solution, we suggest using a simplistic function p�θ� � 1=2π
as the probability distribution of azimuth θ in degree. This
function slightly underestimates the estimated RHYP distance;
however, the result from this simple function converges to the
real solution if the segment dθ is very small. Because the JB
surface for vertical strike-slip faults has four identical quarters
(see Fig. 1), the integration over θ may be performed for a
range of 0 to π=2 with p�θ� � 2π.

The mean RHYP distance (equation 1) can be modified to
derive the mean REPI distance by removing the first integral
and z and p�z� terms as follows:

EQ-TARGET;temp:intralink-;df5;313;662 < REPI >θ�
Z

L=2

−L=2

������������������������������������������������������
��R2

C � x2 − 2xRC cos�θ���
q

p�x�dx:

�5�
The variance for the REPI distance can be determined using
the following equation:

EQ-TARGET;temp:intralink-;df6;313;588

σ2<REPI>θ
�
Z

L=2

−L=2
�
�����������������������������������������������������
��R2

C � x2 − 2xRC cos�θ���
q

−< REPI >θ�2

×p�x�dx: �6�

Dipping Faults

For a dipping fault with a dip angle of δ, the position of
the observation points is located in three different portions of
the JB surface, including the lines parallel to the fault length,

the quarter-circles, and the lines parallel to the width projec-
tion (see Fig. 2). As can be seen in Figure 2, virtual sites
around the JB surface of dipping faults can be located on
either the hanging wall (HW) or footwall (FW) side. The
RHYP distance is different if the sites are located on the
HW compared with those located on the FW. The average
RHYP distance for a site located on the HW region is less than
the average RHYP distance for a site located on the FW region
when both sites have the same RJB or RHYP distances. There-
fore, the site located on the HW region experiences larger
ground motions compared with the other site located on the
FW region (Abrahamson and Somerville, 1996; Donahue
and Abrahamson, 2014). The mean RHYP distance for a
particular azimuth angle of θ, < RHYP >θ, is obtained by
averaging over all RHYP distances. Thus, the mean RHYP

distance is expressed by the following equation:

EQ-TARGET;temp:intralink-;df7;55;102 < RHYP >θ�
Z

ZTOR�W sin�δ�

ZTOR

Z
W cos�δ�

0

Z
L=2

−L=2

�����������������������������������������������������������������
��R2

C � x2 − 2xRC cos�θ�� � z2�
q

p�x�p�y�p�z�dxdydz; �7�
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in which x, y, and z are variables on the length, width of the
fault surface projection, and the depth of the possible hypo-
centers, respectively, and p�x�, p�y�, and p�z� are their prob-
ability distribution functions, respectively. The probability
distribution functions are defined regarding the characteris-
tics of the given fault rupture. These probability distribution
functions can be independent or dependent and even deriv-
able from each other according to the fault characteristics.
The boundary conditions for the integrals can be changed
based on these characteristics. For instance, if there is any
prior information or assumption about the focal depth loca-
tion, the boundary condition of integral can take into account
those assumptions. In equation (7), RC is an auxiliary dis-
tance between the observation point and the middle of the
fault length within the width of the fault surface projection
that has the possible epicentral point on it and is defined as

EQ-TARGET;temp:intralink-;df8;55;519RC �

8>>><
>>>:

RJB�L=2
cos�θ′� if 0 ≤ jθj < θ1�����������������������������������������������������������������������������������������������������
�y2 � �L=2�2� � R2

JB − 2RJB

��������������������������
y2 � �L=2�2

p
cos�γ�

q
if θ1 ≤ jθj < θ0

RJB�y
sin�θ′� if θ0 ≤ jθj < 90

; �8�

in which

EQ-TARGET;temp:intralink-;df9;55;314

θ0� arctan

"
W cos�δ�

2
�RJB

L=2

#

θ1� arctan
�
W cos�δ�=2
RJB�L=2

�

γ�180−

 
arcsin

�
sin�jθ′−αj�

������������������������
y2��L=2�2

p
RJB

�
�jθ′−αj

!
;

�9�

in which

EQ-TARGET;temp:intralink-;df10;55;168α � arctan
�

y
L=2

�
�10�

and θ′ is defined as the angle between a line parallel to the
fault length and the line connecting the virtual site and the
middle of the fault line within the width of the fault surface
projection that has the possible epicentral point on it (see
Fig. 2) and is obtained from

EQ-TARGET;temp:intralink-;df11;313;733θ′ �

8>>>>>>>>><
>>>>>>>>>:

arctan

2
4y−

h
W cos�δ�

2
−tan�jθj��RJB�L=2�

i
RJB�L=2

3
5 if 0 ≤ θ < θ1

arctan
�
RCref sin�θ�−�W cos�δ�

2
−y�

RCref cos�θ�

�
if θ1 ≤ θ < θ0

arctan
�
tan�jθj�

�
y�RJB

W cos�δ�
2

�RJB

��
if θ0 ≤ θ < 90

;

�11�

in which RCref is the distance between the site and the center
of the fault surface projection (see Fig. 2). RCref can be
estimated using equations (8)–(10), assuming θ � θ′ and
y � W cos�δ�=2.

The variance for the RHYP distance is given by
EQ-TARGET;temp:intralink-;df12;55;413

σ2<RHYP>θ
�
Z

ZTOR�W sin�δ�

ZTOR

Z
W cos�δ�

0

Z
L=2

−L=2
�
�����������������������������������������������������������������
��R2

C � x2 − 2xRC cos�θ�� � z2�
q

− < RHYP >θ�2

p�x�p�y�p�z�dxdydz: �12�

Finally, if the azimuth of the site is unknown, we average
over all possible azimuths as follows:

EQ-TARGET;temp:intralink-;df13;313;301 < RHYP >�
Z

2π

0

< RHYP >θ p�θ�dθ: �13�

Similarly, the variance can be determined using equation (4).
Because the JB surface is symmetric along a perpendicular
line on the center of fault length, the integration over θ can be
done for a range of −π=2 to π=2 with p�θ� � 1=π.

Similar to the vertical strike-slip fault case, the mean
REPI distance can be derived by removing the first integral
and the z and p�z� terms from equation (7). To determine the
rupture distance RRUP for a fault with a dip angle of δ and an
azimuth angle of θ, the relationships between the RRUP dis-
tance and the RJB distance provided by Kaklamanos et al.
(2011) can be used in equation (7) for the conversion-
distance process.

A General Effective Distance-Conversion Equation

The general distance-conversion equations developed in
the previous section are independent of the region under
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study. The problem of employing RJB and RRUP in point-
source ground-motion simulations to develop a GMPE is that
they can only account for the geometry of the extended-fault
rupture model instead of capturing any detailed geological
and seismological features (Goda and Atkinson, 2014;
Yenier and Atkinson, 2014). Yenier and Atkinson (2014)
analyzed earthquake data with moderate-to-large magnitudes
from different regions and concluded that if the equivalent
point-source model, in which the effective distance (REFF) is
considered as the primary distance metric between a given
site and a virtual point which substitutes the whole fault and
can mimic the effect of extended-fault rupture source is
employed, the apparent source response spectra of those earth-
quakes can be modeled with a simple far-field Brune point-
source model. Thus, the average ground motions for large
earthquakes can be acceptably simulated using the equivalent
point-source model based on the REFF distance, even for the
sites located at very close distances to the fault rupture.

Using the equivalent point-source model, the extended-
fault rupture is subdivided into small elements (subfaults)
considered as point sources, and the radiated energy from all
subfaults are incoherently added up to compute the GMIM of
interest as a measure of energy intensity of shaking at each
virtual site. In fact, all subfaults of the extended-fault rupture
radiate uniform energy with equal intensity (assuming
homogenous energy radiation from the fault). This energy
intensity is theoretically proportional to the amplitude of the
ground motions captured at the site of interest and decreases
with increasing distance, due to spreading over an increasing,
either spherical area in a homogeneous whole space, or cylin-
drical surface in a homogenous half space, as well as scatter-
ing and intrinsic absorption (Boore, 2003; Chapman and
Godbee, 2012).

Different schemes have been introduced to capture the
effects of extended-fault ruptures on distance metrics,
GMPEs, or ground-motion simulation approaches (e.g.,
Singh et al., 1989; Kanamori et al., 1993; Ohno et al., 1993;
Andrews, 2001; Boore, 2009). Following the Boore (2009)
approach, we use the propagation path function in the fre-
quency domain, which intuitively accounts for the geomet-
rical spreading and anelastic attenuation terms, to construct
the effective point-source distance-conversion equation.

The general analytical-based distance-conversion equa-
tions, which are calculated based on the uniform weighted
average of distances from virtual sites, should be modified to
include the effect of geometrical spreading decay and attenu-
ation as suitable weighting factors for the process of distance
averaging. In fact, an effective point on an extended-fault
rupture should be chosen to give an identical total energy
intensity at a given site if this point is compared with an ex-
tended-fault rupture. In this regard, the distances from virtual
sites to subfaults take appropriate nonuniform weights asso-
ciated with geometrical spreading and attenuation functions.
The following general region-specific distance-conversion
equation is developed to estimate effective point-source-
based distance metrics (e.g., effective RHYP and REPI instead

of RHYP and REPI), in place of the extended-fault distance
metrics (e.g., RJB and RHYP), which not only accounts for the
geometry of the given fault but also considers the effects of
the propagation path on radiated seismic waves:

EQ-TARGET;temp:intralink-;df14;313;685

G�REFF�exp
�
−πfREFF

Q�f�VS

�

�
�Z

ZTOR�W sin�δ�

ZTOR

Z
Wcos�δ�

0

Z
L=2

−L=2

��
G�λ�×exp

�
−πλf
Q�f�VS

���
2

p�x�p�y�p�z�dxdydz
�
0:5
; �14�

in which G is the geometrical spreading function, Q, VS, and
f are the quality factor, the shear-wave velocity, and the
reference frequency in the attenuation function, respectively.
The term λ is the distance between the observation point and
possible epicenter or hypocenter locations on the fault, which
is defined as

EQ-TARGET;temp:intralink-;df15;313;508λ �
�����������������������������������������������������������������
��R2

C � x2 − 2xRC cos�θ�� � z2�
q

: �15�

The RC is the auxiliary distance, and p�x�, p�y�, p�z�, and
p�θ� are the probability distribution functions, as defined in
previous equations. Equation (14) can be simply turned into
a summation over the length and width of the fault and the
azimuth of the observation points. This equation should be
solved with a trial-and-error approach to calculate the REFF

distance.
To determine the REFF distance for a given reference fre-

quency, a general table for the attenuation term is developed,
based on the geometrical spreading and quality factor func-
tions in the region under study and discretized REFF distances
within the range of interest using the left side of equa-
tion (14). Then, the triple integration in equation (14) is
transferred to summation by discretizing the fault plane into
subfaults. The center of each subfault is considered as a pos-
sible hypocenter. For a given RJB distance, all distances from
the observation point to each subfault, obtained from equa-
tion (15), are substituted into the right side of equation (14).
The simplified value of the right side of equation (14) gives
the resultant effect of anelastic attenuation and geometrical
spreading decay terms for a virtual point on the fault that
produces the same level of energy intensity as the combina-
tion of all subfaults generate at the observation point. Finally,
using the developed attenuation table for the left side, the
REFF distance corresponding to the simplified value of the
right side is found.

For a given moment magnitude and RJB distance, there
is only one point that can be considered as an equivalent
point source at a specified source-to-site azimuth. Therefore,
the effective distance-conversion approach has no uncer-
tainty for a given azimuth, unlike the general distance-
conversion approach according to averaging with uniform
weights, in which all points on the fault potentially can be
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a hypocenter. However, the uncertainty is brought into play
for the effective distance-conversion approach through aver-
aging over all azimuth angles around the fault. Of course, this
uncertainty is considerably smaller than the uncertainty of
the general distance-conversion averaging over all azimuths
around the fault.

EQ-TARGET;temp:intralink-;df16;55;661

< REFF > �
Z

2π

0

< REFF >θ p�θ�dθ

σ2<REFF>
�
Z

2π

0

�< REFF >θ − < REFF >�2p�θ�dθ; �16�

in which < REFF > is the mean REFF distance over all
possible REFF distances < REFF >θ.

An Example of Point-Source-Based Distance
Conversions

The analytical-based distance-conversion equations that
have already been explained are generic and can be used for
both shallow and deep earthquakes, small and very large
earthquakes, and even for induced earthquakes. Therefore,
conversion results depend on the input parameters and their
assumptions, such as the geometry of the fault, location of
the fault, pattern of possible hypocenters or epicenters on the
fault, and the quality factor and geometrical spreading func-
tions of the region of interest. To investigate the effects of
using point-source-based distance conversions on ground
motions, we select prevalent assumptions about the fault and
region and employ them as input parameters in the general
distance-conversion equations. These results are based on the
assumed input parameters described in the following, and
the analyst should modify these parameters according to the
characteristics of the fault and the region under study.

The geometry of extended-fault sources is often modeled
by a rectangular shape with a width W, a length L, and a dip
angle of δ. The rupture width and length of a fault plane are
determined based on empirical relationships (e.g., Wells and
Coppersmith, 1994; Mai and Beroza, 2000; Somerville et al.,
2001; Leonard, 2010, 2012; Somerville, 2014) that are scaled
by earthquake magnitude. In this example, we use the global
empirical relationships obtained by Wells and Coppersmith
(1994). It should be mentioned that the dimensions of simu-
lated faults are much smaller for a given large magnitude if the
Somerville et al. (2001) relationships, which are derived based
on the data from the CEUS, are used.

The next step is to place the fault rupture in a specific
location. Earthquake focal depths are assumed to have a non-
uniform distribution, such as truncated normal distribution or
Weibull distribution (Scherbaum et al., 2004; Mai et al.,
2005; Ma and Atkinson, 2006). In this example, we used the
results from Scherbaum et al. (2004), in which earthquake
hypocenter locations are dependent on the moment magni-
tude and are defined by a truncated normal distribution with
a mean hypocentral depth of havg � a� bM in kilometers
and a standard deviation of σ, in which the constant values

of a, b, and σ are obtained from table I of the Scherbaum
et al. (2004) study.

This depth distribution and the empirical relationships of
Wells and Coppersmith (1994) are consistent because both
have been obtained from the same dataset. The estimated hy-
pocentral depth is used to set the center of the fault plane in
the simulations. Therefore, the depth to the top of the fault
rupture ZTOR can be determined by ZTOR � hcenter −W=2, in
which hcenter is the distance from the ground surface to the
center of fault plane. Then, possible hypocenters within the
simulated fault ruptures are randomly distributed with a
uniform distribution along the fault length and width. Those
simulated fault ruptures for which the upper edges are
extended above the ground surface are shifted down to lie on
the surface with a ZTOR of zero. This adjustment reduces the
bias in an average sense over many random simulations for
the depth of hypocenters, which is used to set the center of
the fault plane (Fig. 1).

For the vertical strike-slip fault case in this example, it is
assumed that the probability distribution of earthquake hypo-
center locations on the fault length and width is uniform;
thus, p�x� � 1=L and p�z� � 1=W. Similar to the vertical
strike-slip fault case, it is assumed that the probability
distribution of earthquake hypocenter locations is uniform on
the length, depth, and surface projection of the width. Now,
the general distance conversion for the case of uniform-
weighted average can be used to obtain the converted dis-
tance. In this regard, the integration is transferred to summa-
tion by discretizing the fault plane. We used 20 subfaults
along the length and 20 subfaults along the width of each
fault. Thus, there is a total of 400 subfaults for each simu-
lated fault. If the azimuth of the site is unknown, equations (4)
and (13) are used to average over all virtual sites around the
simulated fault. In this example, virtual sites are located at
every two degrees, and the center of each subfault is consid-
ered as a possible hypocenter.

Figures 3 and 4 demonstrate the mean converted RHYP

and REPI distances with respect to RJB distances up to
1000 km for a vertical strike-slip fault model and a 50° dip
normal fault, respectively, for the selected magnitudes of
M 5.5, 6.5, and 7.5. The comparison between the mean con-
verted RHYP and REPI distances for different dip angles dem-
onstrates that the depth distribution of the events and the dip
angle of faults control the distance saturation for earthquakes
and close site distances.

The RHYP and REPI distances are always larger than or
equal to the RJB distance by an amount ε, which is dependent
on the fault size, azimuth angle, and dip angle. Following
Scherbaum et al. (2004), we define residuals for converted
RHYP and REPI distances εHYP and εEPI, respectively, using
the following equations:

EQ-TARGET;temp:intralink-;df17;313;121

εHYP � RHYP −
�������������������������
R2
JB � Z2

TOR

q
εEPI � REPI − RJB: �17�
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Because RHYP and REPI are always greater than or equal to
RJB, residuals and the mean residuals are positive. Figures 5
and 6 show the histogram (frequency) distributions of resid-
uals and the fitted gamma probability distributions for earth-
quakes with magnitudes of M 5.5, 6.5, and 7.5 and an RJB

distance of 20 km for vertical and normal faults, respectively.
Thus, for a fixed RJB distance and a given magnitude from
the example in this section, all possible azimuth angles are
considered to obtain the average distance, as shown in these
figures. The gamma distribution provides the best fit to the
distance residuals because the distribution of the residuals for
the virtual site when the azimuth is 0° is uniform, whereas the
distribution of the residuals once the azimuth is 90° (the line
connecting the virtual site to the center of the fault is
perpendicular to the fault line) is exponential. Thus, the com-
bination of these two probability distributions is better cap-
tured by a gamma-distributed random variable. The shaping

parameters related to the mean and standard deviation of the
gamma distribution are derived by fitting the histograms of the
residuals (Denker and Woyczynski, 1998). The frequency of
residual values shows that the mean and variance of gamma
distributions are functions of magnitude and distance. These
observations are in good agreement with Scherbaum et al.
(2004), in which the distance-conversion relationships and re-
siduals are numerically determined using regression analysis
on Monte-Carlo-simulated data. These distance conversions
are based on the uniform-weighted average of distances from
parts of the fault to each observation point.

To estimate the non-uniform-weighted average of dis-
tances and to capture the effect of the propagation path on the
range of distances, an effective point should be chosen on an
extended-fault rupture. To achieve this objective, the point-
source-based distance conversions explained previously are
modified to incorporate the effect of geometrical spreading
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Figure 4. Distance adjustments along a 50° dip normal fault as a
function of JB for three selected magnitudes ofM 5.5, 6.5, and 7.5:
(a) hypocentral and (b) epicentral. The color version of this figure is
available only in the electronic edition.
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Figure 3. Distance adjustments along a vertical strike-slip fault
as a function of JB distance for three selected magnitudes ofM 5.5,
6.5, and 7.5: (a) hypocentral and (b) epicentral. The color version of
this figure is available only in the electronic edition.
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Figure 5. The frequency distribution of residuals fitted by a gamma distribution for a vertical strike-slip fault and an RJB distance of
20 km: (a) hypocentral andM 5.5, (b) hypocentral andM 6.5, (c) hypocentral andM 7.5, (d) epicentral andM 5.5, (e) epicentral andM 6.5,
and (f) epicentral and M 7.5. The color version of this figure is available only in the electronic edition.

Figure 6. The frequency distribution of residuals fitted by a gamma distribution for a normal 50° dip fault and an RJB distance of 20 km:
(a) hypocentral and M 5.5, (b) hypocentral and M 6.5, (c) hypocentral and M 7.5, (d) epicentral and M 5.5, (e) epicentral and M 6.5, and
(f) epicentral and M 7.5. The color version of this figure is available only in the electronic edition.
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and attenuation functions as weighting factors into the mean
distance metrics. To obtain the converted effective distances,
geometrical spreading and attenuation functions, as well as
the shear-wave velocity and the reference frequency, are
required to define the seismological parameters of the region
of interest, in addition to previous assumptions about the
fault plane.

Far-field body-wave and surface-wave geometrical
spreading functions are ideally modeled by G�R� � R−1 and
G�R� � R−0:5 for a whole-space and half-space, respectively
(Ou and Herrmann, 1990; Chapman and Godbee, 2012).
Some researchers (e.g., Atkinson, 2004; Atkinson and
Boore, 2006, 2014) have shown that the geometrical spread-
ing exponent decay for body wave should be higher than
R−1, due to the effects of crustal layering and heterogeneities.
They indicated that the rate of R−1:3 better describes the
decay of ground-motion amplitudes with distance for eastern
North America. There are some other studies that show the
geometric spreading function may be frequency dependent
(Frankel, 2015; Sedaghati and Pezeshk, 2016).

The quality factor of Q � max�1000; 893f0:32� and the
geometrical spreading function of G�R� � R−1:3 for R < 70,
R�0:2 for 70 < R < 140, and R−0:5 for R > 140 estimated by
Atkinson (2004) for eastern North America are employed in
this example to demonstrate the effect of energy decay in the
effective distance-conversion equations. These models are
consistent with the Pezeshk et al. (2011) GMPE because we
use this GMPE to show the effect of using effective distance
on hazard curves. Further, the crustal shear-wave velocity of
VS � 3:7 km=s is used in this example case. The reference
frequency of 10 Hz is chosen; however, the distance-
conversion results are fairly insensitive to the choice of
frequency, which is in good agreement with Boore (2009).
The combined effect of geometrical spreading and attenua-
tion functions indicates that the subfaults with shorter distan-
ces from the virtual site have higher contribution to the total
energy intensity captured at the site than the subfaults with
longer distances.

After selecting the appropriate seismological parameters
for the region where the site is located, the effective distances
are obtained using equation (14) for moment magnitudes of
4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, and 8.0 and RJB distances of 1,
2, 3, 5, 7, 10, 12, 15, 20, 30, 40, 50, 60, 70, 80, 100, 120, 150,
200, 250, 300, 400, 500, 600, 700, 800, and 1000 km. Again,
we use summation instead of integration by discretizing the
fault into 20 subfaults along the length and 20 subfaults
along the width (400 subfaults in total). Ⓔ Tables S1–S3
(presented in the electronic supplement to this article) tabu-
late the average effective hypocentral distance for vertical
strike-slip faults, 50° dip normal faults, and 40° dip reverse
faults, respectively, for this example case. Ⓔ Tables S4–S6
list the average effective epicentral distance for vertical
strike-slip faults, 50° dip normal faults, and 40° dip reverse
faults, respectively. These magnitude-effective distance-
conversion tables are used to convert the extended-fault
source-based GMPEs into the point-source-based GMPEs

and vice versa, which can be applied for areal seismic
sources defined in a PSHA study.

Figures 7 and 8 illustrate the effective RHYP and REPI

distances averaged over all virtual sites, with respect to RJB

distances up to 1000 km for a vertical strike-slip fault model
and a 40° dip reverse fault, respectively. The three selected
magnitudes of M 5.5, 6.5, and 7.5 are used to model the
dimension of fault ruptures. In Figures 7 and 8, a direct com-
parison between the converted effective distances for M 5.5,
6.5, and 7.5 is unreasonable because ZTOR for each magnitude
is different and is dependent on both the fault-center location
and the width of the fault. For instance, in Figure 8, the
converted effective distances for M 5.5, 6.5, and 7.5 are very
similar. In fact, this similarity does not mean that the effective
distance for different magnitude should be in the same range,
because the depths to the top of the rupture for these magni-
tudes are ∼6:71, 5.11, and 1.53 km, respectively.
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Figure 7. Effective distance adjustments along a vertical strike-
slip fault as a function of JB distance for three selected magnitudes
ofM 5.5, 6.5, and 7.5: (a) hypocentral and (b) epicentral. The color
version of this figure is available only in the electronic edition.
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The plots of distance conversion in Figures 7 and 8 also
show a bump around RJB of 50 km, particularly for large
magnitudes. This bump is caused by the assumed trilinear
geometrical spreading function, in which the middle part
is R�0:2. For a given fault with M 7.5 and RJB of 50 km, the
distance from the site to each grid center varies from 50 km
to a few hundred kilometers. Thus, incorporating the middle
part of the geometrical spreading function into the averaging
process leads to estimating higher effective distance. In fact,
R�0:2 raises the contribution of longer distances compared
with R−1:0 or R−0:5

Comparison of the uniform and non-uniform-weighted
average of distances in the conversion process indicates that
the distance conversions are dependent upon not only the
geometry of fault and the earthquake size but also the geomet-
ric spreading of a given region. The non-uniform-weighted
averaging on distances lead to increased ground motions at

near distances compared with uniform mean distance-
conversion approaches.

Comparison with Previous Studies

The effective distances derived from the example for the
vertical case are compared with the vertical-fault USGS
distance-conversion approach (Petersen et al., 2008) shown
in Figure 9. The USGS distance-conversion approach used in
the U.S. seismic hazard maps, which only consider the
random-ordinated geometry of a vertical fault, is not satu-
rated at close distance, and therefore ground-motion ampli-
tudes monotonically increase with decreasing RJB distance.
The USGS approach is also insensitive to the magnitude of
earthquakes at close distances. For instance, at an RJB dis-
tance of 1 km, the USGS approach results in an REPI distance
of 1.6 km for the three selected magnitudes of M 5.5, 6.5,
and 7.5, which is inconsistent with the magnitude and dis-
tance saturation of ground motions for a large earthquake.

The magnitude and distance saturation of ground motion
for a large earthquake indicate that an observation point (or a
virtual site) close to a fault can effectively see the closest
portions of the extended fault, and most of the fault rupture
further away from the site are not involved in the REFF dis-
tance conversion, particularly by increasing magnitude and
decreasing the source-to-site distance. Therefore, the effec-
tive REPI distance developed in this study, which is a function
of dip angle of a fault and the distance ranges, gives smaller
RJB distance values (higher ground-motion amplitudes) than
the vertical-fault USGS distance conversion and larger RJB

distance values (lower ground-motion amplitudes) than the
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Figure 9. Epicentral distance adjustments along a vertical
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ner–Boore distance in kilometers for a magnitude ofM 7.5. USGS,
U.S. Geological Survey. The color version of this figure is available
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Figure 8. Effective distance adjustments along a 40° dip reverse
fault as a function of JB distance for three selected magnitudes of
M 5.5, 6.5, and 7.5: (a) hypocentral and (b) epicentral. The color
version of this figure is available only in the electronic edition.
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mean epicentral distance (Scherbaum et al., 2004) at short
distances for the RJB-based GMPEs.

The REFF distances derived from the example are also
compared with the EPRI distance conversion (EPRI, 2004)
for the CEUS, as shown in Figure 10. The EPRI (2004)
distance-conversion equations are constructed based on the
GMPEs developed for the CEUS to partially capture the ef-
fect of energy intensity of shaking from a large fault rupture,
the random-oriented geometry of a fault to include the effect
of unknown fault-rupture models in a specific area, and the
Somerville et al. (2001) empirical relationship to define the
earthquake rupture area. Because the EPRI (2004) distance
conversions are developed for a set of GMPEs developed for
the CEUS, it may not be appropriate for areas in which
regional GMPEs are not available or when different GMPEs
and source scaling are assigned to perform PSHA.

The EPRI (2004) approach is also developed for areas in
which the orientations of faults are unknown. Thus, there is
no specific solution when a specific fault orientation is
desired, and the analyst should use the average distance
conversion as the final result. Comparison of the vertical and
reverse-combined effective distance conversion derived from
the example with the EPRI (2004) approach (see Fig. 10)
shows that the converted distances for the RJB distances of
about 10 km and larger are in good agreement. However, for
the near-fault observation points, the magnitude and distance
saturation of ground motions for a given large earthquake are
not satisfactorily presented in the EPRI (2004) approach,
because the earthquake epicenter is assumed to be located at
the center of fault (centered epicenters), or the epicenter of an
earthquake is uniformly distributed along the length of the
rupture (random epicenters).

It is anticipated that the REFF distance is saturated at very
small distances because seismic waves radiated from the
small portions of the entire rupture dominate recorded
ground motions at the site. Thus, to account for the effects
of the magnitude and distance saturation, the impact of the
propagation path on seismic waves should be incorporated
into the development of distance conversions to obtain the
effective points referred to as effective epicenters or effective
hypocenters for extended-fault ruptures. These effective
points can be used for modeling earthquakes as point sources
in PSHA or stochastic ground-motion simulations.

Implications for GMPEs

As stated previously, we developed the analytical-based
distance-conversion equations in two phases. In the first
phase, the distance-conversion equations were derived to
convert between the RJB distance and REPI or RHYP distances
(see equations 1 and 7). These conversion equations can be
inverted and used for performing the PSHA study using the
empirical-based GMPEs developed based on real observed
ground motions. In this case, the distance-conversion equa-
tions are used in the empirical-based GMPEs to adjust the
distances and to update the total uncertainty accounting for
the effect of distance-conversion errors. The mean RHYP or
REPI distances have specific variances that are obtained from
equations (3) and (6), respectively. This uncertainty in con-
verted distances must be mapped onto the predicted ground
motions due to the laws of error propagation. Using the first-
order approximation of the second moment obtained from
the Taylor expansion and the derivative of the inverse func-
tion, the variance of the inverted mean RJB distance can be
calculated as

EQ-TARGET;temp:intralink-;df18;313;341σ2RJB
�
�

2ΔRJB

< R >RJB�ΔRJB
− < R >RJB−ΔRJB

�
2

σ2R; �18�

in which < R >RJB�ΔRJB
can be the normal average or the

effective epicentral or hypocentral distances for the input
distance of RJB � ΔRJB. To propagate the uncertainty of the
distance-conversion equations to the ground-motion estima-
tions, we use the following equation:

EQ-TARGET;temp:intralink-;df19;313;234σtotal �
���������������������������������������������������
σ2GMPE �

�∂ ln�Y�
∂RJB

�
2

σ2RJB

s
; �19�

in which σGMPE is the total standard deviation of the GMPE,
ln�Y� is the natural logarithm of the ground motion, and σRJB

is the standard deviation for the RJB-based GMPEs adjusted
for use as the REPI- or RHYP-based GMPEs (see equation 18).
This error propagation issue has been considered and studied
in other studies as well, such as EPRI (2004), Scherbaum
et al. (2004), and Kaklamanos et al. (2011).

In the second phase, the effective distance-conversion
equation is derived to convert between the REFF distance and
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the RJB distance (see equation 14) for use in the stochastic-
based GMPEs, in which the effect of extended-fault source is
ignored, or for use in stochastic ground-motion simulations.
In these cases, if the azimuth is known, there is no uncer-
tainty for the converted REPI or RHYP distances because,
regarding equation (14), there is only one equivalent point
source that can provide the same amount of energy as the
whole finite-fault ruptures. Therefore, the total uncertainty
remains unchanged. If the azimuth is unknown, the uncer-
tainty is introduced; however, this uncertainty is much
smaller than the uncertainty from the first phase. In case of
having unknown azimuth, equation (16) can be used in
equations (18) and (19) to map the uncertainty of the con-
verted effective REPI or RHYP distances onto the estimated
ground motions.

The REFF distance can also be used for the development
of stochastic-based GMPEs that are obtained directly from
the point-source spectrum modeling through the stochastic
ground-motion simulation method (Boore, 1983, 2003). The
stochastic point-source method is based on an important
assumption that the total energy intensity of earthquakes is
released from the center point of a postulated fault rupture,

and thus the magnitude–distance saturation of ground
motions at close distances for large earthquakes are mostly
ignored. Ignoring these saturation effects on ground motions
from the point-source models may lead us to estimate unre-
alistically high ground motions at near source-to-site distan-
ces compared with the actual extended-fault source models
(Boore, 2009; Yenier and Atkinson, 2014).

One way to overcome this problem is to find the effective
hypocenters on the fault for each RJB distance using the
observation points (virtual sites) around a postulated fault
rupture. Then the next step is to use the REFF distance in the
stochastic point-source ground-motion simulation methods to
develop stochastic-based GMPEs. Boore (2009) used this ap-
proach for a specific simple case study, when the location of a
fixed vertical fault and a fixed site are known and earthquakes
are uniformly distributed within the fault rupture, to modify
the distances used in the point-source-based simulation soft-
ware (e.g., SMSIM) and to capture the effect of extended-fault
source for simulation of ground-motions. Yenier and Atkinson
(2014) have also shown that the far-field Brune point-source
spectrum can be used within the equivalent point-source
approach with effective distance to simulate observed spectra
of large (M > 6) earthquakes.

The advantage of the general effective distance-
conversion equation (see equation 14) developed in this
study is that ground motions for large earthquakes generated
by extended-source models can be modeled by the equivalent
point-source model that incorporates the extended-fault
saturation term into the ground-motion simulations for any
arbitrary input parameters and functions, such as fault dimen-
sions, location of the fault with respect to virtual sites, prob-
ability distribution function of focal depths, and geometrical
spreading and anelastic attenuation functions corresponding
to the region under study.

Alternative implication for GMPEs is to present the
impact of using effective distance conversion on the existing
stochastic-based GMPEs in which the effect of extended-
fault sources is ignored. Figure 11 illustrates, for example,
the impact of using effective RHYP distance conversion for a
given suit of RHYP-based GMPE (Pezeshk et al., 2011),
which was developed based on a stochastic point-source
model (Boore, 2003) for two selected magnitudes of M 5.5
and 7.5 and two spectral periods of 0.2 and 1.0 s. The
Pezeshk et al. (2011) GMPEs, which have been developed
for the CEUS, consider the RRUP distance as the distance
metric. Therefore, an extra step is required to convert the
RRUP distance to the RJB distance and then put the converted
RJB distance into the distance-conversion equations. As
shown in Figure 11, the discrepancy between ground mo-
tions predicted from the RRUP-based GMPE and the effective
distance-based GMPE at close distances and large earth-
quakes is described by the fact that the total energy intensity
of ground motions is released within a large fault rupture
area, not at a point on the fault. The discrepancy between
the effective RRUP- and RRUP-based models increases for a
magnitude scenario ofM 7.5 compared withM 5.5. Figure 11
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also explains that the finite-fault factor h is magnitude and
distance dependent. For example, the corrected distance-
scaling curve of the GMPE with the effective distance for
a magnitude of M 5.5 is placed above the uncorrected
distance-scaling curve; whereas it comes below the uncor-
rected distance-scaling curve of the GMPE for a magnitude
of M 7.5. This implies that the finite-fault factor is lower for
lower magnitude, and it increases with increasing magnitude
and distance.

Analytical Equation for Finite-Fault Factor

To account for the effects of magnitude and distance sat-
uration at close distances in stochastic point-source simula-
tions or GMPE functional forms, the effective RHYP distance
is often connected to the closest distance from the rupture
surface as follows:

EQ-TARGET;temp:intralink-;df20;55;225REFF �
����������������������
R2
RUP � h2

q
; �20�

in which h is known as the finite-fault factor (Boore et al.,
2014), equivalent point-source depth, pseudodepth, or ficti-
tious depth (Atkinson and Silva, 2000; Yenier and Atkinson,
2014). For a vertical fault, the rupture distance RRUP is simply
expressed as a function of the RJB distance, which is given by

EQ-TARGET;temp:intralink-;df21;55;129RRUP �
�������������������������
R2
JB � Z2

TOR

q
: �21�

For a given magnitude and RJB distance, ZTOR can be esti-
mated from the dimensions of the fault and the location of

the fault center. For a vertical strike-slip fault, the effective
distance (REFF) in equation (20) can be obtained from Ⓔ Ta-
ble S1 for a given magnitude and RJB distance. We developed
an analytical-based equation to obtain the finite-fault factor for
all magnitudes, ranging fromM 4.5 to 8 in 0.5-magnitude-unit
increments atRJB and the effective RHYP distances tabulated in
Ⓔ Table S1.

Different models have been proposed to obtain the
finite-fault depth at close distances (Atkinson and Silva, 2000;
Halldorsson and Papageorgiou, 2005; Yenier and Atkinson,
2014) from ground-motion databases. These empirical-based
models are used to validate the analytical-based model devel-
oped in this study. The finite-fault depth is logarithmically
modeled as a function of magnitude at a given RJB distance.
For example, using equations (20) and (21), the finite-fault
factor h for a specified RJB distance is given by the following
equation:

EQ-TARGET;temp:intralink-;df22;313;318 log�h� � a� bM; �22�

with a standard deviation of σ in log 10 units. Table 1 lists all
regression coefficients for different RJB distances up to 50 km.
However, the model can be prolonged for any arbitrary input
parameters and functions corresponding to the region under
study. The finite-fault factor indicates that the REFF distance
from a site can never physically be a value less than h.

Figure 12 is a comparison between the analytical-based
finite-fault factor obtained in this study with the empirical-
based equations proposed by other researchers for different
RJB distances. The analytical-based finite-fault factor model
at an RJB distance of 1 km is in good agreement with models
of Atkinson and Silva (2000) and Halldorsson and Papageor-
giou (2005), which are developed based on ground-motion
recordings with distances less than 30 km. As shown in this
figure, the finite-fault depth model developed in this study
not only is magnitude dependent but also is distance depen-
dent. However, at long distances, nonuniform weighting fac-
tors approaches uniform weighting factors because the effect

Table 1
Coefficients of the Finite-Fault Depth versus

Magnitude and Its Uncertainty

RJB a b σ

1 0.1075 0.1275 0.0210
2 0.0062 0.1513 0.0149
3 −0.0255 0.1600 0.0357
5 −0.1342 0.1825 0.0320
7 −0.1513 0.1901 0.0343
10 −0.2206 0.2076 0.0189
12 −0.2828 0.2198 0.0135
15 −0.2475 0.2197 0.0198
20 −0.2638 0.2287 0.0191
30 −0.3195 0.2468 0.0143
40 −0.3730 0.2643 0.0223
50 −0.3730 0.2706 0.0405

RJB, Joyner–Boore distance.
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of subfaults location on the fault becomes insignificant.
Yenier and Atkinson (2014) used data with distances up to
500 km, and thus their proposed model is regressed for all
distances, particularly for long distances for which the finite-
fault depth is larger. We preferred to model the finite-fault
factor versus magnitude at each RJB distance instead of gen-
erally regress at all RJB distances. The proposed analytical-
based model is derived for a vertical fault with dimensions
and seismological parameters explained in the example case.
For other dip angles and different tectonic regions, this
equation may be varied and can be re-evaluated using equa-
tion (14). It should also be mentioned that the finite-fault
factor is significantly affected by the azimuth. For instance,
for a vertical strike-slip fault, the site located on the middle of
the fault has the lowest finite-fault factor for a given RJB,
whereas the site located at the ends of the fault has the
highest finite-fault factor for the considered RJB. In fact, the
results for this example represent an average from all azimuth
angles around the fault.

Implication for the PSHA

The impact of using the effective distance on RJB- or
RRUP-based GMPEs derived based on the point-source def-
inition is illustrated through a simple PSHA study for a given
large areal source. In general, PSHAs are performed using
integration over areal sources in which sources are subdi-
vided into small cells as point sources. Delineation of areal
seismic sources is often used for the regions with the low-to-
moderate seismicity such as CEUS, in which the lack of
information on the geometry of active faults is anticipated.

In the PSHA process, the distance between each cell and
the site is defined as REPI or RHYP distances. As stated
previously, GMPEs are often developed based on distance
metrics such as RJB and RRUP to account for the effects of
extended ruptures rather than on distance metrics such as
REPI and RHYP that represent point-source models. The effec-
tive distance-conversion equations developed in this study
(see equation 14) can be used to estimate the expected
GMIM by adjusting a given RJB distance. One way to have
consistency between distance metrics used in GMPEs and
distance metrics used in the PSHA process for areal seismic
sources is to develop a table of effective distance for the pairs
of magnitude–JB distance bins using the distance-conversion
equations (12) and (14). For example, Ⓔ Table S1 lists the
magnitude–REFF distance pairs for a random-ordinated
vertical-fault source of earthquakes at different RJB distances
with the assumptions and seismological parameters men-
tioned previously. To demonstrate the influence of using in-
consistent distance metrics on PSHA results at a given site, a
circular areal seismic source with a radius of 100 km is con-
sidered in which a rock site is located at the center of an areal
source similar to the Bommer and Akkar (2012) model.
The seismicity of the areal source is assumed to follow a
truncated exponential recurrence. For two low- and high-
seismicity scenarios, the seismic activity rates are set to 0.5

and 5 events per year, and b-values are set to 1 and 0.85,
respectively. The maximum and minimum moment magni-
tudes are truncated betweenM 5.0 and 8.0, respectively. The
RRUP-based GMPEs developed by Pezeshk et al. (2011) for
the CEUS are applied for these two PSHA scenarios to
demonstrate the effects of using inconsistent source-to-site
distance metrics on the seismic hazard curves.

Figures 13 and 14 depict the effect of using various
source-to-site distance metrics on seismic hazard curves at
two spectral periods of 0.2 and 1.0 s for the low- and high-
seismicity scenarios, respectively. The comparison between
seismic hazard curves displays that the effective REPI

distance-metric conversion in GMPEs that are developed
based on the RJB- or RRUP-based distance metrics results in
significantly higher seismic hazards in PSHA calculations,
particularly at the lower probability of exceedance that are
often used for the design of significant facilities such as
nuclear power plants.

As listed inⒺ Tables S1 and S4 for a vertical strike-slip
earthquake of magnitude M 7.0, the effective RHYP and REPI
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Figure 13. Seismic hazard curves for a rock site at the center of
a circular high-seismicity source with a radius of 100 km and for a
period of (a) 0.2 and (b) 1.0 s using an RJB-based GMPE. The color
version of this figure is available only in the electronic edition.
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distance-conversion values for a sample RJB distance of
15 km are about RHYP � 24:83 km and REPI � 21:67 km,
respectively. In the PSHA study of areal seismic sources, the
distance value of 15 km should be considered as an effective
RHYP or REPI distance. The effective RHYP and REPI distances
of 15 km are equivalent to the RJB distance of about 5.5 and
9.5 km, respectively (see Ⓔ Tables S1 and S4) because the
RJB distance is always less than or equal to RHYP and REPI

distances. Therefore, for example, if the REPI distance is used
in PSHA, a distance of about 9.5 km should be entered into
the fault-source-based GMPE to obtain the adjusted value of
RJB distance, which is consistent with the total energy inten-
sity of earthquake on extended-fault sources distributed uni-
formly within the areal source. The equivalent smaller RJB

distances for the epicentral distances in the areal seismic
source lead to increasing the seismic hazard results in a
PSHA study, particularly at low probability of exceedance
and long spectral periods.

The REFF distance concept explains that it is never pos-
sible to place the site on the equivalent point source, and this

is exactly what distance saturation means. For instance, if the
site is located on the center of the fault, the site sees the effect
of many subfaults around itself. Therefore, in areal source
hazard calculations, the minimum effective distance does not
approach zero, but it saturates with magnitude and distance
to capture the effects of radiated seismic waves from different
parts of the fault, as well as from the propagation path.

According to the value from these tables, it appears that
the denominator of the equation (18) is always larger than the
nominator; therefore, the standard deviation of the RJB

distance inverted from a given REFF distance is less than the
standard deviation of the converted REFF distance for a given
RJB distance.

Conclusions

In this study, an analytical-based approach is presented
to derive source-to-site distance-conversion equations for
various distance metrics defined in the published GMPEs.
We developed the analytical-based distance-conversion
equations in two phases. In the first phase, the distance-
conversion equations were derived to convert between the
RJB distance and REPI or RHYP distances (see equations 1
and 7). These conversion equations can be inverted and used
for performing the PSHA study using the empirical-based
GMPEs developed based on real observed ground motions.
In the second phase, the effective distance-conversion equa-
tion is derived to convert between the REFF distance and the
RJB distance (see equation 14) for use in the stochastic-based
GMPEs, in which the effect of extended-fault source is
ignored, or for use in stochastic ground-motion simulations.

The proposed general effective distance-conversion
approach is dependent on region-specific material properties,
and it can be used not only for random-oriented faults but also
for fault ruptures that need to be constrained in strike and dip
angles, based on the tectonic and geologic features in areal
sources. In contrast with the EPRI and USGS approaches,
JB surface with a given RJB distance is defined for virtual sites
around an extended-fault rupture, and then the converted REPI

and RHYP distances are derived analytically using the law of
sines and cosines. The distance-conversion process can also be
combined with region-specific geometrical spreading and
attenuation functions to convert the resultant point-source
distance metrics into new effective REPI or RHYP distance met-
rics that may be used in PSHA and equivalent point-source
ground-motion simulations to account for the effect of
extended-fault sources near the sites.

The REFF distances, which capture both effects of the
extended-fault source and the wave propagation path on
ground motions, indicate that the same amount of energy in-
tensity should be captured at the virtual site, relative to the
entire fault rupture during a large-magnitude earthquake. The
following steps are required to determine the general effec-
tive distance conversion developed in this study for use in the
PSHA studies and the equivalent point-source ground-
motion simulations:
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Figure 14. Seismic hazard curves for a rock site at the center of
a circular low-seismicity source with a radius of 100 km and for a
period of (a) 0.2 and (b) 1.0 s using an RJB-based GMPE. The color
version of this figure is available only in the electronic edition.
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• define the size of rectangular fault plane of width W and
length L, with respect to magnitude, using the source scal-
ing law (e.g., Wells and Coppersmith; 1994; Somerville
et al., 2001);

• define the probability distribution function for the focal
depth (e.g., truncated normal distribution and Weibull
distribution) and then the location of the fault in depth;

• define the fault dip angle and constrain the fault strike,
based on the tectonic and geologic information;

• define region-specific geometrical spreading and attenua-
tion functions, based on the seismological parameters
obtained for the region of interest;

• determine the effective distance using equation (14) for a
given reference frequency, and then develop magnitude-
effective distance pairs (distance conversion) in a table; and

• use the table of distance conversion in the PSHA study for
areal seismic sources, in which earthquakes are modeled as
epicenters or hypocenters, and in the equivalent point-
source model to simulate strong ground motions.

Use of empirical distance conversions such as those pro-
posed by EPRI (2004) and Scherbaum et al. (2004) simply
breaks down for earthquake epicenters close to the site,
where the site is located within a given areal seismic source
that is likely to dominate the contribution to hazard, particu-
larly for low annual frequencies of exceedance. The general
effective distance-conversion approach developed in this
study overcomes this limitation by defining the effective
epicenters or hypocenters. The effective distances do not
approach zero and saturate with magnitude and distance to
capture the effects of radiated seismic waves from different
parts of the fault as well as the propagation path.

As stated previously, the USGS distance-conversion
results are applicable only for the vertical fault ruptures. In this
study (see Fig. 9), comparison between a dipping fault and a
vertical fault indicates that the dipping fault source model with
a surface projection of fault at the ground surface predicts a
longer effective distance (a lower intensity of shaking) than
the vertical fault source model in which the earthquake is uni-
formly distributed along the line projection of fault relative to
the surface projection of fault at the ground surface. The effec-
tive distance-conversion equation proposed in this study is
generic and canbeused for shallowanddeep earthquakes, small
and very large earthquakes, and even induced earthquakes.

Induced earthquakes are also of small magnitudes at
shallower depths than the range of magnitudes and depths of
tectonic earthquakes that are covered by published GMPEs.
Using the RJB-based GMPEs relative to point-source-based
GMPEs in the PSHA study to capture the ground motions for
the induced events may lead to reduction of predicted
motions at short distances to a given site.

Data and Resources

No data were used in this article. Most of the analyses
were performed using the MATLAB R2015a release

(www.mathworks.com/products/matlab, last accessed De-
cember 2015). Some plots were also made using MATLAB.
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