

1

State of the Art on the Use of Genetic Algorithms in
Design of Steel Structures

S. Pezeshk,1 M. ASCE and C.V. Camp2

INTRODUCTION
 During the last three decades, many mathematical programming methods have been de-
veloped for solving optimization problems (Gallagher and Zienkiewicz, 1973; Hillier and Lie-
berman, 1990). However, no single method has been found to be entirely efficient and robust
for the wide range of engineering optimization problems (Rajeev and Krishnamoorthy, 1992).
Most design applications in civil engineering involve selecting values for a set of design vari-
ables that best describe the behavior and performance of the particular problem while satisfying
the requirements and specifications imposed by codes of practice. Mathematically these design
variables are discrete for most practical design problems. However, most mathematical optimi-
zation applications are suited and developed for continuous design variables. In discrete opti-
mization problems, searching for the global or a local optimal solution becomes a difficult task.
A few mathematical methods have been developed for solving problems in discrete optimiza-
tion. These methods include complete enumeration techniques, integer programming, branch
and bound algorithms, and dynamic programming. All these methods use mathematical pro-
gramming techniques.

 This chapter presents a genetic algorithm (GA) approach for optimized design of struc-
tural systems using both continuous and discrete structural elements. GAs are efficient and
broadly applicable global search procedures based on a stochastic approach which relies on a
“survival of the fittest” strategy (Holland, 1975). In recent years, GAs have been used in struc-
tural optimization by many researchers (Goldberg and Samtani, 1986; Jenkins, 1991a and
1991b; Hajela, 1992; Rajeev and Krishnamoorthy, 1992; Adeli and Cheng, 1993, 1994a, and
1994b; Koumousis and Georgiou, 1994; Rajan, 1995; Camp et al., 1997; Rajeev and Krish-
namoorthy; 1997; Pezeshk et al., 1997; Jenkins, 1997; Camp et al., 1998; and Pezeshk et al.,
2000 [see the reference list for others]). All these studies have demonstrated that GAs can be
powerful design tools for discrete optimization. Because GAs do not require gradient informa-
tion, they offer a very general approach. This does not mean that useful gradients cannot be

1Professor, Dept. of Civil Engrg., Campus Box 526570, The Univ. of Memphis, Memphis, TN 38152.
2Associate Professor, Dept. of Civil Engrg., Campus Box 526570, The Univ. of Memphis, Memphis, TN 38152.

1Professor, Department of Civil Engineering, The University of Memphis, Memphis, TN 38152
2Associate Professor, Department of Civil Engineering, The University of Memphis, Memphis, TN 38152

2

exploited by GAs. However, GAs can handle unsmooth, or even randomly ordered data (Jen-
kins, 1997).

 GAs are search algorithms that are based on the concepts of natural selection and natural
genetics. GAs differ from traditional optimization methods in the following aspects: (1) GAs
work with a coding set of variables and not with the variables themselves; (2) GAs operate on a
population of potential solutions rather than improve a single solution; (3) GAs use objective
function information without any gradient information; and (4) GAs use a transition scheme
that is probabilistic, whereas traditional methods use gradient information (Goldberg, 1989;
Hajela, 1992; Rajeev and Krishnamoorthy, 1992; and Pezeshk et al., 2000).

 This chapter presents an overview of GAs, discusses various aspects of GAs, and pro-
vides a summary of selected research related to structural optimization.

INTRODUCTION TO GENETIC ALGORITHMS

 GAs utilize a strategy that models the mechanisms of genetic evolution (Holland, 1975;
Goldberg, 1989). The core characteristics of GAs are based on the principles of survival of the
fittest and adaptation. The advantages of applying GAs to the optimized design of structures
include discrete design variables, open format for constraint statements, and multiple load
cases. GAs do not require an explicit relationship between the objective function and the con-
straints. Instead, the value of the objective function for a set of design variables is adjusted to
reflect any violation of the constraints.

 GAs operate on a population of design variable sets, with each design variable set defin-
ing a potential solution is called a string. Each string is made up of a series of characters, typi-
cally binary numbers, representing the values of the discrete design variables for a particular
solution. The fitness of each string is a measurement of performance of the design variables as
defined by the objective function and the constraints.

 GAs basically consist of a series of three processes: (1) coding and decoding design vari-
ables into strings, (2) evaluating the fitness of each solution string, and (3) applying genetic op-
erators to generate the next generation of solution strings. The fitness of each string is evalu-
ated by performing some type of system analysis to compute a value of the objective function.
If the solution violates constraints, the value of the objective function is penalized.

 Most genetic algorithms are variations of the simple genetic algorithm (SGA) proposed
by Goldberg (1989). Goldberg’s SGA consists of three basic genetic operators: reproduction,
crossover, and mutation. The reproduction operation in the SGA is the basic engine of Darwin-

3

ian natural selection and survival of the fittest (Koza, 1992). The crossover operation creates
variations in the solution population by producing new solution strings that consist of parts
taken from selected parent solution strings. The mutation operation introduces random
changes in the solution population. In a GA, the mutation operation can be beneficial in rein-
troducing diversity in a population.

 The objective of the reproduction process is to allow the information stored in strings
with good fitness values to survive into the next generation. Typically, each string in the popu-
lation is assigned a probability of being selected as a parent string based on the string’s fitness.
However, reproduction does not change the features of parent strings. The next generation of
solution strings are developed from selected pairs of parents strings and the application of other
explorative operators such as crossover and mutation.

 Crossover is a procedure wherein a selected parent string is broken into segments and
some of these segments are exchanged with corresponding segments of the another parent
string. The one-point crossover implemented in Goldberg’s SGA breaks each string of a se-
lected parent string set into two segments and interchanges the second segment to create two
new strings.

 Mutation is usually used as an insurance policy (Goldberg, 1989). Mutation allows for
the possibility that non-existing features from both parent strings may be created and passed to
their children. Without an operator of this type, some possibly important regions of the search
space may never be explored.

 Genetic algorithms develop solutions based on the payoff or quality of the fitness of solu-
tion strings. A scheme for properly evaluating the fitness is very important in a genetic algo-
rithm. For many structural engineering design problems, a minimum value of the structural
weight (related to cost) is desirable. Traditional GAs are designed to work directly with maxi-
mum problems; therefore, the minimum problem (low cost of structures) will be converted to a
maximum problem.

The Fundamental Theorem of Genetic Algorithms

 To explore why simple operators such as reproduction, crossover, and mutation would
provide genetic algorithms with robust search power, Holland (1975) proposed a model called
the schema theorem, or fundamental theorem of genetic algorithms. The schema theorem says
that "short, low order schemata are given exponentially increasing or decreasing numbers of

4

samples depending on a schema’s average fitness" (Goldberg, 1989). This theorem can be ex-
pressed by the following equation:

 () () () (), 1 , 1 ()
1c m

avg

f H Hm H t m H t p O H p
f L

δ + ≥ × − − −
 (1)

where m(H, t+1) and m(H, t) are the number of schema H in generation t+1 and t, respectively,
f(H) is the average fitness value of strings that include schema H, favg is the average fitness
value of the whole population, δ(H) is the length of schema H, L is the total length of the string,
O(H) is the order of schema H, and pc and pm are the probabilities of crossover and mutation,
respectively. Interested readers are referred to Goldberg (1989) for details of the theorem and a
simple example of schema processing.

Formulation of Structural Optimization Problems
 The most popular optimization criterion in structural design is cost. Typically, cost is a
function of the total structural weight. Other factors that may be involved in estimating the cost
of a structure include maintenance (related to the total surface area of a steel structure) and
connection costs. An objective function in terms of the properties of both the structure as a
whole and individual structural members can be expressed as:

 (), ,m c sF f p p p= (2)

where F is the objective function, pm are the material properties, pc are the connection charac-
teristics, and ps are the structural characteristics.

 The general form of structural optimization may be expressed as:

 (), ,m c sMinimize F f p p p= (3)

 1 20, 0, 0nSubject to g g g≥ ≥ ≥K (4)

where g1, g2, . . . , and gn are the constraint functions.

 For example, consider a framed structure, where the structural weight is the only term in
the objective function and is subjected to stress, displacement, and fabrication constraints. The
optimization problem may be expressed as:

 ()
N

e e e
e

Minimize F L Aρ η=∑ (5)

5

l u

l u

l u

s s s
Subject to F d d d

A A A

 ≤ ≤

= ≤ ≤
 ≤ ≤

 (6)

where ηe and Le are the material density and the length of element e, respectively, ηe is the in-
dex number referencing an AISC-ASD W-section, as given in Table 1 for element e, A(ηe) is
the cross-sectional area of the element e, and N is the total number of elements. The vectors s,
d, and A contain values of stress, displacement, and cross-sectional area, respectively. The su-
perscripts l and u refer to the prescribed lower and upper boundaries of each constraint, respec-
tively.

Table 1. Relationship between index number η and AISC W-sections.

η W-section A(η)
cm2 (in2)

I(η)
(106)mm4 (in4)

1 W44 x 335 634.16 (98.3) 12,943 (31,100)
2 W44 x 290 553.55 (85.8) 11,279 (27,100) . . .

. . .
. . .

. . .
268 W4 x 13 24.71 (3.83) 4.703 (11.3)

 For a framed structure, more complicated performance constraints may be imposed on
the objective function. For example, the internal forces acting on a member are a function of
the properties of that member and any other structural members to which it is connected. Prac-
tical serviceability and strength constraints may be more complicated than stress and displace-
ment constraints.

Penalized Objective Function
 To evaluate the performance or fitness of a particular solution string, the string’s charac-
ters are decoded into values of the design variables. Using these design variables, an analysis is
performed and a value is computed for the objective function. If any constraints are violated, a
penalty is applied to the objective function, with the value of the penalty related to the degree in
which the constraints are violated. The resulting penalized objective function quantitatively
represents the extent of the violation of constraints and provides a relatively meaningful meas-
urement of the performance of each solution string. In the following sections, several penalty
function schemes are proposed for structural design.

6

Multiple Segment Penalty Function
 One of the simplest penalty functions is a multiple linear segment function. Consider a
problem where displacement and stress constraints are imposed. Each structural element is
checked for stress violation, and each model node is checked for displacement violation. If no
violation is found, then no penalty is imposed on the objective function. If a constraint is vio-
lated, then the penalty is defined as:

 max

1

max max

1 1

1

i

i
i i

p
if

p
k p p

if
p p

≤

Φ =

 >

 (7)

where Φi is a penalty value for constraint i, pi is a structural parameter or response (deflection,

stress, etc.), pmax is the maximum allowable value of each pi, and k1 is the penalty rate. Figure 1
shows a linear multiple-segment penalty function.

Nonlinear Penalty Function
 Another type of penalty function is a nonlinear function defined as:

 ()21 1 n
i ik qΦ = + − (8)

where k2 is the nonlinear penalty rate, n is the order of nonlinearity, and qi is defined as:

 max

max max

1 1

1

i

i
i i

p
if

p
q

p p
if

p p

≤

=
 >

 (9)

 Having obtained penalty function factors, the fitness value of a particular solution string
is obtained by multiplying the objective function (structural weight) by the corresponding pen-
alty factors:

1

m

i
i

F W
=

= Φ∏ (10)

 ()
1

N

e e e
e

W L Aρ η
=

=∑ (11)

7

where F is the string fitness (penalized objective function), m is the total number of points
where the constraints are checked, W is the weight of the entire structure, and the product
represents the total penalty.

Figure 1. Typical penalty functions.

Coding and Decoding
 An essential characteristic of GAs is the coding of the variables that describe the prob-
lem. There are many coding methods available, such as binary, gray, non-binary, etc. (Jenkins,
1991a and 1991b; Hajela, 1992; and Reeves, 1993). The most common coding method is to
transform the variables to a binary string of specific length.

 For a specific problem that depends on more than one variable, the coding is constructed
by concatenating as many single variable codings as the number of the variables in the prob-
lem. The length of the coded representation of a variable corresponds to its range and preci-
sion. By decoding the individuals of the initial population, the solution for each specific in-

()max i
p ip

iΦ

1

n=1

n>1

8

stance is determined and the value of the objective function that corresponds to this individual
is evaluated. This applies to all members of the population.

Binary Coding
 According to Hajela (1992) an m-digit binary number representation of a continuous
variable allows for 2m distinct variations of that design variable to be considered. If a design
variable is required to a precision of Ac, then the number of digits in the binary string may be
estimated from the following relationship:

 ()2
(1)

m U L

C

X X
A

−
≥

+
 (12)

where XU and XL are the lower and upper bounds of a continuous variable X. Hajela (1992)
suggests that although a higher degree of precision may be obtained by increasing string length,
higher degree of schema disruption can be expected. He further mentions that larger defining
length schema clearly are at a disadvantage in dominating the population pool. For example, a
real variable X whose range is 0.0 <X<5.0 can be coded as a 3-digit string using Equation (12):

 000 111X≤ ≤

 There are a total of 23 = 8 points in this range. Of the 2m possible m-digit binary strings,
a unique string is assigned to each of the n integer variables. In this example, there are six in-
tegers between 0 and 5; therefore, there are 23

 binary strings. Hajela (1992) suggests that the
two extra binary values assigned to out-of-bound variables 6 and 7 as follows:

 [0, 1, 2, 3, 4, 5, 6*, 7*]
 [000,001,010,011,100,101,110*,111*]

where * indicates an out-of-bound variable. Hajela suggests that a penalty measure is then ap-
plied to the fitness function of a design variable that includes the out-of-bound integer variable.
Another approach would be an one-to-one correspondence between the integer variables and
their binary representation. Decoding from a binary number to a real number can be performed
using the following equation (Adeli and Cheng, 1994):

 max min
min

()
2L

B C CC C −
= + (13)

where C is the real value of the string, Cmin and Cmax are the lower and upper bounds of C, L is
the length of the binary string, and B is the decimal integer value of the binary string.

9

Selection Strategies
 A simple GA proceeds by first randomly generating a population of solution strings. A
pseudo random number generator is used to generate the initial population. From this popula-
tion, the next generation is evolved by performing three distinct operations: selection, cross-
over, and mutation. Based on the statistics of this population, the next generation is reproduced
according to probabilities assigned to the members. This means that poor designs will be as-
signed low probabilities, and good designs will be assigned high probabilities of surviving in
the next generation. In this way, the next generation evolves, where strings with higher fitness
survive and increase their presence, as strings with lower fitness die out and disappear from the
generation.

 The reproduction process is essentially a selection process. There are a number of selec-
tion schemes commonly used in modern genetic algorithms which include proportionate repro-
duction, ranking selection, tournament selection, Genitor (or “steady state”) selection, and
greedy over selection. A comparison of the varying schemes has been performed by Goldberg
and Deb (1991). As a brief introduction to selection strategies, proportional selection and
group selection are discussed. In proportional selection, strings with higher fitness strings re-
ceive higher reproduction rates. In group selection, the whole population is divided into groups
according to their fitness values. Every member in a group is assigned the same reproduction
rate.

 To give GAs enough opportunity and information to explore the selection domain, the
population should be kept as diversified as possible during the early generations. Extraordinary
strings (with high fitness) may exist in initial generations, and these strings could dominate the
population. To prevent this possible domination, the fitness of extraordinary strings may be
scaled down and the fitness of poor strings may be scaled up. As GAs proceed, the difference
of the fitness between extraordinary strings and poor strings will narrow. In this situation, the
selection procedure may be like a random walk, with a potential increase in the selection pres-
sure. The above strategy is shown in Figure 2.

10

 The following is a description of various selection strategies:

Proportional Selection
 In proportional selection, the selection probability (Psi) is calculated as (Jenkins, 1991):

 i
si

i

fP
f

=
∑

 (14)

where fi is the fitness of the ith string and Σfi is the summation of all of the fitnesses of the
population. The result is that strings with higher fitness have higher selection probabilities dur-
ing reproduction.

Inverse Fitness

 The objective function is converted to a fitness function by taking the reciprocal of the
objective function. The inherent nonnegative objective functions allow this. The raw fitness
will be:

 1f
W

= (15)

where W is the objective function. For example, W is the weight of a structure that is to be
minimized.

Strings with good fitness

Strings with poor fitness

Generation

Scale
Factor

Figure 2. Scaling Reproduction Strategy.

11

Fitness Scaling
 In early generations, it is common to have few extraordinary strings in a population. For
example, if the selection rule given by Equation (14) is utilized, extraordinary strings may take
over a significant proportion of the finite population in a single generation, and this can be un-
desirable and may result in premature convergence (Dhingra and Lee, 1994). In later genera-
tions, there may still be significant diversity within the population; however, the population’s
average fitness may be close to the population’s best fitness. If this situation is unchanged, a
string with average fitness and a string with high fitness will have nearly the same numbers in
future generations. In this case, the survival of the fittest strategy necessary for improvement
becomes a random walk.

 One useful scaling procedure is the linear scaling. The linear scaling procedure requires a
linear relationship between the scaled fitness, fí, and the raw fitness, f, as (Dhingra and Lee,
1994):

 'f af b= + (16)

 The coefficients a and b may be chosen in a number of ways; however, in all cases it is
required that the average scaled fitness fíavg be equal to the average raw fitness favg because
subsequent use of the selection procedure will insure that each average population member
contributes one expected offspring to the next generation. To control the number of offspring
from a parent string with maximum raw fitness, the other scaling relationship to obtain a scaled
maximum fitness, fímax = Cmult favg is chosen, where Cmult is the number of expected numbers
desired for the best population member. For small populations (50 to 100) Cmult = 1.2 to 2 has
been used successfully (Chen, 1997). In later generations, this choice of Cmult stretches the raw
fitness significantly. This in turn causes difficulty in applying the linear scaling rule as shown
in Figure 3. It can be observed during early generations, that there is no problem applying the
linear scaling rule, because the few extraordinary strings get scaled down and the poor strings
of the population get scaled up. The more difficult situation is shown in Figure 4. If the scaling
rule is applied in this situation, the stretching required on the relatively close average and
maximum raw fitness values causes the low fitness values to become negative after scaling. To
circumvent this scaling problem, Forrest (1985) suggested using population variance informa-
tion to preprocess raw fitness values prior to scaling. In this procedure, which is called sigma
(σ) truncation, a constant is subtracted from raw fitness values as follows:

 ()avgf f f cσ′ = − − (17)

12

where the constant c is chosen as a reasonable multiple of the population standard deviation σ
(between 1 and 3) and negative results (fí< 0) are set to zero. Following sigma truncation, fit-
ness scaling can proceed as described without the danger of negative results.

Figure 3. Linear scaling under normal conditions.

 The scaling steps can be summarized as:

 Step 1: Calculate the objective function W;

 Step 2: Calculate the fitness function f = 1/W;

 Step 3: Shift the fitness f í = f - (favg - c σ);

 Step 4: Calculate the coefficients a and b (also see Dhingra and Lee, 1994) where

max

(1)mult
avg

avg

ca f
f f

−
′=

′ ′−
 (18)

favg

fíavg

2fíavg

fmin fma

x

fímin

Raw Fitness

Scaled
Fitness

13

 max

max

()mult avg
avg

avg

f C f
b f

f f
′ ′−

′=
′ ′−

 (19)

 Step 5: Calculate the scaled fitness:

 i if af b′′ ′= + (20)

 Step 6: Calculate the selection probability:

 i
si

fP
f
′′

=
′′∑

 (21)

Figure 4. Difficulty with linear scaling procedure in later generations.

Group Selection
 If the fitness values of strings in the population are close to each, then a proportional se-
lection scheme may cause slow convergence. In group selection, the population is sorted ac-
cording to fitness. Then, the sorted population is divided into several groups, where each group
is assigned a selection probability. The selection probability for a specific group equals the
group selection probability divided by the number of string in that group. The group selection

favg

fíavg

2fíavg

fmin fmax

fímin

Raw Fitness

Scaled
Fitness

Negative fitness violates
non-negativity requirement

14

scheme is illustrated in Figure 5. In this figure, the whole population is divided into two
groups, and a specific selection probability is assigned to each group. For example, the first
group occupies 30% of the whole population and is assigned a 0.75 group selection probability,
the second group occupies 70% of the whole population with the selection probability of 0.25.
If there are 10 strings in the population, the selection probability of an individual in the first
group will equal 0.75/(0.3x10) = 0.25. In essence, group selection assigns greater probabilities
of existence to the best individuals of the population for the next generation.

Crossover
 One of the most important operators in GAs is crossover. Crossover is a means for two
strings (parents) to produce two offspring by mixing and matching their desirable qualities
through a random process. After reproduction, crossover proceeds in two steps: (1) two strings
are selected; (2) segments of each string are chosen at random (segment length and location),
and the information contained in these segments is exchanged between the two strings. Several
methods can be used for choosing the length and location of exchange sites. In this chapter,
one-point, two-point, and uniform crossover methods are presented. Figure 6 shows two chro-
mosomes that will be used to illustrate different crossover methods.

75%

25%

30% (best) (worst)
Sorted solution strings

Figure 5. Illustration of group selection.

15

One-Point Crossover
 To perform one-point crossover, one crossing site along the string is selected at random.
Figure 7 illustrates an example crossover where the crossover site is at the sixth bit.

Figure 7. One-point crossover.

Two-Point Crossover
 For two-point crossover, two crossing sites are selected randomly. Figure 8 illustrates a
two-point crossover using crossing sites at the fourth and tenth bits.

Figure 8. Two-point crossover.

String 1 010101010100011

String 2 111111000111000

Figure 6. Example Strings.

1 2

3 3

3 2

1 4

Before Crossover After Crossover

1

Before Crossover After Crossover

2

4

3

5 6 1

24 6

5 3

String 1 010101 010100011 111111 010100011

String 2 111111 000111000 010101 000111000

String 1 0101 010101 00011 1111 010101 11000

String 2 1111 110001 11000 0101 110001 00011

16

Uniform Crossover
 Uniform crossover is based on a randomly created binary string, called a mask (Sy-
swerda, 1989). A mask acts like a sieve. Parent strings exchange their bits at the positions
where the corresponding position in the mask is zero. Otherwise, no exchange of bits is per-
formed. The percentage of exchanged bits between two parent strings can be varied from 0%
to 50% by selecting the percentage of zeros in the mask string. Figure 9 illustrates how the
40% uniform crossover operation works (note that the mask string contains 40% zeros).

Figure 9. Two-point crossover.

 Although the uniform crossover site is chosen by random selection, crossover is not the
same as a random solution through the search space. Since crossover is based on the reproduc-
tion process just described, it is an effective means of exchanging information and combining
portions of strings.

 Reproduction and crossover are very simple operations. Their implementation simply re-
quires generating random strings, making copies of the strings (reproduction), and swapping
portions of the strings (crossover). However, the reproduction and crossover operators together
give GAs the ability to perform complex and difficult optimizations.

Adapting Crossover
 In GAs, there are many different forms of crossover. Traditionally, GAs have relied
upon one- and two-point crossover operators, but there are many situations in which having a
higher number of crossover points is beneficial (Syswerda, 1989 and Eshelman et al., 1989).
Perhaps the most surprising result (from a traditional schema-based perspective) is the effec-

Mask String

Before Crossover After Crossover

010101010100011 010101010111001

 111111110000001

111111000111000 111111010100010

17

tiveness of uniform crossover. Uniform crossover produces, on average, L/2 crossings on
string length L (Syswerda, 1989 and Spears and De Jong, 1991).

 In addition to empirical investigations, considerable effort has been directed toward theo-
retical comparisons between different crossover operators (De Jong and Spears, 1992). But
these theories are not sufficiently general to predict when to use crossover, or what form of
crossover to use. For example, the theories do not consider population size, yet population size
can affect the relative utility of crossover operators (De Jong and Spears, 1990).

 The current theory of GAs is inadequate for determining which types of operators to use
for a particular problem a priori. There are at least two possible approaches to this problem:
the first approach is to extend the current theories to take into account all facets of GAs (Nix
and Vose, 1992; and De Jong et al., 1994; the second approach is to have an adaptive mecha-
nism in which GAs select the type of operator to be used. For example, an adaptive mechanism
could choose between four different forms of crossover: one-, two-, three-point, and uniform.
One- and two-point crossovers are the least disruptive to the population, while uniform cross-
over is the most disruptive operator (De Jong and Spears, 1992). Thus, it is natural to allow
GAs to explore a relative mixture of these operators.

 One obvious way for the GA to self-adapt its use of different crossover operators is to
append two bits to the end of every individual in the population. Suppose “00” refers to one-
point crossover, “01” to two-point crossover, “10” to three-point crossover, and “11” to uni-
form crossover. Then, the last two columns of the population (the last two bits of every indi-
vidual) are used to sample the crossover operator space. If uniform crossover moves the search
into solution spaces with high fitness, then more “11”s should appear in the last two columns as
the GA evolves. If higher fitness solutions are found using two-point crossover, more “01”s
should appear accordingly. Because the approach is self-adaptive, crossover and mutation are
allowed to manipulate these extra two columns of bits.

Techniques for Adapting Crossover

 There are two possible techniques for using these extra bits: local and global adaptation.
In local adaptation, the last two bits of each string are used to select which type of crossover is
used. For example, suppose two strings chosen for crossover. The last two bits of each string
are then examined. If these bits are identical, “00”, then one-point crossover is performed. If
the two bits in each string are “11”, uniform crossover is performed. If the last two bits are dif-
ferent, the crossover operator is randomly chosen from the four methods (Chen, 1997).

18

 With local adaptation, the choice of crossover operator is determined by a particular
string. With global adaptation, the choice of crossover operator is determined by the entire
population. For example, suppose that 40% of the population has “00” as their last two bits,
and 25% of the population has “11”. Then, when crossover is performed on the population,
one-point crossover should be applied 40% of the time, and uniform crossover should be ap-
plied 25% of the time.

 Since the extra two bits are used to determine which crossover operator to apply, the
mechanism should give greater reward to the crossover operator that produces superior off-
spring. Note that this mechanism allows GAs to adjust the relative mixture of crossover opera-
tors. Consequently, adaptive crossover can reward a sequence of operators that cooperate to
produce a good offspring.

Mutation
 Another important operator used in GAs is called mutation, which mimics the phenome-
non of natural mutation. When mutation is applied to a string, it sweeps down the string of
bits, and changes the bit from 0 to 1 or from 1 to 0 if a probability test is passed. Mutation has
an associated probability parameter that is typically quite low. By itself, mutation is a random
walk through the string space. When used sparingly with reproduction and crossover, it is an
insurance policy against premature loss of important information (Goldberg, 1989). Table 2
contains an example of the operation of mutation. From this table, it can be observed that two
parent chromosomes of length 5, randomly generated numbers used for the mutation probabil-
ity check, and the resulting mutated chromosomes. From Table 2, it can observed that for the
first chromosome, the probability test is never passed, and so in this case, the output of muta-
tion is the same as the input. In the second case, the probability test is passed for the fourth bit.
Thus, this bit is changed from 0 to 1.

Table 2. Examples of mutation.

Old
chromosomes

Random
numbers

New
chromosomes

1 0 1 0
0 0 1 0

0.702 0.325 0.245 0.373
 0.802 0.471 0.023 0.001

1 0 1 0
0 0 1 1

Note: Mutation probability 0.002

19

BASIC PARAMETERS OF GENETIC ALGORITHMS
 Basic parameters of GAs include: population size, probability and type of crossover, and
probability and type of mutation. By varying these parameters, the convergence of the problem
may be altered. Thus, to maintain the robustness of the algorithm, it is important to assign ap-
propriate values for these parameters. Much attention has been focused on finding the theoreti-
cal relationship among these parameters. Schwefel (1981) developed theoretical models for
optimal mutation rates with respect to convergence and convergence rates in the context of
function optimization. De Jong and Spears (1990) presented theoretical and empirical results
on the interacting roles of population size and crossover in genetic algorithms. Cvetkovic and
Muhlenbein (1994) investigated the optimal population size for uniform crossover and trunca-
tion selection.

 One problem is that the relationships presented in these works are based on specific sim-
plified problems. Thus, the relationships cannot be used in practical problems. In view of the
mathematical difficulties involved, experience and experimentations are needed to determine
these parameters. Usually, the population size and the probability of mutation are related.
With a larger population size, the probability of mutation is smaller. For a wide range of prob-
lems, the following values are good estimates for an initial run. For a population size of 30–50,
a probability of crossover Pc of about 0.6 and a probability of mutation Pm less than 0.01 is
typical. In general, mutation is important in evolutionary computing, because it can bring new
strings into the population. Therefore, the initial population, which might have been very far
from the satisfactory solution, can adapt itself toward the optimized solution. Conversely, mu-
tation tends to disorganize the convergence of the problem; therefore, the mutation rate, in con-
junction with the population size, is crucial to the overall performance of GAs.

RELATED RESEARCH FINDINGS
 In recent years, GAs have been used for solving a variety of engineering design prob-
lems, and the focus of this section is to provide a summary of some of new developments in
structural optimization using GAs. The first contribution to optimal design of structures is the
work of Goldberg and Samtani (1986). They discussed the optimal design of a 10-bar truss
structure. Jenkins (1991a and 1991b) discussed the optimization of truss-beam roof structures
using GAs. Hajela (1992) presented the use of GAs and simulated annealing (SA) methods in
structural optimization. Hajela presented various features of both procedures and presented
optimal design of relatively large structural systems such as trusses. In addition, Hajela dis-
cussed the application of GAs to generate a family of Pareto optimal designs for multi-criterion
optimization problems. Lin and Hajela (1992 and 1993) used discrete design variables to find

20

the minimum weight of an 8-bar truss subjected to displacement constraints. In addition, they
discussed the design of 25-member and 72-member truss structures with stress constraints.

 Rajeev and Krishnamoorthy (1992) discussed the concept of optimization using a GA for
a 3-bar truss problem. They presented all the computations for three successive generations in
the form of tables for easy understanding of the problem. In addition, they used GAs to design
a 160-bar transmission tower.

 Sakamoto and Oda (1993) presented an optimization technique for layout of truss struc-
tures using a GA. They used a hybrid method composed of a GA and the generalized optimal-
ity criteria method to optimize the layout and cross-sectional area of truss members simultane-
ously. The objective function is to minimize weight subjected to displacement constraints. In
this approach, a GA was used to handle the layout of the truss and the optimality criteria was
used to find the member cross-sectional area.

 Hajela (1993), Hajela and Lee (1993), and Hajela and Lee (1995) used GAs in the topo-
logical design of grillage structures. They used a two-stage optimization process: (1) in the
first stage, they used kinematic stability requirements to identify stable topological configura-
tions, and (2) in the second stage, they considered member adding/removal and resizing.

 Dhingra and Lee (1994) used a GA in obtaining single- and multiple-objective design
problems. They presented several examples dealing with optimum design of truss structures
with discrete-continuous variables.

 Adeli and Cheng (1993) used a GA for optimal design of space truss structures. Later,
Adeli and Cheng (1994a) presented a GA procedure for optimization of three-dimensional truss
structures using the augmented Lagrangian to transform the constrained problems to an uncon-
strained problem.

 Grierson and Pak (1993) addressed the sizing, shape, and topology of frame structures.
This was one of the first papers to examine the design of framed structures using GAs, and their
research used re-analysis techniques to reduce computational effort during any generation, with
rigorous analysis conducted on the best design for each successive generation.

 Koumousis and Georgiou (1994) used a GA in discrete optimization of steel truss roofs.
In their approach, Koumousis and Georgiou designed steel roofs using mixed layout and sizing
optimization, and determined that a population size between 10 to 50, crossover ranging be-
tween 0.6 and 0.8, and mutation less than 0.01 will provide satisfactory designs for a typical
steel roof. Using these parameters, Koumousis and Georgiou were able to locate the area of
global extremum satisfactory for design purposes.

21

 Prakkash et al. (1995) used a GA for optimal design of ribbed Ferrocement roof-
ing/flooring elements, with emphasis given to realistic optimal design modeling of this type of
structure. In this study, two types of structural elements were considered: double-T and triple-
T elements, and examples were presented to illustrate the advantages of using GAs in optimal
design of this type of structure.

 Rajan (1995) presented a design procedure for simultaneous consideration of sizing,
shape, and topology design of space trusses using a GA, using discrete and continuous vari-
ables to define the cross-sectional areas of the members. The nodal locations were treated as
continuous design variables using the hybrid natural approach for shape optimal design. Ele-
ment connectivity and boundary conditions were treated as Boolean design variables in the
context of topology design. The design procedure reduced the computational expense by using
restarts and comparing the chromosome to be evaluated with the database of unique generated
chromosomes.

 Ohsaki (1995) presented a global search method for topology optimization of truss struc-
tures subjected to stress constraints using a GA. Wu and Chow (1995) applied a GA to inte-
grated discrete and configuration optimization of trusses. Their work is similar to the previ-
ously mentioned work by the other researchers. Galanate (1996) applied a GA to design two-
dimensional truss structures and designed a 10-bar truss and a transmission tower, considering
buckling effects.

 Soh and Yang (1996) presented a fuzzy controlled genetic-based search technique cou-
pled with expert knowledge and experience for structural shape optimization of two and three-
dimensional trusses. The authors provided a survey of papers related to Gas using fuzzy logic
techniques. Using an automated GA-based simulation procedure in conjunction with expert
knowledge a hybrid fuzzy approach is proposed for the least weight design of structures. This
paper is an extension of previous work by the authors in which they provided a series of small
transition parameters used as a buffer between the satisfied constraints and the unsatisfied con-
straints to soften the various constraints in shape optimization problems. Example problems
presented show that hybrid fuzzy-GA approach can reduce the required computational time and
improve search efficiencies.

 Ramasamy and Rajasekaran (1996) designed truss systems using an expert system for
multiple loading conditions using a GA by using an artificial neural network to obtain initial
areas of the members for a truss system, and a truss was analyzed and designed.

 Yang and Soh (1997) developed an optimization procedure of truss structures using GAs
with a tournament selection strategy. The authors concluded that their approach using the tour-

22

nament selection strategy was able to search for an optimum solution in a more efficient man-
ner.

 Rajeev and Krishnamoorthy (1997) presented a GA-based methodology for optimal de-
sign which simultaneously considers topology, configuration, and cross-sectional parameters in
a unified manner. Their methodology is a two-phased approach and can handle both discrete
and continuous design variables. The main objective of a two-phased approach is to reduce the
size of search space by automatically arriving at lower bound values for design variables. This
resulted in improved efficiency of the optimization process. In this procedure, Rajeev and
Krishnamoorthy used a GA to arrive at appropriate lower-bound indices for each design vari-
able in Phase 1. In Phase 2, these indices were then improved in an adaptive manner, in order
to arrive at the optimal solution. The method used a variable string length GA, which allowed
variations in topology, size, and configuration.

 Huang and Arora (1997) discussed optimal design of engineering systems having linked
discrete design variables. Such problems in structural engineering are encountered when stan-
dard sections are used for design of steel structures. Haug and Arora used and compared three
strategies: a continuous variable optimization method using a GA, simulated annealing, and
branch and bound methods. The authors considered three structural problems, studied the per-
formance of each method, and compared the required computational time of each method. The
results indicated that the three strategies performed well for all test problems. In addition, the
computational times required to solve the problems were greater compared to those for the con-
tinuous variable problems.

 Jenkins (1997) provided an overview of GAs and optimized a multistory frame with
truss-supported hangers, and suggested that enhancements in GAs could be obtained if cross-
over and mutation controls were adapted.

 Parmee et al. (1997) introduced various strategies which incorporated evolutionary and
adaptive search techniques by addressing the problems associated with the decision support as-
pects of preliminary and global optimal designs.

 Leite and Topping (1998) consolidated GAs as an engineering tool for a general-purpose
optimization; therefore, they implemented modifications to one-point crossover by defining the
effective crossover site and using multiple offspring tournament. Modifications in the GA were
designed to increase the exploratory power to allow major reduction in computational time and
improve of results. Their basic idea was to improve the efficiency of the GA operators in ways
that preserve the balance of exploration and exploitation of solutions. Leite and Topping dem-
onstrated how the improved GA operators may remove the convergence speed while enhancing

23

the quality of the solution through several examples consisting of a welded beam, ten-bar truss
structure, a three-span continuous beam, and prestressed I-sections.

 Camp et al. (1998) developed a GA-based design procedure FEAPGEN as a module in
the Finite Element Analysis Program (FEAP). Special features of FEAPGEN included: discrete
design variables, an open format for prescribing constraints, design checking using the Ameri-
can Institute of Steel Construction Allowable Stress Design (AISC-ASD) specifications, multi-
ple loading conditions, and a comprehensive AISC database of available structural steel mem-
bers. Several strategies for reproduction and crossover were investigated. In particular, a group
selection scheme for reproduction that does not require fitness scaling was applied. Various
fitness and penalty functions were investigated for their appropriateness to the ASD design of
two-dimensional structures. A comparison of designs of truss and frame structures using the
FEAPGEN genetic search design procedure and a classical continuous optimization method
based on the optimality criterion were compared.

 Chen and Rajan (1998) developed a frame design software system based on a simple GA
that incorporated a specialized one-point crossover applied to each design variable individually.
The crossover strategy was implemented using an additional string called an association string.
Each design variable was matched with a portion of the binary association string. The appropri-
ate segment of the association string was evaluated using a special crossover parameter. If the
value of the crossover parameter for a particular design variable exceeded a specified threshold,
one-point crossover was applied to that design variable. The major objective was to reduce dis-
ruptive crossovers. Results from numerous truss designs showed that, in general, the crossover
strategy using association strings preformed efficiently and generated acceptable designs.

 Ohmori and Kito (1998) proposed a new methodology for structural optimization of truss
topology where the truss topology is expressed as a combination of joined triangles. This con-
cept attempted to avoid topologies that included needless members, undesirable colinear mem-
bers, or unstable structures. In addition, a parallel GA strategy was proposed based on the con-
cept on environmental effects on evolutionary solutions. In other words, a good environment
effects the evolution of desirable solutions. In this study, respective GAs were used to optimize
the topology of structures with the associated size and shape of structural members as the envi-
ronment. Designs using the triangle-based encoding and the proposed parallel GA strategy for
2-D and 3-D trusses were presented.

 Cheng and Li (1997 and 1998) developed a constrained multi-objective optimization
methodology by combining a Pareto GA with a fuzzy penalty function. The Pareto GA consists
of five basic operators: reproduction, crossover, mutation, niche, and Pareto-set filter. The

24

niche operator was derived from Cavicchio’s concept (Cavicchio, 1972) that offspring solutions
replace parent solutions only if their rank in the parent’s population is equal to or greater than
the parents rank. In effect, offspring solutions were produced only around parent solutions or
new positions not dominated by old ones. In evolutionary reproduction, the best traits of the
parents are always passed on to their offspring, but some of the lost information or traits may
be optimal points. The Pareto-set filter attempts to store nondominated points at each genera-
tion and eliminate dominated points. Therefore, solutions from a Pareto GA are developed from
the entire evolutionary process and not solely from the last generation. The results from several
multi-objective optimization problems involving truss structures indicated that the Pareto GA
handled complicated response surfaces and achieved the global optimum more often than clas-
sical search methods.

 Nair et al. (1998) developed an approach that combined approximation models with a
GA-based optimization procedure. The objective was to use empirical information to gain as-
ymptotic convergence to the optima using a limited number of exact analyses. The resulting
procedure was posed as a dynamic optimization problem with a variable fitness function and a
mechanism to select design points where exact analysis should be performed. In addition, an
adaptive selection operator was developed to efficiently search the complex design space. Re-
sults presented for the design of a 10-bar truss indicated that the number of exact analyses re-
quired to determine the optima can be reduced by more than 97% from the original problem.

 Crossley et al. (1998) developed a two-branch tournament GA for multi-objective design
problems. The authors applied their two-branch GA to the design of a 10-bar truss and an opti-
mization problem that used both discrete and continuous variables. Results from these exam-
ples were compared with single-objective approaches to measure the Pareto-optimal set esti-
mated by the two-branch GA.

 Topping and Leite (1998) presented a detailed analysis and discussion of strategies and
topologies of parallel genetic algorithms (pGAs). In particular, the authors presented strategies
for pGAs using a model based on population, subpopulation, individual, and parallel process-
ing. Parallelism was employed to achieve an increase in computation speed and to allow the
solution of much larger optimization problems. The advantages and applicability of each of
these approaches was demonstrated in the design of a cable-stayed bridge.

 Saka (1998) used a simple GA to minimize the weight in the design of a grillage system
constrained by deflection limitations and allowable stresses. In addition, the effects of warping
and shear were taken into account. Convergence was obtained when 80% of the current genera-
tion was dominated by the best solution.

25

 Hajela et al. (1998) applied a simple GA to determine the optimal layout and size of 2-D
and 3-D grillage structures for displacement, stress, and element buckling constraints. A two-
level GA was used where the stability constraint was imposed on one level, and the stress and
displacement constraints were applied on a second level optimization. Results for a 2-D ten-
element grillage structure and for a 3-D helicopter tail-boom structure were compared to solu-
tions obtained using equilibrium linear programming.

 Soh and Yang (1998) developed a two-stage GA for the design of bridge trusses that util-
ized domain knowledge. In the first stage, geometric and sizing variables for the truss are si-
multaneously optimized for an initial topology pattern. In the second stage, topologic variables
are optimized depending on some cognitive topologic patterns and then simultaneous optimiza-
tion of geometric and sizing variables under the new topology is performed. The cognitive to-
pology patterns represent a set of all the stable topologies when some members and joints are
removed for the current topology. Results indicate that designs developed using the GA were
lighter than design obtained using traditional numerical optimization techniques.

 Groenwold et al. (1999) used a regional genetic algorithm (R-GA) for the discrete design
of truss structures. The R-GA used a selection operator with some similarity with genetic re-
birth, where the GA was restarted with a random population selected from a new subset or re-
gion centered on the best solution in the current generation. Results from several truss designs
indicated that the R-GA was computationally efficient in obtaining good approximations to the
global optimum. In addition, the procedure was highly suited for the design of large truss
structures.

 Botello et al. (1999) proposed combining SA and GA by inserting an acceptance operator
after the mutation step in a simple GA. In this strategy, the population obtained after the selec-
tion step in the GA was compared to the one modified by the crossover and mutation steps be-
fore proceeding to the next generation. The effects of selected values of free parameters associ-
ated with the SA acceptance operator were studied. Results using the hybrid algorithm were
compared with variable length GA (Rajeev and Krishamoorthy, 1997), Monte Carlo SA
(Elperin, 1998), SA with automatic reduction of search range (Tran and Pantelides, 1996), it-
erative SA, and state space optimization (Huang and Arora, 1979).

CONCLUSIONS

26

REFERENCES

Adeli, H. and Cheng, N.T. (1993). “Integrated Genetic Algorithm for Optimization of Space
Structures.” J. Aero. Engrg. 6(4), 315-328.

Adeli, H. and Cheng, N.T. (1994a). “Augmented Lagrangian Genetic Algorithm for Structural
Optimization.” J. Struct. Engrg. 7(3), 104-118.

Adeli, H. and Cheng, N.T. (1994b). “Concurrent Genetic Algorithms for Optimization of Large
Structures.” J. Aero. Engrg., 7(3), 276-296.

Booker, L.B. (1987). “Improving Search in Genetic Algorithms.” Genetic Algorithms and
Simulated Annealing (ed Davis, L.), London: Pitman, 61-73.

Booker, L.B. (1993). “Recombination Distributions for Genetic Algorithms.” Proceedings of
the 2nd Foundations of Genetic Algorithms Workshop (ed. Whitley, L.D.), San Mateo,
CA: Morgan Kaufmann, 29-44.

Botello, S., Marroquin, J.L., Oñate, E., and Van Horebeek, J. (1999). “Solving Structural Op-
timization Problems with Genetic Algorithms and Simulated Annealing.” Int. J. Numer.
Meth. Engrg., Vol. 45, 1069-1084.

Cai, J. and Thierauf, G. (1996). “Evolution Strategies for Solving Discrete Optimization Prob-
lems.” Advances in Engineering Software, 25, 177-183.

Camp, C.V., Pezeshk, S. and Cao, G. (1997). “Design of Framed Structures Using a Genetic
Algorithm.” Chapter in Advances in Structural Optimization, Edited by D.M. Frangopol
and F.Y. Cheng, ASCE , NY, 19-30.

Camp, C.V., S. Pezeshk, and G. Cao. (1998). “Optimized Design of Two–Dimensional Struc-
tures Using a Genetic Algorithm.” ASCE J. of Struct. Engrg., 124(5), May.

Cao, G. (1996). Optimized Design of Framed Structures Using a Genetic Algorithm. Ph.D. dis-
sertation, The University of Memphis, Memphis, Tennessee.

Cavicchio, D.J. (1972). “Reproductive Adaptive Plans.” Proceedings, ACM 1972 Annual Con-
ference. ,Association of Computing Machinery, Boston, MA, 1-11.

Chen, D. (1997). Least Weight Design of 2-D and 3-D Geometrically Nonlinear Structures Us-
ing a Genetic Algorithm. Ph.D. dissertation, The University of Memphis, Memphis,
Tennessee.

Chen, S.-Y. and Rajan, S.D. (1998). “Improving the Efficiency of Genetic Algorithms for
Frame Designs.” Eng. Opt., Vol. 30, 281-307.

Cheng, F.Y. and Li, D. (1997). “Multi-objective Optimization Design with Pareto Genetic Al-
gorithm.” ASCE J. of Struct. Engrg., 123(9), 1252-1261.

Cheng, F.Y. and Li, D. (1998). “Genetic Algorithm Development for Multi-objective Optimi-
zation of Structures.” AIAA Journal, Vol 36(5), 1105-1112.

Crossley, W.A, Cook, A.M, Fanjoy, D.W. and Venkayya, V.B. (1998). “Using Two-Brach
Tournament Genetic Algorithm for Multiobjective Optimization.”
AISS/ASME/ASCE/AHS/ASC Structures, Structural Dyanmics & Materials Conf., Vol
2., AIAA, Reston VA, USA, 1752-1762 AIAA-98-1914.

27

Cvetkovic, D. and Muhlenbein, H. (1994). The Optimal Population Size for Uniform Cross-

over and Truncation Selection, Technical Report GMD-AS-TR-94-11.
De Jong, K.A. and Spears, W.M. (1990). “An Analysis of the Interacting Roles of Population

Size and Crossover in Genetic Algorithms.” Proceedings of the International Confer-
ence on Parallel Problems Solving from Nature (eds. Schwefel, H. P. and Manner, R.),
Springer-Verlag, 38-47.

De Jong, K.A. and Spears, W.M. (1992). “A Formal Analysis of the Role of Multi-point
Crossover in Genetic Algorithms.” Annals of Mathematics and Artificial Intelligence
Journal, 5(1), 1-26.

De Jong, K.A., Spears, W.M., and Gordon, D.F. (1994). “Using Markov Chains to Analyze
GAFOs.” Proceedings of the 3rd Foundations of Genetic Algorithms Workshop, San
Mateo: Morgan Kaufmann.

Deb, K. (1990). “Optimal Design of a Class of Welded Structures via Genetic Algorithm.”
Proc. 31st AIAA/ASME/ASCE/ASH/ASCS Structures, Structural Dynamics, and Materi-
als Conf., 444-453.

Dhingra, A.K., and Lee, B.H. (1994). “A Genetic Algorithm Approach to Single and Multi-
objective Structural Optimization with Discrete-Continuous Variables.” Int. J. Numer.
Meth. Engrg., Vol. 37, 4059-4080.

Eshelman, L., Caruana, R., and Schaffer, D. (1989). “Biases in the Crossover Landscape.”
Proc. of 3rd Int. Conf. on Genetic Algorithms (Ed. Schaffer, J.D.), Morgan Kaufmann,
San Mateo, CA, 10-19.

Elperin, T. (1998). “Monte-Carlo Structural Optimizaton in Discrete Varibles with Annealing
Algorithm.” Int. J. Numer. Meth. Eng., Vol. 26, 815-821.

Forrest, S. (1985). Documentation for Prisoners Dilemma and Norms Programs That Use the
Genetic Algorithm. University of Michigan, Ann Arbor.

Galante, M. (1996). “Genetic Algorithms as an Approach to Optimize Real-World Trusses.”
Int. J. Numer. Meth. Engrg., Vol. 39, 361-382.

Gallagher, R.H. and Zienkiewicz, O.C. (1973). Optimum Structural Design: Theory and Ap-
plications, John Wiley & Sons.

Glover, F., Kelly, J.P., and Laguna, M. (1995). “Genetic Algorithms and Tabu Search: Hybrids
for Optimization.” Computers Ops Res., 22(1), 111-134.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison Wesley.

Goldberg, D.E. and Deb, K. (1991). “A Comparative Analysis of Selection Schemes Used in
Genetic Algorithms.” Proceedings of the Foundations of Genetic Algorithms Work-
shop, Bloomington, Indiana, 69-93.

Goldberg, D.E. and Samtani, M.P. (1986). “Engineering Optimization via Genetic Algorithms.”
Proc. of 9th Conf. on Electronic Computation, ASCE, New York, N. Y., 471-482.

28

Grierson, D.E. and Pak, W.H. (1993). “Optimal Sizing, Geometrical and Topological Design
Using Genetic Algorithms.” Structural Optimization, Vol. 6, 151-159.

Groenwold, A.A., Stander, N., and Snyman, J.A. (1999). “A Regional Genetic Algorithm for
the Discrete Optimal Design of Truss Structures.” Int. J. Numer. Meth. In Eng., Vol.
44, 749-766.

Hajela, P. (1992). “Stochastic Search in Structural Optimization: Genetic Algorithms and
Simulated Annealing..” Chapter 22, 611-635.

Hajela, P. and Lee, E. (1993). “Genetic Algorithms in Topological Design of Grillage Struc-
tures.” Proc., IUTAM Symp. on Discrete Structural Systems, IUTAm, Zakopane, Po-
land.

Hajela, P. and Lee, E. (1993). “Genetic Algorithms in Structural Topology Optimization.” To-
pology Design of Structures, Bendsoe and Mota Sores, Eds., 117-134, Luwer Academic
Publishers, Boston, Mass.

Hajela, P. and Lee, E. (1995). “Genetic Algorithms in Truss Topological Optimization.” Int. J.
Solids Structures, Vol. 32, No. 22, 3341-3357.

Hajela, P. and Yoo, J. (1995). “Constraint Handling in Genetic Search – A Comparative
Study.” AIAA Paper No. 95-1143, New Orleans, LA.

Hajela, P., LEE, E., and Cho, H. (1998). “Genetic Algorithms in Topologic Design of Grillage
Structures.” Computer-Aided Civil and Infrastructure Engineering, Vol. 13, 13-22.

Hillier, F.S. and Lieberman, G.J. (1990). Introduction to Mathematical Programming.
McGraw-Hill Publishing Company.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: The University
of Michigan Press.

Homaifar, A., Qi, C.X., and Lai, S.H. (1994). “Constrained Optimization via Genetic Algo-
rithms.” Simulation, April, 242-251.

Huang, M.-W. and Arora, J.S. (1979). Applied Optimal Design of Mechanical and Structural
Systems, Wiley, New York.

Huang, M.-W. and Arora, J.S. (1997). “Optimal Design of Steel Structures Using Standard
Sections.” Structural Optimization, 14, 24-35.

Jenkins, W.M. (1991a). “Towards Structural Optimization Via The Genetic Algorithm.” Com-
puters & Structures, 40(5), 1321–1327.

Jenkins, W.M. (1991b). “Structural Optimisation with The Genetic Algorithm.” The Structural
Engineer, 69(24), 418-422, December.

Jenkins, W.M. (1997). “On the Application of Natural Algorithms to Structural Design Opti-
misation.” Engineering Structures, 19(4), 302-308.

Koumousis, V.K. and Georgiou, P.G. (1994). “Genetic Algorithms in Discrete Optimization of
Steel Truss Roofs.” J. of Computing in Civil Engineering, 8(3), 309-325.

Koza, R.R. (1992). Genetic Programming: on the Programming of Computers by Means of
Natural Selection. The MIT Press, Cambridge, MA.

29

Leite, J.P. and Topping, B.H.V. (1998). “Improved Genetic Operators for Structural Engineer-
ing Optimization.” Advances in Engineering Software, Vol. 29, No. 7/9, 529-562.

Lin, C.-Y. and Hajela, P. (1992). “Genetic Algorithms in Optimization Problems with Discrete
and Integer Design Variables.” Eng. Opt., Vol. 19, 309-327.

Lin, C.-Y. and Hajela, P. (1993). “Genetic Search Strategies in Large Scale Optimization.”
Proc. 34th AIAA/ASME/ASCE/AHS/ASC SDM Conf., La Jolla, Ca, ASCE, New York,
NY, 2437-2447.

 Lin, C.-Y. and Hajela, P. (1994). “EVOLVE: A Genetic Search Based Optimization Code
with Multiple Strategies. Proceedings of OPTI93 Computer-Aided Optimum Design of
Structures, 7-9 July, Zaragoza, Spain, Eds. S. Hernandez & C.A. Brebbia, Elsevier Sci-
ence, London, 639-654.

Lu, J., Ding, Y., Wu, B., and Xiao S. (1996). “An Improved Strategy for GAs in Structural Op-
timization.” Computers & Structures, 61(6), 1185-1191.

Nair, P.B., Keane, A.J., and Shimpi, R.P. (1998). “Combining Approximation Concepts with
Genetic Alogrithm-Based Optimization.” AISS/ASME/ASCE/AHS/ASC Structures,
Structural Dyanmics & Materials Conf., Vol 2., AIAA, Reston VA, USA, 1741-1751
AIAA-98-1912.

Nix, A.E. and Vose, M.D. (1992). “Modeling Genetic Algorithms with Markov Chains.” An-
nals of Mathematics and Artificial Intelligence Journal, 5(1), 79-88.

Ohsaki, M. (1995). “Genetic Algorithms for Topology Optimization of Trusses.” Computers
and Structures, 57(2), 219-225.

Ohmori, H. and Kito, N. (1998). “Structural Optimization of Truss Topology by Genetic Algo-
rithms.” Published by Publication Committee of NCTAM Proceedings, 331-340, To-
kyo, Japan.

Parmee, I.C., Vekeria, H., Bilchev, G. (1997). “The Role of Evolutionary and Adaptive Search
During Whole System, Constrained and Detailed Design Optimization.” Eng. Opt.,
Vol. 29, 151-176.

Pezeshk, S., Camp, C.V. and Chen, D. (1997). “Optimal Design of 2-D Frames Using A Ge-
netic Algorithm.” Proceedings of the NSF/ASCE Workshop on Optimal Performance of
Civil Infrastructure Systems, Portland, Oregon, April.

Pezeshk, S., Camp, C.V. and Chen, D. (2000). “Design of Nonlinear Framed Structures Using
Genetic Optimization.” ASCE J. Struct. Engrg., to appear in March issue.

Prakkash, V.S., Rajeev, S., and Mathews, M.S. (1995). “Optimal Design of Ribbed Ferro-
cement Roofing/Flooring Elements Using Genetic Algorithms.” J. of Ferrocement, Vol.
25, No. 1, 1-16, January.

Paz, E.C. (1995). “A Summary of Research on Parallel Genetic Algorithms.” IlliGAL Report
No. 95007, July 1995.

Rajan, S.D. (1995). “Sizing, Shape, and Topology Design Optimization of Trusses Using Ge-
netic Algorithms.” ASCE J. of Struct. Engrg., 121(10), 1480-1487.

30

Rajeev, S. and Krishnamoorthy, C.S. (1992). “Discrete Optimization of Structures Using Ge-
netic Algorithms.” ASCE J. of Struct. Engrg., 118(5), 1233-1250.

Rajeev, S. and Krishnamoorthy, C.S. (1997). “Genetic Algorithms–Based Methodologies for
Design Optimization of Trusses.” ASCE J. of Struct. Engrg., 123(3), 350-358.

Ramasamy, J.V. and Rajasekaran, S. (1996). “Artificial Neural Network and Genetic Algo-
rithm for the Design Optimization of Industrial Roofs - A Comparison.” Computers
and Structures, Vol. 58, No. 4, 747-755.

Reeves, G.R. (1993). Modern Heuristic Techniques for Combinatorial Problems. John Wiley
& Sons, Inc.

Richardson, J.T., Palmer, M. R., Liepins, G., and Hilliard, M. (1989). “Some Guidelines for
Genetic Algorithms with Penalty Functions.” Proc. of 3rd Int. Conf. on Genetic Algo-
rithms (ed. Schaffer, J.D.), Morgan Kaufmann, San Mateo, CA, 191-197.

Saka, M.P. (1998). “Optimum Design of Grillage Systems Using Genetic Algorithms.” Com-
puter Aided Civil and Infrastructure Engineering, Vol. 13, 297-302.

Sakamoto, J. and Oda, J. (1993). “Technique for Optimal Layout Design for Truss Structures
using Genetic Algorithms.” Collection of Technical Papers – AIAA/ASME Structures,
Structural Dynamics and Material Conference, Publ. by AIAA Washington, DC, USA,
Pt. 4, 4402-2408.

Schwefel, H.P. (1981). Numerical Optimization of Computer Models. John Wiley & Sons,
New York.

Simpson, A.R., Dandy, G.C., and Murphy, L.J. (1992). “Genetic Algorithms Compared to
Other Techniques for Pipe Optimization.” J. Water Resour. Planng. and Mgmt., ASCE,
120(4), 423-443.

Soh, C.K. and Yang, J. (1996). “Fuzzy Controlled Genetic Algorithm Search for Shape Opti-
mization.” J. of Computing in Civil Engrg., Vol 10, No. 2, April, 143-150.

Soh, C.K. and Yang, J. (1998). “Optimal Layout of Bridge Trusses by Genetic Algorithms.”
Computer-Aided Civil and Infrastructure Engineering, Vol. 13, 247-254.

Spears, W.M. (1994). “Adaptive Crossover in Genetic Algorithms.” Artificial Intelligence Cen-
ter Internal Report #AIC–94–019, Naval Research Laboratory, Washington, DC 20375.

Spears, W.M. and De Jong, D. (1990). “An Analysis of Multi–Point Crossover.” Proceedings
of the Foundations of Genetic Algorithms Workshop, Bloomington, Indiana. 301-315.

Spears, W.M. and De Jong, K.A. (1991). “On the Virtues of Parameterized Uniform Cross-
over.” Proc. of 4th Int. Conf. on Genetic Algorithms (eds. Belew R. and Booker, L.),
Morgan Kaufmann, San Mateo, CA, 230-236.

Syswerda, G. (1989). “Uniform Crossover in Genetic Algorithms.” Proc. of 3rd Int. Conf. on
Genetic Algorithms (ed. Schaffer, J. D.), Morgan Kaufmann, San Mateo, CA, 2-8.

Tanese, R. (1989). “Distributed Genetic Algorithms.” Proc. of 3rd Int. Conf. on Genetic Al-
gorithms (ed. Schaffer, J. D.), Morgan Kaufmann, San Mateo, CA, 434–439.

31

Thierens, D. and Goldberg, D.E. (1993). “Mixing in Genetic Algorithms.” Proc. of 5th Int.
Conf. on Genetic Algorithms, 38-45.

Topping, B.H.V. and Leite, J.P.B. (1998). “Parallel Genetic Models for Structural Optimiza-
tion.” Eng. Opt., Vol. 31, 65-99.

Tran, S. and Pantelides, C.P. (1996). “Annealing Strategy for Optimal Design.” J. of Struct.
Engrg. 122(7), 815-827.

Whitley, D. (1993). “A Executable Model of a Simple Genetic Algorithm.” Proceedings of
the 2nd Foundations of Genetic Algorithms Workshop (ed. Whitley, L. D.), San Mateo,
CA: Morgan Kaufmann, 45-62.

Wu, S.-J. and Chow, P.-T. (1995). “Integrated Discrete and Configuration Optimization of
Trusses Using Genetic Algorithms.” Computers and Structures, Vol. 44, No. 4, 695-
702.

Yang, J. and Sho, C.K. (1997). “Structural Optimization by Genetic Algorithms with Tourna-
ment Selection.” ASCE J. of Struct. Engrg., 11(3), 195-200.

Zhu, D.M. (1986). “An Improved Templeman’s Algorithm for Optimum Design of Trusses
with Discrete Member Sizes.” Engineering Optimization, No. 9, 303-312.

