REDUCING UNCERTAINTIES IN THE VELOCITIES DETERMINED BY INVERSION OF PHASE VELOCITY DISPERSION CURVES USING SYNTHETIC SEISMOGRAMS

by

Seyed Mehrdad Hosseini

A Dissertation
Submitted in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

Major: Engineering

The University of Memphis

August 2014
Dedicated to my Mother, to the memory of my Father,

and to my Brothers, Mahmood and Mehran.
Acknowledgements

I would like to thank my supervisor, Dr. Shahram Pezeshk, for his dedication and support throughout the years of my academic endeavors. I will always appreciate your superior mentorship and endless patience that helped me accomplish my educational goals.

I also greatly appreciate Dr. Martin Chapman who answered my fundamental questions and generously helped me learn invaluable lessons from him and expand my scientific vision. I will always be grateful, thank you.

I also would like to thank my committee members, Professors Chris Cramer, Roger Meier, and Charles Camp for all their help in making this dissertation possible. I would like to express my gratitude for all you have done for me. Thank you.

I would like to thank my mother and brothers especially Mehran for his support during my studies. This work could not be possible without them. Your support is greatly appreciated and will never be forgotten.

At the end, I would also like to thank Ann Meier for her help in proofreading the dissertation, and Alireza Haji-Soltani for his help in formatting parts of the dissertation.

This work was funded by USGS grant G13AP00057. The conclusions presented here should not be interpreted as representing the opinion of the U.S. Geological Survey.
Abstract

Characterizing the near-surface shear-wave velocity structure using Rayleigh-wave phase velocity dispersion curves is widespread in the context of reservoir characterization, exploration seismology, earthquake engineering, and geotechnical engineering. This surface seismic approach provides a feasible and low-cost alternative to the borehole measurements. Phase velocity dispersion curves from Rayleigh surface waves are inverted to yield the vertical shear-wave velocity profile. A significant problem with the surface wave inversion is its intrinsic non-uniqueness, and although this problem is widely recognized, there have not been systematic efforts to develop approaches to reduce the pervasive uncertainty that affects the velocity profiles determined by the inversion. Non-uniqueness cannot be easily studied in a nonlinear inverse problem such as Rayleigh-wave inversion and the only way to understand its nature is by numerical investigation which can get computationally expensive and inevitably time consuming. Regarding the variety of the parameters affecting the surface wave inversion and possible non-uniqueness induced by them, a technique should be established which is not controlled by the non-uniqueness that is already affecting the surface wave inversion. An efficient and repeatable technique is proposed and tested to overcome the non-uniqueness problem; multiple inverted shear-wave velocity profiles are used in a wavenumber integration technique to generate synthetic time series resembling the geophone recordings. The similarity between synthetic and observed time series is used as an
additional tool along with the similarity between the theoretical and experimental
dispersion curves. The proposed method is proven to be effective through synthetic and
real world examples. In these examples, the nature of the non-uniqueness is discussed
and its existence is shown. Using the proposed technique, inverted velocity profiles are
estimated and effectiveness of this technique is evaluated; in the synthetic example, final
inverted velocity profile is compared with the initial target velocity model, and in the real
world example, final inverted shear-wave velocity profile is compared with the velocity
model from independent measurements in a nearby borehole. Real world example shows
that it is possible to overcome the non-uniqueness and distinguish the representative
velocity profile for the site that also matches well with the borehole measurements.
Table of Contents

List of Figures .. 1

Chapter 1. Introduction ... 10
 1.1 Research Objective ... 12
 1.2 Research Overview ... 13
 1.3 Dissertation Overview .. 14

Chapter 2. Literature Review and Basics of Wave Propagation 17
 2.1 Equation of Motion ... 21
 2.1.1 Strain-Stress Relationship and the Equation of Motion 22
 2.1.2 Potentials ... 27
 2.1.3 Surface Waves in Heterogeneous Media ... 29
 2.1.3.1 Love Waves ... 31
 2.1.3.2 Rayleigh Waves .. 33
 2.1.4 Dispersion of Rayleigh Waves and Synthetic Seismogram 35
 2.1.5 Modeling Energy Source in a Heterogeneous Half-space 41
 2.2 Point Force Source and Motion-Stress Vector ... 46
 2.3 Implementing Attenuation in Seismogram Synthesis ... 48
 2.3.1 Dispersion .. 50
 2.3.2 Absorption .. 52
 2.3.3 Implementation .. 56
 2.3.4 Effect of Different Q Values on Seismogram ... 61
 2.3.5 Independent Estimation of Quality Factor .. 64
 2.3.6 Summary ... 64

Chapter 3. Field Test and Equipment .. 67
 3.1 MASW Equipment .. 67
 3.2 Sequential Use of Multiple Geodes ... 70
 3.3 Trigger Effect and Stacking .. 71
 3.4 Amplitude Clipping ... 74
 3.5 Comparison of MASW with Another Surface Seismic Method 75

Chapter 4. Experimental Phase Velocity Dispersion and Inversion: Procedures 77
 4.1 Signal Processing Techniques for Observed Dispersion 77
4.2 Frequency-Swept Decomposition of Time Series ... 77
4.2.1 Concept of the Frequency-Wavenumber Method ... 79
4.2.2 Frequency-Wavenumber Technique ... 84
4.3 Inversion and Non-uniqueness .. 90
4.3.1 Inversion of Surface Waves with CPS .. 92
Chapter 5. Simulation of Non-uniqueness in Surface Wave Inversion 96
5.1 Simulation of Non-uniqueness ... 96
Chapter 6. Real World Data Analysis and Results ... 102
6.1 The Experiment .. 103
6.2 Experimental Dispersion Curve .. 105
6.3 Observed Attenuation ... 108
6.4 Inversion ... 110
6.5 Synthetic Time Series ... 116
6.6 Comparison Between Observed and Synthetic Time Series 117
6.7 Free Time Shift of Time Series at Each Geophone ... 120
6.8 Equal Time Shift of Time Series at All Geophones ... 126
6.9 Comparing MASW V_S with the Downhole Velocity Profile 128
6.10 Comparing MASW V_S with Velocity Profiles in the Literature 131
6.11 Conclusion .. 133
References ... 134
Appendix A. Estimation of Quality Factor from Earthquake Seismograms 144
Appendix B. Effect of Muting of Time Series on Experimental Dispersion Curve .. 150
Appendix C. Details for 22 Cases of Inversion ... 170
Appendix D. MATLAB Scripts .. 192
List of Figures

Figure 1.1. Three components of seismograms from 2011 Tohoku Mw 9.0 earthquake recorded on the surface (top) and also in depth of a borehole (bottom) in station CHBH14. The elevation difference between surface and borehole sensors is 525 meters. Seismic waves on the surface are amplified due to the local geology.. 11

Figure 2.1. Stress tensor presented on an infinitesimal cube.. 22

Figure 2.2. Particle motion caused by Love (top) and Rayleigh (bottom) surface waves (from Kramer, 1996).. 31

Figure 2.3. Heterogeneous system along with its associated matrices. Each layer has some matrices related to it and among them the motion-stress vector, and wave-vector (ß(z) and w) are unknown. These two unknowns are related to each other using Equation (2.38). Therefore, if one starts from the surface with unknown surface displacements, one can transfer it to the bottom of the first layer by multiplying it with the transfer matrix a1. Then, from the first interface condition, it is possible to determine the ß(z) at the top of the second layer as a function of unknown displacements at the surface, and then transfer it to the bottom of layer two by multiplying ß(z) with the transfer matrix a2. By now, one has the dependency of surface displacements with the first and second layer properties, and by repeating the same process down to the half-space, one actually have found the dependency of surface perturbations to the properties of a multilayered medium, and can extract dispersive properties of the medium. If in such calculations, one encounters and accounts for the existence of a source of energy at the mth interface (as shown), then one has calculated the functional form for the displacements at the surface in a multilayered half-space with a source, and that is simply called the ‘seismogram synthesis.’.. 39

Figure 2.4. Comparison between two attenuated waves. In a non-dispersive attenuating medium, the pulse arrival exists even at time zero which is not possible and defies causality; however, by considering the dispersion, the attenuated pulse does not exist before its theoretical arrival time (from Aki & Richards, 1980). ... 51

Figure 2.5. Attenuation and the phase velocity as a function of frequency (from Kanamori and Anderson, 1977). In their original notation, C(ω) and Q(ω) are comparable to c(ω) and Q(ω) is introduced in this section, and Qm = Q0.. 55

Figure 2.6. Script using CPS package to generate synthetic seismogram. 57
Figure 2.7. Earth model (file “end.mod”) presented in Table 2.2 in specific format for CPS package to be used to generate the synthetic seismogram. ... 58

Figure 2.8. Distance file (file “dfile”) showing the specification of a synthetic seismogram to be generated at a station with 0.06 km (60 m) offset from source, a time step of 0.0025 seconds, and 4096 points......................... 58

Figure 2.9. A synthetic full waveform seismogram with Futterman (1962) causal (top) and non-causal (bottom) operators using CPS package for the model, introduced in Table 2.2 for a sensor with 60 m offset. 60

Figure 2.10. Comparison between different reference frequencies: (a) no attenuation, (b) 1 Hz, (c) 10 Hz, (d) 100 Hz ... 61

Figure 2.11. Four synthetic seismograms generated with four values of quality factor for geophone #40. .. 62

Figure 2.12. Correlation coefficient between synthetic seismogram with different Q values with the synthetics from Q=25. It is observed that cross-correlation coefficients are close to 1.0 after time shifts. 63

Figure 3.1. Vertical geophone with corner frequency of 4.5 hz. 67

Figure 3.2. Geophone cable: (a) red end-connection and yellow slot for geophone hookup, (b) black end-connection, and (c) details of end-connection. .. 68

Figure 3.3. Geometrics Geode® 24 channel digitizer. 68

Figure 3.4. Data transfer cable from Geode to Geode, or from Geode to software console on laptop... 69

Figure 3.5. Trigger that attaches to the sledgehammer and signals the hit time......... 70

Figure 3.6. Time series recorded on four geophones from five different hits. It seems that the triggers have not been working uniformly among different hits; therefore, time series should be lined up prior to the stacking process. (a) the location of hits at geophone #1, (b) the location of hits at geophone #3. ... 72

Figure 3.7. Time lags of 72 geophones (x-axis) with respect to the second hit. It is observed that the hit #5 has the maximum time lag of about 28 counts (equal to 28∆t). (a) the location of hit is at geophone #1, (b) the location of hit is at geophone #3. ... 73

Figure 3.8. Time series are clipped at the location of the red circles (geophone #4, stacked data). ... 74
Figure 3.9. The MASW dispersion curve (white circles) are plotted on top of the SASW dispersion contour. A good agreement exists between the two methods. ... 76

Figure 4.1. Reconstruction $B(t)$ of source signal $u(t)$ by superposition of delayed received signals ... 83

Figure 4.2. (Top) Times series from field data in four geophones. (Bottom) The Fourier transform is used to calculate the real (blue) and the imaginary (red) parts of traces. Time series were previously convolved with the stretch function of 10 Hz and, therefore, spectral values at 10 Hz frequency are determined, indicated with circles 85

Figure 4.3. Cumulative amplitude along two lines with different time intercepts. Sloped lines are associated with a phase velocity of 116 m/s. Time series are carrying a center frequency of 10 Hz only... 85

Figure 4.4. Alternative approach for calculating amplitudes along red sloped line in Figure 4.3 ... 86

Figure 4.5. The dispersion spectrum at a center frequency of 10 hz, or $P(10,V_R)$ 89

Figure 4.6. Modifications to be made to MODLS.F to stop SURF96 from changing density for shallow sites ... 93

Figure 4.7. Bash script used in the inversion of surface waves using SURF96 94

Figure 4.8. Shell script used to calculate the error percentage in Equation (4.14) between the theoretical and experimental dispersion curves after the SURF96 inversion ... 95

Figure 5.1. The exact model assumed in the synthetic test as the representative of the shear-wave velocity profile of the subsurface ... 96

Figure 5.2. Synthetic experimental dispersion curve (SEDC) is constructed by generating a dispersion curve from the exact model presented in Figure 5.1 and adding 5 percent random noise to it. SEDC is used in the surface wave inversion process ... 97

Figure 5.3. (a) Inverted model no. 6 (solid red) compared with the exact profile (dashed blue). Water levels between the inverted model and the exact one (red and blue bold dashed lines) are different between the profiles. (b) Dispersion curves for inverted (red line) and exact (circle) models are matching well, despite the difference between the models ... 98

Figure 5.4. Similar to Figure 5.3, for inverted model no. 11 .. 98
Figure 5.5. Comparison between synthetic time series from inverted profile no. 6 (top), and profile no. 11 (bottom) with the time series from exact model. Rayleigh wave train is scaled down for clarity. .. 100

Figure 5.6. Zero-lag correlation coefficient (C.C.) for synthetics from models no. 6 and 11, correlated with the synthetics time series and those from the exact model. .. 101

Figure 6.1. The MASW test location, near Memphis, Tennessee, in the vicinity of the Mississippi river. ... 103

Figure 6.2. Time series recorded in the field from 72 geophones. Shaded areas are limitations used for geophone numbers in the calculation of dispersion curves. Available recommendations for the ranges of geophones (such as those by Kansas Geological Survey) is indicated with bold color. However, using range of geophones indicated with the light color shade increases the resolution of the dispersion curve. 104

Figure 6.3. The frequency content of recorded time series presented in Figure 6.2. Fourier amplitudes (FA) are normalized at each geophone. 104

Figure 6.4. (a) Phase velocity spectrum $P(f, V_R)$ is plotted as a function of the phase velocity and frequency. (b) Two dimensional representation of the same spectrum in (a). The final phase velocity dispersion curve (white circles) is determined by picking high amplitude points. 105

Figure 6.5. (a) Phase velocity dispersion contour from geophones series 8 to 41. The experimental dispersion curve from geophones 7 to 66 are plotted as white circles on top of it. (b) Three dimensional plots from spectrum contour at five sample frequencies for two ranges of geophones. The resolution of the spectrum reduces by decrease in the number of geophones. ... 107

Figure 6.6. Group velocities from multiple filter technique, estimated from geophone #36. ... 109

Figure 6.7. Inverted quality factor versus frequency. ... 110

Figure 6.8. The experimental dispersion curve consisting of six branches used in the inversion process. ... 111

Figure 6.9. Low quality of match between the theoretical (red line) and experimental (black circles) dispersion curves indicates that the mode numbers assigned to the branches of the dispersion curves is not appropriate. ... 113
Figure 6.10. Five shear-wave velocity profiles from inversion of cases 1, 9, 12, 15, and 18.

Figure 6.11. Details of inversion for Cases 1, 9, and 12. Left column shows the theoretical and the experimental dispersion curves. Right column shows the corresponding standard error and damping factor for each iteration in the inversion process.

Figure 6.12. Similar to Figure 6.11 for Cases 15 and 18.

Figure 6.13. (a) Observed time series (dashed lines) and corresponding synthetic (solid lines) ones are not exactly aligned on top of each other due to the late first arrival \(t_0 \) in the synthetic. The synthetic is then allowed to shift backward and forward in a limited time frame to achieve the best match ratio with observation. Before shifting, the absolute of the match ratio (MR) is about 0.12. Maximum (b) and minimum (c) time shift allowed for the synthetics as a function of \(t_0 \) and \(\epsilon \) (maximum error of dispersion inversion). (d) Best match ratio is occurring at time \(t_f \) showing that absolute of match ratio increases to 0.64, when the synthetics are shifted \((t_f - t_0) \) seconds. Red lines distinguish the allowed time range over which the synthetic seismogram is allowed to move.

Figure 6.14. Match ratio as a function of time lag at each geophone for Case 12 with a maximum dispersion inversion error (\(\sigma \)) of about 12 percent. Lower and upper bounds for time lag are calculated as 12 percent before and after the Rayleigh wave arrival in the synthetic time series. Color scale shows maximum correlation with red and minimum value with blue.

Figure 6.15. Match ratio at each geophone for different cases are compared. The average match ratios are plotted on the right hand narrow window. Cases 12 and 18 are close in the average match ratio values.

Figure 6.16. Observed (dashed lines) and synthetic (solid line) time series for case 12. The sloped line presents a velocity of about 160 m/s which will be used to plot time series after the line in following figures.

Figure 6.17. Same as Figure 6.16, except that synthetic time series are shifted according to the time-lags for maximum match ratio in Figure 6.14.

Figure 6.18. Observed (dashed lines) and shifted synthetic (solid lines) time series for Case 12 (left) and Case 18 (right). A reduction velocity of 160 m/s is used to plot time series corresponding to the sloped line in Figure 6.16.

Figure 6.19. Mean cross correlation coefficient as a function of time lag for five cases (bottom contour). The average of mean cross correlation
coefficient for five cases are used to find the best amount of time shift. ... 127

6.20. Mean cross correlation coefficient at the time lag associated with maximum average mean cross correlation coefficient.. 127

Figure 6.21. Schematic view of the downhole seismic survey............................... 128

Figure 6.22. Arrival times recorded in one of the borehole geophones, horizontal channel #1. Arrival of the second layer is earlier than the layer above. .. 129

Figure 6.23. The inverted shear-wave velocity profiles (Case 9, Case 12, Case 18, and average of Cases 12 & 18) and the profile from the downhole seismic survey. Downhole profile is in close agreement to cases 12 and 18 as predicted by the synthetic match................................. 130

Figure 6.24. Obtained shear-wave velocity profile in this study is compared with the downhole observations by Liu et al. (1997) and inverted profiles from Rosenblad et al. (2010). Rosenblad et al. (2010) estimated the velocity by inverting the surface wave dispersion data. Current figure is similar to Figure 7 in Rosenblad et al. (2010) using an analogous scale for the shear-wave velocity range............. 132

Figure B.1. The lines used in the study of trace muting 150

Figure B.2. Forward approach for time series muting: muted time series (top), Fourier amplitude spectrum of time series (bottom left), phase velocity dispersion contour along with dispersion curve without any muting as used in this study for the inversion process (bottom right), for mute line #1. ... 151

Figure B.3. Similar to Figure B.2 for forward approach, mute line #2. 152
Figure B.4. Similar to Figure B.2 for forward approach, mute line #3. 153
Figure B.5. Similar to Figure B.2 for forward approach, mute line #4. 154
Figure B.6. Similar to Figure B.2 for forward approach, mute line #5. 155
Figure B.7. Similar to Figure B.2 for forward approach, mute line #6. 156
Figure B.8. Similar to Figure B.2 for forward approach, mute line #7. 157
Figure B.9. Similar to Figure B.2 for forward approach, mute line #8. 158
Figure B.10. Similar to Figure B.2 for forward approach, mute line #9.............. 159
Figure B.11. Backward approach for time series muting: muted time series (top), Fourier amplitude spectrum of time series (bottom left), phase velocity dispersion contour along with dispersion curve without any muting as used in this study for the inversion process (bottom right), for mute line #1. ... 160

Figure B.12. Similar to Figure B.11 for backward approach, mute line #2 161

Figure B.13. Similar to Figure B.11 for backward approach, mute line #3 162

Figure B.14. Similar to Figure B.11 for backward approach, mute line #4 163

Figure B.15. Similar to Figure B.11 for backward approach, mute line #5 164

Figure B.16. Similar to Figure B.11 for backward approach, mute line #6 165

Figure B.17. Similar to Figure B.11 for backward approach, mute line #7 166

Figure B.18. Similar to Figure B.11 for backward approach, mute line #8 167

Figure B.19. Similar to Figure B.11 for backward approach, mute line #9 168

Figure C.1. The quality of inversion is provided as the match between the experimental and the theoretical dispersion curves (top left), and the inversion details including the damping factor and the error percentage is provided for each iteration (bottom left). The inverted velocity profile is plotted against the downhole counterpart (right) and the similarity between the two is indicated by the R2 regression coefficient value ... 169

Figure C.2. Similar to for case 2 ... 170

Figure C.3. Similar to for case 3 ... 170

Figure C.4. Similar to for case 4 ... 171

Figure C.5. Similar to for case 5 ... 171

Figure C.6. Similar to for case 6 ... 172

Figure C.7. Similar to for case 7 ... 172

Figure C.8. Similar to for case 8 ... 173

Figure C.9. Similar to for case 9 ... 173

Figure C.10. Similar to for case 10 .. 174
Figure C.11. Similar to for case 11 .. 174
Figure C.12. Similar to for case 12 .. 175
Figure C.13. Similar to for case 13 .. 175
Figure C.14. Similar to for case 14 .. 176
Figure C.15. Similar to for case 15 .. 176
Figure C.16. Similar to for case 16 .. 177
Figure C.17. Similar to for case 17 .. 177
Figure C.18. Similar to for case 18 .. 178
Figure C.19. Similar to for case 19 .. 178
Figure C.20. Similar to for case 20 .. 179
Figure C.21. Similar to for case 21 .. 179
Figure C.22. Similar to for case 22 .. 180

Figure C.23. Observed (dashed) and synthetic (solid) time series for Case 1. (Top) Original synthetics, (bottom) synthetics are shifted in time for best match. .. 181

Figure C.24. Time series for Case 1 are plotted with reduction velocity of 160 m/s. (Top left) Original time series, (top right) time shifted time series with respect to best match ratio contour as a function of time lag (bottom). .. 182

Figure C.25. Similar to Figure C.23 for case 9 .. 183
Figure C.26. Similar to Figure C.24 for case 9 .. 184
Figure C.27. Similar to Figure C.23 for case 12 .. 185
Figure C.28. Similar to Figure C.24 for case 12 .. 186
Figure C.29. Similar to Figure C.23 for case 15 .. 187
Figure C.30. Similar to Figure C.24 for case 15 .. 188
Figure C.31. Similar to Figure C.23 for case 18 .. 189
Figure C.32. Similar to Figure C.24 for case 18 .. 190
Figure D.1. MATLAB Script for stacking time series from different hits 194
Figure D.2. MATLAB Script for experimental dispersion curve 197
Chapter 1. Introduction

Seismic design of structures depends on the realistic anticipation of the ground motions generated from various seismic sources. In the design process, seismic structural stability depends on the rate of seismic hazard for a specific region, and in recent years, engineers and seismologists have been working meticulously to correctly estimate the seismic hazard. Seismic hazard is defined as the response of the earth surface with respect to the ground motion of an earthquake. The seismic wave field generated at the location of the source travels though the earth’s crust and reaches beneath the specific local site through the bedrock. Bedrock can be covered by deposits and geological structures with different materials and thicknesses. As the seismic wave field finds its way to the surface, passing through the heterogeneity of the local geology, it might get amplified and de-amplified. The greatest hazard is usually associated with soft deposits where seismic waves at the bedrock are amplified at certain frequency ranges as they reach the surface (Kramer, 1996). An example can be observed from the 2011 Tohoku M_w 9.0 earthquake, where seismic waves are recorded both at the bottom of a borehole and also on the surface at a station with a 320-km hypocentral distance. Figure 1.1 shows the three component seismograms of the surface and the borehole recorded at the station CHBH14 with the same scale. From this figure, it is evident that seismic waves are amplified as they reach the surface.
Figure 1.1. Three components of seismograms from 2011 Tohoku M_w 9.0 earthquake recorded on the surface (top) and also in depth of a borehole (bottom) in station CHBH14. The elevation difference between surface and borehole sensors is 525 meters. Seismic waves on the surface are amplified due to the local geology.

Site response correlates with the mechanical properties of the soil structure especially in its shallow depth. Among the various mechanical properties of soil, the shear-wave velocity (V_s) plays an important role in characterizing the site response.

The important effect of local geology is observed in sedimentary deposits in the Mississippi embayment area that significantly affect the ground motions in the probabilistic seismic-hazard maps. The reason is the possibility of amplification of seismic waves for certain frequency bands due to the shallow shear-wave velocity
contrast between soft and stiff materials and soil behavior (Kramer, 1996; Pujol et al., 2002). The amplification of ground motion could adversely affect structures that resonate at periods similar to those of the ground on which they are built.

Reliable estimation of the shear-wave velocity profile is not only useful for site response studies and seismic hazard assessments, but is also of great interest in the context of other domains of engineering such as geotechnical engineering and petroleum engineering. In geotechnical engineering, V_S is used in the foundation design process as one of the properties of the underlying soil; in petroleum engineering, V_S is used for the noise attenuation in reflection sections, and for characterizing the near-surface velocity profiles.

1.1 Research Objective

The main objective of this dissertation is to provide a reliable and convenient method for estimation of the shear-wave velocity profile of the subsurface. Such a method will provide site-specific information in detail to improve the seismic hazard maps, specifically for the upper Mississippi embayment region. Soil conditions are often variable even inside of a relatively small area. Thus, to evaluate site-specific seismic hazard and to analyze site response in and around this region, it is necessary to find low-cost methods to obtain shear-wave velocity profiles. In general, borehole logging is considered to be the standard to obtain the needed soil dynamic properties; however, drilling and logging is expensive and this has led to the development of numerous inexpensive surface acquisition techniques. There are issues of non-uniqueness and
uncertainties associated with non-invasive procedures that may not result in consistently reliable velocity profiles. Techniques used in this research are expected to improve the non-uniqueness issues in the estimated shear-wave velocity profiles from seismic surface methods, specifically those obtained by analyzing Rayleigh waves.

1.2 Research Overview

This project aims to improve near-surface characterization. A combination of techniques is used to reliably estimate the subsurface shallow shear-wave velocity profile. Currently, there are difficulties with such characterizations such as: (a) velocity reversals due to the presence of a low velocity layer, (b) the decrease in velocity with increasing depth, and (c) the depth of the water table. The problem with the last item is that the Poisson’s ratio and density are different for dry and saturated materials. This fact has been usually neglected in the inversion of experimental dispersion curves, which is based on a layered model with small variations across the layers in the values of the Poisson’s ratio and density. In fact, early papers on the subject state that the effect of changes in these two parameters is minimal (Nazarian, 1984; Nazarian & Stokoe, 1984). However, recent studies show that this may not be the case when a water table is present (Foti & Strobbia, 2002). In addition, the S-wave velocity models determined by the inversion of phase velocity dispersion curves are affected by a high degree of non-uniqueness because there is little absolute velocity information contained in the phase velocity. This lack of information causes the well-known velocity-depth trade-off (Ammon et al., 1990). For example, a thin layer with low velocity will produce an average differential arrival time
similar to that caused by a thick layer with high velocity. As a consequence, the inverted velocity models depend on the initial velocity models or on the selected higher mode numbers, resulting in several different inverted velocity models. The proposed methodology helps distinguish among different velocity models by comparing their corresponding synthetic and observed time series.

1.3 Dissertation Overview

This dissertation is organized into six chapters and three appendices. Chapter two provides an overview of the estimation of the dispersive properties of surface waves. Chapter two first introduces basic wave propagation theory and unfolds the details of the propagator matrix technique, showing that it can be used for both seismogram synthesis and also theoretical phase velocity estimation in a heterogeneous media. Then, attenuation is presented and the mathematical techniques for implementation of attenuation in the synthesis theory are provided. It is shown how the dispersion is a necessity of a causal system, and some simulations are presented which will be used in development of future theories and assumptions for synthetic seismograms and comparison among observations and synthetics in future chapters.

Chapter three introduces the devices used in the MASW technique and unveils the details for a successful acquisition of surface waves. Common sources of error and uncertainties are introduced, including amplitude clipping and also the erroneous performance of the trigger which can adversely affect the reliability of results. At the end of Chapter three, the dispersion curve obtained by the MASW technique is compared
with that from another surface seismic test (spectral analysis of surface waves, SASW) to see how close is the agreement of the two methods.

Chapter four sets forth the details of the calculation of the experimental dispersion curve from a recorded time series. This section discusses details of the frequency-wavenumber technique and sheds light on this signal processing method by synthetic and real examples. Chapter four also shows a technique to invert the experimental dispersion curve for the shear-wave velocity structure of the subsurface, and the formulation of the iterative Levenberg-Marquardt inversion is provided. Program SURF96 from Dr. Robert Herrmann (St. Louis University) is introduced, and it is shown how the source code and settings are customized for a successful inversion in shallow applications. A few “bash” scripts are provided and explained to make the suggested modifications practical and repeatable.

Chapter five introduces a synthetic example of the non-uniqueness in the inversion of surface waves, and demonstrates how easy it is to get confused among the pool of different inverted velocity profiles. To solve this problem, a synthetic seismogram technique is used to help separate the real representative profile from the other profiles.

Finally, Chapter six applies all of the techniques explained in the previous chapters to the surface wave data recorded at a site near Memphis, Tennessee, and navigates the reader through the multiple techniques and all the details leading to the detection of the most reliable inverted shear-wave velocity profile. At the end of this chapter, an independent and solid evaluation of the proposed technique is performed by comparing the final inverted profile with the result from a downhole seismic survey. In a second evaluation, the inverted profile is also compared with those from two seismic tests at two
sites with similar geology. Previously, two groups of researchers investigated these two sites using borehole and surface wave measurements, and I found it quite useful to compare my outcome with their published results.
Chapter 2. Literature Review and Basics of Wave Propagation

Knowledge regarding the near-surface seismic velocities unveils information about the subsurface lithology that is not available from surface geological observations (Petrosino et al., 2002). Elastic properties of subsurface materials shed light on factors affecting the wave propagation phenomena, and enables researchers to predict ground motion and ultimately seismic hazard for a local site. Specifically, attenuation and shear-wave velocity structure in the top 30 meters play an important role for the estimation of strong ground motion at a site by estimating the amplification of ground motions or “site effect” (Bard & Bouchan, 1980a, 1908b; Boore et al., 1994; Borcherdt, 1994; Cramer et al., 2002; Electric and Power Research Institute [EPRI], 1993; Evans & Pezeshk, 1998; Frankel & Vidale, 1992; Kramer, 1996; Malagnini et al., 1995; Moczo, 1989; Pezeshk and Liu, 2001; Pezeshk & Zarrabi, 2005; Pezeshk et al., 1998).

In the context of soil mechanics and foundation engineering, the shear-wave velocity has a direct relationship with the N-value (Craig, 1992; Xia et al., 2003), and in reservoir engineering it helps characterize the near-surface properties more accurately and suppress ground roll noise from the reflection sections (Salama et al., 2013; Strobbia et al., 2010, 2011, 2012).

The shear-wave velocity profile is estimated by considering the dispersive properties of Rayleigh and Love waves in a vertically heterogeneous medium (Brune & Dorman, 1963; Dorman & Ewing, 1962; Wiggins et al., 1972) and systematic approaches are developed for the use of surface waves in the geophysical and geotechnical prospecting (Gucunski & Woods, 1991; Park et al., 1998a; Pezeshk & Zarrabi, 2005; Rix et al., 2001;
Stokoe & Nazarian, 1983). Such methods rely on the inversion of the observed phase velocities for the shear-wave velocity structure by either using a linearized least square inversion (Rix et al., 2001; Xia et al., 1999; Yuan & Nazarian, 1993), or using evolutionary techniques such as a genetic algorithm or a simulated annealing procedure (Beaty et al., 2002; Luke & Calderón-Macias, 2007; Pezeshk & Zarrabi, 2005; Ryden & Park, 2006; Yamanaka & Ishida, 1996; Zeng, 2011; Hosseini & Pezeshk, 2011a). In either case, due to the nonlinearity of the equations, a nontrivial model null space exists that causes non-unique solutions of the surface wave inversion (Aster et al., 2003; Backus & Gilbert, 1970) where different velocity profiles might have similar phase velocity dispersion curves. A null space is a set of solutions (m_0) that if added to initial solution m, the result of a specific function $f(m)$ does not change, i.e. $f(m+m_0)=f(m)$, such as $\sin(\pi/2+2\pi)=\sin(\pi/2)$ where 2π can be considered as the null space of the model in this case (Aster et al., 2003). Specifically, Backus and Gilbert (1970) state that there is no answer to the question that whether, in a nonlinear problem, there are alternative solutions significantly different from the available one. They clearly indicate that to investigate solutions of a non-unique problem, one must either search for solutions by numerical techniques, or use Monte Carlo methods introduced by Keilis-Borok and Yavovskaya (1967) and Levshin et al. (1966). Hence, in the nonlinear inversion of Rayleigh waves there is no objective way to discriminate among all the possible inversion results just by relying on the quality of fit between the observed and inverted dispersion data. Although the non-uniqueness is a well-known issue in surface wave inversion, there have not been systematic efforts to address the issue. Widely-used linearized inversion techniques seek iteratively for a solution that is linearly close to the
initial model (Cercato, 2009; Parker, 1994) and does not search automatically for the whole solution space (Stovall, 2010). The degree of the non-uniqueness of the problem directly controls the possibility that the objective function contains the solution as a part of its local minima (Backus & Gilbert, 1970; Cercato, 2009), and there is no absolute treatment to handle such non-uniqueness. In a linearized inversion, several techniques have been proposed by researchers, such as imposing constraints on the velocity variations and inclusion of the higher modes (Cercato, 2007, 2009; Gabriels, 1987; Levshin & Panza, 2006; Park et al., 1999b; Stovall, 2010; Xia et al., 2003). Typically, higher modes are dominant in cases where a high velocity layer is present, or when the source-array offset increases (Cercato, 2009; Cercato et al., 2010; Stovall, 2010; Tokimatsu et al., 1992; Xia et al., 2002). In the inversion of dispersion data including higher modes, a correct identification of mode numbers is essential (Cercato, 2009; Cerato et al., 2010; Forbriger, 2003a, 2003b; Stovall, 2010; Hosseini & Pezeshk, 2011b, 2011c, 2011d, 2012a; Stovall et al. 2011).

Aforementioned techniques that deal with the non-uniqueness problem deal more with the numerical solutions that implements a larger portion of the dispersion data in the inversion process. Along with these techniques, there have been efforts to bring another source of verification by using synthetic time series. Malagnini (1996) and Malagnini et al. (1995) inverted dispersion curves from a shallow explosion, and verified the reliability of the inverted shear-wave velocity profile by comparing the observed and the associated synthetic time series. It has been proven that seismograms can hold information regarding the properties of soil layers, and in the context of seismology and exploration, there has been extensive research on the waveform inversion through which the compressional and
shear-wave velocities, and in some cases, density of layers/cells are estimated (Strobbia et al., 2012; Zeng, 2011; Tran & Hiltunen, 2012; Groos, 2013).

In this study, a seismogram synthesis technique (Wang & Herrmann, 1980) is used to discriminate among several profiles emerging from the inversion of phase velocity dispersion curves obtained at a site near Memphis, Tennessee. Regarding the contrast between the embayment soft deposits and the surrounding firmer medium, the amplifying effect of the shallow soil profile is of great importance in the sedimentary deposits of Mississippi embayment (Cramer, 2006; Kramer, 1996; Pujol et al., 2002; Taborda, 2013). The importance of an accurate estimation of the shear-wave velocity profile is in the site response analysis, while otherwise unsatisfactory and often dangerous results may emerge (Boaga et al., 2012). For this study, a multi-channel analysis of surface waves (MASW) (Park et al., 1999a; Xia et al., 1999a, 1999b) and a downhole seismic survey are conducted. Phase velocity dispersion data from the MASW test are inverted for several high resolution shear-wave velocity profiles, and then synthetic seismograms are used to find the velocity profile with a minimum error between the synthetics and the observed time series recorded at each surface geophone (Hosseini & Pezeshk, 2012b, 2012c). Then, the final shear-wave velocity profile from the seismogram match is compared with that from the downhole seismic survey, to validate the effectiveness of the proposed technique in identifying the most appropriate velocity profile among a pool of shear-wave velocity structures, inverted through a non-unique process.

In the next section, the equation of motion is introduced and details are provided on how the problem of the wave propagation in a homogeneous half-space is formulated, and how it contains compressional and transverse waves.
2.1 Equation of Motion

Considering small deformations, the strain tensor from Eulerian and Lagrangian descriptions becomes the same (Pujol, 2003) and the infinitesimal strain tensor can be expressed as:

$$
\varepsilon_{kl} = \frac{1}{2} (u_{k,j} + u_{l,j})
$$

(2.1)

where \(\varepsilon_{kl} \) is Cauchy’s strain tensor, and \(u_{i,j} \) is the derivative of displacement in direction \(i \) with respect to \(j \) direction. Hereafter, the comma sign means derivative with respect to the direction mentioned right after the comma. Also, the equation of motion can be approximated by neglecting spatial derivatives of \(u \) which becomes:

$$
\tau_{k,j} + \rho \dot{f}_i = \rho \frac{\partial^2 u_i}{\partial t^2} = \rho \ddot{u}_i
$$

(2.2)

where \(\tau_{ij} \) is the stress tensor holding normal and shearing stresses, \(\rho \) is the density of the medium, \(f \) is the body force per unit volume, \(t \) is the time, and finally double dots indicates a second derivative with respect to time. Equation (2.1) is Cauchy’s equation of motion.

A three-dimensional representation of stress tensors on an infinitesimal cube is presented in Figure 2.1. It is very common to express a stress symbol with \(\sigma_{ii} \) when the direction of force and the normal axis of the plane that the stress acts on are in the same direction. It is common to distinguish the Cartesian axis with numbers 1, 2, and 3.
indicating directions X, Y, and Z. Therefore, in symbol τ_{ij}, i and j can be replaced with numbers from 1 to 3, and with this convention τ_{ij} can represent any type of stress in the tensor:

$$\tau = \begin{bmatrix} \tau_{xx} (= \sigma_{xx}) & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \tau_{yy} (= \sigma_{yy}) & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \tau_{zz} (= \sigma_{zz}) \end{bmatrix} = \begin{bmatrix} \tau_{11} & \tau_{12} & \tau_{13} \\ \tau_{21} & \tau_{22} & \tau_{23} \\ \tau_{31} & \tau_{32} & \tau_{33} \end{bmatrix} \quad (2.3)$$

Figure 2.1. Stress tensor presented on an infinitesimal cube.

2.1.1 Strain-Stress Relationship and the Equation of Motion

Equation (2.1) relates displacement and strain, and Equation (2.2) relates the displacement with stress. By considering the approximation in deriving these sets of equations, they are valid for any continuous medium. To establish detailed behavior of the wave propagation in a specific medium, we should then introduce the relationship between stress and strain. Such a relationship is expressed using Hooke’s law, which
relates the deformations to exerted forces. The generalized version of Hooke’s law was established by Cauchy (Pujol, 2003; Timoshenko, 1953) as:

\[\tau_{kl} = c_{klpq} \varepsilon_{pq} \]

(2.4)

where \(c_{klpq} \) is the fourth-order tensor related to properties of the medium, and its reaction to different type of waves and different directions and positions. In general, \(c_{klpq} \) has 81 components which is reduced to 36 after considering the symmetry of stress and strain.

In earth sciences, the tensor \(c_{klpq} \) can be simplified even more by assumptions such as that the properties of the medium are the same in any direction (isotropic material). In such case, \(c_{klpq} \) for an isotropic solid reduces to:

\[c_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) \]

(2.5)

where \(\lambda \) and \(\mu \) are the Lamé constants, and \(\delta_{ij} \) is the Kronecker delta function defined as:

\[\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \]

(2.6)

Lamé constants are material properties and are related to other parameters for material properties in engineering and seismology. In seismology, shear and compressional wave velocities \((V_p \text{ and } V_S) \) are related to Lamé constants by the following equations:
In civil engineering, the bulk modulus \(K\), Young’s Modulus \(E\), and the Poisson’s ratio \(\nu\) can be defined as:

\[
E = \frac{\mu(3\lambda + 2\mu)}{\mu + \lambda} = \frac{\rho V_p^2(3V_p^2 - 4V_s^2)}{V_p^2 - V_s^2}
\]

\[
K = \lambda + \frac{2}{3}\mu = \rho(V_p^2 - \frac{4}{3}V_s^2)
\]

\[
\nu = \frac{\lambda}{2(\lambda + \mu)} = \frac{V_p^2 - 2V_s^2}{2(V_p^2 - V_s^2)}
\]

To do more manipulations on the equation of motion, a series of mathematical operators are defined in Table 2.1.

Referring back to the Equation (2.4), the stress and strain relationship can be explicitly defined as:

\[
\tau_{ij} = \lambda \delta_{ij} \varepsilon_{ik} + 2\mu \varepsilon_{ij}
\]

Now we can use Equation (2.9) to rewrite the equation of motion (2.2) as:

\[
\frac{\partial \tau_{ij}}{\partial x_j} + f_i = \rho \frac{\partial^2 u_i}{\partial t^2}
\]
Table 2.1. Mathematical operators used in the study to set up the equation of motion

<table>
<thead>
<tr>
<th>Operator Name</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Operator</td>
<td>$\nabla = \frac{\partial}{\partial x} \mathbf{e}_1 + \frac{\partial}{\partial y} \mathbf{e}_2 + \frac{\partial}{\partial z} \mathbf{e}_3$</td>
</tr>
<tr>
<td>Gradient</td>
<td>$\nabla f = \frac{\partial f}{\partial x} \mathbf{e}_1 + \frac{\partial f}{\partial y} \mathbf{e}_2 + \frac{\partial f}{\partial z} \mathbf{e}_3$</td>
</tr>
<tr>
<td>Divergence</td>
<td>$\nabla \cdot f = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z}$</td>
</tr>
<tr>
<td>Curl</td>
<td>$\nabla \times f = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \ f_x & f_y & f_z \end{vmatrix} = \left(\frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z}\right) \mathbf{e}_1 + \left(\frac{\partial f_x}{\partial z} - \frac{\partial f_z}{\partial x}\right) \mathbf{e}_2 + \left(\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y}\right) \mathbf{e}_3$</td>
</tr>
<tr>
<td>Laplacian</td>
<td>$\nabla^2 f = \nabla \cdot \nabla f = \frac{\partial^2 f}{\partial x^2} \mathbf{e}_1 + \frac{\partial^2 f}{\partial y^2} \mathbf{e}_2 + \frac{\partial^2 f}{\partial z^2} \mathbf{e}_3$</td>
</tr>
</tbody>
</table>

In Table 2.1 definitions, \mathbf{e} stands for the unit vector. By using Equations (2.9) and (2.1) and the definitions provided in Table 2.1, the equation of motion can be introduced in a vector format as:

$$\mu \nabla^2 \mathbf{u} + (\lambda + \mu) \nabla (\nabla \cdot \mathbf{u}) + \rho \mathbf{f} = \rho \frac{\partial^2 \mathbf{u}}{\partial t^2}$$

(2.11)

Expanding Equation (2.11) further using $\nabla^2 \mathbf{u} = \nabla (\nabla \cdot \mathbf{u}) - \nabla \times (\nabla \times \mathbf{u})$, the equation of motion gets the following form:

$$\frac{(\lambda + \mu)}{\rho} \nabla (\nabla \cdot \mathbf{u}) - \frac{\mu}{\rho} \nabla \times \nabla \times \mathbf{u} + \mathbf{f} = \frac{\partial^2 \mathbf{u}}{\partial t^2}$$

(2.12)
Finally, using Equation set (2.7), one will get the Navier’s elastic wave equation:

\[
\begin{align*}
\alpha^2 \nabla (\nabla \cdot \mathbf{u}) - \beta^2 \nabla \times \nabla \times \mathbf{u} + \mathbf{f} &= \frac{\partial^2 \mathbf{u}}{\partial t^2} \quad \text{(in time)} \\
\alpha^2 \nabla (\nabla \cdot \mathbf{u}) - \beta^2 \nabla \times \nabla \times \mathbf{u} + \mathbf{f} &= i\omega^2 \mathbf{u} \quad \text{(in frequency)}
\end{align*}
\]

where the double dot on the right-hand side of Equation (2.13) means a second derivative with respect to time, and Equation (2.14) is in the frequency domain form. Note that Equation set (2.13) contains two type of propagating waves: dilatational (first term from left) and rotational (second term from left), corresponding to P and S waves. The equation of motion can also be presented as the following form, to match the notation of Ben-Menahem and Singh (1981, Section 4.1), for an applied force at depth \(z_0 \):

\[
\begin{align*}
\alpha^2 \nabla (\nabla \cdot \mathbf{u}) - \beta^2 \nabla \times \nabla \times \mathbf{u} - \frac{\partial^2 \mathbf{u}}{\partial t^2} &= -S_0g(t)\delta(z - z_0) \quad \text{(in time)} \\
\alpha^2 \nabla (\nabla \cdot \mathbf{u}) - \beta^2 \nabla \times \nabla \times \mathbf{u} - i\omega^2 \mathbf{u} &= -S_0g(\omega)\delta(z - z_0) \quad \text{(in frequency)}
\end{align*}
\]

where term \(S_0g(t)\delta(z - z_0) \) represents the body force per unit mass, which is a force of a specific magnitude in different directions \((S_0) \), concentrated at the depth \(z = z_0 \), and \(g(t) \) is a dimensionless function time variation of the force, and \(g(\omega) \) is the Fourier transform of \(g(t) \). Displacement vector \(\mathbf{u} \) which is the solution to Equation (2.15), can be expressed as (Pujol, 2003):

\[
\mathbf{u}(\mathbf{r}, t) = h(t - k \cdot \mathbf{r} / c) + g(t + k \cdot \mathbf{r} / c)
\]
where \(h \) and \(g \) are functions that travel forward and backward in time, \(t \) is time, \(c \) is the propagation velocity, \(\mathbf{r} \) is the vector of location, and \(\mathbf{k} \) is defined as a unit vector (\(|\mathbf{k}| = 1 \)) equal to \((k_x \mathbf{x}, k_y \mathbf{y}, k_z \mathbf{z}) \). Pujol (2003) noted that for a given value of \(t \), \(\mathbf{u}(\mathbf{r}, t) \) is constant for all locations (\(x \), \(y \), and \(z \)) that \(\mathbf{k} \cdot \mathbf{r} \) is a constant value such as \(C \). In such case, equation \(\mathbf{k} \cdot \mathbf{r} = C \) is the wave front of plane waves presented by Equation (2.16). Therefore plane waves have a normal vector \(\mathbf{k} \) which is called wavenumber vector defining the wave fronts.

2.1.2 Potentials

The wave equation in Equation set (2.13) can be studied in terms of the type of waves that it produces. It is convenient to apply divergence operator to the equation of motion (2.13):

\[
\alpha^2 \nabla \cdot (\nabla \cdot \mathbf{u}) - \beta^2 \nabla \cdot \nabla \times \mathbf{u} + \mathbf{P} + \frac{\partial^2 (\nabla \cdot \mathbf{u})}{\partial t^2}
\]

(2.17)

where \(\mathbf{P} \) is the body force vector after divergence operator is applied to. Knowing that \(\nabla \cdot \nabla \times \mathbf{u} \) equals zero, then one can define \(\varphi = \nabla \cdot \mathbf{u} \) as the P wave potential since the divergence operator calculates the outward flux of a vector field from an infinitesimal volume around a given point, and Equation (2.17) reduces to the familiar form of a vibrating string:
\[\alpha^2 \nabla \cdot \nabla (\varphi) = \frac{\partial^2 (\varphi)}{\partial t^2} \]
\[\Rightarrow \nabla^2 (\varphi) = \frac{1}{\alpha^2} \frac{\partial^2 (\varphi)}{\partial t^2} \]

(2.18)

The same way, curl operator is applied to the Equation (2.15). At every point in the field, the curl of that field is represented by a vector. The attributes of this vector (the length and the direction) characterize the rotation at that point. Applying the curl operator to the equation of motion will result in:

\[\alpha^2 \nabla \times \nabla (\nabla \cdot \mathbf{u}) - \beta^2 \nabla \times \nabla \nabla \times \mathbf{u} + \hat{\mathbf{f}} = \frac{\partial^2 (\nabla \times \mathbf{u})}{\partial t^2} \]

(2.19)

where \(\hat{\mathbf{f}} \) is the body force vector after the divergence operator. Knowing that \(\nabla \times \nabla (\nabla \cdot \mathbf{u}) \) equals zero, and that \(\nabla \times \nabla \times \mathbf{X} = \nabla \times \nabla \cdot \mathbf{X} - \nabla \cdot \nabla \times \mathbf{X} \) for every vector \(\mathbf{X} \), then Equation (2.19) reduces to:

\[\beta^2 \nabla \cdot \nabla (\nabla \times \mathbf{u}) = \frac{\partial^2 (\nabla \times \mathbf{u})}{\partial t^2} \]

(2.20)

and after defining \(\psi = \nabla \times \mathbf{u} \) as the S wave potential, an equation similar to the P wave potential will be obtained as:

\[\nabla^2 (\psi) = \frac{1}{\beta^2} \frac{\partial^2 (\psi)}{\partial t^2} \]

(2.21)
The curl operator is a vector operator that describes the infinitesimal rotation of a three-dimensional vector field.

Based on the discussion above, the general equation of motion possesses two types of propagating waves at the same time, one moving in the direction of the propagation (\(\varphi \) potential), and one moving in the perpendicular direction of the propagation (\(\psi \) potential). The \(\varphi \) potential was obtained using the divergence operator and is related to P waves propagating with the speed of \(\alpha \). In the same way for the \(\psi \) potential, it was obtained using the curl operator and is related to S waves propagating with the speed of \(\beta \). It is possible to show that the \(\psi \) potential can be decomposed further into two normal directions (each still perpendicular to the direction of the propagation, i.e., SH and SV). Interested readers can find more details on the topic in Aki and Richards (1980), Ben-Menahem and Singh (1981), and Pujol (2003).

Solving Equation (2.13) for a homogeneous half-space (where the material property does not change in any direction) has been studied in detail (Aki & Richards, 1980; Ben-Menahem & Singh, 1981). However, earth usually is considered as layers stacked on top of each other, where the property of material is the same in the horizontal direction and only changes with depth (\(z \)). The equation of motion in a multi-layered earth system is introduced in the next section, and important aspects of heterogeneity are presented.

2.1.3 Surface Waves in Heterogeneous Media

As mentioned before, the equation of motion (Equation 2.13) carries all components of motion. These components can be broken down into deformation in the direction of
the wave propagation (x_1), and perpendicular to the propagation direction (x_2 and x_3). These displacements are referred to respectively as P, SV, and SH waves, and can be studied in term of potentials (Aki & Richards, 1980). In this study, the direction of the x_3 axis (z in Cartesian and z in spherical coordinates) is downward, the direction of the x_1 axis (z in Cartesian and r in spherical coordinates) is horizontal to the right, and the direction of the x_2 axis (y in Cartesian and θ in spherical coordinates) is perpendicular to the plane of x_1 and x_2 axes.

On the surface of a heterogeneous half-space, a series of waves are generated that attenuate with depth and are called surface waves. There are two types of surface waves: Rayleigh waves and Love waves. Rayleigh waves have an elliptical motion and are the result of the interaction between P and SV components. Love waves exist due to the SH component of the motion. The equation of motion can be analyzed further by making assumptions for deformation functions for displacements in different directions. For non-zero displacements, it can be shown that the solution to Equation (2.13) can be expressed in the following oscillatory format:

$$u(x,t) = Ae^{i(\omega t - kx)}$$ \hspace{1cm} (2.22)

where x and k are the position and the wavenumber vectors. It should be noted that vector A represents the direction of ground motion and vector k represents the direction of propagation. Graphical representations of deformations due to the propagation of Rayleigh and Love waves are presented in Figure 2.2.
2.1.3.1 Love Waves

System of coordination for writing the solution of equation of motion is defined as x (x_1) in horizontal to the right direction, z (x_3) is defined vertical downward direction, and y (x_2) is defined perpendicular to the paper inward direction. Knowing that Love waves have deformation only in the x_2 direction, then Love deformations can be expressed as:

\[
\begin{align*}
 u_x &= 0 \\
 u_y &= l_1(k, z, w) \exp[i(kx - \omega t)] \\
 u_z &= 0
\end{align*}
\] (2.23)
Please note that Equation set (2.28) is providing components of the displacement vector satisfying equation of motion in Equation (2.15) and is presented as
\[u = u_x e_1 + u_y e_2 + u_z e_3. \]
From Equation (2.23), stress components associated with the above deformations are:

\[\begin{align*}
\tau_{xx} &= \tau_{yy} = \tau_{zz} = \tau_{xz} \\
\tau_{yz} &= \mu \frac{dl_1}{dz} \exp\left[i (kx - \omega t)\right] \\
\tau_{xy} &= ik \mu l_1 \exp\left[i (kx - \omega t)\right]
\end{align*} \tag{2.24} \]

Substituting Equations (2.23) and (2.24) into Equation (2.2) will result in:

\[-\omega^2 \rho(z) l_1 = \frac{d}{dz} \left[\mu(z) \frac{dl_1}{dz} \right] - k^2 \mu(z) l_1 \tag{2.25} \]

Here, by introducing a new argument \(l_2 \), Equation (2.23) can be re-written as:

\[\tau_{yz} = l_2 (k, z, w) \exp\left[i (kx - \omega t)\right] \tag{2.26} \]

Finally, the first-order differential Equations (2.25) and (2.26) can be expressed in a matrix form for the Love waves:

\[\frac{d}{dz} \begin{pmatrix} l_1 \\ l_2 \end{pmatrix} = \begin{pmatrix} 0 & \mu(z)^{-1} \\ k^2 \mu(z) - \omega^2 \rho(z) & 0 \end{pmatrix} \begin{pmatrix} l_1 \\ l_2 \end{pmatrix} \tag{2.27} \]
Equation (2.26) provides a relationship for the motion-stress vector inside a medium with material properties changing with depth.

2.1.3.2 Rayleigh Waves

The system of coordination is defined similar to the case of Love waves in the previous section. Similar to the previous section, one can express the following relationship for a Rayleigh waves motion-stress vector by defining the following displacement vectors:

\[
\begin{align*}
 u_x &= r_1(k, z, w) \exp\left[i(kx - \omega t)\right] \\
 u_y &= 0 \\
 u_z &= ir_2(k, z, w) \exp\left[i(kx - \omega t)\right]
\end{align*}
\]

Please note that Equation set (2.28) is providing components of the displacement vector satisfying equation of motion in Equation (2.15) and is presented as

\[
\mathbf{u} = u_x \mathbf{e}_1 + u_y \mathbf{e}_2 + u_z \mathbf{e}_3.
\]

From Equation (2.28) and (2.2), stress components are calculated as:

33
\[\tau_{yz} = \tau_{xy} = 0 \]
\[\tau_{xx} = i \left[\lambda \frac{dr_z}{dz} + k (\lambda + 2\mu) r_1 \right] \exp \left[i (kx - \omega t) \right] \]
\[\tau_{xy} = i \left[\lambda \frac{dr_z}{dz} + k\lambda r_1 \right] \exp \left[i (kx - \omega t) \right] \]
\[\tau_{zz} = i \left[(\lambda + 2\mu) \frac{dr_z}{dz} + k\lambda r_1 \right] \exp \left[i (kx - \omega t) \right] \]
\[\tau_{zx} = \mu \left[\frac{dr_z}{dz} - kr_2 \right] \exp \left[i (kx - \omega t) \right] \]

(2.29)

Since stress components \(\tau_{xz} \) and \(\tau_{zz} \) are continuous in the z direction, one can rewrite them as a function of two new terms:

\[\tau_{xz} = r_3 (k, z, w) \exp \left[i (kx - \omega t) \right] \]
\[\tau_{zz} = ir_4 (k, z, w) \exp \left[i (kx - \omega t) \right] \]

(2.30)

In Equation (2.28), the imaginary \(i \) factor is introduced in the vertical displacement to account for the \(\pi/2 \) shift, with the horizontal displacement modeling the elliptical motion of Rayleigh waves. The differential equations for the motion-stress vector \((r_1, r_2, r_3, r_4)^T\) are obtained from Equations (2.28) to (2.30):

\[
\begin{pmatrix}
\frac{d}{dz} r_1 \\
\frac{d}{dz} r_2 \\
\frac{d}{dz} r_3 \\
\frac{d}{dz} r_4
\end{pmatrix} =
\begin{pmatrix}
0 & k & \mu^{-1}(z) & 0 \\
-k\lambda(z)[\lambda(z) + 2\mu(z)]^{-1} & 0 & 0 & [\lambda(z) + 2\mu(z)]^{-1} \\
k^2 \xi(z) - \omega^2 \rho(z) & 0 & 0 & k\lambda(z)[\lambda(z) + 2\mu(z)]^{-1} \\
0 & -\omega^2 \rho(z) & -k & 0
\end{pmatrix}
\begin{pmatrix}
r_1 \\
r_2 \\
r_3 \\
r_4
\end{pmatrix}
\]

(2.31)
where \(\xi(z) = 4\mu(z)[\lambda(z) + \mu(z)]/[(\lambda(z) + 2\mu(z))]. \) The above equation in presented in Aki and Richards (1980) [AR80] and Ben-Menahem and Singh (1981) [BS81]. Care should be taken in comparing the two notations since the order of variable are different:

\[
\begin{pmatrix}
 r_1 \\
 r_2 \\
 r_3 \\
 r_4
\end{pmatrix}_{AR80} = \begin{pmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 y_4
\end{pmatrix}_{BS81}
\]

(2.32)

2.1.4 Dispersion of Rayleigh Waves and Synthetic Seismogram

This study only focuses on Rayleigh waves. In this section, a systematic approach is introduced to analyze displacements and tractions in a heterogeneous half-space for the combined effect of P and SV waves. The dispersive properties of a heterogeneous half-space medium can also be calculated as a secondary result of the analysis. Boundary conditions for Rayleigh waves is zero traction at the surface and zero displacement at the infinite depth:

\[
\begin{align*}
 r_3, r_4 & \rightarrow 0 \quad \text{as} \quad z = 0 \quad \text{(free surface)} \\
 r_1, r_2 & \rightarrow 0 \quad \text{as} \quad z \rightarrow \infty
\end{align*}
\]

(2.33)

Equation (2.31) is in the form of:

\[
\frac{df(z)}{dz} = A(z)f(z) + s \delta(z - z_0)
\]

(2.34)
where $\mathbf{f}(z) = [r_1 \ r_2 \ r_3 \ r_4]^T$ is the motion-stress vector for a specific layer and $\mathbf{s} = [s_1^R \ s_2^R \ s_3^R \ s_4^R]$. There are two methods to deal with Equation (2.34): (1) to solve the inhomogeneous Equation (2.31); or (2) to solve the homogeneous version of (2.34) by putting $\mathbf{s} = 0$, and applying the following source condition:

$$\mathbf{f}(z + 0) - \mathbf{f}(z - 0) = \mathbf{s}$$ \hspace{1cm} (2.35)

The latter method avoids the direct calculation of the complicated parameters (Ben-Menahem & Singh, 1981) which follows in the rest of this section.

In Equation (2.34), matrix $\mathbf{A}(z)$ is a 4 by 4 matrix in the (x,z) plane (for the case of Rayleigh waves as in Equation 2.30) and is a 2 by 2 matrix (for the case of Love waves as in Equation 2.26). Matrix $\mathbf{A}(z)$ is constant for each isotropic layer in a heterogeneous system at a fixed depth. Using the Jordan decomposition of the motion-stress vector $\mathbf{f}(z)$ (Gantmatcher 1960; Turnbull & Aitken 1952), it is possible to rewrite it for Rayleigh waves as in Wang and Herrmann (1980):

$$\mathbf{f}(z) = \mathbf{Fw} = \begin{pmatrix} P_a \\ S_a \\ P_d \\ S_d \end{pmatrix}$$ \hspace{1cm} (2.36)

where \mathbf{w} is the wave-vector containing up-going and down-going wave types. The reason to decompose the motion stress vector $\mathbf{f}(z)$ to up going and down going waves is that some of the boundary conditions in heterogeneous media are imposed by suppressing certain type of waves at infinity ($z \rightarrow \infty$), not just by limitations on the stress and
strains. Therefore, motion-stress vector should be decomposed in the way introduced in
Equation (2.36) and relate it to the wave-vector so the boundary conditions can be
applied. Matrix F is made up from eigenvectors of $A(z)$ times a matrix containing the
vertical phase vectors (Aki & Richards, 1980):

$$F = EA(z)$$

$$E = \omega^{-1}
\begin{pmatrix}
\alpha k & \beta v & \alpha k & \beta v \\
\alpha \gamma & \beta k & -\alpha \gamma & -\beta k \\
-2\alpha \mu k \gamma & -\beta \mu (k^2 + v^2) & 2\alpha \mu k \gamma & \beta \mu (k^2 + v^2) \\
-\alpha \mu (k^2 + v^2) & -2\beta \mu k \gamma & -\alpha \mu (k^2 + v^2) & -2\beta \mu k \gamma
\end{pmatrix}
$$

$$\Lambda(z) =
\begin{pmatrix}
e^{-yz} & 0 & 0 & 0 \\
0 & e^{-yz} & 0 & 0 \\
0 & 0 & e^{iz} & 0 \\
0 & 0 & 0 & e^{ix}
\end{pmatrix}
$$

where $v = \sqrt{k^2 - \alpha^2 / \beta^2}$ and $\gamma = \sqrt{k^2 - \omega^2 / \alpha^2}$, and therefore, the final form can be
obtained:

$$f(z) = E\Lambda(z)w$$

In a layered media, there are motion-stress vectors $f(z)$ for each layer as a function of
depth (z) for the same layer. Motion-stress vectors connect to each other at different
layers by the boundary conditions and assumption of tractions and displacements
continuity at the interface between the layers. Therefore, if one starts from a specific
layer and is able to move (recalculate) the motion-stress vector $f(z)$ to a different depth in
any layer, then the problem of finding the displacement in a heterogeneous half-space (synthesis of seismogram) is complete in frequency and wavenumber domain.

It will be shown that if no source of energy (external displacement or traction) is considered in such an approach, then one can find the pair of matching frequency-wavenumber through the process which yields the theoretical Rayleigh wave dispersion curve. Synthesis of seismogram goes a step further when a source of energy in an arbitrary depth can be implemented in the process of moving the motion-stress vector (as described above), and yield vertical and horizontal displacements which later are inverse-transformed into time and space domains.

A schematic view of the above concept is presented in Figure 2.3, in terms of involved matrices. Some of the matrices are not introduced yet, but will be introduced later.