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ABSTRACT
We apply three data-driven selection methods, log-likelihood (LLH), Euclidean distance-
based ranking (EDR), and deviance information criterion (DIC), to objectively evaluate
the predictive capability of 10 ground-motion models (GMMs) developed from Iranian
and worldwide data sets against a new and independent Iranian strong-motion data
set. The data set includes, for example, the 12 November 2017Mw 7.3 Ezgaleh earthquake
and the 25 November 2018 Mw 6.3 Sarpol-e Zahab earthquake and includes a total of 201
records from 29 recent events with moment magnitudes 4:5≤Mw ≤7:3 with distances up
to 275 km. The results of this study show that the prior sigma of the GMMs acts as the key
measure used by the LLH and EDR methods in the ranking against the data set. In some
cases, this leads to the resulting model bias being ignored. In contrast, the DIC method is
free from such ambiguity as it uses the posterior sigma as the basis for the ranking. Thus,
the DIC method offers a clear advantage of partially removing the ergodic assumption
from the GMM selection process and allows a more objective representation of the
expected ground motion at a specific site when the ground-motion recordings are homo-
geneously distributed in terms ofmagnitudes and distances. The ranking results thus show
that the local models that were exclusively developed from Iranian strong motions per-
form better than GMMs from other regions for use in probabilistic seismic hazard analysis
in Iran. Among the Next Generation Attenuation-West2 models, the GMMs by Boore et al.
(2014) and Abrahamson et al. (2014) perform better. The GMMs proposed by Darzi et al.
(2019) and Farajpour et al. (2019) fit the recorded data well at short periods (peak ground
acceleration and pseudoacceleration spectra at T �0:2 s). However, at long periods, the
models developed by Zafarani et al. (2018), Sedaghati and Pezeshk (2017), and Kale et al.
(2015) are preferable.

KEY POINTS
• Three data-driven selection methods are used to evaluate

the predictive capability of ten GMMs for Iran.
• Local models developed from Iranian strong motions per-

form better than GMMs from other regions.
• Deviance Information Criterion (DIC) optimizes the selec-

tion of GMMs using the Bayesian statistical framework.

Supplemental Material

INTRODUCTION
In current building codes, seismic hazard maps that are
obtained by a probabilistic seismic hazard analysis (PSHA),
characterize the strong ground motion for designing a struc-
ture to resist earthquakes in a given region. The purpose of
PSHA is to determine the annual probability of exceedance
of a ground-motion intensity measure for a seismic region

of a given seismic activity and a prescribed attenuation of that
measure as a function of independent variables. For earthquake
engineering purposes, the most commonly used intensity mea-
sures are the recorded peak ground acceleration (PGA) and the
5% damped pseudoacceleration spectra (PSA) evaluated at dis-
crete oscillating periods in a range of engineering interest. The
peak parameters are predicted based on key independent var-
iables such as earthquake magnitude, source–site distance, and
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soil amplification (site) effects, along with various other param-
eters. The attenuation of seismic groundmotion is generally rep-
resented by empirical ground-motion models (GMMs) that
quantify the salient characteristics of the propagation of seismic
ground motion through the target region. Despite the modeling
efforts and increasingly available data over the last couple of dec-
ades, the scatter of model residuals, quantified as the prediction
uncertainty of GMMs, exerts a greater influence on the hazard
analysis results than other sources of uncertainties related to the
fundamental input assumptions in the assessment (Cramer,
2001; Petersen et al., 2004; Bommer et al., 2005; Cao et al.,
2005; Lombardi et al., 2005; Sabetta et al., 2005; Atkinson
and Goda, 2011; Bradley et al., 2012; Kowsari et al., 2018;
Kowsari, Eftekhari, et al., 2019; Kowsari, Halldorsson,
Hrafnkelsson, Snæbjörnsson, et al., 2019).

In GMMs, the residual scatter denoted by sigma (σ) is inter-
preted as the aleatory variability of ground motion, whereas the
uncertainty of the correct value of the median is considered to
be epistemic (Strasser et al., 2009; Atkinson et al., 2014). The
epistemic uncertainty that arises from the lack of knowledge
and leads inevitably to imperfect models is generally accounted
for by implementing multiple GMMs in a logic-tree framework
(Kulkarni et al., 1984) or by capturing the center, body, and
range of ground-motion estimates in a backbone approach
(Atkinson and Adams, 2013; Douglas, 2018a,b). However,
the selection of appropriate GMM is still of great importance
in both approaches, appropriate in the sense that the selected
GMMs are representative of the ground motions in the region
that the PSHA is to be carried out. This is not always guaran-
teed, in particular, for seismic regions for which data are scarce.
In this vein, data-driven methods have been introduced and
provide a systematic way to reduce subjectivity and quantita-
tively guide the selection process (Delavaud et al., 2009, 2012;
Scherbaum et al., 2009). The applicability of GMMs to differ-
ent regions has been widely examined using different data-
driven methods (Hintersberger et al., 2007; Stafford et al.,
2008; Shoja–Taheri et al., 2010; Beauval et al., 2012; Farhadi
et al., 2019). A likelihood-based approach (called LH) was pro-
posed by Scherbaum, Cotton, and Smit (2004) as one of the
first data-driven methods. The LH method is the exceedance
probability-based approach that calculates the normalized
residuals for a set of observed and estimated ground-motion
data. Scherbaum et al. (2009) suggested an information-theo-
retic approach called log-likelihood (LLH) method that over-
comes several shortcomings of the LH method. The LLH is less
dependent on the sample size as compared with the LH
method, and also it does not require any ad hoc assumptions
regarding classification boundaries (Delavaud et al., 2009).
Another data-driven method was introduced by Kale and
Akkar (2013) that uses the Euclidean distance (the absolute
difference between the observed and estimated data) to
account for both aleatory variability in ground motions and
the trend between the observed and estimated data. Mak et al.

(2017) represented the effects of data correlation and
score variability on the evaluation of GMMs. Kowsari,
Halldorsson, Hrafnkelsson, and Jonsson (2019) proposed a
new data-driven method using the deviance information cri-
terion (DIC) that optimizes the selection of GMMs using
the Bayesian statistical framework.

Ideally, the data-driven selection methods should be applied
to the test data that are of high quality and independent of all the
evaluated models. Otherwise, the results of the evaluation of
GMMsmay not be reliable (Mak et al., 2017). Thus, the selection
method and the data set used are the two key elements that need
to be carefully checked and chosen for evaluating the GMMs to
be used in PSHA. In the case of Iran, it is one of the most seis-
mically active regions of the world with the Iranian plateau
located in the Alpine–Himalayan orogenic belt and wedged
between Eurasia and Arabian plate stable platforms. Its level
of seismicity has been manifested throughout history by
repeated occurrences of destructive earthquakes. The Iranian
strong-motion network (ISMN) was deployed in 1973 and cur-
rently has more than 1047 active recording stations spread all
over the country, with the majority in the southwest and western
part of Iran due to the higher seismicity of the Zagros belt. The
high-quality strong-motion data provided by ISMN has allowed
researchers to develop several GMMs for Iran (e.g., Kale et al.,
2015; Sedaghati and Pezeshk, 2017; Zafarani et al., 2018; Darzi
et al., 2019; Farajpour et al., 2019).

The selected database is from the Building and Housing
Research Center (BHRC) seismographic stations to obtain
strong ground motions of earthquakes. The recent destructive
earthquakes strong-motion data such as the 12 November 2017
Mw 7.3 Ezgaleh earthquake and the 25 November 2018Mw 6.3
Sarpol-e Zahab earthquake, which occurred in western Iran,
are included. We compiled a database of horizontal ground-
motion acceleration time histories for events with moment
magnitudes 4:5 ≤ Mw ≤ 7:3 at distances of 6–275 km from
2000 to 2019 for Iran.

This data set lends itself especially well for this study,
namely the testing of the capability of recent GMMs to
represent Iranian strong motions. In this study, therefore, we
consider 10 different GMMs that have been developed based
on local and/or worldwide data and have been recommended
for application of PSHA in Iran. We rank these GMMs against
the new and the independent data set of Iranian earthquake
strong motions using three different data-driven methods,
the likelihood-based (LLH), the Euclidean distance-based
ranking (EDR), and a DIC. The results of this study will show
which GMMs most efficiently represent the data set used and
will facilitate the selection of appropriate GMMs for Iran. We
believe the results of this study will constitute a significant
contribution to the future seismic hazard studies in Iran by
suggesting the most appropriate models to be implemented
in a reliable PSHA that will result in reducing the epistemic
uncertainty.
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IRANIAN GROUND-MOTION DATA SET
After establishment of the ISMN in 1973, many destructive
earthquakes with magnitudes larger than 6.0 have occurred
in Iran such as the Sirch 1981 (Mw 6.6), Rudbar-Manjil
1990 (Mw 7.4), Ardakol 1997 (Mw 6.9), Bam 2003 (Mw 6.5),
Aghgala 2004, 2005 (Mw 6.2, 6.7, respectively), Silakhor 2006
(Mw 6.2), Varzaqan 2012 (Mw 6.2), Hajdak 2017 (Mw 6.1), and
Ezgaleh 2017 (Mw 7.3) earthquakes. Before 1973, there were no
instrumental records but only historical evidence of damaging
earthquakes in different parts of Iran. The BHRC, the agency
that owns and operates the Iranian national strong-motion
network, is the main source for the Iranian strong-motion
records. Its investment in improving the availability of
strong-motion data is an important contribution that leads
to improved ground-motion prediction models that in turn
are the basis for increasing the reliability of the earthquake haz-
ard assessment in Iran. The data set used in this study is limited
in terms of large magnitudes. From 2012 to 2019, 12 earth-
quakes with magnitude larger than Mw 6 have occurred in
Iran in which six of them (from 2012 to 2014) were used in
the previous studies (e.g., Darzi et al., 2019; Farajpour et al.,

2019). To keep the data set independent, we only used
strong-motion records of those large events that were available
and not used in the previous studies. We primarily used the
strong-motion data from the Ezgaleh and Sarpol-e Zahab
earthquakes in western Iran along with other moderate-to-
large earthquakes that recently occurred in the northwestern
part of the Zagros fold-and-thrust belt (ZFTB). These earth-
quakes, along with the other shallow crustal earthquakes
recorded between 2000 and 2019, have provided a high-quality
strong-motion data set including 201 records with moment
magnitudes 4:5 ≤ Mw ≤ 7:3 and distances up to 275 km mak-
ing this data set appropriate for testing the applicability of dif-
ferent GMMs for use in PSHA in Iran and are provided in
Table 1. The flat file of the data set used is provided in the
supplemental material to this article. The geographic distribu-
tion of the used recording stations and earthquake locations
are shown in Figure 1.

The ZFTB mountain ranges extend for ∼1500 km from the
western part of Iran to northern Iraq. The plate-motion model
estimates a 30 mm=yr collision rate for ZFTB (DeMets et al.,
1994). This area has frequently experienced devastating

TABLE 1
List of Earthquake Events in the Data Set Used

Earthquake Date
(yyyy/mm/dd) Event_Lat (°) Event_Lon (°) Depth (km) Mw Region Number of Records Distance Range (km)

2000/12/06 39.53 54.81 2 6.3 Alborz and Azerbaijan 3 200–220
2012/04/18 27.85 58.10 60 5.1 Others 3 62–76
2013/04/18 38.39 45.37 12 4.9 Alborz and Azerbaijan 2 38–109
2014/08/18 32.64 47.64 12 4.5 Zagros 2 15–36
2015/07/31 29.99 57.63 10 5.4 Central Iran 11 14–80
2016/07/28 26.84 53.82 18 4.8 Zagros 3 17–40
2017/01/17 29.66 51.56 20 4.9 Zagros 2 19–27
2017/04/05 35.89 60.37 9 6.1 Kope Dagh 11 47–163
2017/05/02 35.81 60.54 10 4.8 Kope Dagh 5 37–87
2017/05/11 39.81 48.51 56 5.2 Alborz and Azerbaijan 7 75–119
2017/05/13 37.58 57.19 7 5.8 Kope Dagh 7 17–94
2017/07/23 30.09 57.62 8 5.3 Central Iran 3 6–35
2017/07/30 31.90 50.69 7 4.5 Zagros 4 7–22
2017/08/27 37.90 47.09 12 5.1 Alborz and Azerbaijan 3 10–48
2017/10/23 27.76 57.10 26 5.4 Others 3 26–50
2017/11/12 34.81 45.91 18 7.3 Zagros 40 19–275
2017/12/01 30.75 57.34 14 6.1 Central Iran 12 21–111
2017/12/20 35.77 50.90 14 4.9 Alborz and Azerbaijan 4 14–72
2018/01/06 34.47 45.79 14 5.1 Zagros 8 15–47
2018/01/11 33.78 45.76 12 5.5 Zagros 4 18–50
2018/01/11 33.70 46.01 16 4.8 Zagros 2 16–41
2018/01/11 33.86 45.85 18 5.5 Zagros 3 23–54
2018/03/19 29.712 50.78 10 4.9 Zagros 2 28–33
2018/04/19 28.35 51.64 16 5.7 Zagros 12 15–97
2018/05/02 30.80 51.66 10 5.3 Central Iran 5 21–67
2018/07/22 30.36 57.49 18 5.7 Central Iran 6 20–45
2018/08/28 38.76 48.71 24 5.1 Alborz and Azerbaijan 4 44–94
2018/11/25 34.31 45.69 16 6.3 Zagros 23 13–154
2019/01/06 34.12 45.53 10 5.7 Zagros 7 27–91

Volume XX Number XX – 2020 www.bssaonline.org Bulletin of the Seismological Society of America • 3

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/doi/10.1785/0120200052/5167336/bssa-2020052.1.pdf
by 16550 
on 03 December 2020



earthquakes, mostly shallower than 15 km depth. Moreover,
the high Zagros fault (HZF) and the Mountain Front fault
(MFF) are two major active thrust fault systems in the north-
west of Zagros. One of these major faulting systems is very
likely to be responsible for the Sarpol-e Zahab event (Chen
et al., 2018). According to Engdahl et al. (2006), thrust-faulting
events occur at depths between 10 and 20 km in this region.
However, the hypocenter of the Sarpol-e Zahab earthquake is
located beneath the HZF at ∼15 km depth, and it can rule out
the HZF to be the source fault. Thus, it was a blind oblique-
thrust faulting event on the deep section of the MFF (Chen
et al., 2018).

In this study, we have compiled and processed the strong-
motion data following the approach used by Farajpour et al.
(2018). The data set is processed by the first baseline offset cor-
recting the time histories by following the approach recom-
mended by Boore et al. (2002). Then bandpass filtering
techniques were applied on the strong-motion data with corner
frequencies often chosen based on the shape of Fourier ampli-
tude spectra and the signal-to-noise ratio (Boore and Bommer,
2005). We removed records with signal-to-noise ratio lower
than 3 to avoid the confusion of choosing acausal (phase-less)

filter frequencies (Farajpour
et al., 2018). The data used
are the PGA and 5% damped
PSA at different periods. Two
horizontal components of the
ground motions are combined
into a single measure using the
geometric mean, which is one
of the accepted and most used
measures in GMMs.

The magnitude scale of the
strong-motion data set is the
moment magnitude that is
reported and estimated by
BHRC. Moreover, the data set
includes different source-to-site
distances such as epicentral dis-
tance, hypocentral distance,
rupture distance (Rrup), and
the Joyner–Boore distances
(RJB). For site effects, the aver-
age shear-wave velocity esti-
mates in the upper 30 m
(VS30) were used. Some of the
selected stations have VS30 val-
ues, which were measured by
a shallow seismic refraction
technique. In this study, for
those stations without measured
VS30, we used the topographic
slope as a proxy to VS30

(Wald and Allen, 2007). A similar approach was used by the
Next Generation Attenuation-West2 (NGA-West2) and the
NGA-East to estimateVS30 for sites where there are no measured
data. Moreover, many of the Iranian sites were constructed on
rock, so the distribution is biased toward the higher-velocity VS30

data (Karimzadeh et al., 2019). Thus, the data set used includes
111 records with measured VS30 and 90 records with estimated
values. Sites are categorized based on the National Earthquake
Hazards Reduction Program 2000 (Federal Emergency
Management Agency-368, 2000) site-class classification. Figure 2
shows the magnitude versus distance distributions and VS30

distributions of the selected records.
It is important to mention that the data set used in this

study was not used by the GMM developers and is an indepen-
dent data set. Figure 3 shows a comparison between the data
set used in this study with the strong-motion data set prepared
by Farajpour et al. (2018), shown in gray for PGA and PSA at
T � 0:2, 1.0, and 2.0 s. The diamonds and circles show the
ground-motion intensity measure versus magnitude and dis-
tance, respectively. Figure 3 indicates that the independent data
set used is generally consistent with the characteristics of the
Iranian strong motions.

Figure 1. Geographic distribution of Iranian strong-motion recording stations (triangles) and earthquakes epicenters
(circles) used in this study. The Zagros fold-and-thrust belt (ZFTB), high Zagros fault (HZF), and Mountain Front fault
(MFF) are also shown. The colors indicate height over sea level with red being the mountainous areas. The color
version of this figure is available only in the electronic edition.
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SELECTED GMMS
Ten empirical GMMs are considered in this study, all of which
satisfy the minimum requirements proposed by Cotton et al.
(2006) and Bommer et al. (2010). Five GMMs are recent
GMMs that were developed exclusively using the Iranian

strong-motion data, and the rest
are the GMMs developed from
strong-motion data worldwide.
GMMs considered fall into two
categories: (1) the local models
including Farajpour et al. (2019,
hereafter, FPZ19), Darzi et al.
(2019, hereafter, Dea19),
Zafarani et al. (2018, hereafter,
Zea18), Sedaghati and Pezeshk
(2017, hereafter, SP17), Kale
et al. (2015, hereafter, Kea15);
(2) the NGA models (NGA-
West2) including Abrahamson
et al. (2014, hereafter, ASK14),
Boore et al. (2014, hereafter,
BSSA14), Chiou and Youngs
(2014, hereafter, CY14),
Campbell and Bozorgnia (2014,
hereafter, CB14), and Idriss
(2014, hereafter, I14). Table 2
lists the GMMs considered in

this study and their range of applicability, combination method
for the two horizontal components, and region of origin.

The FPZ19 is an empirical model for the prediction of PGA
and 5% damped PSA up to 4.0 s. The model is based on a data
set with 1356 strong-motion records from 208 events with a

Figure 3. The comparison of the independent strong-motion data set used in
this study (shown in diamonds and circles) with the data set prepared by
Farajpour et al. (2018, hereafter, Fea18) (shown in gray). The peak ground
acceleration (PGA) and pseudoacceleration spectra (PSA) at T � 0:2, 1.0,

and 2.0 s (columns left to right) are shown versus magnitude (top row) and
distance (bottom row). The color version of this figure is available only in the
electronic edition.

Figure 2. The characteristics of the earthquake strong-motion data set used in this study in terms of magnitude–
distance distribution (left) and the distribution of VS30 of the recording sites with magnitude. The site categories
based on the National Earthquake Hazards Reduction Program 2000 (Federal Emergency Management Agency-
368, 2000) and their relation to VS30 are also shown (B, 760 ≤ VS30 < 1500 m=s; C, 360 ≤ VS30 < 760 m=s; D,
180 ≤ VS30 < 360 m=s). The sites with measured values (triangles) and the estimated sites (squares) are also
shown. The color version of this figure is available only in the electronic edition.
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magnitude range of 4.8–7.5, and the rupture distances (Rrup)
up to 400 km. This GMM considered regional differences
for five major tectonic regions and included the nonlinear site
effect using VS30. The Dea19 is another newly developed
empirical model for the prediction of peak ground velocity
(PGV), PGA, and 5% damped PSA up to 10 s. The model
is based on 1350 records from 370 earthquake events with a
magnitude range of 4.5–7.4 and source-to-site distances up
to 200 km. They used an adaptive wavelet denoising approach
for waveform processing. In addition, they considered regional
differences for different tectonic regimes area, and significant
regional differences were reported for a few magnitude–dis-
tance intervals. The Zea18 is derived from 1551 Iranian accel-
eration to predict PGA and 5% damped PSA up to 4.0 s from
200 shallow earthquakes distances up to 200 km. The SP17
model estimates horizontal and vertical strong ground motion
intensity measures for Iran’s shallow crustal earthquakes. Their
data set includes 688 records from 152 earthquakes with
moment magnitudes ranging from 4.7 to 7.4 and Joyner–
Boore distances up to 250 km. The local site conditions were
also considered in their model by accounting the averaged
shear-wave velocities in the upper 30 m. Kea15 is derived from
a subset of 670 Turkish and 528 Iranian accelerograms for
shallow earthquake event with depth less than 35 km to predict
PGA, PGV, and 5% damped PSA.

The NGA-West1 empirical GMMs (Power et al., 2008) had
been applied in previous seismic hazard studies in Iran, where
it had been assumed that they adequately describe the charac-
teristics of Iranian strong motions (e.g., Khoshnevis et al.,
2017). NGA-West2 models were developed by five research
teams from the Pacific Earthquake Engineering Research
center for the prediction of seismic wave attenuation from
shallow crustal earthquakes in interplate regions. Some
researchers believe that these models are more reliable than
local GMMs for estimating the ground motion in the region
where PSHA is going to be carried out. However, using fully
ergodic GMMs is effectively equivalent to applying the aleatory

variability from other regions to the region under study, poten-
tially introducing unrealistic uncertainties into PSHA results
(Kowsari, Halldorsson, Hrafnkelsson, Snæbjörnsson, et al.,
2019). The NGA-West2 models were derived from a data
set of worldwide strong-motion recordings, in which Iranian
strong-motion data were rarely used. The developers have used
different data selection criteria, parameters, and functional
forms for their models (e.g., Bozorgnia et al., 2014).
Particularly, the applied functional forms allow for more flex-
ibility in the modeling of the ground-motion scaling with mag-
nitude from moderate-to-large earthquakes, and the near-fault
magnitude-dependent saturation of amplitudes with distance.
Nevertheless, their applicability for use in PSHA in Iran is a
matter of question that this study tries to address.

RANKING GMMS USING DATA-DRIVEN METHODS
The LLH method uses the Kullback–Leibler metric (i.e., the
distance between the expected value of the correct model and
the predicted value of the approximate model). Practically,
LLH measures the distance between two continuous probabil-
ity density functions, such as f �x� and g�x�. The function f �x�
is the log-normal distribution function of the observed data
point (xi), and g�xi� are estimated values that are distributed
log-normally with the median and standard deviation of the
considered GMM. The LLH score for N pairs of observation
and prediction is calculated by the following equation:

EQ-TARGET;temp:intralink-;df1;320;198LLH�g; x� � −1
N

XN
i�1

log2�g�xi��: �1�

EDR is another ranking method used in this study. The
methodology modifies the concept of the Euclidean distance
and separately considers the standard deviation of the
GMMs and the bias between the observed data and median
estimations. The DE is similar to the residual analysis concept,
which is given as

TABLE 2
Description of the Earthquake Ground-Motion Models (GMMs) Used in This Study

GMM M Range R Type R Range (km) Horizontal Component Main Region(s)

FPZ19 (Farajpour et al., 2019) 4.8–7.5 Rrup 0–400 GM Iran
Dea19 (Darzi et al., 2019) 4.5–7.4 RJB, Rrup 0–200 GM Iran
Zea18 (Zafarani et al., 2018) 4.0–7.3 RJB, Repi 0–200 GM Iran
SP17 (Sedaghati and Pezeshk, 2017) 4.7–7.4 RJB 0–250 GM Iran
Kea15 (Kale et al., 2015) 4.0–8.0 RJB 0–200 GM Turkey and Iran
ASK14 (Abrahamson et al., 2014) 3.0–8.5 RJB, Rrup 0–300 RotD50 Worldwide
BSSA14 (Boore et al., 2014) 3.0–8.5 RJB 0–400 RotD50 Worldwide
CY14 (Chiou and Youngs, 2014) 3.5–8.5 RJB, Rrup 0–300 RotD50 Worldwide
CB14 (Campbell and Bozorgnia, 2014) 3.3–8.5 RJB, Rrup 0–300 RotD50 Worldwide
I14 (Idriss, 2014) 4.5–7.9 Rrup 0–175 RotD50 Worldwide

GM is the geometric mean and RotD50 is the 50th percentile of the rotated orientation-independent.
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EQ-TARGET;temp:intralink-;df2;41;744DE �

��������������������������XN
i�1

�pi − qi�2
vuut ; �2�

in which N is the total number of observations xi, the pi and qi
parameters are the observed and the predicted ground-motion
pairs, respectively. The modified Euclidean distance (MDE) is cal-
culated for a preselected standard deviation range. It modifies the
median estimations with the straight line fitted to the observed
and estimated ground-motion data, and its formula is given by

EQ-TARGET;temp:intralink-;df3;41;614MDE �
Xn
j�1

jdjjPr�jDj < jdjj�; �3�

in which D is the difference between natural logarithms of the
observed and the predicted ground motions and dj represents
the discrete values of D. This method considers only positive val-
ues because of the analogymade between DE andD (see Kale and
Akkar, 2013, for more details). In the EDR method, the param-
eter k is introduced as a ratio of the original and the corrected
Euclidian distance that consider the bias for the GMMs:

EQ-TARGET;temp:intralink-;df4;41;472k � DEoriginal
DEcorrected

: �4�

Finally, the MDE values are combined with k, and normal-
ized by the total numbers of data to present the final EDR
ranking index:

EQ-TARGET;temp:intralink-;df5;41;393EDR �
��������������������������������������
k ×

1
N
×
XN
i�1

MDE2
i

vuut : �5�

The smallest value of EDR would show the best goodness of
fit of the GMM model to the data set.

Kowsari, Halldorsson, Hrafnkelsson, and Jonsson (2019)
proposed the data-driven method using the DIC to select
the most suitable GMM for application in PSHA. The aleatory
variability that is represented by the standard deviation of the
GMM is an influential parameter in data-driven methods. To
have a reliable PSHA, a nonergodic or partially nonergodic
GMMs should be applied. In this way, two cases were assumed
for the modeling in their study: (1) The standard deviation of
the model is assumed to be known (i.e., the previously deter-
mined sigma that hereafter is denoted as prior sigma), and
(2) the standard deviation of the model is unknown. They
showed that the former case (i.e., the prior sigma) and the
LLH method similarly ranks the GMMs because they are iden-
tical because they both use the Kullback–Leibler divergence
estimated from the statistical expectation of LLH of observa-
tions. The Kullback–Leibler divergence is a measure of the dif-
ference between two probability distributions (i.e., the
distribution of ground-motion observations and predictions).
The only difference that has made the DIC beneficial is how
the DICmethod can be connected to the Bayesian statistics and

the Markov chain Monte Carlo (MCMC) algorithm, which is
modeled in case 2 where a posterior sigma is estimated by the
Bayesian approach. That way, the posterior sigma represents
the misfit between the predicted ground motions and the
Local or regional ground-motion observations of the region
where PSHA is going to be carried out.

The Bayesian statistical framework is ideal for incorporating
in a quantifiable way our prior knowledge of model parameters
and their uncertainties, which presumably we can update when
new information becomes available and repeat the analysis.
The output is known as a posterior distribution, which might
be used as the basis for inferential decisions. Therefore, such a
useful feature can be used to estimate the standard deviation of
GMMs by combining a prior distribution with the likelihood of
the available data. The posterior probability distribution of the
unknown sigma is then conditioned on the observed ground
motions obtained from the region under study. Here, we
assume that the logarithm of the ground-motion parameter
follows a normal distribution (Kowsari, Halldorsson,
Hrafnkelsson, and Jonsson, 2019):

EQ-TARGET;temp:intralink-;df6;308;484p�yjσ2� �
YN
i�1

1

σ
������
2π

p exp

�
−
�yi − μ�β�i�2

2σ2

�
; �6�

in which N is the number of observations, y is the natural log-
arithm of the observed ground-motion parameter, μ�β� is the
mean value predicted by the GMM, and σ is the standard
deviation of the GMM. On the other hand, for the prior dis-
tribution, we assume that sigma is unknown and distributed
following a scaled inverse chi-squared distribution (Kowsari,
Halldorsson, Hrafnkelsson, and Jonsson, 2019):

EQ-TARGET;temp:intralink-;df7;308;342p�σ2� ∝ �σ2�−ν
2−1 exp

�
−
ν

2
×
s2

σ2

�
; �7�

in which υ is the number of chi-squared degrees of freedom,
and s2 is the scaling parameter. Therefore, the posterior distri-
bution is given by

EQ-TARGET;temp:intralink-;df8;308;263p�σ2jy� ∝ p�σ2�p�yjβ; σ2�: �8�

By taking the logarithm of both sides:

EQ-TARGET;temp:intralink-;df9;308;224

log p�σ2jy� � log p�σ2� � log p�yjβ; σ2�

�
�
−
N � v

2
� 1

�
log�σ2�

−
N � v� �
2σ2

�
1

N � v
�

�
vs2 �

XN
i�1

�yi − μ�βi��2
��

� c

→ p�σ2jy� �
�
σ2jN � v;

1
N � v

��
vs2 �

XN
i�1

�yi − μ�β�i�2
�
:

�9�
The posterior distribution of the variance is again a scaled

inverse chi-squared distribution with the degrees of
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freedom and the scaling parameter. As a result, the DIC of the
normal model is given by (for more details see Kowsari,
Halldorsson, Hrafnkelsson, and Jonsson, 2019):

EQ-TARGET;temp:intralink-;df10;53;484

DIC � 2
L

XL
l�1

�N log�2π� � N log�σ̂2� � σ−2
XN
i�1

�yi − μ�β�2i �

− �N log�2π� � N log�σ̄2�� � σ̄2
XN
i�1

�yi − μ�β�i�2�; �10�

in which L is the number of samples, σ̂2 are drawn samples
from the posterior distribution (equation 9) using an MCMC
method, σ̄2 and is the posterior mean value of sigma-squared.
Therefore, the DIC is one of the model selection methods that
are particularly useful where MCMC simulations to obtain the
posterior distributions of the models.

RESULTS AND DISCUSSION
In this study, the performance of five recently developed local
(Iranian) GMMs are evaluated using each of the three data-
driven methods. Moreover, the applicability of the NGA mod-
els for use in PSHA in Iran that has been a matter of ongoing
discussion among researchers is assessed. The results are pre-
sented for PGA and PSA at T � 0:2, 1.0, and 2.0 s. The DIC
results are presented for two cases: (1) where the original sigma
(the prior sigma) is used, and (2) where the sigma is assumed to
be unknown and follows a scaled inverse chi-squared distribu-
tion. The prior and posterior sigma (estimated by equation 9)
of the candidate GMMs are provided in Table 3. From Table 3,
the posterior sigma represents the misfit between the predicted
and observed ground motions of the region under study.
Table 4 and Figure 4 provide scores of the EDR, LLH, and
DIC with the prior sigma (named as DIC1) and DIC with the
posterior sigma (named as DIC2) for the candidate GMMs at
different periods.

We note that models with smaller scores in Table 4 and
Figure 4 perform better compared with models with higher
scores. Each ranking method is represented by different
numerical values and units; however, only the relative differ-
ence within the same ranking method matters. Moreover, the
results show that the DIC with the prior sigma is the same as
the LLHmethod but with different score values, which was also
shown in Kowsari, Halldorsson, Hrafnkelsson, and Jonsson
(2019). The results show that all the ranking methods rank
Dea19 as the best GMM at PGA. The LLH, DIC1, and DIC2
select Zea18 as the second model, whereas the EDR favors
ASK14 due to its smaller sigma compared with Zea18. This
can also be seen for FPZ19, where the EDR ranks it as the ninth
model, whereas the other methods rank it as the fifth GMM.
For PSA at T � 0:2 s, the EDR ranks Dea19 as the best model,
whereas the other methods choose FPZ19. The Zea18 is in the
second and third place by LLH and DIC2, respectively, whereas
the EDR ranks it as the seventh model due to its larger sigma
compared with the other GMMs. At longer periods (i.e.,
T � 1:0 and 2.0 s), Kea15 and SP17 are selected as the best
GMM by the LLH, DIC1, and DIC2, whereas BSSA14 is the
favored GMM by EDR. Overall, at short periods (i.e., PGA and
PSA at T � 0:2 s) the local GMMs such as Dea19, FPZ19,
Zea18, and SP17 have better performance compared with the
other models, but at long periods (i.e., T � 1:0 and 2.0 s),
Dea19 and FPZ19 lose their predictive ability compared with
Zea18 and SP17. In general, the results of EDR are different
from that of the LLH and DIC, and it is biased toward GMMs
with smaller sigma. The behavior of NGA-West2 models is
fairly similar, whereas ASK14 and BSSA14 show a better
performance.

To facilitate a visual comparison of the results of the differ-
ent data-driven methods, the residual trend versus magnitude
and distance for the local and NGA-West2 GMMs at PGA are
shown in Figures 5 and 6, respectively. For the sake of space, we
show the distribution of residuals for PSA at T � 0:2, 1.0, and

TABLE 3
Prior and Posterior Standard Deviations (in Natural Logarithm) of the Candidate GMMs at Different Periods

Sigma (PGA) Sigma (T � 0:2 s) Sigma (T � 1:0 s) Sigma (T � 2:0 s)

GMMs Prior Posterior Prior Posterior Prior Posterior Prior Posterior

FPZ19 0.753 0.693 0.846 0.698 0.867 0.744 0.878 0.852
Zea18 0.686 0.637 0.751 0.725 0.787 0.730 0.781 0.760
Dea19 0.608 0.631 0.638 0.731 0.640 0.771 0.688 0.820
SP17 0.539 0.661 0.646 0.723 0.781 0.711 0.808 0.741
Kea15 0.637 0.745 0.546 0.909 0.645 0.698 0.775 0.761
ASK14 0.660 0.686 0.697 0.817 0.751 0.741 0.769 0.824
BSSA14 0.605 0.734 0.619 0.825 0.692 0.712 0.700 0.770
CY14 0.618 0.736 0.683 0.810 0.686 0.742 0.662 0.799
CB14 0.646 0.981 0.716 1.171 0.738 0.721 0.724 0.806
I14 0.763 0.749 0.808 0.839 0.833 0.839 0.843 0.872

PGA, peak ground acceleration.
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2.0 s versus distance and magnitude in the supplemental
material. In these figures, the mean and the standard deviation
of error bars are calculated using magnitude bins of 0.1. The
solid line is the least-squares linear regression line, and the
dashed lines are the 95% confidence limits of the line.
However, we must emphasize that the data set used in this
study is limited and only has two earthquakes with Mw > 6:1.
Thus, the variability quantified for the large earthquakes
(i.e., Mw 6.3 and 7.3) is a within-event variability.

In some cases, the performances of the EDR and LLHmeth-
ods have exhibited shortcomings, which can be seen from the
results presented in Table 4 and Figure 4. The LLH prefers the
predictive model with a larger sigma when the observed data
congregate away from the median estimations (Kale and
Akkar, 2013). On the other hand, the EDR method favors a
smaller sigma when two predictions give the same mean,
regardless of what the true uncertainty is (Mak et al., 2014).
The results presented for PGA show that the EDR favors

CY14 over Zea18 due to its smaller sigma (provided in
Table 3 as prior sigma). From Figures 5 and 6, it is clear that
the CY14 model is more biased than the Zea18. The LLH and
DIC2 behave similarly where the data are close to the predic-
tions. However, where observations are away from predictions,
the LLH favors the model with a larger sigma. For example, the
LLH method selects I14 over BSSA14 because of its larger
sigma, although it is clear that the BSSA14 is less biased than
I14 versus magnitude and distance.

At PGA, the model residual behavior versus magnitude and
distance for the category 1 GMMs show that Dea19 and Zea18
are the unbiased models, meaning that the overall mean value
of the residuals is insignificantly different from zero and does
not show significant trends with distance or magnitude. The
other local GMMs (i.e., FPZ19, SP17, and Kea15) have sub-
stantial negative trends with distance. In other words, they
are underpredicting in the near-fault and overpredicting in
the far field. Moreover, the local GMMs underpredict the

TABLE 4
Scores of the Euclidean Distance-Based Ranking (EDR), Log Likelihood (LLH), and DIC1 with the Prior Sigma, and DIC2 with the
Posterior Sigma in Selected Periods for 10 Candidate GMMs

Periods Methods FPZ19 Zea18 Dea19 SP17 Kea15 ASK14 BSSA14 CY14 CB14 I14

PGA EDR 1.08 0.992 0.817 0.912 1.031 0.857 0.865 0.86 1.236 0.949
Rank 9 7 1 5 8 2 4 3 10 6
LLH 1.521 1.397 1.378 1.508 1.652 1.496 1.654 1.644 2.344 1.624
Rank 5 2 1 4 8 3 9 7 10 6
DIC1 423.9 389.4 383.9 420.1 460.2 417 460.9 458.1 653.1 452.6
Rank 5 2 1 4 8 3 9 7 10 6
DIC2 422.9 389 385.4 403.9 452 418.9 446.5 447.1 562.9 454.4
Rank 5 2 1 3 8 4 6 7 10 9

T � 0:2 s EDR 1.138 1.135 0.937 1.072 1.193 1.002 0.982 0.965 1.532 1.081
Rank 8 7 1 5 9 4 3 2 10 6
LLH 1.571 1.579 1.617 1.591 2.436 1.77 1.903 1.782 2.757 1.789
Rank 1 2 4 3 9 5 8 6 10 7
DIC1 437.7 440.1 450.5 443.3 678.7 493.2 530.2 496.6 768.2 498.4
Rank 1 2 4 3 9 5 8 6 10 7
DIC2 425.8 441.5 444.8 440.3 532.4 489.4 493.1 486.1 634.2 499.9
Rank 1 3 4 2 9 6 7 5 10 8

T � 1:0 s EDR 1.258 1.086 1.006 1.066 0.931 0.965 0.901 0.93 0.96 1.172
Rank 10 8 6 7 3 5 1 2 4 9
LLH 1.647 1.595 1.72 1.561 1.531 1.61 1.55 1.618 1.57 1.787
Rank 8 5 9 3 1 6 2 7 4 10
DIC1 458.9 444.3 479.4 434.9 426.6 448.5 432 450.9 437.5 498.1
Rank 8 5 9 3 1 6 2 7 4 10
DIC2 452 443.8 466.3 433.2 426.2 450.2 433.7 450.5 439.1 500
Rank 8 5 9 2 1 6 3 7 4 10

T � 2:0 s EDR 1.37 1.017 1.015 1.009 1.012 1.09 0.941 0.974 1.02 1.236
Rank 10 6 5 3 4 8 1 2 7 9
LLH 1.811 1.646 1.801 1.62 1.648 1.768 1.675 1.772 1.746 1.844
Rank 9 2 8 1 3 6 4 7 5 10
DIC1 504.7 458.8 501.9 451.3 459.2 492.8 466.8 493.6 486.5 513.9
Rank 9 2 8 1 3 6 4 7 5 10
DIC2 506.3 460.3 490.8 450.2 461 493 465.3 480.3 484 515.4
Rank 9 2 7 1 3 8 4 5 6 10

DIC, deviance information criterion.
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PGA of small earthquakes and overpredict for the large earth-
quakes, with the exception of Zea18 and Dea19. For the NGA-
West2 models, the residual versus magnitude shows that the
only unbiased models are BSSA14 and ASK14, although the
individual event residuals for BSSA14 show large suspicious
variations between Mw 5 and 6. All others have significant
trends with distance and magnitude. CB14, in particular, is
biased, as evident by the offset of the mean residual value
from zero.

Therefore, the results indicate that the LLH and EDR meth-
ods consider the prior sigma as a key measure to rank the
GMMs, and in some cases, it even leads to ignoring the model
bias (represented by the deviation of the median). We believe
that the prior sigma is not an appropriate measure for this
purpose; therefore, we suggest using DIC2 method that ranks
GMMs based on both residual and the posterior sigma
obtained from the observed ground motions.

Furthermore, we plot the attenuation of categories 1 and 2
GMMs versus distance and compare them with the observed
data in Figures 7 and 8 for PGA and PSA at T � 1:0 s, respec-
tively. For the sake of consistency, the different distance mea-
sures were converted to the rupture distance (Rrup) using the
relationships proposed by Scherbaum, Schmedes, and Cotton
(2004). The corresponding figures for PSA at T � 0:2 and 2.0 s
are shown in the supplemental material. In these figures, the
GMMs are evaluated at Mw 5 (events with 4:5 ≤ Mw < 5:5 are
shown),Mw 6 (events with 5:5 ≤ Mw < 6:5 are shown), and 7.3
(2017 Mw 7.3 Ezgeleh earthquake for VS30 � 360 m=s). The
gray circles show the observed strong-motion data. We also
plot the median GMMs that are ranked as the best model using

DIC2 ± its standard deviation at each period. The results show
that the 68% confidence interval (median� σ) of the first
ranked GMMs fairly cover the recorded strong motions for dif-
ferent magnitudes at different periods. At PGA, CB14 is under-
predicting the Iranian strong motions for all magnitudes,
BSSA14 (slightly), and CY14 is underpredicting the small
earthquakes and overpredicting the large ones as they are
already shown in Figure 6. It also shows how the NGA-
West2 (apart from BSSA14) overpredicts the small earth-
quakes at near-fault distances at PSA at T � 1:0 s that is com-
patible with Figure S4. Overall, category 1 GMMs fit the
Iranian strong motions better and would be promising candi-
dates over NGA-West2 models for use in PSHA in Iran.
However, the NGA-West2 models can still be applied within
Iran, which was already shown in the previous studies (Shoja-
Taheri et al., 2010; Mousavi et al., 2012).

CONCLUSIONS
We have had a few large earthquake occurrences with magni-
tude of 6 and larger in Iran in recent years, which have caused
significant human and financial losses. Performing a reliable
seismic hazard analysis is crucial for such an earthquake-prone

Figure 4. Euclidean distance-based ranking (EDR), log-likelihood (LLH), and
DIC1 scores with the prior sigma, and DIC2 score with the posterior sigma at
selected periods for the candidate ground-motion models (GMMs). The
smaller scores imply better representation of the observed ground motions
by the predictive model. DIC, deviance information criterion. The color
version of this figure is available only in the electronic edition.
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Figure 5. Distribution of residuals for PGA versus distance and magnitude for
the local GMMs. Red diamonds and the error bars show the mean and
standard deviation of the log residual, respectively. Solid and dashed lines

are the least-squares linear regression and the 95% confidence limits,
respectively. The color version of this figure is available only in the electronic
edition.
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Figure 6. Distribution of residuals for PGA versus distance and magnitude for
the Next Generation Attenuation-West2 (NGA-West2) GMMs. Red dia-
monds and error bars show the mean and standard deviation of the log

residual, respectively. Solid and dashed lines are the least-squares linear
regression and the 95% confidence limits, respectively. The color version of
this figure is available only in the electronic edition.
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country. In this regard, the GMMs, as one of the essential ele-
ments of any PSHA, should be carefully selected. In this study,
we reviewed three data-driven selection methods, EDR, LLH,
and DIC, to evaluate the performance of ten empirical GMMs
against a recently recorded and independent Iranian strong-
motion data set. The data set includes the catastrophic
Sarpol-e Zahab earthquake, one of the major destructive events
that have occurred in the northwestern ZFTB. On the other
hand, because the data set used in this study is limited and only
has two earthquakes withMw > 6:1, the variability is a within-
event variability, which is expected to be smaller than the
variability expected if several events were included.

The results were presented for PGA and 5% damped PSA
over the different selected range of periods. The results indicate
the best fit between the local GMMs and the observed data.
Among the five local models, the GMMs proposed by Darzi
et al. (2019) and Farajpour et al. (2019) fit the recorded data
well, particularly at short periods (i.e., PGA and PSA at
T � 0:2 s). However, at long periods (i.e., T � 1:0 and 2.0 s),
the models developed by Zafarani et al. (2018) and Sedaghati
and Pezeshk (2017) are preferable. Moreover, the Kale et al.
(2015) model shows better performance at long periods (i.e.,
T � 1:0 and 2.0 s) rather than short periods.

The NGA-West2 models are developed based on worldwide
shallow crustal earthquakes data and rarely used Iranian
strong-motion data. However, the models proposed by

Boore et al. (2014) and Abrahamson et al. (2014) are prefer-
able. We conclude that the NGA-West2 models can be used
but not as a backbone model for Iran. They can also be applied
with lower weights if a logic-tree format is used. The distribu-
tion of the residuals versus distance at all the selected periods
exhibits that they overpredict at near-fault distances and
underpredict at far-field distances.

As part of this study, we show that in some cases, the EDR
and LLH methods favor models with smaller and larger sigma,
respectively, regardless of what the true uncertainty is. In con-
trast, the DIC method that uses Bayesian statistics is shown to
optimize the GMM selection for a given region leading to an
unbiased assessment of earthquake hazard. The effect of sigma
on the performance of these data-driven selection methods is
shown and discussed in Kowsari, Halldorsson, Hrafnkelsson,
and Jonsson (2019) where several different synthetic data sets
were generated and a generic empirical GMM calibrated to it.
Furthermore, the DIC method offers an advantage of partially
removing the ergodic assumption from the GMM selection

Figure 7. The attenuation of the selected GMMs, local (top row), and NGA-
West2 (bottom row), versus distance for PGA. The GMMs are evaluated at
Mw � 5:0, 6.0, and 7.3 (columns left to right, respectively) for a
VS30 � 360 m=s. Gray circles are the observed strong-motion data. The
color version of this figure is available only in the electronic edition.
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process when the ground-motion recordings are homo-
geneously distributed in terms of magnitudes and distances.
That, in turn, has important implications for the standard
PSHA practice.

Finally, the results show that the scores of the data-driven
methods for most of the selected GMMs are close to each other.
This generally means that those GMMs, with the insignificant
difference in their testing score, predict the Iranian strong
motions similarly. However, to consider the epistemic uncer-
tainties associated with GMMs through the backbone
approach in PSHA, one single GMM (backbone model) is
needed. Thus, such insignificant differences between the test-
ing scores matter when the purpose is to rank different GMMs
and select the best one as the backbone GMM.

DATA AND RESOURCES
In this study, the strong ground motion records were provided by the
Building and Housing Research Center (BHRC) of Iran (http://www
.bhrc.ac.ir/, last accessed December 2019). We express our sincere
appreciation to the BHRC of Iran that provided strong ground motion
records. The flat file of the data set used is provided in the supple-
mental material to this article. Supplemental plots for residuals cor-
responding to spectral accelerations (i.e., SA 0.2, 1.0, and 2.0 s), and
plot of the attenuation of categories 1 and 2 ground-motion models
(GMMs) versus distance and compare them with the observed data
for pseudoacceleration spectra (PSA) at T � 0:2 and 2.0 s, respec-
tively, are provided in the supplemental material to this article.
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