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Abstract We assessed the applicability of several ground-motion models (GMMs)
against Iran’s local data. Candidate GMMs are selected from those developed for shal-
low crustal regions such as Iran, Turkey, Japan, Europe and the Middle East, and the
western United States. We made the evaluation database prospective to all candidate
GMMs to assess their predictive capability. The evaluation database is composed of
643 records from 240 earthquakes with magnitudes ranging from 3.9 to 7.3 and
Joyner–Boore distances up to 300 km. We implemented the log-likelihood method of
Scherbaum et al. (2009), the Euclidean distance-based ranking proposed by Kale and
Akkar (2013), and the multivariate logarithmic score of Mak et al. (2017) to evaluate
the candidate models. We ranked GMMs by paying attention to the issue of score
variability. To assess the score variability, we generated resampled datasets from
the whole database using the cluster bootstrap technique and ranked models based
on their relative performance among bootstrap samples. Overall, Sedaghati and
Pezeshk (2017), Zafarani et al. (2018), and Farajpour et al. (2019) local models out-
perform remaining models considering the whole database over the entire frequency
range. For high-seismicity regions, the Zhao et al. (2006) model can be used in line
with the first two local models to better quantify epistemic uncertainties associated
with the process of model selection. In addition to aforementioned local models, Bindi
et al. (2014) show acceptable performance against small-to-moderate magnitude data
and may be considered for estimating seismic hazard in low-seismicity regions of Iran.

Supplemental Content: Tables providing information about the evaluation data-
base including the magnitude, the depth and the number of records, log-likelihood
(LLH) and Euclidean distance-based ranking (EDR) scores of the candidate models
for all representative periods, and weights that can be assigned to the candidate models
based on the LLH scores, and figures illustrating the distinctness tables computed
from the multivariate logarithmic scores (mvLogSs) for representative spectral peri-
ods, and residuals versus the magnitude, distance, and shear-wave velocity on the top
30 m for periods other than peak ground acceleration (PGA) and visual comparisons
between observed ground-motion intensities and models’ predictions for spectral peri-
ods including 0.5, 1.0, and 2.0 s.

Introduction

Selecting appropriate ground-motion models (GMMs) is
an important task in modeling seismic hazard for any study
region (Kulkarni et al., 1984; McGuire, 2004). Typically, a
group of experts select multiple GMMs to address epistemic
uncertainties associated with the process of model selection.
A seismic hazard modeler may follow guidelines provided in
Cotton et al. (2006) and Bommer et al. (2010) to preselect a
set of viable models. Then, the modeler can use empirical
GMM evaluations to assess the applicability of the candidate
models against evaluation data and come up with a few

suitable models for populating the branches of the logic
tree.

The need for assessing models’ relative performances
prior to carrying out seismic hazard studies is crucial for the
tectonic region of Iran due to the shortage of domestic expe-
rienced experts (Zafarani and Mousavi, 2014). To meet this
need, several studies have been performed in recent years to
introduce suitable models for different tectonic regions
within the Iranian plateau. We divide these studies into two
groups. The first group evaluated the applicability of foreign
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models for Iran, and the second group considered local mod-
els in addition to foreign models in their list of the candidate
GMMs. The first group includes Shoja-Taheri et al. (2010)
and Mousavi et al. (2014), who evaluated the applicability of
the Next Generation Attenuation (NGA) models to the local
region of Iran. Shoja-Taheri et al. (2010) compared three
NGA models with the Iranian strong-motion data using
residual analysis. They proposed models of Boore and
Atkinson (2008), Campbell and Bozorgnia (2008), and
Chiou and Youngs (2008) as models applicable to the Iranian
plateau. The approach used in Shoja-Taheri et al. (2010) does
not take the variability of GMMs into account and could be
replaced with the newer test of goodness-of-fit measures
such as the likelihood (LH) and log-likelihood (LLH) meth-
ods (Scherbaum et al., 2004, 2009). Mousavi et al. (2014)
used the LH and LLH methods of ranking to test the NGA
models against a database constructed from 2012 Ahar–
Varzaghan dual earthquakes and 1997 Ardabil event. They
proposed that the NGA models could be confidently used
for seismic hazard studies of Iran for short-to-median peri-
ods. Considering a limited range of earthquakes may limit
the implications of Mousavi et al. (2014) in a broader range
of magnitudes and distances. Moreover, the NGA models
used in the studies of Shoja-Taheri et al. (2010) and
Mousavi et al. (2014) are now superseded by their newer
versions (Next Generation Attenuation-West2 Project
[NGA-West2] models) that may perform better than their
predecessors against Iran’s local data.

The second group of studies on the applicability of
GMMs for Iran contains studies that evaluated not only
the NGA models but also other foreign models and the local
GMMs. We categorized three studies including Mousavi
et al. (2012), Zafarani and Mousavi (2014), and Zafarani
and Farhadi (2017) into this group. Mousavi et al. (2012)
used LH and LLH methods to test the applicability of models
selected from three groups, including indigenous models of
Iran, regional models of Europe and the Middle East, and the
NGA models for the Zagros region of Iran. They suggested
that local models proposed by Zafarani and Soghrat (2012)
and Ghasemi, Zare, Fukushima, and Koketsu (2009; here-
after, GZFK09) perform better than other candidate models
for the Zagros region. In the study of Mousavi et al. (2012),
the best-fitting models were constructed using a portion of
data that the authors considered to rank the GMMs.
Zafarani and Mousavi (2014) followed a procedure similar
to that of Mousavi et al. (2012) to perform an independent
study for northern Iran. They introduced few models from
each of the three mentioned categories as appropriate. In
their views, the models of Ghasemi, Zare, Fukushima, and
Koketsu (2009) GZFK09 and Soghrat et al. (2012), both
developed from the local data, and the two NGA models
of Abrahamson and Silva (2008) and Chiou and Youngs
(2008) as well as the regional model of Akkar and Bommer
(2010) are appropriate for seismic hazard studies in the
northern region of Iran. The issue of similarity between the
generating datasets of the local models and evaluation data

still exists in the study of Zafarani and Mousavi (2014).
Zafarani and Farhadi (2017) excluded the data used in the
development of local models from their evaluation database
and tested several GMMs against small-to-moderate magni-
tude data in Iran. They introduced the local model of
Zafarani et al. (2018; hereafter, ZLLS18) as a single model
consistent with the observed data. The focus of Zafarani and
Farhadi (2017) was on weak motions that may limit its
implications for larger magnitudes with significant impact on
seismic hazard studies.

Previous studies motivated us to extend their implica-
tions and perform the current study. To this end, we took
the advantage of new methodologies and currently available
data to improve the implications of previous studies for the
future seismic hazard assessments in Iran. For example, we
improved the results of Mousavi et al. (2014) as well as
Zafarani and Farhadi (2017) by replacing their evaluation
data with the most recent evaluation database that covers
a wider magnitude–distance range. In this study, we used
643 recording motions from 240 earthquakes with magni-
tudes ranging from 3.9 to 7.3 and distances up to 300 km as
our evaluation database. The evaluation data cover a broader
range of events and better serves our objectives. In addition,
we made the evaluation database independent from all
candidate GMMs to assess the predictive capability of the
candidate models rather than their explanatory capability.
Therefore, we updated previous studies including Mousavi
et al. (2012) and Zafarani and Mousavi (2014) by paying
attention to these two types of performance. In other words,
our results only describe the predictive capability that is
directly linked to the seismic hazard (Bindi, 2017; Mak,
2017). Moreover, we tested recently established GMMs for
Iran and newer versions of both regional and the NGA
models against our dataset to update previous studies.

We implemented the popular LLH method, the Euclidean
distance–based ranking (EDR) proposed by Kale and Akkar
(2013), and the natural extension of LLH method known as
the multivariate logarithmic score (mvLogS) of Mak et al.
(2017) to rank the candidate models. The mvLogS method
is sensitive to the information provided for the variability asso-
ciated with empirical models (sigma). This method measures
the relative performance of competing models considering all
components of sigma provided by GMM developers, whereas
the LLH and EDR methods rank models based on the total
sigma. This is an important feature due to recent advances
in ground-motion modeling, which has resulted in developing
models with more complicated hierarchical structures.
Recently established GMMs have a two-layer hierarchical
structure and partition the total sigma into between-event
and within-event components by considering ground-motion
records from the same event as correlated.

Furthermore, we improved the result of previous studies
by paying attention to the issue of score variability in ranking
the candidate models. We took score variability into account
by using the cluster bootstrap technique for generating
resampled datasets from the original evaluation database.
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The cluster bootstrap techniques enabled us to compute the
distinctness index (DI) from the resampled datasets for all
model pairs. The DI indicates if two models are truly differ-
ent given the score variability.

We will next introduce the evaluation data and give a
summary on applied GMMs. Then, we will review the
data-driven evaluation methods used to evaluate the perfor-
mance of selected GMMs against the evaluation dataset.
Finally, we will conclude by introducing a relatively short
list of appropriate GMMs most suitable for the future seismic
hazard studies of Iran.

Evaluation Database

We adopted the evaluation database from two sources.
The main source is a subset of data compiled by Zafarani and
Soghrat (2017). Zafarani and Soghrat (2017) performed a
comprehensive study to collect ground-motion records from
Iranian earthquakes between 1975 and 2014. Their database
represents 20% of the Iranian earthquakes and contains 2286
records from 461 events with moment magnitude from 3.9 to
7.3. We discarded those records in Zafarani and Soghrat
(2017) that were used by GMM developers in Iran. This
makes the test data independent from the candidate GMMs.
We supplemented this database by adding some ground-
motion records from the recent Mw 7.3 Kermanshah earth-
quake. The Kermanshah earthquake struck the province
of Kermanshah in the western region of Iran on 12
November 2017 at 18:18:16 UTC (21:48:16 local time). This
devastating event was felt across the Iran–Iraq border with a
maximum modified Mercalli intensity of 8.0 (Babaie Mahani
and Kazemian, 2018). We added 44 strong ground motion
records from the Kermanshah earthquake to our evaluation
database to enrich it at large magnitudes. These records were
analyzed by Babaie Mahani and Kazemian (2018) and are
available online. Babaie Mahani and Kazemian (2018) proc-
essed 121 accelerometers, but we used only 44 of them by
considering events with closest distance to the surface pro-
jection of the fault ruptured area (RJB) less than 300 km and
stations with known average shear-wave velocity on the top
30 m (VS30). It should be noted that adding data from recent
Kermanshah earthquake will not make the evaluation data-
base dependent on the candidate models because these data
have not been used by modelers in GMM development.

Overall, we used a database of 643 records from 240
earthquakes with magnitudes ranging from 3.9 to 7.3 and
distances up to 300 km to evaluate the applicability of several
GMMs for the probabilistic seismic hazard in Iran. Events
with magnitude below 6 contribute the most to the evaluation
database with 535 ground-motion records. Many events from
this range have not been used in the development of the
majority of the Iranian GMMs due to the higher importance
of moderate-to-large events in seismic hazard studies of Iran.
However, earthquake hazard from weak-motion data could
be high especially in regions close to the location of earth-
quakes. Because of the importance of earthquake hazard

from small-to-moderate magnitude data, the NGA-West2
model developers updated the NGA models to make them
applicable to smaller magnitude data, taking advantage of the
rich database provided by Ancheta et al. (2014). According
to Atkinson and Assatourians (2017), events from the 3.5–6
range are damaging especially in distances up to 50 km.
Therefore, we used 14 records from three Mw 3.9 earth-
quakes with distances below 50 km for ranking the candidate
GMMs. This magnitude is smaller than the minimum mag-
nitude thresholds of some of the GMMs, but the minimum
magnitude considered for performing seismic hazard in some
parts of Iran could be as small as Mw 3.9. In low-seismicity
regions such as Arvand-Shatt-Al-Arab, Arabian platform,
and Persian Gulf seismotectonic provinces of Iran, magni-
tudes as small as Mw 4.0 could be responsible for hazard in
large return periods (Zafarani and Farhadi, 2017). Zafarani
and Farhadi (2017) also mentioned the need for developing
more elaborate GMMs that can provide reliable predictions
for small-to-moderate magnitude earthquakes. The ZLLS18
model is a single Iranian GMM that used a considerable por-
tion of small-to-moderate magnitude data in model develop-
ment. It should be mentioned that the evaluation database is
independent of the ZLLS18 model. Zafarani et al. (2018)
have not used all small-to-moderate magnitude events pro-
vided by Zafarani and Soghrat (2017) in their model to avoid
dominating their generating dataset with events from small-
to-moderate magnitude range.

There are 108 ground-motion records with magnitude
above 6 in the evaluation database. Forty-four records of
these 108 ground-motion records are from recent
Kermanshah earthquake and have not been considered in
the development of existing Iranian GMMs. Therefore, there
are 64 ground-motion records with magnitudes larger than 6
in the evaluation database that have not been used by all
GMM developers, whereas many of them were available
at the time of development of most of the Iranian GMMs.
These records represent an important range of earthquakes,
and we will explain why they have not been used by all
model developers. Fifty-seven of these 64 ground-motion
records were recorded by stations with estimated VS30.
Availability of an estimate of this parameter rather than its
measurement could be the main reason for excluding these
records from the evaluations performed by GMM develop-
ers. Nonetheless, estimated values of VS30 are still useful and
Zafarani and Soghrat (2017) approximated the site condition
for stations recorded these 57 records using robust method-
ologies proposed by Zare et al. (1999) and Ghasemi, Zare,
Fukushima, and Sinaeian (2009). It is worth mentioning that
Ghasemi, Zare, Fukushima, and Sinaeian (2009) assessed the
applicability of their proposed method by reclassifying the
stations with previously determined VS30. Success rates of
their method for the Iranian sites are comparable with those
obtained by applying the approach proposed by Zhao et al.
(2006; hereafter, Zetal06) and are higher than the rates
gained using peak periods of horizontal-to-vertical spectral
ratios. Further information regarding the evaluation database
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is provided in Ⓔ Table S1, available in the supplemental
content to this article. Ⓔ Table S1 includes the magnitude,
the depth, and the number of records per event.

Figure 1 shows the magnitude–distance distribution for
the final evaluation database. According to this figure, the
evaluation database is sparse within two ranges. For small-
to-moderate magnitude events, the test data contain few
records at distances greater than 100 km. The evaluation data-
base is also limited for moderate-to-large magnitude data with
distances up to 40 km. Figure 2 illustrates the distribution of
magnitude data versus VS30. In Figure 2, filled markers show
recorded data at sites with an estimated value of VS30. Zafarani
and Soghrat (2017) grouped stations with unknown values of
VS30 into four Eurocode 8 (2004) site classes: class A,
VS30 ≥ 800 m=s; class B, 360 ≤ VS30 ≤ 800 m=s; class C,
180 ≤ VS30 ≤ 360 m=s; and class D, VS30 ≤ 180 m=s. They
assigned VS30 equal to 1000, 600, 250, and 100 m=s to sites
categorized in classes A, B, C, and D, respectively. Eurocode 8
(2004) site classification is very similar to the Iranian standard
number 2800 (Building and Housing Research Centre
[BHRC]) with four categories based on the VS30 measure-
ments: (1) VS30 ≥ 750 m=s, (2) 375 ≤ VS30 ≤ 750 m=s,
(3) 175 ≤ VS30 ≤ 375 m=s, and (4) VS30 ≤ 175 m=s.

Summary of the Considered Candidate GMMs

We selected the candidate models from five groups
including indigenous models of Iran established from the
local data (group 1), models developed based on Turkey
earthquakes (group 2), regional models developed based
on the Middle East and European data (group 3), global mod-
els based on the NGA-West2 database (group 4), and
Japanese GMMs (group 5). All candidate models were
developed for shallow crustal regions across the world and
might be appropriate for the Iranian plateau with similar tec-
tonic environment. Ghasemi, Zare, Fukushima, and Koketsu
(2009), Sedaghati and Pezeshk (2017; hereafter, SP17),
Shahidzadeh and Yazdani (2017), Zafarani et al. (2018), and
Farajpour et al. (2019; hereafter, FPZ19) are considered

indigenous models for Iran. Akkar and Çağnan (2010; here-
after, AC10) and Kalkan and Gülkan (2004; hereafter, KG04)
are models developed for Turkey. The Kale et al. (2015; here-
after, KAAH15) model belongs to the first two groups and is
applicable to both Turkey and Iran. Akkar et al. (2014; here-
after, ASB14), Bindi et al. (2014; hereafter, Betal14), and
Kotha et al. (2016; hereafter, KBC16) used datasets made
of events from the Middle East and European regions to estab-
lish their models. We considered four NGA-West2 models
including Abrahamson et al. (2014), Boore et al. (2014),
Campbell and Bozorgnia (2014), and Chiou and Youngs
(2014). These are global models developed based mainly on
the California data. In addition to these GMMs, we selected
two other GMMs including the Zetal06 and Kanno et al.
(2006; hereafter, Ketal06) models. These two GMMs were
developed mainly for Japanese data, but their generating data-
sets include a good portion of ground-motion records from
active crustal regions.

Table 1 gives more information about the candidate
models including their magnitude–distance applicability
range, the distance metric they use in their functional form,
which group they belong to, dominant generating region, the
definitions of component combination, and abbreviations
used to represent each GMM. As is clear from Table 1, vari-
ous models use different definitions of component combina-
tion. The evaluation database provides ground-motion
records for geometric mean and the maximum of the two
horizontal components. Therefore, the definition of peak
motion used in the observed and predicted ground motions
is not the same for some of the candidate GMMs. The differ-
ence between RotD50 and the GMRotI50 was on average
about 3% for spectral periods below 3.0 s in Boore (2010).
Van Houtte et al. (2017) reported the same for the difference
between the geometric mean and the RotD50. Beyer and
Bommer (2006) have shown that the ratio of geometric mean
to GMRotI50 is near unity at all periods. Based on the men-
tioned studies and following Mak et al. (2018), we did not
convert peak definitions into a single definition, to avoid

Figure 1. Magnitude–distance distribution of the evaluation
database. The color version of this figure is available only in the
electronic edition.

Figure 2. Distribution of magnitude data versus VS30. Records
with estimated value of VS30 are shown with filled markers. Sites are
classified into four groups based on the Eurocode site classification
scheme (Eurocode 8, 2004). The color version of this figure is avail-
able only in the electronic edition.
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introducing another factor that may affect the result. Mousavi
et al. (2015) and Akhani et al. (2019) GMMs developed
using soft computing techniques discussed in Fister et al.
(2014) and Azizi et al. (2017) can be considered in future
studies on selecting suitable GMMs for probabilistic seismic
hazard in Iran.

Parameter compatibility is an important challenge that
one faces in evaluating several GMMs. NGA models require
a few input parameters that are not available for some events in
the evaluation database. We tried to handle this challenge as
much as possible by estimating unknown values using refer-
ences by the NGAGMMs developers (e.g., Kaklamanos et al.,
2011). For example, for moderate-to-large events, we used the
relations suggested by Kaklamanos et al. (2011) to better
understand the extent of the ruptured area and to convert the
Joyner–Boore distance to the rupture distance. However, we
were unable to calculate extended source to site distances for
small-to-moderate magnitude data because we had limited
information about the extent of the ruptured area for this mag-
nitude range. In this regard, we assumed the Joyner–Boore
distance to be equal to the epicentral distance (RJB � Repi)
and the closest distance to the fault ruptured area as the
hypocentral distance (Rrup � Rhyp). These assumptions are
physically consistent with the small ruptured area for
small-to-moderate magnitude data, and we made them in
accordance with previous experiences and arguments raised
by Ambraseys et al. (2005), Bindi et al. (2006), Farhadi
and Mousavi (2016), and Tavakoli et al. (2018). Farhadi and

Mousavi (2016) modeled fault rupture model parameters as
random variables within the probabilistic seismic hazard
assessment using the Monte Carlo simulation approach.
They noticed that the influence of the uncertainties associated
with the fault rupture model parameters is negligible for small-
to-moderate magnitude events.

Tests of Goodness-of-fit Measures

In this study, we used three tests of goodness-of-fit mea-
sures including the LLH method of Scherbaum et al. (2009),
EDR method proposed by Kale and Akkar (2013), and the
mvLogS of Mak et al. (2017) to evaluate the candidate models
against the evaluation database. The LLH method is the most
popular data-driven evaluation method among earthquake
engineers and seismologists. This method is simple and has
the advantage of indicating model relative performance by
a single score. In the LLH approach, a lognormal distribution
with the median and standard deviation of the GMM is
assumed to determine the LLH values of all observations.
Then the LLH values are normalized by the total number of
observations to compute the LLH score. In other words, for an
individual observation xi, we first compute LLH value assum-
ing g�xi� as the probability density function of the candidate
GMM. Then, the LLH score is the average of the LLH values
computed for all observed data from the following equation,
with N representing the total number of observations:

Table 1
Summary of the Candidate Ground-Motion Models

GMM Reference Abbreviation Group Dominant Region(s) Component Period (s)
Moment
Magnitude

Distance
(km)

Abrahamson et al. (2014) ASK14 4 California and western
United States

PGA, PGV, PSA in
RotD50

0.01–10.0 3.0–8.5 Rrup 0–300

Boore et al. (2014) BSSA14 4 California and western
United States

PGA, PGV, PSA in
RotD50

0.01–10.0 3.0–8.5 RJB 0–400

Campbell and Bozorgnia (2014) CB14 4 California and western
United States

PGA, PGV, PSA in
RotD50

0.01–10.0 3.3–8.5 Rrup 0–300

Chiou and Youngs (2014) CY14 4 California and western
United States

PGA, PGV, PSA in
RotD50

0.01–10.0 3.5–8.5 Rrup 0–300

Zafarani et al. (2018) ZLLS18 1 Iran PGA, PSA in GM 0.04–4.0 4.0–7.3 RJB 0–200
Farajpour et al. (2019) FPZ19 1 Iran PGA, PSA in GM 0.01–4.0 4.5–7.5 Rrup 0–400
Ghasemi, Zare, Fukushima, and
Koketsu (2009)

GZFK09 1 Iran PSA in GMRotI50 0.05–3.0 5.0–7.4 Rrup 0–100

Sedaghati and Pezeshk (2017) SP17 1 Iran PGA, PGV, PSA in GM 0.05–4.0 4.7–7.4 RJB 0–250
Shahidzadeh and Yazdani (2017) SY17 1 Iran PGAmax, PSAmax 0.05–2.5 5.0–7.3 RJB 0–100
Kale et al. (2015) KAAH15 1 and 2 Iran and Turkey PGA, PGV, PSA in GM 0.01–4.0 4.0–8.0 RJB 0–200
Akkar and Çağnan (2010) AC10 2 Turkey PGA, PGV, PSA in GM 0.03–2.0 5.0–7.6 RJB 0–200
Kalkan and Gülkan (2004) KG04 2 Turkey PGAmax, PSAmax 0.10–2.0 4.0–7.4 RJB 1.2–250
Akkar et al. (2014) ASB14 3 Europe and the Middle East PGA, PGV, PSA in GM 0.01–4.0 4.0–8.0 RJB 0–250
Bindi et al. (2014) Betal14 3 Europe and the Middle East PGA, PGV, PSA in GM 0.02–3.0 4.0–7.6 RJB 0–300
Kotha et al. (2016) KBC16 3 Europe and the Middle East PGA, PGV, PSA in GM 0.01–4.0 4.0–7.6 RJB 0–200
Kanno et al. (2006) Ketal06 5 Japan PGA, PGV, PSA in GM 0.05–5.0 5.2–8.2 Rrup 0–300
Zhao et al. (2006) Zetal06 5 Japan PGA, PSA in GM 0.05–5.0 5.0–7.3 Rrup 0–300

GMM, ground-motion model; GMRotI50, rotation-independent average horizontal component (Boore et al., 2006); max and GM, maximum and geometric
mean of horizontal components, respectively; RotD50, orientation-independent nongeometric-mean measure (Boore, 2010); RJB, closest distance to the surface
projection of fault plane; Rrup, closest distance to fault plane.
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EQ-TARGET;temp:intralink-;df1;55;733LLH � −
1

N

XN
i�1

log2�g�xi��: �1�

The EDR method as a novel approach can also be used in
selecting and ranking of GMMs for regional or site-specific
probabilistic seismic hazard assessment. The EDR index is
based on the Euclidean distance (DE) with some minor modi-
fication to account for the effect of the standard deviation of
the candidate GMMs and can be expressed as the square root
of the expression given in the following equation:

EQ-TARGET;temp:intralink-;df2;55;607EDR2 � κ
1

N

XN
i�1

MDE2
i : �2�

MDE represents the modified DE. For discrete points,
MDE parameter is defined as equation (3), with D represent-
ing the differences between the logarithms of each observed
data point and corresponding predictions and Pr�jDj < jdjj�
denoting the occurrence probabilities of absolute differences,
dj, within an infinitesimal bandwidth for n discrete points

EQ-TARGET;temp:intralink-;df3;55;479MDE �
Xn
j�1

jdjj Pr�jDj < jdjj�: �3�

In addition, κ parameter is used to measure the level of bias
between the observed and estimated data as

EQ-TARGET;temp:intralink-;df4;55;403κ � DEorg

DEcor
: �4�

The DEorg and the DEcor are further expanded in the follow-
ing equations:

EQ-TARGET;temp:intralink-;df5;55;341DE2
org �

XN
i�1

�qi − pi�2; �5�

EQ-TARGET;temp:intralink-;df6;55;296DE2
cor �

XN
i�1

�qi − pc;i�2; �6�

in which qi and pi are the natural logarithms of the ith
observed and predicted data, respectively. N represents the
total data number in the assembled ground-motion database.
The parameter pc;i denotes the corrected prediction of the ith
data after modifying pi using the straight line fitted on the
logarithms of the estimated and observed data.

In addition to the LLH and EDR approaches, we used a
method with features similar to the LLH method known as
the mvLogS of Mak et al. (2017) to assess the applicability
of several GMMs for seismic hazard studies in Iran. The
mvLogS is a natural extension of the popular LLH method
and has some advantages that cover the limitations of the
LLH approach. The mvLogS exploits all information pro-
vided for sigma components and addresses the correlation
structure of hierarchical GMMs in evaluating models’

relative performances. This is an important feature due to
recent advances in ground-motion modeling, which has
resulted in developing models with complicated correlation
structures. In addition, this approach is less sensitive to
unbalanced data and is less likely to be biased toward events
with larger ground-motion records. One may obtain the
mvLogS from the following equation:

EQ-TARGET;temp:intralink-;df7;313;649mvLogS � �N ln�2π� � ln jVj � �q − p�′V−1�q − p��=2;
�7�

in whichN represents the total number of observations. p and
q are the vectors of logarithmic predictions and logarithms of
observed ground motions, in turn. jVj and V−1 are the deter-
minant and the inverse of the covariance matrix, respectively
(see Mak et al., 2017, and Farhadi et al., 2018, for further
information).

To assess score variability, we used the cluster bootstrap
technique at the event level to resample 200 datasets from the
evaluation database. Cluster bootstrap can be generalized
into a single value referred to as the DI that shows if two
models are truly different given the score variability. DI
ranges from −1:0 to 1.0 and a positive value of DI indicates
that the model scores better more often than another one,
given the variability of the evaluation data. In this study,
we used DI values to rank candidate models instead of rank-
ing them based on the absolute value of their final score. A
model having all positive DIs is the best model and more
often than not scores better than the rest of the GMMs.
However, the second-best model should have a single neg-
ative DI with respect to the best model. One may compute the
DI from the following equation:

EQ-TARGET;temp:intralink-;df8;313;354

DIij �
1

Nbs

XNbs

k

~1�s�k�i ; s�k�j �; ~1�s�k�i ; s�k�j �

�

8>>><
>>>:

1 when s�k�i < s�k�j

−1 when s�k�i > s�k�j

0 when s�k�i � s�k�j

; �8�

in which DIij is the DI of model i with respect to model j.
Nbs represents the number of bootstrap samples and s�k�i is
the score of model i for the kth bootstrap sample. A model
with better performance has a smaller score. ~1�·� is the modi-
fied indicator function.

Results

In this section, we provided the result of comparisons for
four spectral periods including PGA, 0.5, 1.0, and 2.0 s. This
range covers frequencies important for engineering applica-
tions. We compared models’ relative performance based on
the distinctness tables computed from the LLH, the EDR,
and the mvLogSs of resampled datasets. We avoid presenting
the distinctness tables for representative periods because
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models ranking according to these tables are identical to the
ranking based on the scores obtained from the whole data-
base.Ⓔ Figures S1–S4 show the distinctness tables based on
the mvLogS for representative periods. Moreover, to confirm
the result of the comparisons, we visually compared observed
ground motions with predicted values. Zafarani and Farhadi
(2017) tested several GMMs for small-to-moderate magnitude
data of Iran. To eliminate the need for performing a study sim-
ilar to Zafarani and Farhadi (2017), we presented the result
for the whole data, small-to-moderate magnitude range, and
moderate-to-large events. We evaluated models for the whole
database using the three goodness-of-fit measures. However,
we used the recent approach of mvLogS to compare models in
various magnitude ranges. This method is sensitive to the
information provided for sigma component and measures the
relative performance of models considering the effects of data
correlation and unbalanced data.

Models ranking based on the three goodness-of-fit
measures for representative spectral periods are presented
in Figure 3. In this figure, models with considerable portion
of local data in their generating datasets are shown with dot-
ted lines. The GZFK09 model is not considered in ranking
GMMs for PGA because this model does not provide pre-
dictions for PGA. Based on the mvLogS method, local mod-
els outperform models from other categories for PGA. The
top four models at PGA are local models of ZLLS18, FPZ19,
KAAH15, and SP17. It should be noted that the KAAH15
model as the third best-fitting GMM is also valid for Turkey.

The Zetal06 model with only limited data from Iran in its gen-
erating database performs better than the rest of the candidate
models including the SY17 local GMM. For the short period of
0.5 s, results are relatively similar to those obtained for PGA.
The first three best-fitting models are local models. Unlike
PGA, the FPZ19 outperforms the ZLLS18 in the majority of
resampled datasets. Compared to PGA, KAAH15 is no longer
among the list of appropriate GMMs. In this period, we
observed improvements in the rankings of the SP17 and
Betal14 models. These models are the third and the fourth
best-fitting models. The GZFK09 model is now present in the
ranking list and is ranked as fifth. The Japanese model of
Zetal06 is still better than a few local models and other foreign
models. For the median period of 1.0 s, ZLLS18 is the best-
fitting model based on the mvLogS. The SP17 model performs
better than the FPZ19 model. The Betal14 model preserved its
ranking at 0.5 s and is ranked as fourth for 1.0 s. Compared to
0.5 s, Zetal06 shows better performance than GZFK09 and is
the fifth best-fitting model among 17 candidate GMMs. At the
large period of 2.0 s, the results of ranking based on the
mvLogS are akin to those obtained for the median period
of 1.0 s. At 2.0 s, ZLLS18 is still the best-fitting model and
outperforms the rest of the candidate models. Similar to other
spectral periods, the two other local models of SP17 and
FPZ19 show acceptable performances. The Betal14 and
Zetal06 GMMs that represent the third and fifth groups, respec-
tively, may be considered as appropriate in addition to the three
mentioned local models.

(a) (b) (c)

FPZ19

ZLLS18

Figure 3. Model rank versus period considering thewhole evaluation database and based on three different tests of goodness-of-fit measures
including (a) the multivariate logarithmic score (mvLogS) of Mak et al. (2017), (b) the log-likelihood (LLH) method of Scherbaum et al. (2009),
and (c) the Euclidean distance-based ranking (EDR) proposed by Kale and Akkar (2013). Models developed from considerable portion of
Iranian data are plotted using dotted line style. AC10, Akkar and Çağnan (2010); ASB14, Akkar et al. (2014); ASK14, Abrahamson et al.
(2014); Betal14, Bindi et al. (2014); BSSA14, Boore et al. (2014); CB14, Campbell and Bozorgnia (2014); CY14, Chiou and Youngs (2014);
FPZ19, Farajpour et al. (2019); GZFK09, Ghasemi, Zare, Fukushima, and Koketsu (2009); KAAH15, Kale et al. (2015); Ketal06, Kanno et al.
(2006); KBC16, Kotha et al. (2016); KG04, Kalkan and Gülkan (2004); SP17, Sedaghati and Pezeshk (2017); SY17, Shahidzadeh and Yazdani
(2017); Zetal06, Zhao et al. (2006); ZLLS18, Zafarani et al. (2018). The color version of this figure is available only in the electronic edition.
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Figure 3 also shows the models ranking based on the
LLH and the EDR methodologies over the whole frequency
range. Overall, results of ranking based on the EDR and LLH
methods are not significantly different from that of the
mvLogS approach. The three local models including
ZLLS18, SP17, and FPZ19 are among the top five models
over the whole frequency range and according to all data-
driven methods. In detail, the top five models are identical
among all methodologies at PGA. Changes in model rank
among different ranking methods are only one unit for the
top five models at PGA. However, the level of difference in
results between the three goodness-of-fit measures increases
by increasing the spectral period. For spectral period of 0.5 s
for instance, the third best-fitting model according to the
mvLogS method is ranked fifth by both LLH and EDR
approaches. For median-to-large periods, the KBC16 model
is among top four models according to the LLH and EDR
approaches, whereas this model does not show an appropriate
performance according to the mvLogS. In contrast, Betal14
with the rank of four according to the mvLogS method in the
same range does not perform well based on scores obtained
from other ranking methods. The local model of GZFK09 has
also better ranking based on the LLH and EDR approaches
compared to the mvLogSmethod for the short-to-median peri-
ods. The LLH and EDR approaches may have favored the
GZFK09 and KBC16 models because these methods are
insensitive to sigma components. Figure 3 does not present
scores in line with model ranking. Scores from the LLH and
EDRmethods are summarized inⒺ Tables S2 and S3, respec-
tively. InⒺ Table S2, we used LLH scores to assign weights
to competing models using the following equation with w rep-
resenting the weight for ith GMM and K the total number of
GMMs (Scherbaum et al., 2009):

EQ-TARGET;temp:intralink-;df9;55;337w�GMMi� �
2−LLH�GMMi�P
K
i�1 2

−LLH�GMMi� : �9�

It should be noted that scores may not replace expert opinion in
evaluating GMMs or seismic hazard evaluations (Mak et al.,
2014). In addition, seismic hazard studies should be performed
for different combinations of weights assigned to models for
the branches of the logic tree to ensure that the results are not
biased toward a specific model (Kale and Akkar, 2017).
Furthermore, Scherbaum et al. (2009) proposed direct usage
of obtained weights from equation (9) when an infinite amount
of observed data is available. In this study, the weights com-
puted from equation (9) are not based on infinite amount of
data and we do not suggest them to be directly applied in seis-
mic hazard studies. Therefore, the weights given inⒺ Table S2
still require use of experts’ judgment in line with sensitivity
analysis for use in seismic hazard assessment. In our opinion,
theseweights are useful in updating experts’ prior beliefs before
applying the candidate GMMs because they are based on math-
ematics and rely on well-established statistical tests.

Results of three goodness-of-fit measures are supple-
mented with residual analysis. We provided the distribution

of residuals for PGA in Figures 4 and 5. We partitioned
GMMs into two groups to make these figures clear. Figure 4
shows the residual distribution for models developed for Iran
and Turkey, and Figure 5 does the same task for remaining
candidate models. In these figures, the distribution of resid-
uals is plotted for event terms versus magnitude and within-
event residuals against distance and VS30. εij represents the
within-event residuals for jth record of ith earthquake and ηi
stands for event term of the ith event. According to Figure 4,
there is no discernable trend in the distribution of within-
event residuals versus distance and VS30 for all GMMs.
Between-event residuals for models with superior perfor-
mance at PGA show no trend, whereas models with poor
performance are biased in certain magnitude ranges. SY17
as the only local model with unacceptable performance at
PGA shows a pronounced negative residual trend against
magnitude. This trend is less pronounced for Turkish model
of KG04. The AC10 model as another Turkish model shows
positive residual trend versus magnitude especially in small-
to-moderate magnitude. Similarly, Figure 5 shows no trend for
within-event residuals against distance and VS30 for remaining
models selected from other groups. Based on the distribution
of the between-event residuals shown in Figure 5, the
NGA-West2 models with positive trend in small-to-moderate
magnitude range tend to underpredict observed data, whereas
they overpredict events with magnitude up to 7.0. These mod-
els show relatively no trend for magnitude 7.0 and above and
seem to be reliable in this range. Models developed for Europe
and Middle East show trends like those of NGA models in
small-to-moderate magnitude range. These models with pos-
itive trend underpredict local data in this range. Performance
of the Betal14 and ASB14 models improved for larger mag-
nitude data. Japanese model of Zetal06 shows relatively no
residual trend over the whole magnitude range, whereas
Ketal06 as another Japanese model shows pronounced posi-
tive trend for small-to-moderate magnitude data and negative
trend for larger events. The distribution of residuals versus
magnitude, distance, and VS30 for other periods are shown
in Ⓔ Figures S5–S10.

Figure 6 shows model ranking based on the mvLogS for
two magnitude ranges and four representative periods.
Following Zafarani and Farhadi (2017), we considered
events with moment magnitudes up to Mw 5.0 to represent
small-to-moderate magnitude data. The test data for this
range contain 407 ground-motion records from 194 earth-
quakes with moment magnitudes ranging from 3.9 to 5
and distances below 100 km. Earthquakes in small-to-mod-
erate magnitude range are responsible for nonnegligible con-
tribution to the seismic hazard, specifically in short-return
periods. In low-seismicity regions such as the Persian
Gulf seismotectonic province, this range may contribute to
the hazard in return periods up to 10,000 yr (Zafarani and
Farhadi, 2017). With respect to small-to-moderate magnitude
data, comparison results are not significantly different from
what we obtained considering the whole data and model
ranking slightly changes in some periods for a few candidate
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FPZ19

Figure 4. Distribution of residuals at PGA versus magnitude, distance, and VS30 for models developed for Iran and/or Turkey. The
distribution of residuals against magnitude is plotted for event terms. Within-event residuals are used to plot residuals distribution versus
distance and VS30. The color version of this figure is available only in the electronic edition.
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Figure 5. Distribution of residuals at PGAversus magnitude, distance, and VS30 for models developed for Japan, Europe and the Middle
East, and the western United States. The distribution of residuals against magnitude is plotted for event terms. Within-event residuals are used
to plot residuals distribution versus distance and VS30. The color version of this figure is available only in the electronic edition.
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models. The three best-fitting models for small-to-moderate
magnitude data are identical to those we found for the whole
data over the entire frequency range. Overall, three local
models including ZLLS18, FPZ19, and SP17 outperform
other models for small-to-moderate magnitude data. FPZ19
and SP17 GMMs are valid for magnitudes down to Mw 4.5
and 4.7, respectively. Therefore, acceptable performance for
FPZ19 and SP17 is an interesting result because we tested
these models outside their applicability ranges. We observed
a relatively poor performance for Zetal06 in the small-to-
moderate magnitude range, whereas this model performed
well against the whole database. This is not a surprising
observation because the generating database of this model
was supplemented by Iranian earthquakes in the moderate-
to-large magnitude data range. Figure 6b shows the result of
evaluations for representative periods considering the mod-
erate-to-large magnitude data. The evaluation database in
this range contains 236 ground-motion records from 46
earthquakes with magnitudes ranging from 5.1 to 7.3 and
Joyner–Boore distances between 11 and 296 km. Model
ranking based on the distinctness tables and absolute values
of mvLogSs is identical for this magnitude range. However,
these distinctness tables contain many elements with DI val-
ues nearly equal to zero. A DI value close to zero for model i
with respect to model j occurs when model i scores better
than model j in nearly half of the resampled datasets, and
worse for the remaining occasions. When DI is close to zero
for the two competing models, their rankings (scores) fre-
quently change over different evaluation datasets (bootstrap
samples) resampled from the original database. In such a
case, results are less stable, and it is impossible to confidently

determine the superior model because the two competing
models are indistinguishable. Stability means relatively no
fluctuation of model ranking against datasets resampled from
the original database. Therefore, for moderate-to-large mag-
nitude range results are less stable. This could be due to
reduced sample size, resulting higher fluctuation in the mod-
els’ relative performances among bootstrap samples and DIs
closer to zero. In this range, three models including ZLLS18,
Zetal06, and SP17 outperform the rest of the candidate mod-
els over the entire frequency range. The FPZ19 model seems
not to perform well for PGA and the spectral period of 2.0 s.
The reason for this might be the generating database
(Farajpour et al., 2018) of this model that includes few events
from regions other than Iran. Moderate-to-large earthquakes
are of great importance in high-seismicity regions. Because
of this fact, we visually compared the candidate GMMs with
the observed data for moderate-to-large earthquakes. To this
end, we binned the data into various magnitude–VS30 ranges
and selected two bins from moderate-to-large earthquakes
with larger number of ground-motion records. We used
ground-motion records with VS30 below 180 m=s (class D)
and magnitudes between 6.0 and 6.5 as the first bin. In addi-
tion, observed data with VS30 between 360 and 800 m=s
(class B) and magnitudes above 7.0 represent the second
bin. Records of the second bin are mostly from the recent
Kermanshah earthquake. GMMs are plotted for reverse fault-
ing and the average VS30 and magnitude in each bin. Figure 7
shows the result of comparisons for PGA. In Figure 7, the
candidate models are divided into three categories with
one category including models developed using considerable
portion of Iranian data. The second group includes models

(a) (b)

FPZ19

ZLLS18

Figure 6. Model rank versus period based on the mvLogS of Mak et al. (2017) for (a) small-to-moderate and (b) moderate-to-large
magnitude ranges. Models developed from considerable portion of Iranian data are plotted using dotted line style. The color version of this
figure is available only in the electronic edition.
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developed for use in Turkey and Europe and Middle East.
The third group contains NGA-West2 models in addition
to two Japanese models. In preparing this figure, we used
the study of Beyer and Bommer (2006) to convert predic-
tions of the KG04 and SY17 models to geometric mean.
According to Figure 7, some of the local models are com-
patible with the observed data for both bins. Among these
models, superior performance of ZLLS18 over other

GMMs is obvious. Models from other categories overpre-
dicted the observed data from ground-motion records in first
bin. Foreign models’ performance has improved for the
second bin with larger magnitude data recorded on stiffer
soil site condition. To reduce the length of the article, we
did not provide the visual comparisons between observed
and predicted ground-motion intensities for other periods
and moved related figures to the supplemental content.

(a) (b)

Figure 7. Visual comparison of the candidate ground-motion models (GMMs) at PGA with observed data. Filled markers show the
observed data. (a) Ground-motion records (GMRs) with VS30 below 180 m=s and magnitudes between 6.0 and 6.5 are considered.
(b) Observed data with VS30 between 360 and 800 m=s and magnitudes above 7.0 are considered. GMMs are plotted for reverse faulting
and the average VS30 and magnitude in each bin. Top row includes model developed from Iranian GMRs; middle row illustrates models
developed for Turkey and Europe and Middle East; and bottom row provides the visual comparisons for the Next Generation Attenuation-
West2 Project (NGA-West2) models as well as the two Japanese models. The color version of this figure is available only in the electronic
edition.
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Ⓔ Figures S11–S13 illustrate the visual comparisons for
0.5, 1.0, and 2.0 s, respectively.

Summary and Conclusion

We used a database of 643 ground-motion records from
240 Iranian earthquakes with magnitudes ranging from 3.9 to
7.3 and distances up to 300 km to evaluate the predictive
capability of several GMMs for the probabilistic seismic haz-
ard in Iran. To compare the models’ predictive capability, we
made the evaluation database prospective to all candidate
models by excluding ground-motion records used to develop
these models. We selected the candidate GMMs from five
groups including local models of Iran, models from Turkey,
two Japanese models, NGA-West2 global models, and mod-
els established for Europe and the Middle East. We evaluated
the models’ relative performance using three tests of
goodness-of-fit measures including the LLH method of
Scherbaum et al. (2009), the EDR proposed by Kale and
Akkar (2013), and a new method of ranking referred to as the
mvLogS of Mak et al. (2017). The mvLogS method exploits
all information provided for sigma components and
addresses the correlation structure of hierarchical GMMs
in evaluating models’ relative performances. In addition, this
approach is less sensitive to unbalanced data and is less likely
to be biased toward events with larger ground-motion
records. We ranked the candidate models by paying attention
to the issue of score variability. To take score variability into
account, we used the cluster bootstrap technique to generate
resampled datasets from the whole data. Then, we computed
the DI for all model pairs from resampled datasets and
ranked the candidate models.

We performed the evaluation for various magnitude
ranges and different frequencies. We presented the result
for PGA and three spectral periods including 0.5, 1.0, and
2.0 s. Considering the whole dataset, three local models
including ZLLS18, FPZ19, and SP17 outperformed the rest
of the candidate models. Shahidzade and Yazdani (2017), a
local model developed based on the Bayesian updating,
appears not to perform better than models established based
on the conventional empirical approaches. None of the NGA
models seems to be sufficient for the Iranian plateau. Betal14
developed for Europe and the Middle East and Japanese
model of Zetal06 are models that we recommend above other
foreign models. For the small-to-moderate magnitude events,
the test data contain 407 ground-motion records from 194
earthquakes with moment magnitudes ranging from 3.9 to
5 and distances up to 100 km. Evaluation results do not
change significantly for this range, and we still propose
the ZLLS18, FPZ19, and SP17 local models as the most
appropriate GMMs for seismic hazard studies in Iran.
FPZ18 and SP17 GMMs are valid for magnitudes down
to Mw 4.5 and 4.7, respectively. We tested these two models
outside their applicability ranges and their acceptable perfor-
mance is an interesting result. With respect to the moderate-
to-large magnitude range, the results are less stable due to

reduced sample size. For this range, however, three models
including ZLLS18, Zetal06, and SP17 outperform the rest of
the candidate models over the entire frequency range.

The result of the present study can be useful in selecting
a set of appropriate GMMs for future seismic hazard and risk
assessments and updating previous studies such as Ghodrati
Amiri et al. (2013), Khodaverdian et al. (2016), Mousavi
et al. (2016), and Khoshnevis et al. (2017), which used some
GMMs not included in models proposed in this study as most
suitable GMMs. Our study shows the extent to which
complex foreign models such as the NGA-West2 models
were successful in predicting the local observed data.
Moreover, it provides insights on the ways that local models
could be possibly improved by refining their models or
updating their generating datasets.

Data and Resources

We used the data provided by Zafarani and Soghrat
(2017) and Babaie Mahani and Kazemian (2018) as our
evaluation database. These studies and the datasets they pro-
vide are available online. The MATLAB codes for the Next
Generation Attenuation (NGA) models were downloaded
from the Baker Research Group (https://web.stanford.edu/
~bakerjw/GMPEs.html, last accessed March 2019).
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