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An automated performance-based design methodology to optimize structural
and nonstructural system performance is outlined and it is shown that it can be
used to enhance understanding of structural steel system design for minimum
life-cycle costs. Performance is assessed using loss probability with direct
economic loss expressed as a percentage of the building replacement cost.
Time-based performance assessment is used to compute the expected annual
loss of a given steel framing system assuming exposure to three seismic hazard
levels. Damage to the structural system, nonstructural displacement-sensitive
components, and nonstructural acceleration-sensitive components is character-
ized using fragility functions. A steel building with three-story, four-bay topol-
ogy taken from the literature is used to demonstrate application of the algorithm
with subsequent comparison of designs obtained using the proposed methodol-
ogy and others found in the literature. [DOI: 10.1193/1.3609877]

INTRODUCTION

Building codes and design specifications intend to guide the development of structural
designs that have acceptable levels of life safety performance when exposed to ground
motions, but they provide little direct guidance for altering designs to reduce the potential
for damage to the structural and nonstructural systems during a building’s service life. The
structural engineering profession recognized this limitation and procedures for first-genera-
tion performance-based seismic design evolved (ATC 1996, FEMA 2000b). Next genera-
tion performance-based engineering (PBE) methodologies are being developed to further
address these critical issues and enhance the seismic performance of buildings (FEMA
2000c; FEMA 2006). Several recently completed efforts are assembling the necessary
pieces for these next-generation design procedures to be put into practice (FEMA 2007;
FEMA 2008).

The common conceptual thread throughout all performance-based engineering method-
ologies is inclusion of uncertainty. Uncertainty and variability present in predicting seismic
demand and response suggest that PBE methods be posed within a risk-based context. A
robust conceptual framework for PBE has recently been proposed as the foundation for
activities at the Pacific Earthquake Engineering Research (PEER) center. The framework
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consists of four main analysis steps (Cornell and Krawinker 2001; Hamburger et al. 2004;
Krawinker 2006; Moehle and Deierlein 2004; Zareian and Krawinker 2006a; Zareian and
Krawinker 2006b): hazard analysis; structural analysis (ground motion response simula-
tion); damage analysis; and loss analysis. The PEER framework equation is often written in
a convenient form to facilitate design-centric (Krawinker 2006; Miranda and Aslani 2003;
Moehle and Deierlein 2004) and simplified PBE design and analysis (Zareian and Kra-
winker 2006a). The mean annual frequency of a decision variable (DV) being exceeded can
be represented as (Cornell and Krawinker 2001)

kðDV Þ ¼
ð ð ð

G DV jDMð ÞdG DM jEDPð ÞdG EDPjIMð Þdk IMð Þ (1)

where G DV jDMð Þ is the probability that the DV exceeds specified values given that a par-
ticular damage measure (DM) is reached; G DM jEDPð Þ is the probability that a DM will be
exceeded given a particular engineering demand parameter (EDP); G EDPjIMð Þ is the prob-
ability that an EDP will be exceeded given that a particular intensity measure (IM) occurs;
and k IMð Þ is the mean annual frequency (MAF) of an intensity measure (seismic hazard
curve). If the most general form of the PEER framework (Hamburger et al. 2004; Krawinker
2006) is to be implemented, probability density functions describing all random variables
must be available.

Examples of decision variables are: casualties, direct economic loss, and indirect eco-
nomic losses. These variables are the basis for goals of minimizing “deaths, dollars, and
downtime” resulting from the seismic hazard (Hamburger et al. 2004). Damage measures
depend upon the type of building component. Common performance levels that can be asso-
ciated with the level of damage for structural components are Immediate Occupancy (IO)
and Collapse Prevention (CP) (FEMA 2000a; FEMA 2000b). Damage to displacement-
sensitive nonstructural building components (NSD), acceleration-sensitive nonstructural
building components (NSA), and the structural system (SS) has also been characterized
using four damage measures: slight, moderate, extensive and complete (DHS 2003).
Typical engineering demand parameters associated with these damage measures include
interstory drift, floor acceleration, column compression force, and column splice force.

Decision variables and damage measures can be represented as binary damage state
indicator variables (Cornell and Krawinker 2001) and the probabilities, G DV jDMð Þ and
G DM jEDPð Þ, can then be established using fragility curves or fragility surfaces (DHS
2003; FEMA 2006; FEMA 2007). Equation 1 describes a highly complex structural engi-
neering problem because each parameter (IM, EDP, DM, DV) remains a continuous random
variable. Losses resulting from damage to nonstructural and structural components within
the building system are most-often triggered in a discrete manner (Miranda and Aslani
2003). As a result, some of the integrations contained in Equation 1 are often carried out
with discrete summation for all pertinent components (Miranda and Aslani 2003). In next-
generation PBE methodologies, the decision variables are likely to be conceptualized rela-
tively simply as deaths, dollars and downtime (Hamburger et al. 2004; Hamburger 2004).

There has been a recent trend toward developing formal algorithms for multiple-
objective optimal design for seismic hazard where design objectives are to minimize con-
struction cost and attain target performance levels. Many of these previous efforts involved
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first-generation performance-based design methods (Alimoradi 2004; Alimoradi et al. 2006;
Alimoradi et al. 2007; Foley et al. 2007; Liu et al. 2003; Liu et al. 2004a; Liu et al. 2004b;
Liu et al. 2005) and some have extended these methodologies to include reliability-based
formulations (Tsompanakis and Papadrakakis 2006). There is opportunity to formulate
decision-making tools using optimization algorithms (evolutionary computation) and the
foundation laid by these next generation seismic design methods.

The present research effort utilizes the PEER framework for performance based engi-
neering within the context of automated and optimized structural design of steel framing
systems. The algorithms developed are intended to serve as the foundation for future work
in an area of structural engineering design involving decision-making tools that can be used
during preliminary and final design phases. Seismic performance is quantified using the
probability of direct economic monetary loss expressed as a percentage of the building
replacement cost. A risk-based optimization problem is formulated as: (1) minimize the ini-
tial capital investment in the structural system; and (2) minimize the expected annual direct
economic losses resulting from damage to structural and nonstructural components. An evo-
lutionary algorithm (genetic algorithm, or GA) is used to facilitate automated design of steel
frames to meet these multiple performance objectives. Expected annual loss and initial con-
struction cost are incorporated into the GA fitness function along with appropriate penalty
formulations to consider constraints. The objectives utilized in the present study focus on
average annual direct economic loss as the decision metric.

RISK-BASED DESIGN OPTIMIZATION

Formulating optimization problems involving performance-based engineering concepts
begins in the same manner as all optimization problems—with formulation of the objec-
tive(s) and constraints. The objectives, however, are slightly more complex because per-
formance is often defined using measures that are quite a bit more involved than traditional
optimization problems. It is prudent to provide the reader with a high-level overview of
performance-based design so that the present contribution to the body of knowledge can be
properly framed. Further details of the design optimization problem and the algorithm used
to generate automated and optimized designs will follow the overview.

Figure 1 illustrates a flowchart for the performance-based design methodology imple-
mented in the current research effort within the context of an evolutionary algorithm. The
risk-based optimization problem statement used requires complex structural analysis and as
a result, an evolutionary algorithm is used to drive the selection of design variables. The
present research effort considers planar structural steel framing systems and a reduced
search space of design variables taken from the AISC database of steel wide-flange mem-
bers. Inelastic time history analysis using suites of ground motions characteristic of the seis-
mic hazard selected is used to assess the building performance. The building performance is
evaluated using a time-based performance assessment, which is an assessment of probable
building performance over a specified period of time, considering all earthquake scenarios
that could occur during that period of time, and the probability of occurrence of each. The
performance assessment process includes: evaluation of the building’s response to earth-
quake shaking; estimation of damage; consequence of damage incurred (computation of
loss). Once the performance assessment is complete, fitness function(s) are computed and
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traditional GA reproduction operators are applied to find a new population of candidate
designs. The evolutionary procedure is repeated until stopping criteria are met.

RISK-BASED OPTIMIZATION STATEMENT

The first objective of the present research effort is to formulate an optimization problem
statement that aligns itself more closely with the needs of all stakeholders in the building
process. The second is to develop an algorithm that will provide the structural engineer with

Figure 1. Performance-based design flow chart.
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decision-making tools to aid in his=her discussions with building stakeholders to enhance
understanding of initial capital investment and the resulting impact on exposure to loss.
Both of these objectives can be embodied in a risk-based optimization statement and its sub-
sequent solution using evolutionary computation.

When design optimization statements are posed within the common language of all
participants in the building process: owners, architects, mechanical=electrical=plumbing
engineers, curtain-wall engineers; structural optimization research endeavors can have
much greater impact. The present effort considers the following optimization problem
statement:

Minimize:
Weight of the Structural System, W
Expected Annual Loss, EAL
Subject To:

qCP � 0:90 (2)

qIO � 0:50 (3)P
Mp;colP

Mp;beam

� �
i

� 1:2 (4)

where the confidence level in meeting immediate occupancy (IO) performance objective
and collapse prevention (CP) performance objective are denoted as qIO and qCP,
respectively; Mp;col, and Mp;beam are the plastic moment capacity of a column and a beam,
respectively at joint i.

Minimizing the weight is a simplistic way to minimize the initial capital investment in
the structural system. It is recognized that fabrication and erection are very important addi-
tional metrics for measuring capital investment and past research efforts have incorporated
alternate objective formulations to reflect this (Liu et al. 2006). The expected annual loss
currently considers direct economic losses resulting from damage to the structural steel
system, nonstructural drift-sensitive components, and nonstructural acceleration-sensitive
components computed using fragility functions (DHS 2003). Fragility functions (or curves)
are mathematical expressions that indicate the conditional probability of incurring damage
associated with a particular damage state as a function of a demand parameter.

In this study, HAZUS fragility functions are used to compute probabilities of damage;
however, HAZUS fragility curves associated with structural system damage do not provide
sufficiently accurate assessment of collapse potential and its ability to be occupied immedi-
ately following a ground motion event. As a result, two confidence-level constraints have
been included in the optimization problem (FEMA 2000a). Any potential design must have
at least 90% confidence in meeting the CP performance objective (qCP � 0:90) and at least
50% confidence in meeting the IO performance objective (qIO � 0:50). It is well known
that strong-column weak-beam (SCWB) behavior is a desirable characteristic in systems
designed to respond to deformations imposed during ground motion events. As a result, the
SCWB criteria found in U.S. design specifications (AISC 2005b) for steel systems
are included as a third constraint on candidate designs. The present formulation includes
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uncertainties in engineering demand parameters, intensity measures, and damage measures.
There currently is no uncertainty in analysis modeling considered. Further details of the
problem formulation are available (Rojas 2008; Rojas et al. 2007).

GA-BASED SOLUTION

The optimization problem statement contains a significant level of complexity in assessing
satisfaction of the constraints and the degree to which a design meets the stated objectives for
performance. Evolutionary computation has been shown to be very effective at providing can-
didate design solutions to very complex optimization problems (Foley 2007) and a genetic
algorithm (GA) is utilized to tackle the optimization problem formulated in this research.

The GA is an accepted algorithm for engineering optimization and its theory will not be
presented here. The interested reader can refer to the seminal work (Goldberg 1989) and
other reviews of applications of evolutionary computation in structural engineering research
(Foley 2007). The present optimization problem considers two objectives. There are several
approaches for handling multiple-objective optimization problems: establishing a single fit-
ness using weighting factors (Alimoradi et al. 2007; Foley et al. 2007); direct utilization of
Pareto fronts (Cheng 2002; Cheng and Li 1997); and min-max fitness definitions (Balling
and Wilson 2001). Excellent resources describing methods often used in multiple-objective
optimization using evolutionary algorithms are available (Deb 2002). In this study, pareto
front is used to summarize the optimization results. A pareto front is a plot of the objective
functions being optimized where a set of optimum designs that meet all constraints shows a
well-defined trend.

The current research effort establishes a single fitness value using weighting factors.
The fitness of individual j at generation k during the evolution is assigned using,

Fjk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 �

Wmax �Wjk

Wmax

� �2

þð1� a1Þ �
EALmax � EALjk

EALmax

� �2
 !vuut � f CP

jk � f IO
jk � f SCWB

jk (5)

Wmax and EALmax are the maximum expected values of system weight for the topology con-
sidered and maximum expected annual loss for the ground motion records considered,
respectively. Wjk and EALjk are the weight and expected annual loss for individual j in gen-
eration k of the evolution. a1 is a weight coefficient that is changed gradually during the
evolution from 0 to 1 with 0.05 increment; and f CP

jk , f IO
jk , and f SCWB

jk are penalty functions for
ensuring minimum recommended confidence levels in meeting structural performance and
for ensuring strong-column weak-beam behavior.

Penalty functions are problem specific and are defined for this study based on methodol-
ogies explain in Goldberg (1989) such that convergence is attained as smooth and fast as
suitable for the problem. The general form of the penalty functions for immediate occu-
pancy performance, f IO

jk , and collapse prevention performance, f CP
jk , are given by

f Y
j ¼ 2�

qY
j

qY
min

 !�2

for qY
j � qY

min (6)
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where Y is the performance objective (collapse prevention, or CP; or immediate occupancy,
or IO). qY

min is the minimum confidence level in meeting performance Y, and qY
j is the value

of that quantity for individual j. For CP and IO performance-level constraints, these values
are set to qCP

min ¼ 0:90 and qIO
min ¼ 0:50 as alluded to earlier.

The SCWB requirement is enforced by constraint in Equation 7 which needs to be satis-
fied at each beam-to-column connection in the structure (i.e., i ¼ 1;…;Njts, where Njts is
the number of beam-to-column joints). Therefore, penalty function f SCWB

jk is evaluated based
on the smallest plastic moment capacity ratio over all connections (joints) in the structure,
Njts,

f SCWB
j ¼ 2� 1

1:2

P
Mp;colP

Mp;beam

� �
i

� ��2

for

P
Mp;colP

Mp;beam

� �
i

� 1:2 (7)

where Mp;col, and Mp;beam are the plastic moment capacity of a column and a beam at joint i,
respectively. Further description of the design problem statement and its recasting into an
unconstrained (fitness-based) optimization problem suitable for solution using evolutionary
computation is available (Rojas 2008).

BUILDING TOPOLOGY

A three-story four-bay frame developed as part of the SAC Joint Venture (FEMA
2000d) is used to illustrate implementation of the algorithm proposed. The topology of the
structural steel moment resisting frame considered is shown in Figure 2.

The search space for design of the frame is composed of nine design variables. The
structural steel used for all beams and columns in the framework is A992 Grade 50-ksi. The
2-D planar framework analysis model assumes that member centerline-to-centerline dimen-
sions define the topology and no panel zone deformations or rigid end zone modeling is

Figure 2. Frame topology for design example.
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included. Lumped mass modeling at the beam-to-column connection locations is utilized.
The mass of the structure is concentrated at its joints as shown in Figure 2 and its magnitude
varies from design to design. No vertical or rotational inertial loads are assumed.

Building components are separated into three different performance groups: structural
system components (SS) evaluated using the interstory drift angle (ISDA); nonstructural
drift-sensitive components (NSD); and nonstructural acceleration-sensitive components
(NSA). The performance of NSD components is quantified using the ISDA, while perform-
ance of NSA components is characterized using peak floor acceleration (PFA).

EARTHQUAKE GROUND MOTIONS

Three sets of ten strong ground motion records representing 2%, 10%, and 50% proba-
bilities of exceedence in 50 years (2=50, 10=50, and 50=50, respectively) are selected from
the records developed by the SAC steel project (Somerville et al. 1997) for the city of Los
Angeles, California. The time histories in this database were scaled. The spectral matching
was performed in EZ-FRISK using a time domain approach based on the RSMP99 code of
the computer program SpectralMatch developed by Norman Abrahamson (Risk Engineer-
ing 2005). The seed ground motions properties and scaling process to obtained the time his-
tories used in this study is presented in detail in (Rojas 2008). The selected and scaled
records represent the target design spectra developed according the National Earthquake
Hazard Reduction Program (NEHRP) for site category D, firm soil, with de-aggregation of
hazards of M6.75-7.5 at closest distance of 2–20 km and M5-7 at 5-15 km for 2=50, 10=50,
and 50=50 exceedence probabilities (Somerville et al. 1997). The ground motion accelera-
tion records are used as input for the analytical model to compute the median of peak
response quantities (i.e., ISDA, PFA) for the performance-levels associated with the ground
motion record probabilities. The thirty horizontal ground motion acceleration records used
are shown in Figure 3. No vertical component accelerations are considered.

PERFORMANCE ASSESSMENT

The optimal design problem includes two objectives: weight minimization and minimi-
zation of expected annual loss (EAL). A time-based performance assessment of each candi-
date design is necessary to estimate the EAL and it is the probable earthquake loss consider-
ing all potential earthquakes that may occur in a given time period and the mean probability
of the occurrence of each. This step in the design process can be subdivided into the follow-
ing tasks: response simulation; damage assessment; and loss estimation. Inelastic time his-
tory analysis (THA) is used to evaluate building response and obtain engineering demand
parameter estimates that are used in conjunction with fragility functions to define perform-
ance of the SS, NSD, and NSA components under the suites of ground motion accelerations
corresponding to each seismic hazard level (2=50, 10=50, and 50=50).

DRAIN-2-DX (Prakash et al. 1993) is used to carry out the inelastic THA required to
evaluate the designs during execution of the evolutionary algorithm. A steel beam-column
yield surface is used for column members and a beam type surface (no P-M interaction) is
used for girders (Powell 1993). The yield surfaces for the beams and beam-columns used
are shown in Figure 4.
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Figure 3. Strong ground motion record sets.

Figure 4. Yield surfaces assumed in the nonlinear response-history analysis: Beam member at
the left; and beam-column member on the right.
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The axial tensile yield capacity of a beam-column in the absence of bending moment is
defined as Pyt and it is based upon the yield stress acting on the gross cross-sectional area
(AISC 2005a). The axial compression capacity of the beam column in the absence of bend-
ing moment is defined as Pminor

nc and it corresponds to the flexural-buckling capacity of the
member about its minor axis of bending assuming that the un-braced length is the story
height (156 inches) and the effective length factor is 1.0 (AISC 2005a). Mþp and M�p are the
positive and negative plastic moment capacities of the cross-section about the cross-
section’s major axis and it is computed assuming no axial loading is present.

The response parameters computed using the inelastic THA are interstory drift angle
and peak floor accelerations. Damage to the SS, NSD, and NSA performance groups is
characterized using HAZUS fragility functions (DHS 2003) assuming five discrete damage
states: none, slight, moderate, extensive, or complete. The conditional probability of a dam-
age measure being at, or exceeding, a particular damage state, ds, given any engineering
demand parameter, EDP, is computed using the normal cumulative distribution function, U,
given by (DHS 2003)

P DM � ds EDPj½ � ¼ U
1

bds

� ln EDP

EDPds

� �
(8)

EDPds is the median value of the EDP considered (e.g., ISDA, PFA) at which the threshold of
a damage state, ds, is reached; and bds is the lognormal standard deviation of the EDP and ds
considered. ISDA is used as the engineering demand parameter for characterizing the response
of the SS and NSD components. PFA is used as the engineering demand parameter character-
izing the damage for NSA components. The median values of these parameters (i.e., ISDAds

and PFAds) as well as the damage-state lognormal standard deviation, bds used in this study
are given in Table 1. These values are similar in magnitude to those used in HAZUS for a
High-Code seismic design level based on 1994 UBC lateral force design requirements of Seis-
mic Zone 4) and steel moment resisting frame buildings (DHS 2003).

Computing the probability that the damage measure will be in a specific damage state is
done in an indirect manner using the fragility functions. Figure 5 schematically illustrates
fragility functions for the 5 damage states considered.

The shaded areas between fragility function curves indicate the damage state probabil-
ities. As an example, consider the EDP (i.e., interstory drift) between the third floor level

Table 1. Fragility curve parameters for structural and nonstructural components

Damage State

Component Curve Parameter Slight (SLT) Moderate (MOD) Extensive (EXT) Complete (COM)

SS ISDAds 0.004 0.008 0.020 0.0533

bds 0.50 0.50 0.50 0.50

NSD ISDAds 0.004 0.008 0.025 0.050

bds 0.50 0.50 0.50 0.50

NSA PFAds (g) 0.30 0.60 1.20 2.40

bds 0.60 0.60 0.60 0.60
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and roof being ISDA3�R ¼ 1:68. Given this engineering demand parameter, the probability
that the damage will be moderate (MOD) is computed as shown on the figure. Similar com-
putations are performed for structural system (SS), nonstructural displacement-sensitive
(NSD), and nonstructural acceleration-sensitive (NSA) components.

Loss estimation resulting from damage to nonstructural and structural components
within the building system is based upon direct economic loss (DHS 2003). It is understood
that indirect losses (e.g., facility downtime), injuries and deaths are very important consider-
ations. The present formulation can be used to estimate these losses as well as deaths. As a
result, it can facilitate the complete “deaths, dollars, and downtime” loss estimate.

The contribution from given component group (e.g., SS, NSD, NSA), to the expected
direct economic loss as a percentage of the building replacement cost (BRC) can be esti-
mated using (DHS 2003);

E½LPG� ¼
X5

ds¼2

PPG � RCPG
ds (9)

where PPG is the probability of building being in performance group PG damage state ds.
RCPG

ds is the repair cost ratio for performance group PG due to damage state ds. The damage
measure, ds, varies from slight (SLT, 2) to complete (COM, 5). The damage state of none

Figure 5. Damage state probability corresponding to engineering demand parameter.
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(NON) does not contribute to the loss summation. The repair cost ratios expressed as a func-
tion of the building replacement cost (BRC) used in this study are given in Table 2.

The total expected direct loss is the summation of the expected loss for all performance
groups considered (i.e., SS, NSD, and NSA),

E½LT IM �j ¼ E½LSS IM �j þ E½LNSD IM �j þ E½LNSA IM �j (10)

For any given ground motion, the performance groups will have expected probabilities of
being in specific damage states given an engineering demand parameter. For the three-story
topology, there are three potential interstory drifts and three potential peak floor accelera-
tions from which to evaluate damage. Rather than computing expected loss at each floor
level or story, the mean interstory drift and mean peak floor acceleration are used as the ba-
sis of loss computations. As a schematic example, probabilities of being in NON, SLT,
MOD, EXT, COM damage states are determined to be 0.17%, 5.93%, 54.63%, 37.93%,
and 1.33%, respectively. These mean probabilities must all sum to 100% and the damage
state probabilities can be expressed in bar-graph fashion as shown in Figure 6. The probabil-
ity of extensive damage given a mean ISDA is explicitly indicated on the bar graph.

The bar graphs shown in Figure 6 also illustrate the distribution of damage states for the
SS, NSD and NSA components. The schematic example given in Figure 6 illustrates the
total expected direct economic loss for SS, NSD and NSA components would be 18.19% of
the building replacement cost.

The simple example in Figure 6 illustrates computation of the expected loss for one
ground motion and one realization of the mean engineering demand parameters. The pro-
cess schematically depicted in Figure 6 is repeated for each ground motion in the suite of
ground motions to obtain a cumulative distribution of losses for each hazard level: 50=50,
10=50, and 2=50. Total repair costs (expected direct economic loss) for all ground motions
at all hazard levels are computed and these repair costs are used to fit a lognormal cumula-
tive distribution function (CDF) describing the probability of total repair cost exceeding a
defined value. Therefore, a continuous range of probabilities can be used in lieu of the dis-
crete values taken from the ten ground motion simulations. Sample CDFs as well as more
detail explanation of the process is available in (Rojas 2008).

Time-based performance assessment is an estimate of the probable earthquake loss
considering all potential earthquakes that may occur in a given time period and the mean

Table 2. Repair cost ratios (RCPG
ds ) expressed as percentage of building replacement cost (DHS

2003)

Damage State

Performance Group: PG Slight (SLT) Moderate (MOD) Extensive (EXT) Complete (COM)

SS 0.4 1.9 9.6 19.2

NSD 0.7 3.3 16.4 32.9

NSA 0.9 4.8 14.4 47.9

Total 2.0 10.0 40.4 100.0
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probability of the occurrence of each. The earthquake-intensity variable is described by a
seismic hazard curve, which plots the relationship between earthquake intensity and its
mean annual frequency of exceedence. The hazard curve considered in the present study is
given in Figure 7. Expected Annual Loss (EAL) curves are developed for intensities of
earthquake shaking that span the intensity range of interest and are then integrated
(summed) over the hazard curve using

P½RCT > rcT � ¼
ð
k

P RCT > rcT jIM½ �dkðIMÞ �
X3

i ¼ 1

1� P RCT � rcT jIMi½ �ð Þ � Dk IMið Þ

(11)

where 1� P RCT � rcT jIMi½ �ð Þ is the probability of loss exceeding rcT for an earthquake
with intensity of IM ; Dk IMið Þ is the mean annual recurrence interval of a given ground
motion intensity; and i is the hazard level.

There are three hazard levels over which the losses are aggregated. As a result, Equation
11 can be written as

P½RCT > rcT � ¼ 1� P RCT � rcT jIM2=50

� �	 

� Dk IM2=50

	 

þ 1� P RCT � rcT jIM10=50

� �	 

� Dk IM10=50

	 

þ 1� P RCT � rcT jIM50=50

� �	 

� Dk IM50=50

	 
 (12)

Figure 6. Loss analysis for example distribution of losses.
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P RCT � rcT jIMi½ � is obtained from the lognormal cumulative distribution function fitted to
the data from each ground motion and DkðIMiÞ are obtained from the hazard curve. The
range of mean spectral acceleration of interest was selected as 0.08 g to 0.79 g; the lower
limit was selected to avoid getting into the most variable part of the hazard curve and the
upper limit is the spectral acceleration corresponding to a mean annual frequency of exceed-
ance of 0.0002. This range of mean spectral acceleration was split into three intervals so
that the midpoint value in each interval matches the probability of exceedance that charac-
terizes each set of time histories used in the study. Figure 7 shows a hazard curve for Los
Angeles (city considered in this study) split into three discrete intervals resulting in the fol-
lowing mean annual recurrence interval: DkðIM50=50Þ ¼ 0:0440; DkðIM10=50Þ ¼ 0:0051;
and DkðIM2=50Þ ¼ 0:0007.

Aggregated loss from all intensity measures is obtained by multiplying each lognormal
CDF fit to the ground motion loss data by the annual frequency of shaking in the interval of
earthquake intensity used to construct the loss curve. A summation of the annual frequen-
cies for a given value of the loss is therefore given by Equation 12.

A higher-level description of loss can be termed the expected annual loss. Annualized
loss is a powerful metric for those tasked with defining standards of performance for a
building. The mean expected annual total loss (EAL) is computed by integrating the aggre-
gated loss curve (Figure 8). The example shown in this figure illustrates an expected annual
loss of approximately 0.653% of the building replacement cost. The expected annual loss is

Figure 7. Peak ground acceleration hazard curve used in the present study.
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one of the objectives used in the present design optimization and the previous discussion
illustrates the layers of complex structural analysis required to evaluate this objective. As a
result, the optimization problem considered in this study is extremely complicated and
mathematical (gradient-based) optimization procedures simply cannot be formulated to
guide member selection for the frame topology chosen.

GENETIC ALGORITHM

The complexity of the optimization problem tackled in this study precludes application
of mathematical (gradient-based) optimization algorithms. Evolutionary algorithm-based
procedures have been shown to be very powerful tools to solve widely varying and complex
optimization problems (Foley 2007) and a genetic algorithm is employed in this study to
guide member selection and facilitate automated design of the framing systems and genera-
tion of decision tools. The fundamental theory and application of the genetic algorithms is
very well defined and details will not be provided here. The interested reader can find
typical formulations of genetic algorithms in several textbooks (Coley 2001; Deb 2002;
Goldberg 1989) and a review of application and fundamental theory is available (Foley
2007).

The expected annual loss and system weight are used to establish candidate fitness
according to Equation 5. After evaluating the performance of each design in the GA popula-
tion, GA reproduction operators (i.e., crossover, mutation) are applied to find a new popula-
tion. This procedure is repeated until there is no increase in the fitness of the most highly fit

Figure 8. Example aggregated (annual) loss.
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individual over the previous 20 generations, or a maximum number of generations equal to
300 is reached.

An existing genetic algorithm driver (Carroll 2004) is used in the present study because
of its reliability and the ability to tune the genetic algorithm using a wide variety of well
documented mechanisms. Application of the genetic algorithm in this study includes a pop-
ulation size of 100, probability of crossover of 60%, and probability of mutation of 3.5%.
Reproduction includes parent chromosomes producing two offspring with 4.0% probability
of creep (Carroll 2004). It should be noted that intelligent GA operators (e.g., mutation,
crossover) similar to the adaptive strategies to be used in this work have been utilized to
tackle very complex optimization problems (Foley and Schinler 2001; Foley and Schinler
2003; Foley et al. 2002; Schinler and Foley 2001; Voss and Foley 1999a; Voss and Foley
1999b) and have been shown to be robust tools to solve very complicated optimization
problems. Such operators are not used in the present study.

The search space for the GA is composed of 64 AISC steel wide-flange sections with
compact cross-section typically used for columns (e.g., W14, W12, W10, and W8) and 64
AISC steel wide-flange sections with compact cross-section typically used for beams (e.g.,
W44, W40, W36, W33, W30, W27, W24, W21, W18, W16).

The computational cost of the implemented formulation depends on the number of
degrees of freedom of the structure; the complexities of the objective function and search
space; the number, duration, and sampling rate of the strong ground motion input records;
and the level of gravitational forces on the frame. To complete one design, the GA runs
with a population of 100 chromosomes in 300 generations under 30 ground motions which
require 900,000 inelastic second-order dynamic analysis. Although the amount of computa-
tions performed is expensive none of the cases studied in this research required more than
48 hours of computer run time.

RESULTS AND DISCUSSION

Twenty-one GA runs were performed while changing the weighting coefficients found
in Equation 5. The values of a1 varied from 0 to 1 with an interval equal to 0.05. These 21
runs generated many candidate designs. All potential designs generated are compiled and
presented in Figure 9. The scatter plots of designs shown in this figure illustrate decision
space for the risk-based design problem. Each marker in the cloud of markers is a potential
design for the three-story, four-bay frame topology. The size and color of each marker rep-
resents scaling according to: fitness, penalty for CP performance, penalty for IO perform-
ance, and penalty for SCWB criteria.

The scaling and coloring allows active constraint regions to be identified. The red areas
represent the feasible region for the optimization problem since all constraints are satisfied
for those designs are indicated by their scaling magnitudes being 1.0. A Pareto set of solu-
tions can be identified in the upper left graph. The markers along the feasible Pareto set of
all solutions are scaled to larger size on this front and their color is darkest. These candidate
solutions will be used in later discussion as they comprise a decision making tool for the
structural engineer. Upon examination of graph in the upper right, it can be seen that struc-
tural systems weighing more than approximately 52 kips and having EAL magnitudes equal
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to or less than approximately 0.75% of the building replacement cost will satisfy the con-
straints for collapse prevention (CP) performance. A similar statement can be made after
examining the IO performance constraint scaling in the lower left. The lower right graph
indicates a candidate design with weight exceeding 75 kips will not satisfy the strong col-
umn weak beam constraint. The twelve feasible designs found on the Pareto front shown in
the upper left graph of Figure 9 are plotted in decision space in Figure 10.

A trend-line is shown on the figure and this line outlines (schematically) a continuous
Pareto front defined by the designs generated by the GA. As expected, a heavier structure
results in lower expected annual loss as a function of the building replacement cost. Lighter
structural systems (conceivably less costly to construct) experience higher expected annual
loss. This behavior is to be expected and the GA-based decision tool appears to be capable
of capturing expected behavior for the present optimization problem.

A very powerful way of using Figure 10 is to define additional costs, annual benefits,
and a return on investment that can be used as a means of deciding between alternatives.
The rate of return (ROI) is a simple expression of the equivalent interest rate that would be
obtained from a particular investment. For a long duration investment, such as 50 years, the
return on investment can be calculated as the annualized benefit of the investment divided
by the cost of the investment. This is the goal of performance-based engineering and the
algorithm presented is clearly capable of providing the decision-making tools needed to
have all stakeholders in a given project speaking a common language.

Figure 9. Decision space and feasible region for designs generated.
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As demonstration of how the results of the present GA runs can be used in the decision-
making process, a comparison between four alternative designs will be made. The designs
to be compared are: the design with minimum expected annual loss; the design with mini-
mum weight (initial construction cost or investment); the design at the midpoint in the
Pareto front; and the SAC building design (FEMA 2000d; FEMA 2000e) shown as the hol-
low circle. These designs are identified in Figure 10. Table 3 shows the steel wide-flange
sections selected by the current GA implementation and those used in the SAC project
(FEMA 2000d; FEMA 2000e).

Table 4 contains performance information for these four designs for the thirty ground
motions considered, and Figure 11 presents this data in graphical form. The information
contained in Table 4 and Figure 10 indicates that the Pareto front identified by the current
GA implementation contained designs that spanned that used in the SAC research effort.
This is very encouraging as the present formulation contained different design objectives
than this former effort, yet the framework used in the SAC study has performance character-
istics very similar to those of the GA-based designs generated in this study.

The present algorithm was able to generate a mid-point design that was significantly
lighter than the SAC design with comparable expected annual loss. CP and IO structural
system performance objectives had similar confidence levels with the SAC design having
higher confidence for CP performance and lower confidence for IO performance. When the
minimum weight GA design is considered, the expected annual loss rises significantly and

Figure 10. Pareto front for frame designs generated and return on investment definition.
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the IO performance confidence level for the structural system becomes very close to the
limit (50%). The confidence level for CP structural performance remains high (92%).

The distribution of loss data in Figure 11 shows the proportion of total expected annual
loss that is attributed to nonstructural system components. NSA component loss tends to
become a larger percentage of the total expected annual loss as the hazard level decreases. It
is very interesting to note that the minimum weight GA design is a flexible system and the

Table 3. Pareto front designs generated via current algorithm and sizes reported in SAC
research effort (FEMA 2000d; FEMA 2000e)

Columns

Design Story Exterior Interior Girder

SAC 1 W14x257 W14x311 W30x116

2 W14x257 W14x311 W30x116

3 W14x257 W14x311 W24x62

Min W GA 1 W14x311 W14x311 W24x76

2 W14x176 W14x233 W30x90

3 W14x68 W14x193 W18x40

Midpoint GA 1 W14x257 W14x311 W27x84

2 W14x159 W14x283 W30x108

3 W14x99 W14x257 W24x55

Min EAL GA 1 W14x283 W14x311 W30x90

2 W12x336 W12x336 W33x118

3 W12x279 W12x336 W27x84

Table 4. Performance information for three-story, three-bay frame designs

Distribution of Losses

W EAL qCP qIO Median RC SS NSD NSA
Design Hazard Level kips (% BRC, or %) (% of BRC) (% of Median RC)

SAC 2=50 88.00 0.653 98.15 85.84 42.10 25.72 42.32 31.96

10=50 21.91 24.29 34.35 41.36

50=50 11.59 20.25 27.89 51.86

Min W 2=50 58.60 0.826 91.97 52.99 49.17 28.07 47.97 23.96

10=50 22.61 28.59 41.22 30.20

50=50 15.12 24.38 34.98 40.65

Mid-Pt 2=50 73.18 0.662 90.38 93.56 42.72 26.39 43.58 30.04

10=50 19.93 26.18 36.34 37.48

50=50 11.78 20.96 30.14 48.90

Min EAL 2=50 92.35 0.593 96.44 95.67 36.24 24.30 39.64 36.06

10=50 16.97 21.88 30.67 47.45

50=50 10.80 16.69 24.44 58.87
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percentage of EAL coming from NSA component damage is the smallest for all three haz-
ard levels. The structural framing system is likely acting to isolate ground motion accelera-
tion from the floor levels. As expected, the NSD component contribution to the total
expected annual loss is among the largest for all designs at all hazard levels.

The median repair cost for all designs at each hazard level in Table 4 illustrates that as
the hazard level decreases, the median repair cost decreases. The reduction is most signifi-
cant for the minimum weight design on the Pareto front. The minimum EAL design, the
mid-point design, and the SAC design all illustrate very similar trends with very similar
magnitudes in reduction with hazard level increase.

Figure 12 presents the aggregated loss function for the designs in Table 3. This figure
can be used to evaluate the expected annual repair cost for any annual frequency of exceed-
ing a defined repair cost in a manner similar to that of a seismic hazard curve. In other
words, one can enter Figure 12 with a target total repair cost (e.g., 15%) and read off an
expected annual rate of exceeding this total repair cost (e.g., �0.002 or �0.2% for the min.
EAL design). Thus, the GA-generated designs can be used to gain a fairly detailed picture
of building loss magnitudes and the expected annual rates of exceeding these losses.

CONCLUDING REMARKS

The algorithms and tools developed through this research can help the structural engi-
neering profession implement PBE in a consistent, understandable, and repeatable manner

Figure 11. Graphical depiction of loss distribution.
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in the design process of steel frames. These tools help the structural engineering profession
provide all stakeholders in a building project with decision-making tools suitable for risk-
based structural engineering design for seismic hazard and mechanisms to evaluate alterna-
tive designs. These algorithms and methods also allow the structural engineering profession
to easily compare and contrast the structural designs with regard to expected performance.

The present study developed a methodology for quantifying the impact that initial capi-
tal investment has on minimizing expected annual loss. The method outlined also illustrated
how the total repair cost can be de-aggregated to identify which component contributes the
most to the total repair cost, providing useful information in making design decisions. The
results also illustrated tradeoffs that will likely arise when stiff and flexible building systems
are considered.

The automated design algorithm presented was able to generate a Pareto front that facili-
tates decision making processes. Using the return on investment, the benefits and costs of
moving along the Pareto front from one alternative design to another could be compared on
a sound and consistent economic basis.
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