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Abstract 

Hosseini, Seyed Mehrdad. Ph.D. The University of Memphis. August 2014.  
Reducing uncertainties in the velocities determined by inversion of phase velocity 
dispersion curves using synthetic seismograms. Major Professor: Shahram Pezeshk. 

 

Characterizing the near-surface shear-wave velocity structure using Rayleigh-wave 

phase velocity dispersion curves is widespread in the context of reservoir 

characterization, exploration seismology, earthquake engineering, and geotechnical 

engineering. This surface seismic approach provides a feasible and low-cost alternative to 

the borehole measurements. Phase velocity dispersion curves from Rayleigh surface 

waves are inverted to yield the vertical shear-wave velocity profile. A significant problem 

with the surface wave inversion is its intrinsic non-uniqueness, and although this problem 

is widely recognized, there have not been systematic efforts to develop approaches to 

reduce the pervasive uncertainty that affects the velocity profiles determined by the 

inversion. Non-uniqueness cannot be easily studied in a nonlinear inverse problem such 

as Rayleigh-wave inversion and the only way to understand its nature is by numerical 

investigation which can get computationally expensive and inevitably time consuming. 

Regarding the variety of the parameters affecting the surface wave inversion and possible 

non-uniqueness induced by them, a technique should be established which is not 

controlled by the non-uniqueness that is already affecting the surface wave inversion. An 

efficient and repeatable technique is proposed and tested to overcome the non-uniqueness 

problem; multiple inverted shear-wave velocity profiles are used in a wavenumber 

integration technique to generate synthetic time series resembling the geophone 

recordings. The similarity between synthetic and observed time series is used as an 
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additional tool along with the similarity between the theoretical and experimental 

dispersion curves. The proposed method is proven to be effective through synthetic and 

real world examples. In these examples, the nature of the non-uniqueness is discussed 

and its existence is shown. Using the proposed technique, inverted velocity profiles are 

estimated and effectiveness of this technique is evaluated; in the synthetic example, final 

inverted velocity profile is compared with the initial target velocity model, and in the real 

world example, final inverted shear-wave velocity profile is compared with the velocity 

model from independent measurements in a nearby borehole. Real world example shows 

that it is possible to overcome the non-uniqueness and distinguish the representative 

velocity profile for the site that also matches well with the borehole measurements. 
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Chapter 1. Introduction 

 

Seismic design of structures depends on the realistic anticipation of the ground 

motions generated from various seismic sources. In the design process, seismic structural 

stability depends on the rate of seismic hazard for a specific region, and in recent years, 

engineers and seismologists have been working meticulously to correctly estimate the 

seismic hazard. Seismic hazard is defined as the response of the earth surface with 

respect to the ground motion of an earthquake. The seismic wave field generated at the 

location of the source travels though the earth’s crust and reaches beneath the specific 

local site through the bedrock. Bedrock can be covered by deposits and geological 

structures with different materials and thicknesses.  As the seismic wave field finds its 

way to the surface, passing through the heterogeneity of the local geology, it might get 

amplified and de-amplified.  The greatest hazard is usually associated with soft deposits 

where seismic waves at the bedrock are amplified at certain frequency ranges as they 

reach the surface (Kramer, 1996). An example can be observed from the 2011 Tohoku 

Mw 9.0 earthquake, where seismic waves are recorded both at the bottom of a borehole 

and also on the surface at a station with a 320-km hypocentral distance. Figure 1.1 shows 

the three component seismograms of the surface and the borehole recorded at the station 

CHBH14 with the same scale.  From this figure, it is evident that seismic waves are 

amplified as they reach the surface. 



11 
 

 
Figure 1.1. Three components of seismograms from 2011 Tohoku Mw 9.0 earthquake 
recorded on the surface (top) and also in depth of a borehole (bottom) in station 
CHBH14. The elevation difference between surface and borehole sensors is 525 meters. 
Seismic waves on the surface are amplified due to the local geology. 
 
 
 

Site response correlates with the mechanical properties of the soil structure 

especially in its shallow depth. Among the various mechanical properties of soil, the 

shear-wave velocity (VS) plays an important role in characterizing the site response.  

The important effect of local geology is observed in sedimentary deposits in the 

Mississippi embayment area that significantly affect the ground motions in the 

probabilistic seismic-hazard maps. The reason is the possibility of amplification of 

seismic waves for certain frequency bands due to the shallow shear-wave velocity 
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contrast between soft and stiff materials and soil behavior (Kramer, 1996; Pujol et al., 

2002). The amplification of ground motion could adversely affect structures that resonate 

at periods similar to those of the ground on which they are built.  

Reliable estimation of the shear-wave velocity profile is not only useful for site 

response studies and seismic hazard assessments, but is also of great interest in the 

context of other domains of engineering such as geotechnical engineering and petroleum 

engineering. In geotechnical engineering, VS is used in the foundation design process as 

one of the properties of the underlying soil; in petroleum engineering, VS is used for the 

noise attenuation in reflection sections, and for characterizing the near-surface velocity 

profiles. 

 

1.1 Research Objective 

 

The main objective of this dissertation is to provide a reliable and convenient method 

for estimation of the shear-wave velocity profile of the subsurface. Such a method will 

provide site-specific information in detail to improve the seismic hazard maps, 

specifically for the upper Mississippi embayment region. Soil conditions are often 

variable even inside of a relatively small area. Thus, to evaluate site-specific seismic 

hazard and to analyze site response in and around this region, it is necessary to find low-

cost methods to obtain shear-wave velocity profiles. In general, borehole logging is 

considered to be the standard to obtain the needed soil dynamic properties; however, 

drilling and logging is expensive and this has led to the development of numerous 

inexpensive surface acquisition techniques.  There are issues of non-uniqueness and 
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uncertainties associated with non-invasive procedures that may not result in consistently 

reliable velocity profiles. Techniques used in this research are expected to improve the 

non-uniqueness issues in the estimated shear-wave velocity profiles from seismic surface 

methods, specifically those obtained by analyzing Rayleigh waves. 

 

1.2 Research Overview 

 

This project aims to improve near-surface characterization. A combination of 

techniques is used to reliably estimate the subsurface shallow shear-wave velocity profile.  

Currently, there are difficulties with such characterizations such as: (a) velocity reversals 

due to the presence of a low velocity layer, (b) the decrease in velocity with increasing 

depth, and (c) the depth of the water table. The problem with the last item is that the 

Poisson’s ratio and density are different for dry and saturated materials. This fact has 

been usually neglected in the inversion of experimental dispersion curves, which is based 

on a layered model with small variations across the layers in the values of the Poisson’s 

ratio and density. In fact, early papers on the subject state that the effect of changes in 

these two parameters is minimal (Nazarian, 1984; Nazarian & Stokoe, 1984).  However, 

recent studies show that this may not be the case when a water table is present (Foti & 

Strobbia, 2002). In addition, the S-wave velocity models determined by the inversion of 

phase velocity dispersion curves are affected by a high degree of non-uniqueness because 

there is little absolute velocity information contained in the phase velocity. This lack of 

information causes the well-known velocity-depth trade-off (Ammon et al., 1990). For 

example, a thin layer with low velocity will produce an average differential arrival time 



14 
 

similar to that caused by a thick layer with high velocity. As a consequence, the inverted 

velocity models depend on the initial velocity models or on the selected higher mode 

numbers, resulting in several different inverted velocity models.  The proposed 

methodology helps distinguish among different velocity models by comparing their 

corresponding synthetic and observed time series.  

 

1.3 Dissertation Overview 

 

This dissertation is organized into six chapters and three appendices. Chapter two 

provides an overview of the estimation of the dispersive properties of surface waves. 

Chapter two first introduces basic wave propagation theory and unfolds the details of the 

propagator matrix technique, showing that it can be used for both seismogram synthesis 

and also theoretical phase velocity estimation in a heterogeneous media. Then, 

attenuation is presented and the mathematical techniques for implementation of 

attenuation in the synthesis theory are provided. It is shown how the dispersion is a 

necessity of a causal system, and some simulations are presented which will be used in 

development of future theories and assumptions for synthetic seismograms and 

comparison among observations and synthetics in future chapters.  

 Chapter three introduces the devices used in the MASW technique and unveils the 

details for a successful acquisition of surface waves. Common sources of error and 

uncertainties are introduced, including amplitude clipping and also the erroneous 

performance of the trigger which can adversely affect the reliability of results. At the end 

of Chapter three, the dispersion curve obtained by the MASW technique is compared 
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with that from another surface seismic test (spectral analysis of surface waves, SASW) to 

see how close is the agreement of the two methods. 

Chapter four sets forth the details of the calculation of the experimental dispersion 

curve from a recorded time series.  This section discusses details of the frequency-

wavenumber technique and sheds light on this signal processing method by synthetic and   

real examples.  Chapter four also shows a technique to invert the experimental dispersion 

curve for the shear-wave velocity structure of the subsurface, and the formulation of the 

iterative Levenberg-Marquardt inversion is provided. Program SURF96 from Dr. Robert 

Herrmann (St. Louis University) is introduced, and it is shown how the source code and 

settings are customized for a successful inversion in shallow applications.  A few “bash” 

scripts are provided and explained to make the suggested modifications practical and 

repeatable.   

Chapter five introduces a synthetic example of the non-uniqueness in the inversion of 

surface waves, and demonstrates how easy it is to get confused among the pool of 

different inverted velocity profiles. To solve this problem, a synthetic seismogram 

technique is used to help separate the real representative profile from the other profiles. 

Finally, Chapter six applies all of the techniques explained in the previous chapters 

to the surface wave data recorded at a site near Memphis, Tennessee, and navigates the 

reader through the multiple techniques and all the details leading to the detection of the 

most reliable inverted shear-wave velocity profile. At the end of this chapter, an 

independent and solid evaluation of the proposed technique is performed by comparing 

the final inverted profile with the result from a downhole seismic survey. In a second 

evaluation, the inverted profile is also compared with those from two seismic tests at two 
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sites with similar geology. Previously, two groups of researchers investigated these two 

sites using borehole and surface wave measurements, and I found it quite useful to 

compare my outcome with their published results. 
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Chapter 2. Literature Review and Basics of Wave Propagation 

 

Knowledge regarding the near-surface seismic velocities unveils information about 

the subsurface lithology that is not available from surface geological observations 

(Petrosino et al., 2002). Elastic properties of subsurface materials shed light on factors 

affecting the wave propagation phenomena, and enables researchers to predict ground 

motion and ultimately seismic hazard for a local site. Specifically, attenuation and shear-

wave velocity structure in the top 30 meters play an important role for the estimation of 

strong ground motion at a site by estimating the amplification of ground motions or “site 

effect” (Bard & Bouchan, 1980a, 1908b; Boore et al., 1994; Borcherdt, 1994; Cramer et 

al., 2002; Electric and Power Research Institute [EPRI],  1993; Evans & Pezeshk, 1998; 

Frankel & Vidale, 1992; Kramer, 1996; Malagnini et al., 1995; Moczo, 1989; Pezeshk 

and Liu, 2001; Pezeshk & Zarrabi, 2005; Pezeshk et al., 1998).  

In the context of soil mechanics and foundation engineering, the shear-wave velocity 

has a direct relationship with the N-value (Craig, 1992; Xia et al., 2003), and in reservoir 

engineering it helps characterize the near-surface properties more accurately and suppress 

ground roll noise from the reflection sections (Salama et al., 2013; Strobbia et al., 2010,  

2011, 2012). 

The shear-wave velocity profile is estimated by considering the dispersive properties 

of Rayleigh and Love waves in a vertically heterogeneous medium (Brune & Dorman, 

1963; Dorman & Ewing, 1962; Wiggins et al., 1972) and systematic approaches are 

developed for the use of surface waves in the geophysical and geotechnical prospecting 

(Gucunski & Woods, 1991; Park et al., 1998a; Pezeshk & Zarrabi, 2005; Rix et al., 2001; 
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Stokoe & Nazarian, 1983). Such methods rely on the inversion of the observed phase 

velocities for the shear-wave velocity structure by either using a linearized least square 

inversion  (Rix et al., 2001; Xia et al., 1999; Yuan & Nazarian, 1993), or using 

evolutionary techniques such as a genetic algorithm or a simulated annealing procedure 

(Beaty et al., 2002; Luke & Calderón-Macias, 2007; Pezeshk & Zarrabi, 2005; Ryden & 

Park, 2006; Yamanaka & Ishida, 1996; Zeng, 2011; Hosseini & Pezeshk, 2011a).  In 

either case, due to the nonlinearity of the equations, a nontrivial model null space exists 

that causes non-unique solutions of the surface wave inversion (Aster et al., 2003; 

Backus & Gilbert, 1970) where different velocity profiles might have similar phase 

velocity dispersion curves. A null space is a set of solutions (m0) that if added to initial 

solution m, the result of a specific function f(m) does not change, i.e. f(m+m0)=f(m), such 

as sin(π/2+2π)=sin(π/2) where 2π can be considered as the null space of the model in this 

case (Aster et al., 2003). Specifically, Backus and Gilbert (1970) state that there is no 

answer to the question that whether, in a nonlinear problem, there are alternative 

solutions significantly different from the available one. They clearly indicate that to 

investigate solutions of a non-unique problem, one must either search for solutions by 

numerical techniques, or use Monte Carlo methods introduced by Keilis-Borok and 

Yanovskaya (1967) and Levshin et al. (1966). Hence, in the nonlinear inversion of 

Rayleigh waves there is no objective way to discriminate among all the possible 

inversion results just by relying on the quality of fit between the observed and inverted 

dispersion data. Although the non-uniqueness is a well-known issue in surface wave 

inversion, there have not been systematic efforts to address the issue. Widely-used 

linearized inversion techniques seek iteratively for a solution that is linearly close to the 
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initial model (Cercato, 2009; Parker, 1994) and does not search automatically for the 

whole solution space (Stovall, 2010). The degree of the non-uniqueness of the problem 

directly controls the possibility that the objective function contains the solution as a part 

of its local minima (Backus & Gilbert, 1970; Cercato, 2009), and there is no absolute 

treatment to handle such non-uniqueness. In a linearized inversion, several techniques 

have been proposed by researchers, such as imposing constraints on the velocity 

variations and inclusion of the higher modes (Cercato, 2007, 2009; Gabriels, 1987; 

Levshin & Panza, 2006; Park et al., 1999b; Stovall, 2010; Xia et al., 2003). Typically, 

higher modes are dominant in cases where a high velocity layer is present, or when the 

source-array offset increases (Cercato, 2009; Cercato et al., 2010; Stovall, 2010; 

Tokimatsu et al., 1992; Xia et al., 2002). In the inversion of dispersion data including 

higher modes, a correct identification of mode numbers is essential (Cercato, 2009; 

Cerato et al., 2010; Forbriger, 2003a, 2003b; Stovall, 2010; Hosseini & Pezeshk, 2011b, 

2011c, 2011d, 2012a; Stovall et al. 2011).  

Aforementioned techniques that deal with the non-uniqueness problem deal more 

with the numerical solutions that implements a larger portion of the dispersion data in the 

inversion process. Along with these techniques, there have been efforts to bring another 

source of verification by using synthetic time series.  Malagnini (1996) and Malagnini et 

al. (1995) inverted dispersion curves from a shallow explosion, and verified the reliability 

of the inverted shear-wave velocity profile by comparing the observed and the associated 

synthetic time series. It has been proven that seismograms can hold information regarding 

the properties of soil layers, and in the context of seismology and exploration, there has 

been extensive research on the waveform inversion through which the compressional and 
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shear-wave velocities, and in some cases, density of layers/cells are estimated (Strobbia 

et al., 2012; Zeng, 2011; Tran & Hiltunen, 2012; Groos, 2013). 

In this study, a seismogram synthesis technique (Wang & Herrmann, 1980) is used to 

discriminate among several profiles emerging from the inversion of phase velocity 

dispersion curves obtained at a site near Memphis, Tennessee. Regarding the contrast 

between the embayment soft deposits and the surrounding firmer medium, the amplifying 

effect of the shallow soil profile is of great importance in the sedimentary deposits of 

Mississippi embayment (Cramer, 2006; Kramer, 1996; Pujol et al., 2002; Taborda, 2013). 

The importance of an accurate estimation of the shear-wave velocity profile is in the site 

response analysis, while otherwise unsatisfactory and often dangerous results may 

emerge (Boaga et al., 2012). For this study, a multi-channel analysis of surface waves 

(MASW) (Park et al., 1999a; Xia et al., 1999a, 1999b) and a downhole seismic survey 

are conducted.  Phase velocity dispersion data from the MASW test are inverted for 

several high resolution shear-wave velocity profiles, and then synthetic seismograms are 

used to find the velocity profile with a minimum error between the synthetics and the 

observed time series recorded at each surface geophone (Hosseini & Pezeshk, 2012b, 

2012c). Then, the final shear-wave velocity profile from the seismogram match is 

compared with that from the downhole seismic survey, to validate the effectiveness of the 

proposed technique in identifying the most appropriate velocity profile among a pool of 

shear-wave velocity structures, inverted through a non-unique process.  

In the next section, the equation of motion is introduced and details are provided on 

how the problem of the wave propagation in a homogeneous half-space is formulated, 

and how it contains compressional and transverse waves.  
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2.1 Equation of Motion  

 

Considering small deformations, the strain tensor from Eulerian and Lagrangian 

descriptions becomes the same (Pujol, 2003) and the infinitesimal strain tensor can be 

expressed as: 

 
 

( ), ,
1
2kl k l l ku uε = +   (2.1) 

 
 
where klε  is Cauchy’s strain tensor, and ,i ju  is the derivative of displacement in direction 

i with respect to j direction. Hereafter, the comma sign means derivative with respect to 

the direction mentioned right after the comma. Also, the equation of motion can be 

approximated by neglecting spatial derivatives of u which becomes: 

 
 

2

, 2
i

ij j i i
uf u
t

τ ρ ρ ρ∂+ = =
∂

&&  (2.2) 

 
 
where  ijτ   is the stress tensor holding normal and shearing stresses, ρ is the density of 

the medium, f  is the body force per unit volume, t is the time, and finally double dots 

indicates a second derivative with respect to time. Equation (2.1) is Cauchy’s equation of 

motion.  

A three-dimensional representation of stress tensors on an infinitesimal cube is 

presented in Figure 2.1. It is very common to express a stress symbol with iiσ  when the 

direction of force and the normal axis of the plane that the stress acts on are in the same 

direction. It is common to distinguish the Cartesian axis with numbers 1, 2, and 3 
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indicating directions X, Y, and Z. Therefore, in symbol ijτ , i and j can be replaced with 

numbers from 1 to 3, and with this convention ijτ can represent any type of stress in the 

tensor: 
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( )
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xx xx xy xz

yx yy yy yz
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  (2.3) 

 
 
 

 

  

 

Figure 2.1. Stress tensor presented on an infinitesimal cube. 
 
 
 
2.1.1 Strain-Stress Relationship and the Equation of Motion 

 

Equation (2.1) relates displacement and strain, and Equation (2.2) relates the 

displacement with stress. By considering the approximation in deriving these sets of 

equations, they are valid for any continuous medium. To establish detailed behavior of 

the wave propagation in a specific medium, we should then introduce the relationship 

between stress and strain. Such a relationship is expressed using Hooke’s law, which 
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relates the deformations to exerted forces. The generalized version of Hooke’s law was 

established by Cauchy (Pujol, 2003; Timoshenko, 1953) as: 

 
 

kl klpq pqcτ ε=   (2.4) 
 
 
where klpqc  is the fourth-order tensor related to properties of the medium, and its reaction 

to different type of waves and different directions and positions. In general, klpqc  has 81 

components which is reduced to 36 after considering the symmetry of stress and strain.  

In earth sciences, the tensor klpqc  can be simplified even more by assumptions such as 

that the properties of the medium are the same in any direction (isotropic material). In 

such case, klpqc  for an isotropic solid reduces to: 

 
 

( )ijkl ij kl ik jl il jkc λδ δ µ δ δ δ δ= + +   (2.5) 
 
 
where λ  and µ  are the Lamé constants, and ijδ is the Kronecker delta function defined 

as: 
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  (2.6) 

 
   

Lamé constants are material properties and are related to other parameters for 

material properties in engineering and seismology. In seismology, shear and 

compressional wave velocities ( PV  and SV ) are related to Lamé constants by the 

following equations: 
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2λ µ α
ρ
+= =PV  

µ β
ρ

= =SV  
 (2.7) 

 
 
In civil engineering, the bulk modulus (K), Young’s Modulus (E), and the Poisson’s 

ratio (ν ) can be defined as: 

 
 

2 2 2

2 2
(3 2 ) (3 4 )µ λ µ ρ
µ λ

+ −= =
+ −

S P S

P S

V V VE
V V

 

2 22 4( )
3 3

λ µ ρ= + = −P SK V V  

( )
2 2

2 2

2
2( ) 2

λν
λ µ

−= =
+ −

P S

P S

V V
V V

 

 (2.8) 

 
 
To do more manipulations on the equation of motion, a series of mathematical 

operators are defined in Table 2.1.  

Referring back to the Equation (2.4), the stress and strain relationship can be 

explicitly defined as: 

 
 

2τ λδ ε µε= +ij ij kk ij   (2.9) 
 
   

Now we can use Equation (2.9) to rewrite the equation of motion (2.2) as: 
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Table 2.1. Mathematical operators used in the study to set up the equation of motion 
 

Operator 
Name              Equation 

Differential   
  Operator 1 2 3x y z

∂ ∂ ∂∇ = + +
∂ ∂ ∂
e e e  

Gradient 1 2 3
f f ff
x y z
∂ ∂ ∂∇ = + +
∂ ∂ ∂
e e e  

Divergence 
f f ff
x y z
∂ ∂ ∂∇⋅ = + +
∂ ∂ ∂

 

Curl 1 2 3
y yz x z x

x y z

i j k
f ff f f ff

x y z y z z x x y
f f f

∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞∇× = = − + − + −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠
e e e  

Laplacian  
2 2 2

2
1 2 32 2 2

f f ff f
x y z

∂ ∂ ∂∇ =∇⋅∇ = + +
∂ ∂ ∂

e e e  

 
 
 

In Table 2.1 definitions, e  stands for the unit vector. By using Equations (2.9) and 

(2.1) and the definitions provided in Table 2.1, the equation of motion can be introduced 

in a vector format as: 

 
 

2
2

2( ) ( )
t

µ λ µ ρ ρ ∂∇ + + ∇ ∇⋅ + =
∂
uu u f   (2.11) 

 
 
Expanding Equation (2.11) further using 2 ( ) ( )∇ =∇ ∇⋅ −∇× ∇×u u u , the equation 

of motion gets the following form: 
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Finally, using Equation set (2.7), one will get the Navier’s elastic wave equation: 
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&&
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(2.14) 

 
 
where the double dot on the right-hand side of Equation (2.13) means a second derivative 

with respect to time, and Equation (2.14) is in the frequency domain form. Note that 

Equation set (2.13) contains two type of propagating waves: dilatational (first term from 

left) and rotational (second term from left), corresponding to P and S waves. The 

equation of motion can also be presented as the following form, to match the notation of 

Ben-Menahem and Singh (1981, Section 4.1), for an applied force at depth z0: 
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uu u S
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g t z z
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  (2.15) 

 
 
where term  S0 g(t) δ(z-z0)  represents the body force per unit mass, which is a force of a 

specific magnitude in different directions (S0), concentrated at the depth z=z0, and g(t) is a 

dimensionless function time variation of the force, and g(ω) is the Fourier transform of 

g(t). Displacement vector u which is the solution to Equation (2.15), can be expressed as 

(Pujol, 2003): 

 
 

( , ) ( . ) ( . )t h t c g t c= − + +u r k r k r   (2.16) 
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 where h and g are functions that travel forward and backward in time, t is time, c is the 

propagation velocity, r is the vector of location, and k is defined as a unit vector ( 1=k ) 

equal to (kx.x, ky.y, kz.z). Pujol (2003) noted that for a given value of t ,u(r,t) is constant 

for all locations (x, y, and z) that k.r is a constant value such as C. In such case, equation 

k.r = C is the wave front of plane waves presented by Equation (2.16). Therefore plane 

waves have a normal vector k which is called wavenumber vector defining the wave 

fronts.  

 

2.1.2 Potentials 

 
The wave equation in Equation set (2.13) can be studied in terms of the type of 

waves that it produces. It is convenient to apply divergence operator to the equation of 

motion (2.13): 

 
 

( )2
2 2

2 ( )  α β
∂ ∇⋅

∇ ⋅∇ ∇⋅ − ∇⋅∇×∇× + =
∂
u

u u f%
t

  (2.17) 

 
 
where f% is the body force vector after divergence operator is applied to. Knowing that 

∇⋅∇×∇×u equals zero, then one can define  ϕ =∇⋅u   as the P wave potential since the 

divergence operator calculates the outward flux of a vector field from an infinitesimal 

volume around a given point, and Equation  (2.17) reduces to the familiar form of a 

vibrating string: 
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The same way, curl operator is applied to the Equation (2.15). At every point in the 

field, the curl of that field is represented by a vector. The attributes of this vector (the 

length and the direction) characterize the rotation at that point. Applying the curl operator 

to the equation of motion will result in: 
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where f̂  is the body force vector after the divergence operator. Knowing that 

( )∇×∇ ∇⋅u equals zero, and that ∇×∇× = ∇×∇⋅ −∇ ⋅∇ ⋅X X X   for every vector X, 

then Equation (2.19) reduces to: 
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and after defining =∇×ψ u  as the S wave potential, an equation similar to the P wave 

potential will be obtained as: 
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The curl operator is a vector operator that describes the infinitesimal rotation of a 

three-dimensional vector field.  

Based on the discussion above, the general equation of motion possesses two types 

of propagating waves at the same time, one moving in the direction of the propagation               

(ϕ  potential), and one moving in the perpendicular direction of the propagation                

(ψ  potential). The ϕ  potential was obtained using the divergence operator and is related 

to P waves propagating with the speed of α. In the same way for theψ  potential, it was 

obtained using the curl operator and is related to S waves propagating with the speed of 

β. It is possible to show that the ψ  potential can be decomposed further into two normal 

directions (each still perpendicular to the direction of the propagation, i.e., SH and SV).  

Interested readers can find more details on the topic in Aki and Richards (1980), Ben-

Menahem and Singh (1981), and Pujol (2003).  

Solving Equation (2.13) for a homogeneous half-space (where the material property 

does not change in any direction) has been studied in detail (Aki & Richards, 1980; Ben-

Menahem & Singh, 1981). However, earth usually is considered as layers stacked on top 

of each other, where the property of material is the same in the horizontal direction and 

only changes with depth (z).  The equation of motion in a multi-layered earth system is 

introduced in the next section, and important aspects of heterogeneity are presented.  

 

2.1.3 Surface Waves in Heterogeneous Media 

 

As mentioned before, the equation of motion (Equation 2.13) carries all components 

of motion. These components can be broken down into deformation in the direction of 
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the wave propagation (x1), and perpendicular to the propagation direction (x2 and x3). 

These displacements are referred to respectively as P, SV, and SH waves, and can be 

studied in term of potentials (Aki & Richards, 1980). In this study, the direction of the x3 

axis (z in Cartesian and z in spherical coordinates) is downward, the direction of the x1 

axis (z in Cartesian and r in spherical coordinates) is horizontal to the right, and the 

direction of the x2 axis (y in Cartesian and θ in spherical coordinates) is perpendicular to 

the plane of x1 and x2 axes.  

On the surface of a heterogeneous half-space, a series of waves are generated that 

attenuate with depth and are called surface waves. There are two types of surface waves: 

Rayleigh waves and Love waves.  Rayleigh waves have an elliptical motion and are the 

result of the interaction between P and SV components. Love waves exist due to the SH 

component of the motion. The equation of motion can be analyzed further by making 

assumptions for deformation functions for displacements in different directions. For non-

zero displacements, it can be shown that the solution to Equation (2.13) can be expressed 

in the following oscillatory format: 

 
 

( )( , ) i tu t e ω −= kxx A   (2.22) 

 
 
where x and k are the position and the wavenumber vectors. It should be noted that 

vector A represents the direction of ground motion and vector k represents the direction 

of propagation. Graphical representations of deformations due to the propagation of 

Rayleigh and Love waves are presented in Figure 2.2. 
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Figure 2.2. Particle motion caused by Love (top) and Rayleigh (bottom) surface waves 
(from  Kramer, 1996). 
 
 
 
2.1.3.1 Love Waves 

 

System of coordination for writing the solution of equation of motion is defined as x 

(x1) in horizontal to the right direction, z (x3) is defined vertical downward direction, and 

y (x2) is defined perpendicular to the paper inward direction. Knowing that Love waves 

have deformation only in the x2 direction, then Love deformations can be expressed as: 
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  (2.23) 
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Please note that Equation set (2.28) is providing components of the displacement 

vector satisfying equation of motion in Equation (2.15) and is presented as 

1 2 3x y zu u u= + +u e e e . From Equation (2.23), stress components associated with the above 

deformations are: 

 
 

( )

( )

1

1

exp

exp

xx yy zz zx

yz
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dl i kx t
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ik l i kx t

τ τ τ τ

τ µ ω

τ µ ω

= = =

= −⎡ ⎤⎣ ⎦

= −⎡ ⎤⎣ ⎦

  (2.24) 

 
 

Substituting Equations (2.23) and (2.24) into Equation (2.2) will result in: 

 
 

 2 21
1 1( ) ( ) ( )d dlz l z k z l
dz dz

ω ρ µ µ⎡ ⎤− = −⎢ ⎥⎣ ⎦
  (2.25) 

 
 
Here, by introducing a new argument l2, Equation (2.23) can be re-written as:  

 
 

( ) ( )2 , , expyz l k z w i kx tτ ω= −⎡ ⎤⎣ ⎦   (2.26) 

 
 
Finally, the first-order differential Equations (2.25) and (2.26) can be expressed in a 

matrix form for the Love waves: 

 
 

1
1 1

2 2
2 2

0 ( )
( ) ( ) 0

l lzd
l ldz k z z

µ
µ ω ρ

−⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

  (2.27) 
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Equation (2.26) provides a relationship for the motion-stress vector inside a medium 

with material properties changing with depth.  

 

2.1.3.2 Rayleigh Waves 

 

The system of coordination is defined similar to the case of Love waves in the 

previous section. Similar to the previous section, one can express the following 

relationship for a Rayleigh waves motion-stress vector by defining the following 

displacement vectors: 
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u
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ω

ω

= −⎡ ⎤⎣ ⎦
=

= −⎡ ⎤⎣ ⎦

  (2.28) 

 
 
Please note that Equation set (2.28) is providing components of the displacement 

vector satisfying equation of motion in Equation (2.15) and is presented as 

1 2 3x y zu u u= + +u e e e . From Equation (2.28) and (2.2), stress components are calculated 

as: 

 
 



34 
 

( )

( )

( )

( )

2
1

2
1

2
1

1
2

0

( 2 ) exp

exp
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 (2.29) 

 
 
Since stress components zxτ  and zzτ  are continuous in the z direction, one can 

rewrite them as a function of two new terms: 
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  (2.30) 

 
 
In Equation (2.28), the imaginary i factor is introduced in the vertical displacement 

to account for the π/2 shift, with the horizontal displacement modeling the elliptical 

motion of Rayleigh waves. The differential equations for the motion-stress vector           

(r1 r2 r3 r4)T are obtained from Equations (2.28) to (2.30): 
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(2.31) 
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where  ( ) 4 (z)[ (z) (z)] / [ (z) 2 (z)]zξ µ λ µ λ µ= + + .  The above equation in presented in 

Aki and Richards (1980) [AR80] and Ben-Menahem and Singh (1981) [BS81]. Care 

should be taken in comparing the two notations since the order of variable are different: 

 
 

1 1

2 3

3 2

4 4AR80 BS81

r y
r y
r y
r y

⎞ ⎞⎛ ⎛
⎟ ⎟⎜ ⎜
⎟ ⎟⎜ ⎜=
⎟ ⎟⎜ ⎜
⎟ ⎟⎜ ⎜

⎝ ⎝⎠ ⎠

  (2.32) 

 

2.1.4 Dispersion of Rayleigh Waves and Synthetic Seismogram 

 
This study only focuses on Rayleigh waves. In this section, a systematic approach is 

introduced to analyze displacements and tractions in a heterogeneous half-space for the 

combined effect of P and SV waves. The dispersive properties of a heterogeneous half-

space medium can also be calculated as a secondary result of the analysis. Boundary 

conditions for Rayleigh waves is zero traction at the surface and zero displacement at the 

infinite depth: 
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  (2.33) 

 
 
Equation (2.31) is in the form of: 

 
 

( ) ( ) ( ) ( )δ= +f A f s 0
d z z z z - z
dz
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where  f(z)=[r1 r2 r3 r4]T  is the motion-stress vector for a specific layer and                     

s=[ 1
Rs  2

Rs  3
Rs   4

Rs ]. There are two methods to deal with Equation (2.34): (1) to solve the 

inhomogeneous Equation (2.31); or (2) to solve the homogeneous version of (2.34) by 

putting s=0, and applying the following source condition: 

 
 

( ) ( )0 0+ − − =f f sz z   (2.35) 
 
 

The latter method avoids the direct calculation of the complicated parameters (Ben-

Menahem & Singh, 1981) which follows in the rest of this section. 

In Equation (2.34), matrix A(z) is a 4 by 4 matrix in the (x,z) plane (for the case of 

Rayleigh waves as in Equation 2.30) and is a 2 by 2 matrix (for the case of Love waves as 

in Equation 2.26). Matrix A(z) is constant for each isotropic layer in a heterogeneous 

system at a fixed depth. Using the Jordan decomposition of the motion-stress vector f(z) 

(Gantmatcher 1960; Turnbull & Aitken 1952), it is possible to rewrite it for Rayleigh 

waves as in Wang and Herrmann (1980): 
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f Fw F   (2.36) 

 
 
where w is the wave-vector containing up-going and down-going wave types. The reason 

to decompose the motion stress vector f(z) to up going and down going waves is that 

some of the boundary conditions in heterogeneous media are imposed by suppressing 

certain type of waves at infinity  ( z→∞ ), not just by limitations on the stress and 
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strains. Therefore, motion-stress vector should be decomposed in the way introduced in 

Equation (2.36) and relate it to the wave-vector so the boundary conditions can be 

applied. Matrix F is made up from eigenvectors of A(z) times a matrix containing the 

vertical phase vectors (Aki & Richards, 1980): 
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 (2.37) 

 
 
 

where  2 2 2/v k ω β= −   and  2 2 2/kγ ω α= − , and therefore, the final form can be 

obtained: 

 
  

( ) ( )z z=f EΛ w   (2.38) 
 
 

In a layered media, there are motion-stress vectors f(z) for each layer as a function of 

depth (z) for the same layer. Motion-stress vectors connect to each other at different 

layers by the boundary conditions and assumption of tractions and displacements 

continuity at the interface between the layers. Therefore, if one starts from a specific 

layer and is able to move (recalculate) the motion-stress vector  f(z) to a different depth in 
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any layer, then the problem of finding the displacement in a heterogeneous half-space 

(synthesis of seismogram) is complete in frequency and wavenumber domain.  

It will be shown that if no source of energy (external displacement or traction) is 

considered in such an approach, then one can find the pair of matching frequency-

wavenumber through the process which yields the theoretical Rayleigh wave dispersion 

curve. Synthesis of seismogram goes a step further when a source of energy in an 

arbitrary depth can be implemented in the process of moving the motion-stress vector (as 

described above), and yield vertical and horizontal displacements which later are inverse-

transformed into time and space domains.   

A schematic view of the above concept is presented in Figure 2.3, in terms of 

involved matrices. Some of the matrices are not introduced yet, but will be introduced 

later.  

 

 

  


