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Abstract The solution of a Rayleigh-wave inverse problem may potentially devi-
ate from the realistic shear-wave velocity structure due to nonuniqueness. To over-
come such deviation, it is necessary to understand the source of nonuniqueness and
situations that may give rise to the nonuniqueness. In this study, the existence and
formation of the nonunique solutions in an inverse problem are demonstrated by mod-
eling the solution space of a synthetic surface-wave inverse problem and investigating
the major causes that might engender nonuniqueness, namely (1) the inversion conver-
gence threshold, (2) ambient noise, (3) corner frequency of the recordings, and (4) the
water level. Regarding the severity of nonuniqueness in the phase-velocity inverse prob-
lems, a technique is proposed to improve the inversion that exploits the match between
the synthetic and observed time series used as a posteriori information for constraining
the realistic velocity structure. Through a synthetic example, the effectiveness of such
method is tested and demonstrated effective.

Introduction

Shear-wave velocity (VS) is an important parameter in
site-response analyses for estimating the spectral amplifica-
tion factor in the field of earthquake engineering (Borcherdt,
1994; Cramer et al., 2002; Pezeshk and Zarrabi, 2005). The
thickness and shear-wave velocity of the soil layer and the
impedance ratio between bedrock and the soil layer are major
input parameters needed to perform site-response analysis.

In reservoir engineering, seismic techniques are fre-
quently used for the characterization of reservoir structure
(Hosseini and Aminzadeh, 2013, 2014). Specifically, in
hydrocarbon explorations, surface waves can help constrain
near-surface velocity structure in a full-waveform seismic in-
version and reduce uncertainties in reservoir characteristics
in situations in which near-surface logs may not be reliable or
available due to washouts during drilling (Bourgoyne et al.,
1986; Pan et al., 1994). In addition, near-surface shear-wave
velocity structure helps to remove ground roll noise from
seismic reflection sections and improves deep seismic imaging
reliability (Strobbia et al., 2010, 2011, 2012; Salama et al.,
2013). Recently, innovative application of surface-wave analy-
sis for assessment of the geotechnical structures was reported
where mechanical properties of a buried geosynthetic material
were evaluated (Kafash et al., 2013).

The shallow shear-wave velocity profile at a specific site
can be obtained using invasive or noninvasive techniques.
Noninvasive techniques include active and passive surface

seismic methods such as multichannel analysis of surface
waves (MASW, Park et al., 1999), spectral analysis of surface
waves (SASW, Nazarian, 1984; Nazarian and Stokoe, 1986),
or refraction microtremor (Louie, 2001) in which vertical
variation of mechanical properties of the medium is estimated
from spectral variation of phase velocities through the inver-
sion of dispersion curves (Stovall, 2010; Hosseini and Pe-
zeshk, 2011a; Hosseini, 2014).

The shear-wave velocity structure can be estimated by
studying the dispersive properties of the surface waves in
a vertically heterogeneous medium (Dorman and Ewing,
1962; Brune and Dorman, 1963; Wiggins, 1972). Several
approaches are available for the inversion of surface waves,
including forward-modeling approaches and the linearized
inversion of dispersion curves. Forward-modeling approaches
such as genetic algorithms offer an alternative to the traditional
linearized inversions and can sample a broader part of the
model space (Sambridge, 1999; Mosegaard and Sambridge,
2002; Pezeshk and Zarrabi, 2005; Sambridge et al., 2006);
however, the time-consuming nature of these techniques
limits their application.

Inversion techniques suffer from limited search scope in
the model space. A successful inversion procedure must be
able to find solutions near the global optimum; however, such
a goal might not be easily attained considering the likely exist-
ence of multiple local minima (Cerato, 2009), which will
result in nonuniqueness. Several approaches have been pro-
posed to overcome the nonuniqueness, such as using a priori
information, adjusting inversion parameters, using a posteriori
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information, and employing joint inversion techniques. Cerato
(2009) utilized a priori information about the subsurface
material to constrain the range of values in the inversion proc-
ess. Use of higher modes of propagation (Levshin and Panza,
2006; Hosseini and Pezeshk, 2011b, 2012a) and alternative
model parameterization (Renalier et al., 2010) are considered
as methods that adjust inversion parameters aiding to reduce
the nonuniqueness. Methods that exploit a posteriori informa-
tion opt out of the inverted models after the inversion process,
such as techniques using the effective phase-velocity dis-
persion match (Cerato, 2009) and the synthetic and observed
seismogram match (Hosseini and Pezeshk, 2012b, Hosseini,
2014; Hosseini et al., 2014). In a joint inversion technique,
more data in addition to the dispersion curve are simultane-
ously inverted to determine the velocity structure, such as
in the procedure outlined by Tran and Hiltunen (2012).
Joint inversion of the surface waves and the reflection, refrac-
tion, and P- or S-wave travel times are other examples of the
joint inversion methods that are frequently reported (Dal Moro
and Pipan, 2007).

In this study, the feasibility of using a posteriori wave-
number integration technique for improving nonuniqueness
in the inversion of phase-velocity dispersion curves is evalu-
ated. Unlike a joint inversion that may suffer from having
different weights for different data types, the a posteriori
technique only evaluates the outcome of the inversion for
further refinement. To illustrate the need for such a study,
the first part of the current study focuses on the mathematical
nature of nonuniqueness. The second part of the study is de-
voted to showing that the selection of parameters in data
processing and inversion can give rise to potential nonunique
solutions. By studying the model space for a specific velocity
profile, it is visually illustrated that some of these nonunique
solutions that are not avoidable are random in nature (such as
those formed due to the lowest recorded frequency of the
time series and ambient noise) and some are avoidable (such
as convergence criteria used in inversion). In the following
sections, it is shown that the synthetic seismograms are more
affected by changes in the velocity structure compared to the
phase-velocity dispersion curves. This conclusion forms the
strategy proposed to overcome the nonuniqueness using an a
posteriori technique.

For the rest of the study, we discuss the existence
of nonuniqueness in a linearized surface-wave inversion
through a synthetic example, and its occurrence is discussed
in accordance with the details of the fitness function for
the model space. Finally, we use synthetic seismograms to
quantitatively select the most appropriate shear-wave veloc-
ity profile.

Nonuniqueness in the Inversion

Surface-wave inversion is a nonlinear problem, and avail-
able solutions are usually acquired through a linearized inver-
sion technique (Aster et al., 2013). Scientists and engineers
relate the physical parameters of a system to the observations.

In engineering and seismology, observations and system
parameters are discrete quantities viable to operate as vec-
tors. A forward problem is simply finding the observation
having the model parameters, and an inverse problem is the
estimation of unknown model parameters given the observa-
tions. Inverse problems can be solved using least squares,
maximum likelihood, generalized inversion methods, or evo-
lutionary techniques.

The physics of such a system can be represented using a
function G�m� that relates the system parameters to the
observations by the general equation:

EQ-TARGET;temp:intralink-;df1;313;601G�m� � d; �1�
in which G�m�, which is called the forward operator, maps
the model on the observation d, and m is the true model.
The operator can take different forms, such as a linear or
nonlinear system of algebraic, ordinary differential, or partial
differential equations (Aster et al., 2013). In the case of a
nonlinear forward operator, the perturbation theory (Prosser,
1968; Snieder, 1990a,b) can be used to express data as a per-
turbation series of the model parameters. In the perturbation
theory, the nonlinear problem is linearized for a small region
around the true model using the Taylor expansion and ne-
glecting the higher-order terms. In such case, the linearized
problem can be presented as

EQ-TARGET;temp:intralink-;df2;313;424Gm� e � d; �2�
in which e is the error contaminating the date (Snieder and
Trampert, 2000). Because the number of observations is usu-
ally more than the model parameters, the solution to this lin-
ear problem is expressed as

EQ-TARGET;temp:intralink-;df3;313;351

~m � G−gd; �3�
in which G−g is the generalized inverse of G, and ~m is the
estimated model different from true model (Snieder and
Trampert, 1999).

We employ a singular value decomposition (SVD) tech-
nique, which aids in mathematically showing that it is possible
to construct nonunique solutions for an inverse problem. It
should be noted that the definition of nonuniqueness is beyond
what is shown in this section because we provide a special
case in which low eigenvalues can contribute to the formation
of nonunique solutions.

For each specific solution set ~m with n elements,
operator G associated with m observations with size m × n
can be factored into

EQ-TARGET;temp:intralink-;df4;313;170G � USVT; �4�
in which S is a diagonal matrix containing singular values of
the operator G (si on its diagonal), has the same size as G,
and is customarily arranged in the descending order. Matri-
ces U and V are m ×m and n × n unitary square matrices,
and the columns of each form a set of orthonormal vectors
spanning observation data and model space. The superscript
T for V denotes the conjugate transpose. It is possible to
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break every model and observation data down into a linear
combination of their associated orthonormal vectors:

EQ-TARGET;temp:intralink-;df5;55;709

~m �
Xn
i�1

giV·;i; d �
Xm
i�1

hiU·;i; �5�

in which g and h are scalars, and U·;i and V·;i are the ith
columns of U and V. In the S matrix, some of the singular
values might be zero (or relatively very small) and cause an
ill-conditioned inverse problem (Aster et al., 2013); such ei-
genvalues can be separated from the equation by identifying
the pth eigenvalue, beyond which eigenvalues are practically
assumed to be zero:
EQ-TARGET;temp:intralink-;df6;55;581

G � �U·;1U·;2…U·;m�
Sp 0

0 0

" #
�V·;1V·;2…V·;n�T

� �Up U0�
Sp 0

0 0

" #
�VpV0�T; �6�

in which Up and Vp are the first p columns in their associ-
ated matrices. U0 denotes the last (m�p) columns in U, and
V0 denotes the last (n�p) columns in V.

One of the definitions of the nonuniqueness is a non-
trivial solution ~m0 that projects into null space meaning that
G�G ~m0 � 0�. The null space of G is denoted with N�G�,
and columns ofV0 form an orthogonal basis forN�G�, mean-
ing that adding any linear combination of V0 columns to the
solution ~m does not project into the data space:
EQ-TARGET;temp:intralink-;df7;55;388

~m � ~m† � ~m0 � ~m† �
Xn

i�p�1

giV0;i;

~m† � VpS−1p UT
pd; �7�

in which ~m is a nonunique solution, and ~m† is the SVD
solution. By varying sets of gi factors, one can construct sets
of nonunique solutions that, for all, equality G�m† �m0� �
G�m†� � d holds.

In addition to small eigenvalues, nonuniqueness can rise
due to the nonconvexity of a nonlinear objective function; for
instance, the existence of multiple local minima can make the
inversion process yield different results based on the starting
point in the model space.

Backus and Gilbert (1970) stated that numerical investiga-
tion is the only way to study the existence of nonunique sol-
utions for an objective function. In the following section, we
numerically simulate the existence of the nonunique solutions
for a fairly simple velocity structure.We then examine the exist-
ence of nonunique solutions by studying the solution space of
the objective function without performing any inversion.

Synthetic Test to Study the Solution Space

It is assumed that there are several items that can give
rise to the existence of multiple solutions for a surface-wave
inverse problem. These items are intuitively selected from

effects that might deviate from the results of an inversion
from the realistic velocity model. They are (1) level of inver-
sion convergence, (2) ambient noise in the recorded data,
(3) corner frequency of the recorded data, and (4) the meth-
odology used for handling parameters other than the shear-
wave velocity and thickness (such as Poisson’s ratio or qual-
ity factor). The provided list does not cover all causes of non-
uniqueness in the surface-wave inversion; however,
it provides an understanding of the complexity of the
problem and the nonuniqueness associated with the inverse
problems. The cause of the formation of the nonunique solu-
tions is the nonlinearity of the surface-wave forward opera-
tor, as observed by the study of the solution space.

To illustrate the role of the aforementioned assumptions
on the inversion result, we perform and discuss a comprehen-
sive synthetic test through an example problem. For the
synthetic test, we consider a six-layer medium over the half-
space. We calculate the theoretical dispersion curves for a
range of quantities assigned to each layer. We keep the shear-
wave velocities of all layers constant except for the fifth layer
and the half-space, for which we use a range of shear-wave
velocities between 50 and 700 m=s and between 270 and
850 m=s with 10 m=s increments, forming the model space.
We perform simulations assuming (1) there is no attenua-
tion-induced dispersion (Kanamori and Anderson, 1977), i.e.,
the quality factor for shear and compressional waves is infin-
ite, and (2) the shear-wave velocity of layers does not exceed
its value in the half-space. The error space is formed by cal-
culating the difference between the phase-velocity disper-
sion from the model space and the dispersion for a selected
reference model. The reference model is assumed to represent
the realistic velocity structure and will be kept constant
throughout the study. The shear-wave velocity of the fifth and
seventh layers in the reference model is set equal to 270 and
570 m=s, respectively, and a water level on top of layer 3.

We only allow changes to the shear-wave velocity of two
layers to be able to visually inspect the effect of such changes
on the error space. As presented in Table 1, we consider eight
groups of simulations considering various water-table levels
at each layer.

Poisson’s ratio and density can be used to simulate the
effect of water-level existence (Foti and Strobbia, 2002) and
consequent material saturation. For dry material, we used a
Poisson’s ratio of 0.25 and a density of 1:8 g=cm3, and for
the saturated material we used 0.45 and 2:1 g=cm3. Water
level is shown in Table 1. Considering the ranges introduced
for the fifth layer and seventh layer, 2948 different velocity
models are used in each simulation set, and a total of 23,584
velocity models are used throughout this study. The proper-
ties of all layers except the fifth and seventh layers are fixed.

For each model in Table 1, we determined the associated
phase-velocity dispersion curve for the frequency range of
5–100 Hz. We used Computer Programs in Seismology,
developed by Robert Herrmann (see Data and Resources),
to perform forward calculations. We calculated the residual
(the difference between the dispersion curves from each
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velocity model in Table 1 and the reference velocity model)
using the following fitness function:

EQ-TARGET;temp:intralink-;df8;55;520Error �
XNF
j�1

�jcobs:j ctheo:j j
cobs:j

×
100

NF

�
; �8�

in which NF is the number of frequencies, cobs:j is the
experimental dispersion curve at frequency j, and ctheo:j is the
theoretical dispersion curve. Equation (8) is used only for
the fundamental-mode dispersion curve. In calculating the
errors, we selected a velocity model as the reference model
and treated its associated dispersion curve as the experimen-
tal dispersion curve (cobs:). Then, we calculate the error space
using equation (8) and study the error space to gain insight
into the behavior of an inverse problem.

In the following sections, we investigate the inversion
process using the models provided in Table 1 and the reference
model. We specifically will study the effects of (1) the level of
inversion convergence, (2) noise in the data, (3) the lowest
recorded frequency of the recordings, and (4) the methodology
for handling parameters other than shear-wave velocity and
thickness (i.e., Poisson’s ratio).

Effect of Convergence Level

The level of convergence in the inversion is set by two
criteria: the maximum number of the iterations or by a thresh-
old error. A large value for the threshold error can cause
immature termination. This problem is more evident in cases
in which the error space has a gradual gradient with respect to
one of the inversion parameters, such as the shear-wave veloc-
ity of one of the layers. The effect of the convergence level is
explained with numerical simulation via investigation of error
space constructed from the model space in Table 1.

The error space is constructed with respect to the phase-
velocity dispersion curve of the reference model and is shown
as a contour map in Figure 1a, corresponding to the simulation
3 from Table 1. The reference model is shown in Figure 1b
along with its associated phase-velocity dispersion curve. The
reference model is shown with a circle. As can be observed

from Figure 1a, the shear velocities associated with the mini-
mum error also match those of the reference model, and the
inversion is capable of obtaining the true velocity model.

Also observable in Figure 1a, when the water level is
assumed to be on top of layer 3, the local minimum and the
global minimum are the same; therefore, the choice of initial
model does not alter the final outcome of the inversion.
According to Figure 1a, regardless of the selection of the ini-
tial model, the inversion will converge to the reference model
after a sufficient number of iterations. However, the inversion
usually is not carried out for a goal of zero threshold error,
but instead an error level is selected as an acceptable thresh-
old. This error threshold should ideally be chosen in a
manner that model parameters (here VS;5 and VS;7) result in
similar values with the case of a zero threshold error, al-
though this might not be possible. In Figure 1a, models
falling on the boundaries of the region marked with the bold-
dashed line have errors equal to 0.15%. Two models are se-
lected that have a threshold error of 0.15%, marked with two
open triangles in Figure 1. The model corresponding to tri-
angle 1 is very different than the reference model illustrated
with a filled circle; however, the model corresponding to tri-
angle 2 is close to the reference (Fig. 1b).

This implies that when a threshold is selected, it
becomes important what path is taken toward the optimal
solution in the inversion process. For instance, if an initial
model is in region A of Figure 1a, the slow gradient will re-
sult in an inverted model that is different than the case in
which an initial model is selected in region B with a sharp
gradient toward the reference model.

Effect of Noise

The same analysis is repeated by adding 10% random
uniform noise to the phase-velocity dispersion data from the
reference model (Fig. 2). The error space in Figure 2 is
recalculated assuming a known water level. The coordinates
of the minimum-error model and the reference model are
presented with an X and a circle in Figure 2a. It can be
observed that the existence of 10% noise dramatically influ-

Table 1
Model Space Considered in This Study

Layer Thickness (m) VS Value/Range (m=s)

Poisson’s Ratio and Density Type
Simulation Set*

1 2 3 4 5 6 7 8

1 2 100 a b† b b b b b b
2 2 100 a a b† b b b b b
3 2 175 a a a b† b b b b
4 2 240 a a a a b† b b b
5 2 50–700 every 10 a a a a a b† b b
6 2 265 a a a a a a b† b
7 ∞ 270–700 every 10 a a a a a a a b†

*Type (a), saturated material with Poisson’s ratio of 0.45 and density of 2:1 g=cm3; type (b),
dry material with Poisson’s ratio of 0.25 and density of 1:8 g=cm3.

†Water level.
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ences the inverted shear-wave velocity at the fifth layer to in-
crease about 40% (inverted value of about 375 m=s versus the
accurate value from the reference model equal to 270 m=s).

It is necessary to recall that the ultimate inversion sol-
ution shown in Figure 2a with an X corresponds to a mini-
mum error in the error space of Figure 2. This point will be
reached only if the inversion is allowed to reach its minimum
possible error, which is not practical. Similar to the previous
section, threshold error is selected in a way that is slightly

higher than minimum error. A value of 4% is selected as the
threshold error. Models on the boundaries of the polygon
with the dashed-bold line in Figure 2 correspond to the pos-
sible results of inversion with 4% threshold error. These
models show a broad variation in shear-wave velocities
and such an error threshold makes the inversion somehow
impractical for identifying the reference model from the cur-
rent error space. In Figure 2a, coordinates of the reference
model show that it is possible to get close to the reference

Figure 2. (a) Objective function contours (equation 8) are calculated for the solution space from simulation 3 (Table 1) with respect to
dispersion from the reference model with 10% noise. (b) Shear-wave velocity model and phase-velocity dispersion curve for the reference
and inverted model. The circle in the contour plot is the coordinate of the fifth and seventh layers’ VS for the reference model, and coordinates
of the X symbol represent the VS;5 and VS;7 of the minimum of the objective function. The polygon with dashed-bold line in Figure 2a
corresponds to a 4% error. The color version of this figure is available only in the electronic edition.

Figure 1. (a) The contour map of equation (8), corresponding to the simulation 3 of Table 1. (b) Shear-wave velocity model and phase-
velocity dispersion curves corresponding to points 1 and 2 in (a), respectively. The circle in the contour plot is the coordinate of VS for the
fifth and seventh layers of the reference model and is associated with the minimum error. Triangles numbered 1 and 2 are two models with
similar errors and are expected to be the result of inversion if the initial model is located in the area enclosed by the circles in the vicinity of
each model. The color version of this figure is available only in the electronic edition.
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model using an initial model in the region bounded by the
dashed-dotted polygon; however, existence of a priori infor-
mation is necessary. This region is similar to the suggestion
made for the initial models shown in Figure 1.

Effect of Lowest Recorded Frequency

The lower limit of the frequency used in the dispersion is
important because it is associated with the resolution of the
inverted velocity profile in depth and is a direct function of the
recording instrument response, ambient noise, and the low-
frequency energy of the active source (Stovall, 2010; Hosseini,
2014). In surface waves, the phase velocities at high frequen-
cies are associated with shallow layers. As frequency
decreases, the number (and overall depth) of layers nonlinearly
participating to form a specific phase velocity increases.

The error space from the previous section (affected by
10% uniform random noise) is used here. Error space is re-
calculated by considering frequencies ≥ 8 Hz for calculation
of the phase-velocity dispersion curve and their difference
with noise-added dispersion data from the reference model
(Fig. 3). To attain this, we eliminated three frequencies (5, 6,
and 7 Hz) from the dispersion curves for all the models and the
reference model. The rectangular block shown in Figure 3a is
enlarged and displayed in Figure 3b. As shown in Figure 3b,
there are several local minima that make the inversion nonun-
ique and complicated. The local minima are marked by differ-
ent cross symbols in Figure 3b. The prominent feature of the
error space in Figure 3 is the existence of multiple local min-
ima where, depending on the initial model, an inversion can
get trapped (Pezeshk and Zarrabi, 2005). Each of the models
associated with the local minima can be a solution to the in-
version. Using an evolutionary technique such as a genetic

algorithm similar to Pezeshk and Zarrabi (2005), one may
identify the global minimum in Figure 3b. However, exclusion
of low frequencies has created a global minimum (model with
VS;5 � 430 m=s and VS;7 � 750 m=s, shown by an open
cross in Fig. 3b) which is different than the reference model.
Solution models associated with Figure 3 are plotted against
the reference model in Figure 4. From Figure 4, it is observed
that the lack of low-frequency data has impaired the resolution
of inversion in depth. The effect of low-frequency data is sub-

Figure 3. (a) Objective function contours (equation 8) are calculated for the solution space from simulation 3 (Table 1) with respect to
dispersion from the reference model with 10% noise in which the three lowest frequencies are not used in objective function calculations.
(b) The section within the dashed polygon in (a) is enlarged. The circle in the contour plot (a) is the coordinate of the fifth and seventh layers’
VS for the reference model. The color version of this figure is available only in the electronic edition.

Figure 4. Shear-wave velocity model and phase-velocity
dispersion curve are shown for the reference and expected inverted
models as shown in Figure 3. The color version of this figure is
available only in the electronic edition.
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stantial, even though the dispersion data from only three
frequencies (5, 6, and 7Hz) are not used among the 52 frequen-
cies. This observation might shed light on the significant con-
tribution from the correct geophone type, sufficiently strong
source, and passive techniques for low-frequency treatment.

Water Level Effect: Individually and Combined

Among the layer parameters, shear-wave velocity and
thickness are recognized to have the maximum effect on the
phase-velocity dispersion data; other parameters such as Pois-

son’s ratio (or, subsequently, compressional-wave velocity)
have a minor effect (Nazarian and Desai, 1993). In this sec-
tion, it is shown that various assumptions regarding the water
level can dramatically disturb the inversion result, and their
effects must be considered in a surface-wave inversion. We
perform the calculation for the error space, considering eight
different water levels from Table 1. Each of the eight sets of
simulations will be performed for noise-free data.

Figure 5 shows the error space for the velocity model
introduced in Table 1 and the reference model, where the
water level follows that from the simulation sets one to eight.

Figure 5. Objective function contours (equation 8) are calculated for the solution spaces from simulations 1–8 with respect to dispersion
from the reference model. Circles in the contour plots are the coordinate of the fifth and seventh layer VS for the reference model with water
level (W.L.) on top of layer 3 (simulation 3). Crosses in contours show the minimum of objective function for which the coordinates denote
the VS;5 and VS;7. The color version of this figure is available only in the electronic edition.
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Each error space in Figure 5 has at least a minimum error,
which is marked with a cross. The reference model with
which the error space is generated is also indicated in all error
spaces with a solid circle to present a visual inspection for the
proximity of the minimum-error solution and reference
model. In Figure 5, in the error space with the water level
on top of layer 3, which is the same water level as the refer-
ence model, the minimum-error solution is the same as the
reference model. It is observed that the lack of knowledge
regarding the water level can affect the accuracy of inversion
drastically.

Nonuniqueness Issues

Through several simple example problems, we investi-
gated various parameters that can influence the inversion
process and, as a result, the final selection of the shallow
shear-wave velocity profile. Other important issues that must
be resolved are the nonunique characteristics of the inver-
sion. To be able to use the MASW or SASW procedures
confidently and make them practical for engineering appli-
cations, we need to resolve the nonuniqueness issue. We
resolve this issue by looking at the waveform error space in
addition to the phase-velocity dispersion error space.

To achieve such a goal, we choose velocity models that
have almost identical error in the phase-velocity error space.
Such velocity models can be easily found using a specific
isoline in the error space of phase-velocity dispersion. A
group of velocity models are chosen from an isoline in
the dispersion error space of Figure 6a, with the water level
on top of the fourth layer (isoline is marked with a bold line).
We select three velocity models on that isoline as displayed
in Figure 6b. Then, we generate synthetic seismograms for

these models and compare these seismograms with the refer-
ence model seismograms.

We used the wavenumber integration technique of Wang
and Herrmann (1980) to generate full wavefield synthetic
seismograms, in which details of the wavefield, such as all
direct and scattered body waves and surface waves for a hori-
zontally layered earth model, are present. Figure 7 shows the

Figure 6. (a) Objective function contours (equation 8) are calculated for the solution space from simulation 4 (Table 1) with respect to the
dispersion from the reference model without adding any noise. (b) Shear-wave velocity models and phase-velocity dispersion curves are shown
for the reference model and three selected models on the contour. The color version of this figure is available only in the electronic edition.

Figure 7. Synthetic time series generated for three velocity
models picked from Figure 6, each individually plotted against
the synthetic time series from the reference model. The color
version of this figure is available only in the electronic edition.
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synthetic times series for each velocity model of Figure 6
along with that of the reference model. For clarity, the Ray-
leigh wavetrain in Figure 7 is scaled down in time window
∼�470 490� ms so that the details of the time series would be
clearly visible. Synthetic time series are generated at a con-
stant distance.

To elucidate the sensitivity of difference between the
times series of three models and the reference model, the log-
arithmic difference is calculated at each time step and shown
in Figure 8a. The logarithmic difference between the phase-
velocity dispersion curves is illustrated in Figure 8b. From
Figure 8, it is evident that the difference between each model
and the reference model is much higher for their associated
time series than for their dispersive properties. In other
words, synthetic seismograms reveal more detailed informa-
tion for the wave propagation differences than just the dis-
persive properties of the two media.

Nonuniqueness in a Surface-Wave Inverse Problem
and the Mitigation Strategy

Model and Assumptions

A synthetic example is presented in which a dispersion
curve from a known velocity profile is inverted. The goal of
this section is to examine whether we face the nonuniqueness
in a typical surface-wave inversion and, if we do, whether
the proposed procedure enables us to distinguish the best
solution.

A three layer over half-space model is assumed to be
representative of the shallow subsurface. Each layer is as-
sumed to have a thickness of 4 m, and the half-space starts
from a depth of 12 m. Similar to the previous models, a water
level is assumed to be present at the interface between the
first layer and the second layer at 4 m depth.

Figure 9 shows the velocity model and the associated
phase-velocity dispersion curve used. In real-world data, it
is possible to estimate the attenuation in terms of quality fac-
tors from the seismic recordings for use in the calculations
(Hosseini et al., 2013, 2015; Pezeshk et al., 2013). In this

study, attenuation effects on the seismograms and dispersion
curves are not considered.

Using forward modeling, the phase-velocity dispersion
curve is determined and a random 10% noise is added to the
dispersion data to generate a realistic synthetic experimental
dispersion curve (SEDC) for four modes of propagation. This
curve is treated as the experimental dispersion curve that is
typically obtained from the field survey; it is used in a
linearized damped inversion technique (Aster et al., 2013)
and is referred to as an SEDC.

Inversion of the Phase-Velocity Data

Initial velocity profiles for the inversion were con-
structed by assuming six layers over half-space (each layer

Figure 8. (a) Logarithmic difference between time series from three models (shown in Fig. 6) and that from the reference model. (b) Log-
arithmic difference between dispersion curves from the three models and that from the reference model. The color version of this figure is
available only in the electronic edition.

Figure 9. The exact model assumed in the synthetic test as the
representative of the shear-wave velocity profile of the subsurface.
The color version of this figure is available only in the electronic
edition.
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has a thickness of 2 m), and the half-space is 12 m deep. Two
initial velocity models are considered in the inversion proc-
ess, in which the first uses a uniform velocity of 100 m=s for
all layers and the second one is a velocity model that linearly
increases from 100 m=s at the first layer to 500 m=s at half-
space. By combining two initial VS profiles and eight differ-
ent levels of the water table, 16 initial velocity profiles were
generated and separately inverted.

This section specifically focuses on two successfully
inverted models (labeled as profile 6 and 11), for which the
dispersion curves are indistinguishable from each other, for
up to three higher modes. Figures 10 and 11 present the
results of inversion for these two cases. In Figure 10, the

dispersion curve and the velocity structure for profile 11
match well with the SEDC. On the other hand, Figure 11
presents the dispersion and the velocity structure for profile
6, in which the velocity profile is very different from the ex-
act model. The inversion procedure has been successful in
terms of matching the theoretical dispersion curve of profiles
6 and 11 with SEDC; however, it fails to preserve the correct
velocity profile for inverted profile 6. Therefore, the inver-
sion of the phase-velocity dispersion curve has provided
two different inverted velocity profiles, both having a good
match between their dispersion and SEDC. Without knowl-
edge of the real VS model (exact model), it is not possible to
choose the final solution between them. Consideration of

Figure 10. (a) Inverted model 11 (solid line) compared with the exact profile (dashed line). Water levels (W.L.) between the inverted model
and the exact one (bold dashed lines) are the same. (b) Dispersion curves for inverted (line) and exact (circle) models are matching well. The
color version of this figure is available only in the electronic edition.

Figure 11. (a) Inverted model 6 (solid line) compared with the exact profile (dashed line). Water levels (W.L.) between the inverted
model and the exact one (solid and dashed-bold lines) are different between the profiles. (b) Dispersion curves for inverted (line) and exact
(circle) models are matching well up to four modes, despite the difference between the models. The color version of this figure is available
only in the electronic edition.
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higher modes does not improve the nonuniqueness, because
dispersion curves for both profiles 6 and 11 match the SEDC
very closely for up to four modes (Figs. 10b and 11b).

Synthetic and Observed Seismogram Comparison

Synthetic seismograms are generated using velocity mod-
els 6 and 11 in 48 imaginary geophones with ∼1m spacing.
Figure 12 shows synthetic seismograms generated from pro-
files 6 and 11 plotted on top of the seismograms from the exact
profiles. In contrast to the dispersion curves, the time series

from profiles 6 and 11 are very different and can be used
as a tool to distinguish between the two profiles.

For purposes of clarity, Figure 12 has been scaled differ-
ently for reflections, refractions, and direct waves compared
with the Rayleigh wavetrain. It is evident that profile 11 has a
better match between the seismograms and can be selected as
the final solution.

To have a quantitative tool for the assessment of simi-
larity between the shapes of the synthetic and observed seis-
mograms, the zero-lag cross-correlation coefficient is used
as an indicator of the similarity. Results are provided in
Figure 13, which shows that profile number 11 has a better
match with observed seismograms at the location of most of
the 48 imaginary geophones. Therefore, by comparing the
synthetic seismogram it is possible to distinguish between
the two different profiles that have similar dispersion curves
and overcome the nonuniqueness problem of this synthetic
example. Further investigations are necessary to assess the
effectiveness of the proposed technique on real-world data.
Complexities such as the attenuation structure, attenuation-
induced dispersion, and lateral heterogeneity can affect the
match quality and the selection of the final profile as shown
in Hosseini (2014).

Data and Resources

Synthetic seismograms were computed using the com-
puter program hspec96, and surface-wave dispersion curves
were inverted using program surf96, both v.3.3, developed by
Robert Herrmann, Department of Earth and Atmospheric Sci-
ences, St. Louis University, St. Louis, Missouri. Program
surf96 was modified by the authors to avoid recalculating den-
sities from the compressional-wave velocities as described by
Hosseini (2014). The user’s guide and other documentation are
contained in Computer Programs for Seismology, a software
package currently distributed by Herrmann at http://www.eas
.slu.edu/eqc/eqccps.html (last accessed February 2015).
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