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In Figure 2.3, among the introduced vectors and matrices, w and the stress-motion 

vector f(z) are unknowns. It is important to note that for Rayleigh waves, introduced 

boundary conditions are presented as zero stress at the surface, continuous stress and 

deformation at boundaries, and no up-going wave field in half-space; which leads to the 

following sets of equations as shown on the boundary conditions column in Figure 2.3: 

 
 

f1(z=0)=[r1 r2 r3 r4]T =[r1 r2 0 0]T 
( ) ( )1 ;  w0 here 1i i iz i Nh z+= = = ⋅= ⋅f f  
wN+1=[Pu Su Pd Sd]T =[0 0 Pd Sd]T 

 (2.39) 

 
 
The goal is to relate the wave-vector (wN+1) in half-space to deformations at the 

surface: f1(z=0). Based on Equation (2.38), for a specific layer i, one can relate the top 

and bottom deformations of the same layer as: 

 
 

( )
( )

(        (top)

(    (bot

)

to )) m
i t i i t i

i b i i b i

z z

z z

=

=

f EΛ w

f EΛ w
  (2.40) 

 
 
where zt and zb are the vertical local coordinates (Figure 2.3) at each layer for the top and 

bottom depths that the stress-motion vector is calculated. After eliminating the wave-

vector from Equation (2.40), then the Thompson-Haskell propagation matrix (a)  

(Haskell, 1953; Wang & Herrmann, 1980) for each layer is defined  to relate the stress-

motion vector at the bottom (zb) of the ith layer to the one at the top (zt): 

 
 

( ) ( )
1)(i i i

i b i t

i

i

ih
z z

−=
=
EΛ E

f f
a

a
  (2.41) 
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where hi is the thickness of the ith layer. As illustrated in Figure 2.3, deformations and 

tractions at the top of each layer are transferred to the bottom of that layer by multiplying 

it by the propagator matrix. Since the deformation and stresses are equal at the 

boundaries, then: 

 
 

1 ii i+ = af f   (2.42) 
 
 
where the motion-stress vector is calculated at the top of every layer. Now, deformations 

at the surface can be related to the wave-vector at the half-space with the following 

recursive Equation: 

 
 

1 1 2 1 1N N N+ −=f a a a a fK   (2.43) 
 
 
and from Equation (2.38): 

 
 

1 1 1 11 2 1NN N N N++ + −=E Λ a aw a a fK   (2.44) 
 
 
2.1.5 Modeling Energy Source in a Heterogeneous Half-space 

 
In the above equations, no source of energy is assumed in the system and therefore is 

not that useful.  However, one can expand Equation (2.43) to account for the energy 

source. If the energy source is embedded between layers m and m+1, then one can 

express the motion-stress vector at a depth just a little above the top of layer m+1 ( 1m
−
+f ) 

by working on the motion-stress vector at the surface: 
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1 111 2m mm
−
+ −= a a a af fK   (2.45) 

 
 

On the other hand, starting from a depth just a little below the top of layer m+1          

( 1m
+
+f ), one can express the motion-stress vector at the top of the half-space as (refer to 

Figure 2.3): 

 
 

1 1 2 1 1N N N m m m
+

+ − + + +=f a a a a fK   (2.46) 
 
 

To link Equations (2.45) and (2.46), one should consider the source-vector                             

( T
s,r s,z s,r s,z[u u t t ]=s ) located at the mth boundary, according to Figure 2.3 and from 

Burridge and Knopoff (1964): 

 
 

1 1m m
− +
+ +− =f f s   (2.47) 

 
 

Combining Equations (2.45) and (2.47) results in: 

 
 

1

1 2 1

1 2 1

1N

N N

N N m m

+

−

− + +

−
=
=

=f Xs
R a a a a
X a a a

R

a

f
K
K

  (2.48) 

 
 

Substituting fN+1 from Equation (2.44) and f1 from boundary conditions in Equation 

(2.39)  and (2.40), rewriting Equation (2.48) will result in: 
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1

2
1 1

1

0
0

0
0

N N
d

N
d

r
r

P
S

+ +

+

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= −
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

RΛ Xs% %   (2.49) 

 
 
where  1

1N
−
+=R E R%   and 1

1N
−
+=X E X% . Knowing that for the Rayleigh wave case, matrices 

R% and X%are 4 by 4, then Equation (2.49) can be simplified as: 

 
 

11 12 13 1411 12

21 22 23 2421 22

1

2

0
0

r
r

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞− =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

X X X XR R
s

X X X XR R

% % % %% %
% % % %% %   (2.50) 

  
 
and : 

 
 

11 12 13 1422 12
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r

F

U
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  (2.51) 

 
 
where  11 22 12 21= −R R R R% % % %

RF   is called the Rayleigh denominator and the eigenvalue is 

determined by setting 0RF = . The root of this equality can be investigated by trying a 

range of wavenumbers (k) for a given value of angular frequency (ω), and can essentially 

be used to estimate the Rayleigh phase velocity dispersion curve for a system of stacked 

homogeneous layers.   
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To avoid loss of significance, Wang and Herrmann (1980) worked on the above 

solution from Haskell (1953) to make it computationally stable. If the summation 

notation is used for subscripts along with the subdeterminant definition  

ij
kl ik jl il ik= −R R R R R% % % %%   (Wang & Herrmann, 1980), then Equation (2.51) can be stated as: 

 
 

12
2

12 12
12 1

1r i ij j

i ij jz

U
U

⎛ ⎞⎛ ⎞ ⎜ ⎟=⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

s X Z

R s X Z

%

% %
  (2.52) 

 
 
where  1 2 1m m−=Z a a a aK   and =R XZ% % . Matrix 12

ijX%  has the advantage that the square 

of exponential terms are cancelled out in the formulation of the sub determinant matrix 

12
ijX% which results in elimination of a significant loss in calculations (Wang & Herrmann, 

1980).  

Note that Ur and Uz are in the frequency and wavenumber domain and by using a 

double integration over frequency and wavenumber it is possible to generate a synthetic 

seismogram in time and space; details can be found in Wang and Herrmann (1980) and 

Section 7.4 of Aki and Richards (1981).  

The elastic wave field of point sources are expressed in Cartesian coordinates and in 

time domain by Love (1944). Later, Haskell (1963) used Sommerfeld integral to express 

it in the cylindrical coordinates and in the frequency domain. Use of  Sommerfeld 

integral gives rise to the introduction of Bessel functions in the equations of displacement 

vector (Haskell, 1963). Bessel functions (Jm) have different orders denoted by variable m 

the same as in Aki and Richards (1981). Order of the Bessel function is referred to as the 
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azimuthal mode number by Haskell (1964) and presented with variable n in his formulas. 

The method to synthesize the displacement due to a point force is described in Aki and 

Richards (1981): 

• The discontinuity in traction due to the point force should be decomposed into its 

(k,m) components. In case of the point force, traction and displacement are not a 

function of wavenumber (k) and only a function of m where m is either 0, or ±1. 

The details of the motion-stress vector due to a point force are presented in the 

next section.   

• Solve Equation (2.34) for each (k,m) by finding motion-stress vector f with 

discontinuity at depth. This step involves expressing the discontinuous motion-

stress vector as a function of a discontinuous and a continuous function (Aki and 

Richards, 1981).  

• To construct the solution by integrating over all possible k and m and use of the 

motion-stress values induced by a point source.  

 

There are complications in the numerical integration where there are branch points in 

the complex integrand which requires the application of a contour integration technique 

as explained in Chapter 2, Section 4 in Wang and Herrmann (1980). Bessel functions are 

later replaced by Hankel functions to handle branch points in the complex integrands 

(Wang & Herrmann, 1980).  
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2.2 Point Force Source and Motion-Stress Vector 

 

As shown by Equation (2.47), a dislocation source across an arbitrarily orientated 

plane can be expressed by a system of forces that generates an identical radiation field 

(Kennett & Kerry, 1979). Hudson (1969) showed that a point force across an arbitrary 

plane can be expressed as dislocations across a horizontal plane. As Kennett and Kerry 

(1979) state, it is then possible to express a point force by its equivalent discontinuities in 

displacement and traction across that plane, i.e. there will be a discontinuity in the 

motion-stress vector, as defined by Equation (2.47). In the case of this study, only point 

force is the focus and is the same technique as employed by Wang and Herrmann (1980), 

and Aki and Richards (2002).   

It should be mentioned that this technique also has an alternative, which instead of 

modeling equivalent discontinuity in displacement and stress, rise is given to 

discontinuity to wave-vector w (Kennett & Kerry, 1979). This alternative technique is 

used by Kennett and Kerry (1979) and Haskell (1964) which is not the focus of this 

study. 

Aki and Richards (1981) and Kennett and Kerry (1979) provides details on how to 

estimate the discontinuity in the motion-stress vector f from a point source with temporal 

oscillation. Section 7.4.2 from Aki and Richards (1981) provides details on how to 

calculate such discontinuity from a point source expressed in the frequency domain with       

F exp(-iωt) where F=[Fx  Fy  Fz]. With such definition of the point force, the force per 

unit volume at the plane of the source is related to stress change in bottom and top of that 

plane: 
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                        ( 0) ( 0) exp( ) ( ) ( )h h i t x yω δ δ+ − − = − −T T F   (2.53) 
 
 

where T is the traction acting on the horizontal plane. The discontinuity in the traction 

should be estimated for all azimuthal model numbers (Aki & Richards, 1981; Haskell, 

1964) which eventually are expressed as following (Aki & Richards, 1981) for Bessel 

order number (azimuthal model number) equal to zero: 

 

[ ]0 0 0 0zF=s   (2.54) 
 
 
For Bessel order numbers (azimuthal model numbers) equal to +1 or -1, the motion-

stress vector discontinuity can be expressed as: 

 
 

 ( )1
10 0 0
2 x yF iF±

⎡ ⎤= +⎢ ⎥⎣ ⎦
s m   (2.55) 

 
 
This results from Aki and Richards (1981) are the same as those in Appendix A in 

Kennett and Kerry (1979). In Kennett and Kerry (1979), moment tensor elements Mxx, 

Myy, Mzz, Myz, Mxz, and Mxy should be set to zero and direction of z axis should be reversed 

to match results from Aki and Richards (1981) presented in their equations (7.126) to 

(7.129).  
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2.3 Implementing Attenuation in Seismogram Synthesis 

 

Attenuation is a measure of energy loss as seismic waves travel through the 

dissipative medium. Mathematical approaches have shown that attenuation causes 

absorption and dispersion. This can lead to complication of the surface wave inversion 

problem, where the observed dispersion is not only a function of material heterogeneity, 

but also a function of attenuation of the medium.  The focus of this section is on the 

Futterman (1962) operator. To develop mathematical formulations related to absorption 

and dispersion, it is best to start with a one-dimensional plane wave displacement 

amplitude equation:  

 
 

( )( , ) exp( ( ) )expu x t A x i kx tα ω ω= − −⎡ ⎤⎣ ⎦  (2.56) 

 
 
where u(x,t) is the medium displacement, A is the amplitude of the wave, x is the location 

of the observation, t is the time of observation, k is the wavenumber, ω is the angular 

frequency, i is the imaginary number, and α(ω) is the frequency-dependent attenuation 

factor and should not be mistaken with the compressional wave velocity introduced in the 

previous section. Following Futterman (1962), Equation (2.56) can be reformulated to 

represent a complex wavenumber  K(ω): 

 
 

( ) [ ]
[ ] [ ]

( , ) exp ( ) x exp

         exp ( )x exp

u x t A i i k i t

A iK i t

α ω ω

ω ω

⎡ ⎤= + −⎣ ⎦
= −

  (2.57) 
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where  K(ω)= k + i α(ω) = ω/c0 + i α(ω)  is the complex wavenumber, and c0 is the non-

dispersive limit of the phase velocity in the low frequency. To study the dispersive and 

the absorptive properties for such propagation, the refraction index is introduced which is 

the ratio of the complex wavenumber to its non-dispersive counterpart: 

 
 

0

( )( ) ( )
Kn K

ωω ω=   (2.58) 

 
 
where K0(ω)= ω/c0  is the non-dispersive wavenumber defined as the case where no 

attenuation exist (no imaginary term in K(ω)). The refraction index has real (Re. n(ω)) 

and imaginary (Im. n(ω)) components, where the real part is associated with the 

dispersion, and its imaginary component is associated with the absorption (Futterman, 

1962). It has been observed that the absorption coefficient decreases with frequency, and 

there should be a small frequency ω0 below which the absorption is negligible. Futterman 

(1962) showed that this cutoff frequency is arbitrarily selected as a small value and is 

larger than zero.  For frequencies  ω < ω0  the complex wavenumber becomes  K(ω) = 

K0(ω) = ω/ c0. From now on, the dimensionless variable r  is defined by r = ω / ω0  

(Futterman, 1962).   
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2.3.1 Dispersion 

 

To decompose the wave propagating in the absorptive medium into different 

frequencies, the wave displacement amplitude u(x,t) can be written as: 

 
 

( , ) ( , ) u x t u x t dω ω
∞

−∞
= ∫   (2.59) 

 
 
where uω(x,t) is the component of the wave carrying only a single frequency ω. Having 

real amplitude and phase, uω(x,t) can be expressed as: 

 
 

( )
( )

( , ) ( )exp

     ( ) (0)exp ( )
    ( , )

u x t A x i

A x A x
x t kx t

ω ω ω

ω

ω

φ
α ω

φ ω

=

= −
= −

  (2.60) 

 
 
where Aω and ϕω are the real amplitude and phase for the single frequency ω. Considering 

the dependence of the phase with respect to time, t, and position, x, then one can define 

the phase velocity c(ω) as the velocity that keeps phase term ϕω constant with variations 

of t and x.   The phase velocity is defined as the variation of distance dx in a specific time 

change dt while a constant phase is maintained: 

 
 

constant

( )
( )

dxc
dt kφ

ωω
ω=

⎛ ⎞= =⎜ ⎟⎝ ⎠
  (2.61) 

 
 

Equation (2.61) can be stated in term of the index factor: 
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c(ω) = c0 / Re. n(ω)  (2.62) 

 
 
where the real part of the refraction index is introduced explicitly after the introduction of 

absorption in the next section. Dispersion is an unavoidable phenomenon as a result of 

imposing the causality constraint.  This means that if no pulse is expected before the 

arrival time x/c, then the dispersion becomes necessary, as shown by Aki and Richards 

(1980).   

Gladwin and Stacey (1974) discussed the necessity of the dispersion by comparing a 

non-dispersive attenuating pulse versus a dispersive one using the Azimi attenuation law. 

 
 
 

 
Figure 2.4. Comparison between two attenuated waves. In a non-dispersive attenuating 
medium, the pulse arrival exists even at time zero which is not possible and defies 
causality; however, by considering the dispersion, the attenuated pulse does not exist 
before its theoretical arrival time (from Aki & Richards, 1980). 
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2.3.2 Absorption 

 

It is possible to measure the dissipative properties of the medium in a way that we 

can relate the attenuation in space to the damping in time. A single-frequency component 

of displacement is considered: 

 
 

( ) ( )exp cosγ ω β= − +u A t t   (2.63) 

 
 
where γ is the damping factor and β is the phase. Note that the dissipative term is exp(-γt) 

in Equation (2.63) which is different from exp(-αx) in Equation (2.56): in the former term 

γ is damping in time, and in the latter α is the attenuation term in space. Within a period 

(t=2π/ω) the amplitude drops by a factor of: 

 
 

exp(-2πγ /ω) = exp(-∆) (2.64) 
 
 
where ∆ is the logarithmic drop in amplitude in one period. The ratio of energy loss per 

cycle to maximum stored energy in the medium (∆W/W) forms a basis to define the 

quality factor, and is also a function of logarithmic amplitude drop: 

 
 

[ ] 1

2 1 exp( 2 )

2 1 exp( 2 )

π

π −

= = − − Δ

⇒ = − −

Δ

Δ

W
W Q

Q
  (2.65) 

 
 

A sinusoidal approximation of a propagating wave can be expressed as: 
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( )( , ) exp cos ( , )φ α φ= −u x t A x x t   (2.66) 

 
 
where ϕ(x,t)=ω(x/c - t) is the phase. To calculate the logarithmic amplitude drop for one 

period, one can consider the phase 0 and phase 2π, where the wave is at x and x + δx and 

the amplitude drop becomes (Futterman, 1962): 

 
 

2 /πα ωΔ = c   (2.67) 

 
 
and from Equation (2.65), the quality factor is expressed as: 

 
 

[ ] 12 1 exp( )

  (if 
2 ( ) ( )

4 /

4 / 1)

πα ω

πα ω
ω ω

π
ω

α

−=

<<

− −

⇒ ≈Q
c

Q c

c
  (2.68) 

 
 
By defining Q0(ω)=ω/2α(ω)c0,  the intrinsic dependence to frequency happens in the 

attenuation term.  The imaginary part of the refraction index can be expressed as: 

 
 

Im. n(ω) = 1/2Q0(ω)  (2.69) 

 
 
Please note that in the desired frequency range one would like attenuation to be 

strictly linear; therefore, Im. n(ω) and Q0 are frequency independent. To show the 
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dependency of Im. n(ω) with frequency, it is shown that the following definition works 

fine (Futterman, 1962): 

 
 

 Im. n(ω)= 
0

1 1 exp( ) sgn
2

r r
Q

⎡ − − ⎤⎣ ⎦   (2.70) 

 
 
In practice by selecting a small cutoff frequency, the exponential term in Equation 

(2.70) can be ignored and the last sgn term can be neglected by only using positive 

frequencies. The real part of the refraction index was left to be introduced here as: 

 
 

Re. n(ω) =
0

11 ln( )r
Qπ

−   (2.71) 

 
 
Substituting Equation (2.71) into Equation (2.62) will result in (Futterman, 1962; 

Kanamori & Anderson, 1977): 

 
 

( )
1

0
0

0
0 0

         

1 1 ln( )

1 ( 1 ln )

c c r
Q

c
Q

ω
π

ω
π ω

−
⎡ ⎤
⎢ ⎥
⎣ ⎦
⎡ ⎤

≈

= −

⎢
⎣
+ ⎥

⎦

  (2.72) 

 
 

Again, velocity c0 is the velocity in a low reference frequency ω0 where ω0 > ω. In 

Equation (2.72) the effect of dispersion on velocity is expressed with respect to the 
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known reference velocity c0. The same concept can be applied when the reference 

frequency is at high frequency ω∞ with velocity c∞ where ω < ω∞  . The attenuation 

dispersion effect on velocity can be expressed as the following equation, as introduced by 

Equation (14) of Kanamori and Anderson (1977): 

 
 

( )
0

1 1 ln( )ωω
π ω

∞
∞
⎡ ⎤
⎢ ⎥=
⎣ ⎦
−c c
Q

  (2.73) 

 
 

The dispersion due to attenuation is graphically shown in Figure 2.5, depicting that 

the linear dependence of the velocity to the quality factor is occurring in a frequency 

range in which the quality factor is constant, and this is the fundamental assumption in 

Futterman (1962) as pointed out by Knopoff (1964).  

 
 
 

 

Figure 2.5. Attenuation and the phase velocity as a function of frequency (from Kanamori 
and Anderson, 1977). In their original notation, C(ω) and Q(ω) are comparable to c(ω) 
and Q(ω) is introduced in this section, and Qm = Q0.  
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2.3.3 Implementation 

 

Implementation of dispersion and absorption is simply followed by the use of the 

refraction index in a complex velocity term, as used by Herrmann (1987) in his 

HPREP96 program (subroutine “aten” in the section “Futterman Causal Q”), and also 

introduced by Aki and Richards (2002): 

 
 

( ) 0

0
0 0

1 ( ) 
( )

        

 

11 ln( x)
2

c c

ic

n x

Q

n

Q

i
x

ω

π

⎡ ⎤−⎢ ⎥⎣ ⎦
⎡ ⎤

≈ ⎢ ⎥
⎦

≈

+ −
⎣

Im. 
Re. 

  (2.74) 

 
 

In this study, the full waveform synthetics are investigated using the software 

package “Computer Programs in Seismology (CPS)” developed by Herrmann (1987) for  

a two-layer medium with one layer over half-space. The shear-wave velocity (VS), the 

compressional-wave velocity (VP), layer thickness (H), and density (ρ) along with the 

quality factor for P and S waves (QP and QS) are provided in Table 2.2. 

 
 
 
Table 2.2. Earth model used to study attenuation effect on synthetic seismogram. 
 

 

H (m) VP 
(m/s) 

VS 
(m/s) 

ρ    
(gm/cc) QP QS 

La
ye

rs
 

10.0 500.0 60.0 2.1 20.0 20.0 
∞ 800.0 112.0 2.1 20.0 20.0 

 

 
 



57 
 

There are three major programs in the CPS package to run in a Linux environment for 

successful seismogram generation: HPREP96, HSPEC96, and HPULSE96. Figure 2.6 

shows a simple script to run the set of programs: 

 

 

#!/bin/bash 
HS=0.0      # Source Depth 
HR=0.0      # Receiver Depth 
hprep96 -M end.mod -d dfile  -HS “$HS” -HR “$HR” -ALL    LINE 4 
hspec96          LINE 5 
hpulse96 -p -V -l 1  |  f96tosac -B          LINE 6                
gsac << EOF         LINE 7 
r *Z*F*sac         LINE 8 
dif          LINE 9 
w           LINE 10 
q           LINE 11 
EOF          LINE 12 
 
 

 
Figure 2.6. Script using CPS package to generate synthetic seismogram. 
 

 

Details for synthesis are provided in the Robert Herrmann’s website 

(http://www.eas.slu.edu/eqc/eqccps.html, last visited March 2014). In line #4 of Figure 

2.6, HPREP96 reads model “end.mod” and distance “dfile” files. Model file “end.mod” 

represents the earth model introduced in Table 2.2 and is shown in Figure 2.7.  

 

MODEL.01 
Model after    11 iterations 
ISOTROPIC 
KGS 
FLAT EARTH 
1-D 
CONSTANT VELOCITY 
LINE08 
LINE09 
LINE10 
LINE11 
H(KM)   VP(KM/S) VS(KM/S) RHO(GM/CC)  QP   QS    ETA    ETAS   FREFP   FREFS     
0.0100   0.5002   0.0600   2.1000     0.0  0.0   0.00   0.00   10.00   10.00     
0.0000   0.8002   0.1121   2.1000     0.0  0.0   0.00   0.00   10.00   10.00 
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Figure 2.7. Earth model (file “end.mod”) presented in Table 2.2  in specific format for 
CPS package to be used to generate the synthetic seismogram. 
 

 

The distance file contains multiple lines, and for each line a seismogram is 

generated. Each line can then be considered as the information of a sensor that the user 

intends to use to generate synthetic time series (Figure 2.8). 

 

 
0.060000 0.0025 4096  0    0 
 

 
Figure 2.8. Distance file (file “dfile”) showing the specification of a synthetic 
seismogram to be generated at a station with 0.06 km (60 m) offset from source, a time 
step of 0.0025 seconds, and 4096 points.  

 

 

Each line of the distance file contains the offset of that sensor to the source, time 

step, number of points to be generated, and start time for the seismogram synthesis, in 

terms of two parameters of the reduction velocity and initial time shift.  

Through the command line, HPREP96 accepts the type of the green function to be 

produced, which the option “-ALL” in line #4 in Figure 2.6 requests that all types of 

green functions to be generated.  

The depth of source ($HS) and receivers ($HR) are introduced as arguments in the 

HPREP96 command line. In line #5, the wavenumber integration is performed based on 

the details provided in Sections 2.1.4 and 2.1.5 using the HSPEC96 program. The final 

step is to select output type (displacement, velocity, or acceleration) and also to convolve 

the green function with a source wavelet using the program HPULSE96 in line #6. Since 
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geophones are used, in line #5, the option “-V” is used to generate velocity synthetics, 

which later were convolved with the source wavelet. Therefore, the logical selection for 

the source wavelet in the HPULSE96 program is a Dirac delta function. However, to 

reduce negative truncation effects (the Gibbs phenomena) that produces side lobes, an 

alternative approach is followed (private communications with Robert Herrmann, and 

presented at http://www.eas.slu.edu/eqc/eqc_cps/TUTORIAL/RICKER/index.html): a 

parabolic source wavelet with a base width of ∆t, is selected and then seismograms are 

differentiated (lines #7 through #12) with respect to time. Note that files for the green 

function synthesis are in the format “file96,” and then are converted to the binary (B) 

SAC file format by piping them to the F96TOSAC program. Among different types of 

green functions, the one with extension code ZVF, which is the vertical velocity (ZVF) 

resulting from a vertical point force (ZVF), is used. 

The reason for not using HPULSE96 in convolving the source wavelet with green 

functions is the way HPULSE96 is programmed, and also the high frequency of the 

observed source wavelet. For a parabolic or triangular source shape, the HPULSE96 

program accepts the frequency of the pulse as a multiple of time step (∆t) introduced in 

the distance file. Since the observed frequency of the sledgehammer pulse is high, a very 

small time step (∆t) should be used in the synthesis. Otherwise, the synthesis 

computational time would be prohibitively long (about 6-7 days) for 72 geophones. The 

program HSPEC96 performs the major calculation of wavenumber integration and also 

the implementation of complex wavenumber as described in Section 2.3.3.  

HSPEC96 has the option to use a causal or a non-causal attenuation operator (the 

default is a causal operator, and adding “–N” in the command line argument switches to 
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non-causal). The causality definition means that no wave arrives prior to the theoretical 

arrival time (t = x/c), as can be observed in Figure 2.4. In the source code of the 

HSPEC96 program the implementation for causality is the use of complex velocity in the 

form of Equation (2.74), and for the non-causal Futterman (1962) Q operator, the real 

part of the argument in Equation (2.74) is set to zero and only the imaginary part is used.  

For the model introduced in Table 2.2, both the causal and non-causal Futterman 

(1962) Q operators are used based on the options introduced in the HSPEC96 

documentation tutorial, and results obtained for a sensor at a distance of 60 m from the 

source is shown in Figure 2.9. The reference frequency used to generate synthetic 

seismograms in Figure 2.9 is 1.0 Hz.  

 
 
 

 

Figure 2.9. A synthetic full waveform seismogram with Futterman (1962) causal (top) 
and non-causal (bottom) operators using CPS package for the model, introduced in Table 
2.2 for a sensor with 60 m offset. 
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It is observed that using the causal attenuation operator versus a non-causal one 

affects the arrival time of the wave. Other simulations have been performed considering 

other reference frequencies, including 10 Hz and 100 Hz, and are plotted against each 

other in Figure 2.10 

 
 

 
Figure 2.10. Comparison between different reference frequencies: (a) no attenuation, (b) 
1 Hz, (c) 10 Hz, (d) 100 Hz. 
 
 
 
2.3.4 Effect of Different Q Values on Seismogram  

 

Since a constant quality factor is used for all layers, and since in some cases 

(Malagnini 1996) simultaneous inversion for the quality factor and phase velocities, does 

not yield reasonable results, it is useful to study the effect of different quality factor 

values on synthetic seismograms. A synthetic seismogram in an arbitrary geophone (#40) 

is generated based on an assumed 20 layer velocity model. The model comes from case 

a 

b 

c 

d 



62 
 

12 (Section 6.4) and quality factor values of 15, 20, 25, and 30 are used in generating the 

synthetic seismograms. The aforementioned values cover a widely acceptable range for 

quality factors, and will show that the selected quality factor in this range of 15 to 30 will 

not drastically change the amplitude and frequency content of the seismograms. Figure 

2.11 shows a comparison between the time series for geophone #40 generated with four 

different Q factors. It is observed that the overall shape of the pulse is not changed much 

considering different Q factors, and only the arrival time of the pulse is mostly affected. 

This mild change in arrival times is due to the attenuation dispersion, since the 

heterogeneity of the model has not changed among different simulations. 

 
 
 

 

Figure 2.11. Four synthetic seismograms generated with four values of quality factor for 
geophone #40.  
 
 
 

For comparison reasons, a quality factor of 25 is selected as a reference. Synthetic 

seismograms with quality factors of 15, 20, and 30 are compared with the synthetic 

seismogram generated with the quality factor 25. A cross-correlation coefficient is used 

to perform the comparison. First 3000 points corresponding to a time window of [0 0.75] 
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seconds is used for correlation and comparison. The value of the zero lag cross-

correlation is also presented, which is the 3000th element of the cross-correlation vector.  

Figure 2.12 illustrates such a comparison. The correlation coefficients CC(Q) are 

plotted for different Q values and time lags. The maximum correlation coefficient 

(CCmax) is also shown. It can be observed that the maximum coefficients are very close to 

unity, indicating that the two time series that are being compared are almost identical.  

 
 
 

 
 
Figure 2.12. Correlation coefficient between synthetic seismogram with different Q 
values with the synthetics from Q=25. It is observed that cross-correlation coefficients are 
close to 1.0 after time shifts.  
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It is observed that in the case of geophone #40 and the current velocity model, the Q 

value does not affect the quality of the match between the synthetic seismograms 

drastically, and they are interchangeable in the range of study trial Q values.  

   
2.3.5 Independent Estimation of Quality Factor 

 

As will be mentioned in the following sections, it is possible to simultaneously invert 

for the shear-wave velocity profile and the quality factor. However, it is also possible to 

study the logarithmic drop in the Fourier amplitude of the recorded time series in space 

and to estimate the quality factor of the medium. Conceptually, this method is analogous 

to Section 2.3.2 where the logarithmic drop of amplitude is used to define the quality 

factor. This procedure is introduced in Appendix A along with the required modifications 

for this research, and with the results.  It is noteworthy that the estimation of P-wave, S-

wave or Rayleigh wave quality factors are essentially the same, and the difference is only 

in selecting the portion of the seismogram that carries that specific phase and in selecting 

a relevant geometric spreading for that specific phase.  

 

2.3.6 Summary 

 

The goal in seismology is to predict the ground motion at surface having the earth 

mechanical properties as known parameters.  This chapter introduced the equation of 

motion for seismic waves in a homogeneous medium and then presented a systematic 

matrix approach to deal with the heterogeneous medium. The relationship between 

unknown surface displacements was related to the properties of each layer; displacement 
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and stress at bottom of each layer were expressed as a function of those values at top of 

that layer and also properties of the layer. The requirement of continuity of displacement 

and stress at boundaries between layers made it possible to start from free surface of 

medium and kind of ‘walk through’ the layers and assemble the mechanical properties of 

those layers in a general relationship that connects the unknown surface displacement to 

deep half-space where displacements should be zero.  

In this process, synthesis of seismogram becomes possible by consideration of an energy 

source at the interface between two layers. The equivalent displacement and stress due to 

the existence of the energy source should be considered in the aforementioned ‘walk 

through’ and since point force simulates the effect of source used in this study, the 

ensuing displacement and stress from a point source was introduced.  

In the next section, attenuation was introduced into the wave equation using a complex 

wavenumber and the two effects of the attenuation was considered; i.e. dispersion and 

absorption. It was shown that dispersion is a necessity for a realistic seismogram without 

which there will be non-zero amplitude prior to the theoretical arrival time of the wave 

and supports the causality of the attenuation relationship. For absorption, it was shown 

that it affects the amplitude of the waves and at the end, a final formulation is provided to 

update for a complex velocity by having a known quality factor.  

In the final section, numerical examples are provided showing that how selection of a 

suitable reference frequency is important and affects the arrival time of different phases. 

As Kanamori and Anderson (1979) stated, the selection of reference frequency should be 
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based the knowledge of the velocity of material in that frequency range and it is easy to 

get confused by choosing a non-relevant reference frequency and velocity pair.  
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Chapter 3. Field Test and Equipment 

 

Two different field experiments were performed in this study: (1) a multi-channel 

analysis of surface waves (MASW) and (2) a downhole seismic survey. The concepts and 

the necessary background regarding the MASW method were introduced in previous 

chapters. In this chapter, the equipment used and some details necessary for a successful 

MASW experiment are presented. In regards to the downhole seismic survey, 

information on equipment, acquisition, and analysis techniques is provided by Stovall 

(2010) and will not be repeated here.  

 

3.1 MASW Equipment  

 

A successful acquisition using the MASW technique depends on correct connections 

among the different instruments: 

• Vertical geophones to convert surface perturbations into electric analog signals 

(Figure 3.1). 

 

 

Figure 3.1. Vertical geophone with corner frequency of 4.5 hz. 
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• Geophone cables for every 24 geophones to transmit the electric signals to the 

digitizing unit (Figure 3.2). 

 

 

Figure 3.2. Geophone cable: (a) red end-connection and yellow slot for geophone 
hookup, (b) black end-connection, and (c) details of end-connection. 

 
 
 

• Digitizing units that transform the electric analog signal into digital data 

recordable as a computer file. We use a Geometrics Geode® for this purpose 

(Figure 3.3). 

 

Figure 3.3. Geometrics Geode® 24 channel digitizer. 

 

 

a b c 
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• Data cables to transfer the digitized data into a PC (Figure 3.4). 

 

 

Figure 3.4. Data transfer cable from Geode to Geode, or from Geode to                 
software console on laptop. 

 
 
 

• A laptop connected to the data cable to record incoming digitized signals into data 

files.  

• A software console handling communication with the digitizers, recording the 

digitized signals into a file, and setting parameters related to the test. Such 

software also is the only interface interacting with the user.  

• A source of energy like a sledgehammer. 

• A trigger attached to the hammer, and an extension cable to attach the trigger to 

the digitizer (Figure 3.5). 
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Figure 3.5. Trigger that attaches to the sledgehammer and signals the hit time.  
 
 
 

When the whole test setup is complete and everything is tested, then by striking a 

metal plate with a sledgehammer at a specific location, Rayleigh waves are generated. 

The trigger signals the digitizer to start recording at the onset of hit time, and the digitizer 

sends the data from the geophones to the software console on the laptop.  

 

3.2 Sequential Use of Multiple Geodes 

 

Geodes used for this study have 24 channels.  If there are more than 24 geophones, a 

second Geode is required. In such a case, the first 24 geophones are connected to the 

Geode #1 using geophone cable #1, and data are sent to the second Geode using data 

cable #1. The second Geode captures data from geophones 25 to 48 and sends them along 

with the data coming from Geode #1, to Geode #3, and this process is repeated until 

digitized signals from all sensors are sent to the software console on the laptop.   

When more than one Geode is being used, the sequence of geophones is very 

important. A geophone cable provided by the manufacturer has two ends, and the number 

assigned to each geophone depends on which head is connected to the Geode. (1) If the 

red head is connected, then all the numbering of geophones printed on the cable is 
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correct. Otherwise, (2) if the black head is connected, then the numbering of the 

geophones is reversed. Therefore, there can be confusion in setting up the whole test, 

when geophone #25 on the ground is showing as geophone #48 on the console, geophone 

#26 is showing as geophone #47, etc. Therefore, it is useful to have someone walk by the 

geophone arrays while another person is checking the received signal on the console 

(using the noise monitor), to make sure that the number of the geophone on the console is 

the same as the physical location of the geophone that the person is walking by.  

 

3.3 Trigger Effect and Stacking 

 

Considering the presence of noise in the recorded data, it is common practice to 

repeat each hit several times and then stack the recorded data, so that the random nature 

of the noise will result in cancellation of the noise and the strengthening of the signal. 

It is expected that when a trigger is used, all data recorded at a different hit will have 

the same signal, which can just be added point by point.  However, after inspection of 

five different recorded hits, it was realized that the trigger does not always trigger the 

same way at different hits.  It seems that the recorded data from the five different hits 

were slightly shifted in time prior to the stacking process. This observation is related to 5 

hits at the same place, close to geophone #1. Similar triggering time delays were 

observed at other locations of hits (geophone #3). Figure 3.6 shows perturbations 

recorded by four geophones from five hits (location of hits is at geophone #1 in Figure 

3.6a and at geophone #3 in Figure 3.6b). 
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Figure 3.6. Time series recorded on four geophones from five different hits. It seems that 
the triggers have not been working uniformly among different hits; therefore, time series 
should be lined up prior to the stacking process. (a) the location of hits at geophone #1, 
(b) the location of hits at geophone #3. 
 
 
 

The idea of correlation was used as a tool to synchronize the recorded time series at 

each geophone before the stacking process. As an example, the traces from the second hit 

shown in Figure 3.6 were used as the reference hit to estimate the required time shifts, so 

the best cross-correlation coefficient is obtained between other hits and the second hit. 

This process is repeated for all geophones, in the case where the hit location is at the first 

a 

b 
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geophone (used in this study) and results are shown as a function of time step (∆t) in 

Figure 3.7b. The time lags resulting from a similar cross-correlation analysis for the hit 

location at geophone #3 is also provided in Figure 3.7a, showing that such problems 

always exist, and one must be cautious not to stack the traces prior to synchronization.  

 
 

 

Figure 3.7. Time lags of 72 geophones (x-axis) with respect to the second hit. It is 
observed that the hit #5 has the maximum time lag of about 28 counts (equal to 28∆t).     
(a) the location of hit is at geophone #1, (b) the location of hit is at geophone #3. 
 
 

a 

b 
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3.4 Amplitude Clipping 

 

It is observed that geophones that are very close to the hit location are clipped 

(Figure 3.8) where maximum amplitudes have exceeded a specific limitation and are 

replaced with a maximum threshold. Two points are necessary to be taken into account 

while designing a MASW experiment: (1) very close geophones are not to be used in the 

analysis of surface waves due to near-surface effects; and (2) sometimes even those 

geophones beyond the domination of the near-surface effect may also experience 

clipping. In the second case, the solution is to use a low gain in the acquisition, or to 

increase the source-array offset, while considering the far-field effect.  

 

 

Figure 3.8. Time series are clipped at the location of the red circles (geophone 
#4, stacked data). 
 
 
 

The software console is able to identify when the clipping happens, and marks those 

traces with red color instead of black. In the case of the existence of clipping, the clipped 

traces should not be considered in the analysis.  
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3.5  Comparison of MASW with Another Surface Seismic Method 

Even though the method used to estimate the experimental dispersion curve from the 

field data has not been discussed yet, it seems necessary to determine whether the 

dispersion from the MASW experiment agrees well with other surface-based seismic 

methods such as the Spectral Analysis of Surface Waves (SASW) experiment with 

multiple channels.  

The SASW experiment was performed using an electrical shaker oscillating at a 

preset frequency range of 3.75 to 100 hz, recording each frequency for a window of 16 

seconds. The shaker oscillates with a fixed frequency for 16 seconds, and then the 

frequency is increased and the process is repeated to reach a maximum frequency of 100 

Hz. Data are windowed for the middle 10 seconds for each frequency.  Rayleigh waves 

are recorded using 15 accelerometers deployed with a non-uniform spacing. Details of 

the SASW test can be found in Stovall (2010). The array is positioned in a way that its 

midpoint falls on the location of the borehole (for downhole test) and the same for the 

MASW array. The SASW field test and data analysis were performed by the author.  

Even though the source type, array lengths, and the spacing between sensors for 

MASW and SASW tests are completely different, the author finds it logical to compare 

the dispersion curves between the two methods. It has been observed in the literature that 

researchers use different methods (surface and borehole), different types of sensors 

(accelerometers and geophones), and different types of sources (active and passive) to 

estimate the ensuing shear-wave velocity for a specific location, and compare the results 

against each other (O’Connell & Turner 2011; Odum et al. 2013; Piatti et al. 2013). 

Therefore, two different testing procedures (MASW and SASW) are employed and will 
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be used to determine the shear-wave velocity profile as a function of depth.   Since it is 

possible to compare shear velocities from different methods, it is logical to be able to 

compare the phase velocities as a function of frequency for the two methods as well.  

More importantly, inversion adds uncertainties into the inversion problem regarding 

the assumptions made through the inversion and also the inevitable non-uniqueness of the 

inversion solutions. It is inferred that it is logical to compare the data prior to being 

contaminated with these uncertainties.  Therefore, the dispersion curves from the MASW 

and the SASW tests are compared. Figure 3.9 illustrates the dispersion contour obtained 

by performing the SASW test, while the circles plotted on top of the dispersion contour 

are from the MASW method.  It can be observed that there is a good match between the 

MASW and SASW dispersion curves. 

 

 

Figure 3.9. The MASW dispersion curves (white circles) are plotted on top of the SASW 
dispersion contour. A good agreement exists between the two methods.  
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Chapter 4. Experimental Phase Velocity Dispersion and Inversion: 
Procedures 

  

4.1 Signal Processing Techniques for Observed Dispersion 

 

Applying the inversion methodology introduced in the previous chapter clearly 

requires, at least, the existence of experimental (observed) dispersion data to be inverted 

to determine the shear-wave velocity structure. Therefore, the very first step to start the 

analysis of the field data should be initiation of a signal processing technique to reliably 

measure the phase velocities of the Rayleigh wave. In this study, vertical geophones were 

used; therefore, the effect of Love waves is not considered.  

Recorded time series from the geophone array are used to construct a contour 

representing the variation of the phase velocity versus the frequency, which is called the 

phase velocity dispersion curve.  First, time series are decomposed into several narrow-

frequencies using a narrow band-pass filter, and then for each group of filtered time 

series, an appropriate signal-processing technique is used to measure their phase velocity 

spectrum for the center frequency of that band.  Details of the required procedures to 

construct the experimental dispersion curve are discussed in the following sections.  

 

4.2 Frequency-Swept Decomposition of Time Series 

 

This section provides detailed information on how to alter recorded time series into 

time series that contain only a desired frequency band by using a narrow band-pass filter. 

A stretch function is used to separate each time series into individual frequencies. Each 
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set of individual-frequency time series are analogous to those recorded by using a 

harmonic source (Coruh, 1985; Park et al., 2000).  

Typically, two different source types are used: (1) a harmonic shaker and (2) an 

impulsive force like a sledgehammer (Park et al., 2000).  A harmonic shaker generates a 

sinusoidal motion with a specific frequency for a short period of time (i.e., 10-20 

seconds; see Stovall 2010), and then the frequency is incremented and the process is 

repeated. This type of source provides a frequency-swept record where the response of 

the earth to a harmonic wave with a single frequency is determined in the field.  Data 

collected using a harmonic source is ideal because it is already in a frequency-

decomposed format. An impulsive force contains a broader range of frequencies and 

therefore should be decomposed into narrow-band frequency time series to be 

comparable to those from a harmonic vibrator. It is possible to use a filter to make a time 

series carry only frequencies in a desired frequency range, mimicking records from a 

harmonic source. The impulsive force source type is similar to the seismic reflection 

experiments where a shotgun/airgun is used.  An impulsive force source is widely used in 

the MASW method.  In this study, a sledgehammer was used as the impulse force.  A 

stretch function can be defined as (Coruh, 1985):   

  

( ) ( ) ( )s t t t= ∗R R S   
(4.1) 

 

where ∗ denotes the convolution operator and the subscript s indicates the waveform 

vector after being convolved with the stretch function.  The stretch function S t  is a 
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sinusoidal function where the frequency changes with time.  Waters (1978) and Park et 

al. (2000) suggested using a stretch function similar to the Vibroseis surveys: 

 
 

22 1
1

( )( ) sin 2 f ft f t t
T

ππ −⎛ ⎞= +⎜ ⎟⎝ ⎠
S   

 
(4.2) 

 

where f1 and f2 are the lowest and highest frequencies of the desired frequency band and T 

is the length of the stretch function in seconds.  In this study, the variables f1 and f2 have a 

difference of 1 Hz while their average is equal to the target frequency.  The stretch 

function works like a band-pass filter, and it should be convolved with the observed time 

series.  

The next step is to estimate the phase velocity from the filtered time series. In this 

study, a frequency-wavenumber technique is used for this purpose, which is discussed in 

the next section. 

 

4.2.1 Concept of the Frequency-Wavenumber Method 

 

This section provides insight into the nature of the frequency-wavenumber method. 

Beamforming is a well-known signal-processing technique that is used in sensor arrays 

for directional transmission or reception (Van Veen & Buckley, 1998). The beamforming 

technique is widely used in radio communications where a special type of antenna is 

used, instead of a linear receiver array, to reconstruct the message sent from the source 

(Van Veen & Buckley, 1998).  In the field of geophysics and seismology, the reception of 

the seismic wave is of interest and, therefore, the beamforming technique consists of 
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reconstructing the signal generated at a source by combining the received signals at the 

array channels with different delays, so that the overall summation of delayed signals can 

be a more accurate representation of the original signal. The signal from the channel 

closest to the source needs minimum delay compensation in time, while the signal from 

the farthest channel requires maximum delay compensation.   

The beamforming technique and the frequency-wavenumber Fourier method are 

similar, but the latter has advantages over the former method from a computational 

efficiency viewpoint (Hinichi, 1980). However, both methods share almost the same 

concept and are replaceable in regards to their application in this study.  Therefore, in this 

study, the beamforming concept was used to determine the phase velocity spectrum at a 

specific frequency.   

The goal of this section is to determine the phase velocity by which a wave with a 

specific frequency is traveling, i.e., the dispersion curve. This goal is accomplished by 

presenting a spectrum curve for a single frequency wave that has a peak at the target 

phase velocity.  Considering Equation (4.3), we are looking for a frequency-wavenumber 

pair that generates a peak in the spectrum contour 

 

2  .  R
fV f
k
πλ= =   

(4.3) 

 

where VR is the phase velocity, f is the frequency, λ is the wavelength, and k is the 

wavenumber (Richart et al., 1970).  Since the frequency is assumed to be constant, then 

we are looking for the wavenumber (k0) that generates the peak considering a wave 
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bearing the constant frequency (f0). The amplitude of a wave with a constant angular 

frequency can be defined at the source location as (Hinichi, 1980; Longhurst, 1967): 

 

( ) ( ) ( ){ } { }0 0 0  Re   cos  sin    Re   exp [ ] t A t i t A i tω ω ω= + =⎡ ⎤⎣ ⎦u    (4.4) 

 

where ( ) tu  is the time domain source signal and 0 ω  is the constant angular frequency of 

the wave, and the complex exponential is a result of Euler’s equations.  Assume that such 

a wave is traveling parallel to a sensor array consisting of M channels.  Assuming a 

homogeneous medium with no attenuation, the time domain signal recorded at the jth 

channel can be presented as: 
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where ( ), jt xR is the time domain signal at the location of the jth channel,  jx is the 

distance of the channel from the source, ϕ is the time delay or phase shift that occurs for 

a wave with angular frequency 0 ω  and phase velocity VR to travel from the source to the 

receiving channel, and 0k is the characteristic wavenumber associated with the signal.  

Now assume that we would like to estimate the summation of the peaks of a known 

signal over all stations using a beam pointed parallel to the array.  For this goal, since the 
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wave characteristics are known, then we know the two fundamental parameters of 

wavenumber and frequency of the traveling wave ( 0k and 0 ω ).  Knowing these two 

parameters, we can then calculate and compensate the phase shift and add the amplitude 

of all the signals together, and this gives a different result from simply averaging the 

signals (Hinichi, 1980):  
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(4.6) 

 

The methodology, by which we can reconstruct a signal from observations in 

different sensors, is demonstrated in Figure 4.1. A source signal ( ) tu with a constant 

frequency is generated at x=0 and is recorded at six channels, ( ), jt xR , while j=1 to 6, 

located over a range of distances from 4 to 8 meters from the source location. We have 

tried to reconstruct the signals by averaging the signals ( )1

1 ,  M
jj

t x
M =∑ R , and it is 

obvious that they have destructive interference because the simple average has much 

lower amplitude than the original signal generated at the source. However, we can use 

Equation (4.6)  to compensate for the time delay among different signals and source time 
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series by applying an appropriate phase shift in the frequency domain and, therefore, we 

can reconstruct the source signal amplitude accurately.  

The last term of Equation (4.6) is equivalent to computing a spatial Fourier transform 

of the M signals from the array. In the frequency-wavenumber analysis, the time series 

from a finite number of channels are filtered for a specific frequency, and then the spatial 

Fourier transform is computed, and the square of the magnitude of such a transform will 

be equal to ( )2M A  if the selected wavenumber is equal to that of the propagating wave 

for that specific frequency, 0
0    

R

k k
V
ω= =   (Hinichi, 1980).  

 

 

Figure 4.1. Reconstruction B(t) of source signal u(t) by superposition of                 
delayed received signals. 
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4.2.2 Frequency-Wavenumber Technique 

After each time series is separated into individual frequencies, the required next step 

to construct the experimental dispersion contour is to determine the phase velocity 

spectrum for each group of individual frequency time series.  

The phase velocity can be defined as the slope of the line connecting the relevant 

wave peaks together in the offset-time (t-x) plot. A practical way to do the calculation is 

to consider different slopes and calculate a normalized summation of wave amplitudes 

along each slope to obtain the phase velocity spectrum for a single frequency.  The slope 

associated with the maximum cumulative amplitude is used to obtain the phase velocity 

for that specific frequency.  An example of field-recorded data is provided in Figure 4.2, 

where the time series for four geophones are plotted along with their real (blue) and 

imaginary (red) components of their Fourier transform. The time series are filtered using 

a transfer function with a center frequency of 10 Hz. 

Two major problems might arise in working with slopes in the time domain: (1) the 

method may provide different cumulative normalized amplitudes for a specific slope as 

shown in Figure 4.3 for two different time-intercepts, and (2) the method may be 

developed poorly on the assumption that the velocity of the wave from one geophone to 

another is constant along a specific slope, which might not be the case.  To overcome 

these limitations and inaccurate assumptions, the frequency-wavenumber technique 

(Hebeler, 2001; Stovall, 2010; Zywicki, 1999) is used.  
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Figure 4.2. (Top) Times series from field data in four geophones. (Bottom) The Fourier 
transform is used to calculate the real (blue) and the imaginary (red) parts of traces. Time 
series were previously convolved with the stretch function of 10 Hz and, spectral values 
at 10 Hz frequency are determined, indicated with circles.       

 

 

Figure 4.3. Cumulative amplitude along two lines with different time intercepts. Sloped 
lines are associated with a phase velocity of 116 m/s. Time series are carrying a center 
frequency of 10 Hz only.  

 

To solve the two problems discussed above, one can use the Fourier amplitude rather 

than time series.  As shown in Figure 4.3, each time series has various peak amplitudes, 

but the Fourier amplitude is always the same for a specific frequency.  Instead of using 

time series peaks to determine the cumulative amplitude for a give slope, the frequency 
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domain counterpart is used.  First, a Fourier transform is applied to obtain F(ω) from the 

time series f (t) for each geophone.  The Fourier spectrum can be written as F(ω) = a+jb, 

where the colors are analogous to those colors used in plotting real and imaginary parts of 

the Fourier spectrum in Figure 4.2 and Figure 4.4.   

The spectrum F(ω) is calculated for a broad range of frequencies, and we will be 

looking for the complex number associated with the angular frequency (ωf) that we 

already filtered the data for. The F(ω) spectrum is displayed in Figure 4.4 for four 

geophones, and the values of the real and imaginary spectrums corresponding to ωf are 

plotted with blue and red circles respectively. 

 

 

Figure 4.4. Alternative approach for calculating amplitudes along red sloped line            
in Figure 4.3. 

 

The cumulative amplitude of the time series along a specific slope (like the red line in 

Figure 4.3), resembles moving each time series backward in time (a time shift of  τi for 

the ith geophone) so that amplitudes along the slope will line up (Figure 4.4). Multiplying  
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F(ωf)  with  exp(j ωf τi) in the frequency domain is similar to a time shift of τi in the time 

domain. The time shift τ can be calculated as: 

 

τ = i
i

k

x
c

  (4.7) 

 

where xi is the distance between the first geophone and the ith geophone, and ck is the 

phase velocity associated with the trial slope (m = 1/ ck) along which the cumulative 

amplitude is being calculated. Figure 4.4 shows the exponential values by which the 

Fourier spectrum should be multiplied.  

This frequency-wavenumber (f-k) technique was introduced by Capon (1969), and 

can be used to generate the experimental phase velocity dispersion contour. A slightly 

modified procedure by Park et al. (1998a) was used because of its efficiency.  This 

method is different compared to the conventional f-k transformation and seems to work 

better with a limited number of geophones (Park et al., 1998a; Tran & Hiltunen, 2008).  

The pair of frequencies and their associated wavenumber is addressed with a peak in the 

spectrum (Tran & Hiltunen, 2008): 

 

( )
2

1

2( , ) exp . ,
g

R i i
i g R

ff V j x f x
V
π

=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑P N   

(4.8) 

 

where ( , )Rf VP is the phase velocity dispersion spectrum, VR is the trial phase velocity,  f  

is the dominant frequency, xi is the distance of the ith geophone from the source, g1 and g2 

are the number of the first and last geophones for calculating dispersion,  j is the 
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imaginary number, and ( )ixf ,N  is the normalized Fourier transform of the time domain 

signal recorded at the ith geophone for the single frequency f , defined as:   

 

( ) ( ) ( ), , ,=i i if x f x f xN OF OF   (4.9) 

 

where ( ), if xOF  is the discrete Fourier transform of ( ), it xOF  at the frequency f,  and 

where ( ), it xOF is the filtered seismogram at the ith geophone by convolving it with the 

stretch function given in Equation (4.2): 

 

( ) ( ), , * ( )i it x t x t=OF O S   (4.10) 

 

An example of the dispersion calculation of the dispersion spectrum based on 

Equation (4.8) is presented for the time series from geophones 10, 15, 20, and 25, as 

illustrated in Figure 4.5. It is observed that the cumulative amplitude is a maximum at a 

slope associated with a phase velocity of about 130 m/s. Recalling that we had filtered the 

raw time series for a center frequency of 10 hz, the phase velocity at 10 hz is c(10 hz) ≈ 

130 m/s. 
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Figure 4.5. The dispersion spectrum at a center frequency of 10 hz, or (10, )RVP . 
 

Repeating the aforementioned process using the frequency-wavenumber method for a 

wide frequency range can provide the spectrum (distribution of energy) for a range of 

phase velocities at each single frequency.  The result of such an analysis procedure can be 

presented as a contour plot, which is referred to as a “dispersion contour” or “overtone 

image”, and the dispersion curve is generated by picking velocities with the maximum 

amplitude at each frequency. In general, the flowchart for construction of the dispersion 

contour can be summarized as: 

1. A range of frequencies are selected; the spectrum will be determined for each 

single frequency in the selected range. 

2. A phase velocity range is selected for calculating the spectrum at each single 

frequency. 

3. The times series are filtered using the stretch function with a center frequency 

selected from Step 1. 
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4. The frequency-wavenumber transform from Equation (4.8) is applied to the 

filtered time series, and the dispersion spectrum for the selected frequency is 

obtained. 

5. Repeat Steps 1 through 4 for frequencies in the selected range of step 1. 

A software program for calculation of dispersion curves using the aforementioned 

steps are developed in MATLAB which is provided at the Appendix D. 

 

4.3 Inversion and Non-uniqueness 

 

Inversion of surface waves can be established by the use of partial derivatives of the 

phase velocity with respect to the model parameters. Model parameters are unknowns 

and can be found in the inversion process. The phase velocity dispersion curve is mostly 

sensitive to the shear-wave velocity of the layers (VS) and their thickness (H) (Nazarian, 

1984; Yuan & Nazarian, 1993; Xia et al., 1999a, 1999b). It is common to keep one of 

these two parameters (VS or H) fixed (Nazarian, 1984; Yuan & Nazarian, 1993; Xia et al., 

1999a, 1999b). A thickness of about 1.5 m (5 ft) was selected for each layer, 

corresponding to the reported depth intervals in the downhole seismic survey. 

Compressional wave velocity (VP) is calculated from VS considering a fixed Poisson’s 

ratio for each layer. A Poisson’s ratio of 0.45 (Foti & Strobbia, 2002) was selected for 

this study. Yuan and Nazarian (1993); Xia et al. (1999a, 1999b); and Rix and Lai (1998) 

provided techniques for stable inversion of surface waves. In general, for a nonlinear 

inversion problem ( ) =G m d , the solution can be obtained by using Occam’s localized 

inversion technique (Aster et al., 2003) by using the Jacobian matrix. Inversion is 
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performed by minimizing the following objective function in a damped least-square 

inversion (Aster et al., 2003): 

  

2 22
2 2

( )( ) ( ( ) ( ) ( )F λ= +Δ − − + + +ΔJ m m m d G m J m m L m m   (4.11) 

 

where m is the unknown model parameters vector, Δm  is the change in vector m with m 

elements, d is the observed data with n elements, G is a known n by m a matrix that 

relates model parameters with observations, L is the finite difference operator (Aster et 

al., 2003, Chapter 5) approximating the first or second derivatives of the model 

parameters when it is multiplied by them and controls the smoothness of the solution, 

2

2
is the L2 norm squared, λ is the damping factor, and finally J(m) is the Jacobian 

matrix, introduced as: 
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  (4.12) 

 

The Jacobian matrix holds the partial derivatives of the forward equation with 

respect to the model parameters, and in the case of our study, it is holding the partial 

derivatives of phase velocity with respect to shear-wave velocities at each layer (and may 

be quality factors at each layers if they are considered unknown). Equations for partial 

derivatives of phase velocity with respect to model parameters are provided in Chapter 3, 

Section 9 of Ben-Menahem and Singh (1981). Selecting an appropriate damping factor 
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λ  is crucial for a successful inversion. Pujol (2007) gives a good insight into the solution 

of nonlinear inverse problems using the Lenevberg-Marquardt method. Inversion for 

surface waves is performed iteratively using Occam’s algorithm to find the model 

parameters (Aster et al., 2003): 

 

11 T 2 T T( ) ( ) ( ) ( ) ( )k k k k k k kλ
−+ ⎡ ⎤ ⎡ ⎤= + − +⎣ ⎦ ⎣ ⎦m J m J m L L J m d G m J m m   (4.13) 

 

where k is the iteration number, and the initial profile starts at m0. As will be seen in the 

results in the following chapter, the phase velocity dispersion curve has different 

branches of phase velocities that are related to different modes. Using phase velocity data 

for higher modes increases the resolution of the inversion in depth according to the longer 

wavelength of higher modes (Beaty et al., 2002; Stovall, 2010; Xia et al., 2003), and is 

unavoidable according to the results in the final chapter. To benefit from the higher 

modes, assigning a specific mode number to each branch of the observed dispersion 

curve is essential (Herrmann, 1987; Luo et al., 2007; 0Park et al., 1999a; Stovall, 2010) 

and, therefore, by assigning different mode numbers to each dispersion curve branch, 

several scenarios exist which increases the problem associated with the non-uniqueness. 

 

4.3.1 Inversion of Surface Waves with CPS 

 

Herrmann (1987) provided a series of software programs to invert surface wave 

phase velocities. SURF96 is the computer program used in this study.  A tutorial and an 

example are provided by Dr. Herrmann on his web site. Since this study deals with 
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shallow velocity profiles in the case of the MASW test, a set of special settings is 

considered:  

• A known thickness and quality factor structure is assumed, 

• The dispersive effect of attenuation is considered along with the Rayleigh 

dispersion, 

• Half-space velocity is allowed to change in the inversion process, and  

 

The SURF96 source code is modified to keep the density fixed in the iteration process. In 

the subroutine MODLS() from file MODLS.F, the following lines must be added after 

line 162, before line 163 in the original source code, and recompiled for an updated 

SURF96 executable file using command “make all” (Figure 4.6): 

 
 
 

 
      r(i) = rho(i) 
 

 
Figure 4.6. Modifications to be made to MODLS.F to stop SURF96 from changing 
density for shallow sites. 
 
 
 

• No difference minimization (smoothing) is allowed in the inversion, and 

• Damping values for each iteration are selected in such a manner that no increase 

in error percentage is allowed as the number of iterations grows. 

In the last item mentioned above, the error at each iteration is calculated using the 

shell script provided in Figure 4.7: 
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#!/bin/sh 
rm tmpmod* tmpsrfi* *.PLT *.out end.mod tmpmrgs* start.mod o17.* damping -fr 
surf96 39     # Clean up  
surf96 31 20 1   # Half-space velocity is allowed to change  
surf96 35 2   # Inversion based on Q-Vs full interaction 
surf96 36 0   # No difference minimization (smoothing)  
NI=5; DF=20         LINE 7 
surf96 32 “$DF”   # Damping factor = 20     LINE 8 
for i in $(seq 1 “$NI”) # Number of Iterations     LINE 9  
do          LINE 10 
 time surf96 37 1 1 2 6        LINE 11 
 xn=`expr $xn + 1 | awk '{printf "%02d\n",$1}'`    LINE 12 
 surf96 17 > o17.$xn        LINE 13 
 surf96 47 |grep "Damping value"  | awk '{print $2}' >> damping  LINE 14 
done          LINE 15 
surf96 1 2 28 end.mod # Get the final inverted model 
./geterror.sh  # Calculate percentage error 
 

 
Figure 4.7. Bash script used in the inversion of surface waves using SURF96 
 

 

where $NI is the number of iterations with the specific damping factor of $DF. At each 

iteration, partial derivatives are calculated and the model is updated (line #11), the 

theoretical dispersion curve of the current iteration is reported to file O17.$XX in line #13 

where $XX is the sequential number of iteration, and in line #14 damping for the current 

iteration is also reported to file “damping.” To increase the number of iterations and also 

change the damping factor, lines 7 through 15 must be duplicated and additional iteration 

numbers and new damping factors should be updated at the line corresponding to line #7 

for the new block. At the end of the inversion, a script called geterror.sh is run, and the 

error for each iteration is calculated using the following equation: 
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where NB is the number of modes of the dispersion curve, NF(i) is the number of 

frequencies for ith mode,  .
,
obs
i jc  is the experimental dispersion curve at frequency j and 

mode i, and  .
,
theo
i jc  is the theoretical dispersion curve after a specific number of iterations. 

Such calculations are simply implemented in a shell script (file “geterror.sh” as presented 

in Figure 4.8) using the following single-line script for every O17.$XX file and error is 

appended to the file “errorlist”: 

 

 

#!/bin/bash 
 
tail –n`cat o17.$XX | wc –l | awk ‘{print ($1)-1}’` o17.$XX | awk 'BEGIN {c=0;xn=0;} 
{d=1;if($5-$6<0)d=-1;c=c+d*100*($5-$6)/$5;xn=xn+1;}END{print c/xn}' >> errorlist 
 

 
Figure 4.8. Shell script used to calculate the error percentage in Equation (4.14) between 
the theoretical and experimental dispersion curves after the SURF96 inversion.  
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Chapter 5.  Simulation of Non-uniqueness in Surface Wave Inversion 

 

To investigate the source of non-uniqueness in the inversion of phase velocity 

dispersion curves, a synthetic example is presented where a dispersion curve from a 

known velocity profile is inverted, and it is shown that the two different velocity profiles 

exhibit very similar dispersion properties. 

 

5.1 Simulation of Non-uniqueness 

 

A three layer over half-space model is assumed to be representative of the shallow 

subsurface. Each layer is assumed to have a thickness of 4 m, and the half-space starts 

from a depth of 12 m.  The synthetic model is intended to resemble a real case; therefore, 

a water level is assumed to be present at the interface between the first layer and the 

second layer (Foti & Strobbia, 2002). Water level affects the Poisson’s ratio; for saturated 

soil a ratio of 0.45 is used; otherwise, 0.25. Figure 5.1 shows the profile used in this 

synthetic example.  

 

 

Figure 5.1. The exact model assumed in the synthetic test as the representative of the 
shear-wave velocity profile of the subsurface.  
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Using forward modeling, the phase velocity dispersion curve is determined and a 

random five percent noise with a normal distribution is added to the dispersion data 

(Figure 5.2) to generate a realistic synthetic experimental dispersion curve (SEDC). This 

curve is treated as the dispersion curve obtained from the field data and is used in the 

inversion process.  The inversion process is a linearized damped inversion technique 

(Aster et al., 2003), which will be discussed later in the inversion section for the real 

world data.  

 

 

Figure 5.2. Synthetic experimental dispersion curve (SEDC) is constructed by generating 
a dispersion curve from the exact model presented in Figure 5.1 and adding 5 percent 
random noise to it. SEDC is used in the surface wave inversion process.  

 

Initial velocity profiles for the inversion were constructed by assuming six layers 

over half-space (each layer 2 m thick), and the half-space depth is 12 m. By combining 

two VS profiles and eight different levels of water table, sixteen initial velocity profiles 

are generated and separately inverted. The focus of this discussion is on two inverted 

models (labeled 6 and 11) for which the dispersion curves are virtually indistinguishable 
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for all the modes (up to three higher modes). Figure 5.3 and Figure 5.4 present the results 

of inversion for cases 6 and 11.  

 

      

Figure 5.3. (a) Inverted model no. 6 (solid red) compared with the exact profile (dashed 
blue). Water levels between the inverted model and the exact one (red and blue bold 
dashed lines) are different between the profiles. (b) Dispersion curves for inverted (red 
line) and exact (circle) models are matching well, despite the difference between the 
models.   
 

      
 

Figure 5.4. Similar to Figure 5.3, for inverted model no. 11. 
 

a 
b 

a b 
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It is observed that the dispersion curve for this profile matches well with the SEDC; 

however, the velocity profile no. 6 is very different from the exact model. On the other 

hand, Figure 5.4 presents the dispersion and the velocity structure for the profile no. 11. It 

is observed that the inversion procedure has been successful in terms of matching the 

theoretical dispersion curve of profile no. 11 with SEDC, as well as the water level and Vs 

of profile no. 11, and matches well with those from the exact profile. Therefore, the 

inversion of the phase velocity dispersion curve has provided two different inverted 

velocity profiles, both having a good match between their dispersion and SEDC, and 

therefore, without a knowledge of real Vs model (exact model), it is not possible to 

choose either of them as the final solution to the inversion. Consideration of higher 

modes cannot improve this observed non-uniqueness, as dispersion curves from profiles 

no. 6 and 11 are matching up to four modes with the SEDC.  

In contrast to the dispersion curves, the synthetic time series from profiles no. 6 and 

11 are very different and can be used as a tool to distinguish between the two profiles. 

Figure 5.5 shows synthetic seismograms generated from profiles no. 6 and 11 (red) 

plotted on top of the seismograms from the exact profiles (blue).  
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Figure 5.5. Comparison between synthetic time series from inverted profile no. 6 (top), 
and profile no. 11 (bottom) with the time series from exact model. Rayleigh wave train is 
scaled down for clarity. 
 
 

Model 6 

Model 11 
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For purposes of clarity, Figure 5.5 has been scaled differently for reflections, 

refractions, and direct waves compared to the Rayleigh wave train. It is evident that 

profile no. 11 has a better match between the seismograms, and can be selected as the 

final solution. In this synthetic example, attenuation is not considered; however, with the 

real data, it should be implemented.  

To have a quantitative tool for the assessment of seismograms similarity, the zero-lag 

cross-correlation coefficient is used as an indicator of similarity. Results are provided in 

Figure 5.6, which shows that profile 11 has a better match with observed seismograms in 

most of the 48 geophones. Therefore, by comparing the synthetic seismogram it is 

possible to distinguish between the two different profiles that have similar dispersion 

curves and overcome the non-uniqueness problem of this example.  

 

 

Figure 5.6. Zero-lag correlation coefficient (C.C.) for synthetics from models no. 6 and 
11, correlated with the synthetics time series and those from the exact model.  
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Chapter 6. Real World Data Analysis and Results 

 

This chapter presents a real-world example problem through which the strength of 

the proposed procedure is discussed.  The real-world example consists of a study site 

located in Memphis, Tennessee, two miles north of the Mississippi State border.  The 

selected site is located on the top of a sedimentary deposit within the Mississippi 

embayment. The reason for the selection of this site is the possibility of amplification of 

seismic waves for certain frequency bands due to the shallow shear-wave velocity (VS) 

contrast between soft and stiff materials and soil behavior (Kramer, 1996; Pujol et al., 

2002; Malekmohammadi & Pezeshk, 2014). The amplification of ground motion could 

adversely affect the structures that resonate at periods similar to those of the ground on 

which they are built (Bodin & Horton, 1999). Therefore, to carry out the response 

analysis and seismic design at a particular site, all relevant information about the soil 

(e.g., shear-wave velocity profile) need to be correctly identified, which allows predicting 

the ground motion characteristics during earthquakes.  

 

 



103 
 

 

 
Figure 6.1. The MASW test location, near Memphis, Tennessee, in the vicinity of the 
Mississippi river. 
 
 
 
6.1 The Experiment 

 

The MASW experiment was performed to collect data from an array of 72 

geophones. A geophone spacing of 0.9144 m (3 ft) was used.  Furthermore, a sledge 

hammer was used as the source at the very first geophone. Vertical Geophones with a 

corner frequency of 4.5 Hz were used for this study. Regarding the large number of the 

geophones, it was decided to record data with zero source-array offset for studying the 

source wavelet. Midpoint of the array is positioned exactly at the location of a borehole 

where downhole seismic survey was performed. The borehole located at the mid-span of 

the MASW spread is 30 m (100 ft) deep, and shear-wave velocities are available every 

1.524 m (5 ft).  The site is located at a remote area far from the road and man-made noise, 

which minimizes the contamination of data. The MASW experiment was repeated five 
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times to increase the signal to noise ratio (SNR). Figure 6.2 shows the stacked observed 

seismograms and Figure 6.3 unveils its frequency content.   

 

Figure 6.2. Time series recorded in the field from 72 geophones. Shaded areas are 
limitations used for geophone numbers in the calculation of dispersion curves. 
Recommendation for the ranges of geophones (such as those by Kansas Geological 
Survey) is indicated with bold color. However, using range of geophones indicated with 
the light color shade increases the resolution of the dispersion curve.     
 

 

Figure 6.3. The frequency content of recorded time series presented in Figure 6.2. Fourier 
amplitudes (FA) are normalized at each geophone.   

Norm. FA 

Geophone Number Frequency (Hz) 
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6.2 Experimental Dispersion Curve 

 

It is common to filter observed seismograms to only contain a narrow frequency 

band centered on the frequency f  by convolving them with the stretch function [Equation 

(4.2)]. After evaluating Equation (4.9), the phase velocity dispersion spectrum ( , )Rf VP  

at one frequency is calculated from Equation (4.8) for a broad range of trial phase 

velocities, and then the whole process is repeated for another frequency. The spectrum 

( , )Rf VP  then can be presented as a normalized three-dimensional contour (Figure 6.4). 

The experimental dispersion curve is picked from this contour by selecting points of high 

amplitude at each frequency. Such a dispersion curve is indicated with white circles in 

Figure 6.4b, which is a 2D representation of dispersion spectrum ( , )Rf VP . Geophone 7 

(g1=7) and geophone 66 (g2=66) were used as the first and the last geophones to generate 

the dispersion spectrum and contour shown in Figure 6.4. 

 

 

 

Figure 6.4. (a) Phase velocity spectrum ( , )Rf VP  is plotted as a function of the phase 
velocity and frequency. (b) Two dimensional representation of the same spectrum in (a). 
The final phase velocity dispersion curve (white circles) is determined by picking high 
amplitude points.  

Cumulative Amplitude 
Phase Velocity (m/s) Frequency (Hz) 

a b 
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The Kansas Geological Survey recommends a minimum source offset and a 

maximum spread length in development of a dispersion curve to consider for the near- 

and far-field effects.  In the study site, it is possible to go beyond these proposed 

limitations in the calculations to improve the resolution of the dispersion curve. The first 

and the last geophone numbers g1 and g2 in Equation (4.8) are related to the offset 

between the source and the first geophone in the array (x1) and the array length (L). The 

offset (x1) is recommended to be from one-fourth to one-fifth of the array length, and the 

array length is to be around the depth of investigation (Zmax). A Zmax equal to 30 m is 

considered for this study.  Therefore, an array of the same length as Zmax, is chosen with 

34 geophones. The offset is around 6 m, so neglecting the first 7 geophones results in the 

following geometry: 

 

max

1

30 34 geophones
5 6 7 neglected geophones from the beginning

L Z m
x L m
= =
= =

;
;

  (6.1) 

 

A comparison is made between the dispersion contours obtained using the 

recommend geometry (geophones 8 to 41) as shown in Figure 6.5a, and a geometry 

considering geophones 7 to 66 (shown as white circles in Figure 6.5a) to see the effect of 

the recommended offset and spread length on the dispersion curve. If the dispersion curve 

is not negatively affected by a larger number of geophones, then it can help to distinguish 

higher modes better (Tokimatsu et al., 1992). Comparing the white circles with the 

background contour in Figure 6.5a, it can be observed that the fundamental mode and 

some branches of the dispersion curve do not change with fewer numbers of geophones; 

however, it is observed that the contour loses its resolution in higher modes, and 
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therefore, in depth. To inspect the lower resolution of higher modes, dispersion spectra 

from two geophone ranges 7-66 and 8-41 are plotted for frequencies from 10 Hz to 50 

Hz, in 10-Hz increments on the same graph and shown in Figure 6.5b. It is evident that 

the shorter spread of geophones is a smeared version of the longer spread.  In summary, 

introducing a longer array and slightly shorter source offset does not change the overall 

pattern of the spectrum, but instead, increases the resolution.   

 

 

Figure 6.5. (a) Phase velocity dispersion contour from geophones series 8 to 41. The 
experimental dispersion curve from geophones 7 to 66 are plotted as white circles on top 
of it. (b) Three dimensional plots from spectrum contour at five sample frequencies for 
two ranges of geophones. The resolution of the spectrum reduces by decrease in the 
number of geophones.   
 

The effect of muting of the time series on the dispersion curve is studied to control 

which part of the time series participates in forming each of the branches observed in the 

phase velocity dispersion curve. Results of this investigation are provided in Appendix B.  

High attenuation is expected in the study area as suggested and confirmed by Pujol et 

al. (2002) and Ge et al. (2009).  Therefore, attenuation should be considered in the 

analysis process, and a detailed discussion of this is presented next. 

a 

Frequency (Hz) 

b 
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6.3 Observed Attenuation 

 

Recorded time series are used in an inversion process similar to that by Pezeshk and 

Hosseini (2013), Hosseini et al. (2014; 2012), Conn et al. (2012), and McNamara et al. 

(2012) to estimate the attenuation for various frequencies. Seismic characterization 

techniques are also used in other engineering fields to describe the properties and 

behavior of the medium (Hosseini, 2013; Hosseini and Aminzadeh, 2013; Hosseini et al., 

2013; Olson et al., 2011; Kafash et al., 2013). The procedure simply accounts for the 

drop in amplitude generated by the sledgehammer as it travels its way through the 

medium to the geophones. Two phenomena are considered for the amplitude drop: (1) 

geometric spreading with decay rate of  where R is the distance between source 

and geophone, and (2) anelastic attenuation described by: 

 

( )
( ) ( )
fRf

Q f U f
πγ =  

 
(6.2) 

   

where f is the frequency for which the quality factor is being investigated, Q(f) is the 

frequency dependent quality factor, and U(f) is the group velocity. It is possible to use the 

experimental attenuation coefficient  in the surface wave inversion process along 

with the experimental phase velocity dispersion data to simultaneously invert for Vs and 

Q structure (Lee & Solomon, 1978; Malagnini, 1996; Taylor & Toksöz, 1982). Such an 

inversion was performed, but reasonable values for the inverted Q structure were not 

obtained.  Malagnini (1996) made the same observation where he did not get stable 

1/ R

( )fγ
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attenuation coefficients in the inversion process along with the VS model. Therefore, in 

this study, only Vs was considered as unknown in the inversion process and the quality 

factor was considered as a known parameter. 

Group velocities in Equation (6.2) are extracted from time series recorded from each 

geophone. Following Malagnini (1996), the group velocities from geophone #36 was 

chosen for its “appropriate looking” curve. Figure 6.6 shows the group velocity curve for 

geophone #36 obtained using the multiple filter technique (Dziewonski et al., 1969; 

Hales, 1972; Herrmann, 1987).  

 

 

Figure 6.6. Group velocities from multiple filter technique, estimated from          
geophone #36. 

 

To select a reasonable quality factor the procedure outlined in Appendix A was 

followed.  The result of the inversion for the quality factor Q is presented in Figure 6.7. 

From this figure, it can be observed that the Q factors are unreliable due to erratic spikes 

in certain frequencies, because of numerical instability of the inversion for these 

frequencies.  Quality factors selected to be used for the remainder of this study are shown 

by “X” markers in Figure 6.7.  The average of the selected quality factors is about 25, 



110 
 

which is in the range reported by Ge et al. (2009) and  Pujol et al. (2002). We considered 

equal compressional and shear-wave quality factors (Q = Qα = Qβ) (Malagnini, 1996) and 

set them to 25 in the rest of the analysis.  According to Section 2.3.4, a slight difference 

in the quality factor does not lead to a drastic change in the shape and the frequency 

content of the pulse, but only modifies the arrivals of the wave with respect to induced 

attenuation dispersion.  Therefore, an analysis process was implemented in Section 6.6 to 

account for the slight difference in the arrival times while comparing the observed and 

synthetic time series.  

 

 

Figure 6.7. Inverted quality factors versus frequency. 
 

6.4 Inversion 

 

To understand various considerations for the inversion process, it is important to 

identify high mode contributions.  As an example, Figure 6.8 shows the experimental 

dispersion curve obtained using the MASW experiment at the study site.  This dispersion 
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curve possesses six different branches.  It is not obvious which mode number each branch 

represents.  Table 6.1 represents 22 different possibilities of various modes assigned to 

branches of the experimental dispersion curve.  For example, in case C1, Branch B1 

represents the fundamental mode, Branches B2 and B3 represent the second higher mode, 

Branch B4 represents the third higher mode, and Branches B5 and B6 represent the 

fourth higher mode.  

 

 

Figure 6.8. The experimental dispersion curve consisting of six branches used in the 
inversion process.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B1 
 B2 
 

B3 
 B4 
 

B5 
 B6 
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Table 6.1. Twenty two combinations for mode number assignment to each branch of the 
experimental dispersion curve. Mode numbers change from 0 (fundamental mode) to 7 
(7th higher mode). Dash means that that specific branch is not used.   
 

  
Branch Numbers 

  
B1 B2 B3 B4 B5 B6 

C
as

e 
N

um
be

rs
 

C1 0 2 2 3 4 4 
C2 0 2 3 4 5 5 
C3 0 1 1 2 3 3 
C4 0 1 2 3 4 4 
C5 0 2 2 3 - 4 
C6 0 2 3 4 - 5 
C7 0 1 1 2 - 3 
C8 0 1 2 3 - 4 
C9 0 - - - - - 
C10 0 - - 3 4 4 
C11 0 - - 4 5 5 
C12 0 - - 2 3 3 
C13 0 - - 3 - 4 
C14 0 - - 4 - 5 
C15 0 - - 2 - 3 
C16 0 - - 5 - 6 
C17 0 - - - - 3 
C18 0 - - - 3 3 
C19 0 - - - - 4 
C20 0 - - - - 5 
C21 0 - - - - 6 
C22 0 - - - - 7 

 

Not all of the 22 cases yielded a reliable dispersion inversion. Such a mismatch 

shows that the assigned mode number for the experimental dispersion curve is not 

appropriate. Figure 6.9 shows an example of a dispersion curve inversion where the 

selected mode number for the experimental dispersion curve branches is not appropriate.  
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From 22 cases, five have acceptable inversion quality (bold in Table 6.1), and were 

selected for further investigation. This is another source for non-uniqueness of the 

solution, if after inverting dispersion curves from five cases, different shear-wave 

velocity profiles are obtained.  

 

 

Figure 6.9. Low quality of match between the theoretical (red line) and experimental 
(black circles) dispersion curves indicates that the mode numbers assigned to the 
branches of the dispersion curves is not appropriate.    
 

The five selected dispersion curves with assigned mode numbers to various branches 

as highlighted in Table 6.1 are inverted. The number of iterations and damping ratios are 

considered in such a way that the error of each iteration step becomes less as the number 

of iterations increases. Error is defined in Equation (4.14). The threshold error is selected 

to be around 1.2 to 1.5 percent for the final iteration, and damping ratios are selected 

manually for each case. The five profiles, as provided in Figure 6.10, show that there is 

no way to discriminate one profile over another by relying only on the available 

dispersion data.  The goodness of fit between the theoretical and the experimental phase 
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velocity dispersion data, along with the damping ratio, and the error for different 

iterations are provided in Figure 6.11 and Figure 6.12. 

 

 

Figure 6.10. Five shear-wave velocity profiles from inversion of cases 1, 9, 12, 15, and 
18.  
 
 
 
Next, synthetic seismograms are generated for each of the five velocity profiles presented 

in Figure 6.10 to help with the selection of the best profile and to improve the non-

uniqueness.  Synthetic time series are compared with the recorded time series from the 

geophones, and it is anticipated that by comparing the similarity between the synthetics 

and observations, it will be possible to identify the best shear-wave velocity profile 

among those presented in Figure 6.10. 
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Figure 6.11. Details of inversion for Cases 1, 9, and 12. Left column shows the 
theoretical and the experimental dispersion curves. Right column shows the 
corresponding standard error and damping factor for each iteration in the inversion 
process.  
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Figure 6.12. Similar to Figure 6.11 for Cases 15 and 18.  
 

6.5 Synthetic Time Series 

Synthetic full waveforms are useful in realistic simulation of the ground motion 

where direct waves, reflections, refractions, and surface waves are all included. The 

wavenumber integration technique (Wang & Herrmann, 1980) is used to generate 

synthetic seismograms from the VS profiles provided in Figure 6.10. Corresponding VP 

profiles are calculated from VS by considering a Poisson’s ratio of 0.45. As shown in 

Figure 6.10, there are a total of 19 layers over a half-space.  Time series are generated for 

a length of 10.24 seconds with a time step (∆t) of 0.005 seconds. A quality factor of 25 in 

all layers is assumed, and the Futterman (1962) causal Q operator is implemented as a 

complex velocity term in the wavenumber integration technique (Herrmann, 1987). After 
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experimenting with different reference frequencies, a reference frequency of 1.0 Hz 

seems to produce synthetics matching the observations better than any other value for all 

five cases. Synthetic seismograms are generated and compared with observations for 

geophones #6 through #72. Velocity impulse response is produced by assuming a 

parabolic source with the base length of 4∆t and then differentiating the time series with 

respect to time (private communications, Dr. Herrmann). Impulse responses are then 

convolved with a half cycle sinusoidal source wavelet with a frequency of 60 Hz. 

 

6.6 Comparison Between Observed and Synthetic Time Series  

 

Cross-correlation is used as a tool to compare the similarity of synthetic and 

observed time series. Cross-correlation is used in the following equation to calculate the 

“match ratio” between the synthetic ( f ) and observed (g) discrete data (Anderson, 2004; 

Taborda & Bielak, 2013): 
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∑ ∑

  (6.3) 

 

It is logical to use a zero time-lag cross-correlation value in the Equation (6.3); 

however, this might lead to a partially unreliable assessment of goodness of fit. There are 

several sources of uncertainty in the inverted velocity model and, therefore, in the 

ensuing synthetic seismograms. The very first item affected by the uncertainties in the 
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experimental dispersion curve and its inversion is the inverted velocity profile.  

Therefore, the arrival time of waves in the synthetic seismogram may not be accurately 

computed. To solve this problem, the uncertainty in the arrival time of surface waves is 

assumed to be related to the mismatch between the experimental and theoretical 

dispersion curves. Therefore, it might be more logical for our study to calculate cross-

correlation values for a range of positive and negative time-lags; i.e., to shift the synthetic 

seismograms forward or backward with respect to the observation until the maximum 

match ratio between the signals is reached. The time range over which to shift the 

synthetics is assumed to be related to the maximum percentage of the error in the 

dispersion curve inversion. The whole idea is to allow the seismogram to shift slightly in 

time so it can match the observation in the best possible way under a constraint on the 

shift amount. Figure 6.13a shows this concept, where a synthetic time series is plotted 

against the observation. The match ratio based on zero time-lag cross-correlation gives an 

absolute value of 0.12. Figure 6.13b and Figure 6.13c show that by having an estimation 

of arrival time uncertainty percentage (ϵ), it is possible to calculate cross-correlation for a 

time-lag ranging from t0(1- ϵ) to t0(1+ ϵ). Provided in Figure 6.13d, the best match occurs 

when the original arrival t0 is moved to tf resulting in a match ratio of about 0.64. After 

applying such a correction as shown in Figure 6.13d, the match ratio increased about 530 

percent compared to its initial quality of match of 0.12. 
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Figure 6.13. (a) Observed time series (dashed lines) and corresponding synthetic (solid 
lines) ones are not exactly aligned on top of each other due to the late first arrival t0 in the 
synthetic. The synthetic is then allowed to shift backward and forward in a limited time 
frame to achieve the best match ratio with observation. Before shifting, the absolute of 
the match ratio (MR) is about 0.12. Maximum (b) and minimum (c) time shift allowed for 
the synthetics as a function of t0 and ϵ (maximum error of dispersion inversion). (d) Best 
match ratio is occurring at time tf showing that absolute of match ratio increases to 0.64, 
when the synthetics are shifted (tf - t0) seconds. Red lines distinguish the allowed time 
range over which the synthetic seismogram is allowed to move. 
 

By applying such a concept to all cases, one can make a better judgement about the 

realistic degree of match between the synthetic and observed time series. Such a 

technique can be applied in two ways: (1) by allowing observed and synthetic time series 

tf 

Synthetic 

t2=t0(1+ϵ) 

 t0 Observed 

tf- t0 : Time Lag 

a 

b 

c 

d 

t1=t0(1-ϵ) 

t1 < tf  < t2 
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to shift in time with respect to each other, separately for each geophone, or (2) by 

applying an equal amount of time shift to synthetic time series from all geophones. In the 

next two sections, these two techniques are introduced and applied to the data and results 

of match are provided. The second method that time shift is equal for all geophones 

seems to be a more logical approach for seismogram comparison. It will be shown that 

the two techniques yield the same answer.  

 

6.7 Free Time Shift of Time Series at Each Geophone 

 

For time series at several geophones,  the match ratio as a function of time-lag can be 

presented as a contour for each case. In Figure 6.14, such a contour is shown for Case 12.  

From this Figure, it can be observed that the best match between synthetics and 

observations for most of the sensors occurs when the synthetic time series are slightly 

moved in time with respect to their original position.  

 

 

Figure 6.14. Match ratio as a function of time lag at each geophone for Case 12 with a 
maximum dispersion inversion error (σ) of about 12 percent. Lower and upper bounds for 
time lag are calculated as 12 percent before and after the Rayleigh wave arrival in the 
synthetic time series. Color scale shows maximum correlation with red and minimum 
value with blue.  
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It should be noted that in Figure 6.14, geophones closer to the source have a 

narrower range of allowed time-lag compared to farther ones. The maximum values of 

match ratio for each geophone are picked in the allowed range, as shown with circles in 

Figure 6.14.  The match ratio obtained for each of the five cases is compared as an 

indicator guide to select a representative shear-wave velocity profile.  Figure 6.15 shows 

the match ratios for cases 1, 9, 12, 15, and 18.  For each case, the match ratios are 

averaged over 72 geophones and shown on the right-hand side of Figure 6.15 with a set 

of horizontal lines.  The one with the highest match ratio represents the case with the best 

soil profile. It is observed that, based on synthetics, cases 12 and 18 have the highest 

match ratios and are very close to each other. Since cases 12 and 18 have very close 

match ratios, they must have soil profiles which resemble each other, as can be seen in 

Figure 6.10. 

 

 

 

 

 

Figure 6.15. Match ratio at each geophone for different cases are compared. The average 
match ratios are plotted on the right hand narrow window. Cases 12 and 18 are close in 
the average match ratio values. 
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Figure 6.16 shows the synthetic seismogram (solid line) plotted on top of the 

observed ones (dashed line) for case 12. Figure 6.17 shows the same version of the 

previous figure, except that the synthetic time series are shifted in time to the position 

where the match ratio is a maximum, according to Figure 6.14. To have a better view for 

visual comparison, Figure 6.18 presents the shifted synthetic and observed time series, 

where both sets of time series are plotted after an arrival time corresponding to a 

reduction velocity of about 160 m/s. Such an onset after which the time series are plotted 

can be observed in both Figure 6.16 and Figure 6.17 as a sloped line.  
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Figure 6.16. Observed (dashed lines) and synthetic (solid line) time series for case 12. 
The sloped line presents a velocity of about 160 m/s which will be used to plot time series 
after the line in following figures.   
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Figure 6.17. Same as Figure 6.16, except that synthetic time series are shifted according 
to the time-lags for maximum match ratio in Figure 6.14.    
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Figure 6.18. Observed (dashed lines) and shifted synthetic (solid lines) time series for 
Case 12 (left) and Case 18 (right). A reduction velocity of 160 m/s is used to plot time 
series corresponding to the sloped line in Figure 6.16. 
 

Based on the discussion above, two profiles (Cases 12 and 18) have been identified 

with the highest average match ratio between their corresponding synthetic seismograms 

and observed time series. From Figure 6.10, it is evident that Case 12 and Case 18 both 

have very close shear-wave velocity profiles, and both profiles may be considered as an 

accurate model for the study site.  For validation purposes the shear-wave velocity 

profiles associated with cases 12, 18, and their average are compared with the results 

Case 12 Case 18 
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from the downhole seismic survey. The comparison between the synthetics and the 

observed time series are provided for all five cases in Appendix C, along with the match 

between dispersion curves for all 22 cases and the comparison between five velocity 

profiles and downhole. 

 

6.8 Equal Time Shift of Time Series at All Geophones 

 

In this case, observed time series from all geophones are equally time-shifted with 

respect to the synthetic ones. Using a cross correlation technique, the similarity between 

the observations and synthesis with an equal amount of shift can be easily assessed. 

Figure 6.19 shows the mean of cross correlation coefficients at all geophones (from 6 to 

72) for different time lags and for five different cases (Cases 1, 9, 12, 15, and 18). To find 

out the best shift in time, the average of mean correlation coefficient is plotted as a curve 

on the top of Figure 6.19 and the time lag associated with the maximum average 

coefficient (shown with circle) is used as a suitable time lag to be applied to all 

geophones for all cases. Note that amount of time shift is equal among all geophones and 

all cases.  

At the specific time-shift mentioned above, the mean cross correlation coefficient is 

plotted for five cases in 6.20 and it is observed that Case 12 and Case 18 have maximum 

match between their observed and synthetic time series. This result agrees with that from 

the alternative technique in previous section in which time series are allowed to move 

freely at each geophone.  
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Figure 6.19. Mean cross correlation coefficient as a function of time lag for five cases 
(bottom contour). The average of mean cross correlation coefficient for five cases are 
used to find the best amount of time shift. 

 
 
 

 

 

6.20. Mean cross correlation coefficient at the time lag associated with maximum average 
mean cross correlation coefficient.  
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6.9 Comparing MASW VS with the Downhole Velocity Profile 

 

The downhole seismic survey is performed using two geophones, five feet apart, 

lowered into a borehole every five feet. A pneumatic source capable of generating shear-

waves is located at the ground surface close to the borehole. Shear-waves are generated 

twice in two opposite directions and recorded by two borehole geophones and one 

surface geophone (Figure 6.21).   

 

 

 

  

 

 

 

 

Figure 6.21. Schematic view of the downhole seismic survey. 
 

Recorded data from the borehole geophones are used to pick first arrivals and 

calculate the shear-wave velocity of layers at five-foot intervals.  It should be mentioned 

that the shear-wave velocity estimated for the top three layers is not reliable considering 

the loose confinement around the borehole PVC pipe. To illustrate this,  

Tires 

Borehole 

Pneumatic 
Source 

S-Wave 
Direction 

 Wall-lock 
Geophones 
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Data 



129 
 

Figure 6.22 shows the shear arrivals recorded on one of the horizontal channels of 

the borehole geophone, and it is observed that the arrival time is lower in the second 

layer, than the first layer. 

 

 
 
Figure 6.22. Arrival times recorded in one of the borehole geophones, horizontal channel 
#1. Arrival of the second layer is earlier than the layer above.  
 

 

 

The shear-wave velocity is determined by the analysis of arrival times and is plotted 

against the profiles from the surface wave inversion (Figure 6.23). It is observed that VS 

profiles from Case 12 and Case 18 match the downhole results well, as was expected due 

to the agreement between the synthetic and observed time series shown in Figure 6.15. 

Figure 6.23 shows the result from inversion of the fundamental mode only as well (Case 

9), showing that for a reliable inversion higher modes must be present in the experimental 

phase velocity dispersion curve. 
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Figure 6.23. The inverted shear-wave velocity profiles (Case 9, Case 12, Case 18, and 
average of Cases 12 & 18) and the profile from the downhole seismic survey. Downhole 
profile is in close agreement to cases 12 and 18 as predicted by the synthetic match.  
 

It is useful to compare the similarity between the downhole velocity profile and those 

from the surface wave inversion. Table 6.2 compares the profiles from the surface wave 

estimation and borehole measurements using five different criteria proposed by Xia et al. 

(2000). Table 6.2 contains the data for the inverted velocity profiles from Case 12, Case 

18, and their average compared against the downhole measurements. From Table 6.2 it 

can be concluded that all five criteria in this study for all three cases of inversion are 

close to the lowest values reported by Xia et al. (2000) in their comparison between their 
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inversion and their downhole measurement, indicating an acceptable match between the 

downhole and inverted velocity profiles.  

 

Table 6.2. Comparison of inverted velocity profiles with borehole measurements. 

Inverted 
Profile 

Maximum 
difference 

(m/s) 

Average 
difference 

(m/s) 

Maximum 
relative 

difference 
(m/s) 

Average 
relative 

difference 
(%) 

Standard 
deviation 

(m/s) 

Depth 
studied 

by 
MASW 

(m) 

Inverted 
velocity 
range 
(m/s) 

Case 12 28.3 10.8 10.8 4 8.8 30 83-250 
Case 18 31.5 12.7 12.0 5 9.9 30 89-246 
Average 29.9 11.5 11.4 5 8.9 30 86-247 

Terminology used in this table: 1. Maximum difference 1max j n b i jD V V< <= −  , where Vb is S-wave 

velocities from borehole measurement, Vi is S-wave velocities inverted from Rayleigh wave phase 
velocities, and n is the number of layers. 2. Average difference 11 n

k b i kD n V V== −∑ . 3. Maximum 

relative difference 100* / ( )b kR D V= , where (Vb)k is the S-wave velocity from borehole measurement 

associated with D. 4. Average relative difference 1100 ( / )n
k b i b kR n V V V== −∑ . 5. Standard deviation 

1 22
11 2 n

k b i kS n V V=
⎡ ⎤= −⎢ ⎥⎣ ⎦∑ . Structure and terminologies in this table is borrowed from Xia et al. (2000).   

 
 
 
 
6.10 Comparing MASW VS with Velocity Profiles in the Literature 

 

The location of the study site suggests that its geology may be similar to sites located 

in Marked Tree, Arkansas, and Risco, Missouri. The geology of these sites consists of 

Holocene Mississippi river floodplain sand, silt, and gravel (Liu et al. 1997).  Liu et al. 

(1997) performed downhole seismic surveys at three locations in the Mississippi 

embayment and determined the shear- and compressional-wave velocities at the 

boreholes. Boreholes for Marked Tree and Risco are 36 m and 27 m deep and readings 

are repeated every 0.91 m. Later, Rosenblad et al. (2010) studied surface wave 

measurements in the Mississippi embayment at 11 sites and used a swept frequency 
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device capable of generating low frequency harmonic waves. They estimated the velocity 

profiles for a depth of about 200 m. Rosenblad et al. (2010) confirmed the shear-wave 

velocity profiles reported by Liu et al. (1997). In this study, due to the geological 

similarity, the inverted shear-wave velocity profile (the average of profiles from cases 12 

and 18) is compared with Liu et al. (1997) and Rosenblad et al. (2010) results from sites 

located in Marked Tree, Arkansas, and Risco, Missouri (Figure 6.24). 

 

 

Figure 6.24. Obtained shear-wave velocity profile in this study is compared with the 
downhole observations by Liu et al. (1997) and inverted profiles from Rosenblad et al. 
(2010). Rosenblad et al. (2010) estimated the velocity by inverting the surface wave 
dispersion data. Current figure is similar to Figure 7 in Rosenblad et al. (2010) using an 
analogous scale for the shear-wave velocity range.  
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6.11 Conclusion 

 

A methodology has been proposed through which the non-uniqueness of the surface 

wave inversion is reduced for the study site near Memphis, Tennessee. Higher modes in 

the experimental phase velocity dispersion curve provided higher resolution in depth; 

however, they also added to the problem of non-uniqueness for the study case. The cost 

of eliminating the higher modes is technically unbearable regarding the short range of 

frequencies over which the fundamental mode is defined, and is shown to result in an 

unreliable inversion. Therefore, dealing with higher modes and the consequential non-

uniqueness are unavoidable. Different mode numbers were assigned to the higher modes 

in the experimental dispersion curve and several cases were produced. Inversion of 

different cases generated multiple shear-wave velocity profiles, all fitting the observation 

well. To overcome the non-uniqueness, synthetic seismograms were used; for each 

velocity profile, full waveform time series were synthesized using a half-cycle sinusoidal 

source wavelet at distances corresponding to the physical location of the geophones. The 

match ratio between the synthesized and observed time series helped to identify the two 

best-matching velocity profiles. The final velocity profiles are compared with the 

downhole velocity structure, and it was observed that the proposed methodology is an 

effective tool to overcome the non-uniqueness in the study case.  
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Appendix A.  Estimation of Quality Factor from Earthquake Seismograms 

A.1 Data Analysis 

Following Atkinson and Mereu (1992) and Zandieh and Pezeshk (2010), the spectral 

amplitude generated at the hypocenter of an earthquake (source amplitude) travels across 

the path between the source and the location of the recording seismograph.  The source 

amplitude undergoes two major changes, one resulting from the path effect, and the other 

one from the local site geology at the location of the seismograph. The path effect is 

modeled by a combination of a geometrical spreading and anelastic attenuation function. 

The local site geology may amplify or de-amplify the amplitude.  The observed spectral 

amplitude is given by the following equation:  

 

, , ,
log( )log[ ( )] log[ ( )] ( )log( ) log[ ( )]
( ).i j i i j i j j
e fO f A f B R R R S f

Q f
π
β

= − − +   (A.1) 

 

where , ( )i jO f  is the observed spectral amplitude of earthquake i at station j at the 

frequency f, ( )iA f  is the source spectral amplitude of earthquake i, B(R) is the 

geometrical spreading coefficient, R is the hypocentral distance, e is the Euler's number 

(or Napier's constant) and Q( f ) is the quality factor which is a function of the frequency, 

and Sj is the site or (receiver) term for station j.   It should be noted that the source 

spectral amplitude at the hypocenter location is considered to be equal for all of the 

observations at different stations, and that receiver term Sj is independent of the event.  
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A.2 Geometrical Spreading 

For a whole space, the concept of the geometrical spreading comes from the law of 

energy conservation, where energy density on the surface of common-centered spheres 

with various diameters should decrease as the diameter increases (Wolff, . The 

geometrical spreading term B(R)logRi,j defines the logarithmic decay of amplitude at a 

specific frequency.  Atkinson and Mereu (1992) modeled the geometrical spreading 

function using a hinged-trilinear functional form, in which the decay rate is different in 

three distance segments.  The hinged-trilinear functional form of the geometrical 

spreading used here is expressed by: 

 

 
1 , , 1

, 1 1 2 , 1 1 , 2

1 1 2 2 1 3 , 2 , 2

log
( )log( ) log log /  

log log / log /

i j i j

i j i j i j
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b R R R
B R R b R b R R R R R

b R b R R b R R R R

⎧ ≤
⎪

= + ≤ ≤⎨
⎪ + + ≥⎩

 (A. 2) 

  

For earthquake studies, the coefficients b1, b2, and b3 are tailored to be frequency 

independent.  Motazedian and Atkinson (2005) used b1=1.0, b2=0.0, and b3=0.5 with 

hinge points R1=75 km and R2=100 km.  McNamara et al. (2012) used geometrical 

spreading functions consistent with those of Motazedian and Atkinson (2005).  There is 

not enough data at close-in distances of less 100 km so one cannot constrain the 

geometrical spreading for the region.  In this case, there is a trade-off between Q(f) and 

B(R) in Equation (A.1) (Atkinson, 2012). For this reason, we considered both b1=1.0 and 

1.3 and determined the associated Q(f) which corresponds to these geometrical spreading 

functions for both the vertical and the geometric mean of the horizontal components. 
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For earthquake data, we used a trilinear geometrical spreading model with a decay 

rate of b2=0.0 and b3=0.5, and hinge locations at R1=75 km and R2=100 km, for 

horizontal and vertical components.  

A.3 System of Equations 

Rearranging Equation (A.1) by considering a known geometrical spreading gives: 

 

 , , ,
log( )log[ ( )] ( ) log( ) log[ ( )] log[ ( )]
( ).i j i j i i j j
e fO f B f R A f R S f

Q f
π
β

+ = − +
 

(A. 3) 

 

where the left-hand side consists of known parameters and the right-hand side consists of 

unknown arguments.  Equation (A. 3) can be cast into a standard matrix formation: 

 

 =Gm d  (A. 4) 

 

Equation (A. 4) represents a typical linear inversion problem that can be solved using 

the least-square, maximum likelihood, or generalized inversion methods (Aki and 

Richards, 1980; Menke, 1984; Lay and Wallace, 1995; Aster et al., 2013).  Suppose G is 

an m × n matrix with the elements all real numbers; where n is the number of unknowns 

(source terms, receiver terms, and the quality factor), and m is the number of 

observations.  Such a system of equations has a unique solution when the number of 

observations (m) is more than the number of unknowns (n).   In that case, the solution for 

m is found by use of a generalized inverse matrix G-g determined using the singular value 
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decomposition procedure.  The matrix G can be expressed as a multiplication of three 

matrices: 

 

 ′=G USV  (A. 5)  

 

where S is a diagonal matrix containing singular values of the matrix G on its diagonal 

and has the same size as G.  Matrices U and V are m×m and n×n unitary square matrices, 

and the columns of each of them form a set of orthonormal vectors.  The prime 

superscript for V denotes the conjugate transpose.  After finding the rank of G matrix, its 

pseudo inverse can be calculated as: 

 

 1g
k k k

− − ′=G V S U  (A. 6) 

 

where subscript k denotes the consideration of the rank of G in associated matrices, 

which includes removing problematic singular values from S and their associated 

columns from U and V.  Therefore, the matrix m using the singular value decomposition 

procedure can be written as (Menke, 1984): 

 

 g g− −= =m G Gm G d  (A. 7)   

 

Based on Equation (A. 4), if the total number of earthquakes is p and the total number 

of stations is q, the matrices in Equation (A. 4) can be written as:  
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, d =

log[O11( f )]+ B( f ,R11)
log[O12 ( f )]+ B( f ,R12 )


log[Op(q−1) ( f )]+ B( f ,Rp(q−1) )

log[Opq ( f )]+ B( f ,Rpq )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
pq×1

 

 (A. 8) 
   

 

Equation (A. 8) is the basic equation for our inversion when the geometrical 

spreading term is known.  Each row of the matrix G in Equation (A. 8) refers to an 

individual observation.  The first p columns are related to earthquakes, columns p+1 to 

p+q address the receiver terms, and the very last column with the index p+q+1 is related 

to attenuation terms. 

A.4 Data Selection and Preprocessing 

The fast Fourier transform (FFT) is used to derive the amplitude at 12 frequency 

bands, centering on 0.25, 0.35, 0.5, 0.7, 1.0, 1.4, 2.0, 2.8, 4.0, 5.6, 8.0, and 11.2 Hz.  The 
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lower limit of the first frequency band starts at 0.2 Hz, and the upper limit of the last 

frequency band ends at 12.8 Hz. The bandwidth doubles every two intervals. For 

example, the first frequency band covers 0.2 to 0.3 Hz, the second band covers 0.3 to 0.4, 

the third covers 0.4 to 0.6, and so on.  

After applying the fast Fourier transform (FFT) to the time series, amplitudes are 

averaged for frequencies falling in each frequency band, and their average amplitude is 

reported as the amplitude associated with the center frequency of that specific frequency 

band. Signal to noise considerations are implemented by considering noise in a 20- 

second window starting from 30 seconds prior to event time.  The geometric mean of two 

horizontal components is used along with the vertical one, and a signal to noise ratio of 5 

is used to opt out weak signals. FFT amplitudes for the noise window at the same 12 

frequency centers are calculated and compensated for the difference between data and 

noise window lengths. FFT amplitudes are calculated for a data window capturing the Lg 

wave.   

A.5 Modifications for MASW application 

• In the case of the MASW test, the window should contain the Rayleigh surface 

waves and for that the FFT amplitudes should be calculated. In the observations, 

the Rayleigh waves are almost prominent phase, and easily can be identified and 

windowed. 

• The geometric spreading for a Rayleigh wave should be considered as R-0.5, where 

R is the source-receiver distance. 

• Receiver terms (S) should be set to zero (Gebretsadik, 2005). 
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Appendix B.  Effect of Muting of Time Series on Experimental Dispersion Curve 

It is possible to try to assign each train of waves in the T-X plot to a specific mode on 

the phase velocity dispersion curve, and it can be instructive to see what parts of observed 

waves in the T-X plot are affecting the dispersion curve. In a more detailed analysis, it is 

possible to focus on those parts of waves that are related to the best match in the 

dispersion curve inversion, and only use those portions of the waves in the seismogram 

matching process.  Two different approaches are taken into consideration: (1) the forward 

approach that uses the portion of the seismogram after the muting, and (2) the backward 

approach that uses the portion of the seismogram before muting. There are nine muting 

lines considered for such analysis, which are shown in Figure B.1. The results from the 

forward approach are presented in Figures B.2 through B.10, and the results for the 

backward approach are provided in Figure B.11 to Figure B.19. In the truncation of time 

series a hamming window is applied to have a smooth transition to zero.   

Investigations in this section is performed separately from the rest of dissertation 

research and the objective is to determine which part of time series contributes in 

construction of different branches in the phase velocity dispersion curve. Several lines are 

defined based on the general properties of the time series to divide it into regions which 

might appear to have similar patterns. Application of this section can be in partial 

matching of observed and synthetic seismograms where only those portions of time series 

are used in the match ratio that their corresponding dispersion branch is used in the 

inversion process. This step is not taken into account in this dissertation but can be used 

in future studies.  
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Figure B.1. The lines used in the study of trace muting. 
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Figure B.2. Forward approach for time series muting: muted time series (top), Fourier 
amplitude spectrum of time series (bottom left), phase velocity dispersion contour along 
with dispersion curve without any muting as used in this study for the inversion process 
(bottom right), for mute line #1. 
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Figure B.3. Similar to Figure B.2 for forward approach, mute line #2.   
 

 

 



154 
 

 

  

 
Figure B.4. Similar to Figure B.2 for forward approach, mute line #3.   
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Figure B.5. Similar to Figure B.2 for forward approach, mute line #4.   
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Figure B.6. Similar to Figure B.2 for forward approach, mute line #5.   
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Figure B.7. Similar to Figure B.2 for forward approach, mute line #6.   
 

 



158 
 

 

  

 
Figure B.8. Similar to Figure B.2 for forward approach, mute line #7.   
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Figure B.9. Similar to Figure B.2 for forward approach, mute line #8.   
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Figure B.10. Similar to Figure B.2 for forward approach, mute line #9.   
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Figure B.11. Backward approach for time series muting; muted time series (top), Fourier 
amplitude spectrum of time series (bottom left), Phase velocity dispersion contour along 
with dispersion curve without any muting as used in this study for the inversion process 
(bottom right), for mute line #1.   
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Figure B.12. Similar to Figure B.11 for backward approach, mute line #2.   
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Figure B.13. Similar to Figure B.11 for backward approach, mute line #3.   
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Figure B.14. Similar to Figure B.11 for backward approach, mute line #4.   
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Figure B.15. Similar to Figure B.11 for backward approach, mute line #5.   
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Figure B.16. Similar to Figure B.11 for backward approach, mute line #6.   
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Figure B.17. Similar to Figure B.11 for backward approach, mute line #7.   
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Figure B.18. Similar to Figure B.11 for backward approach, mute line #8.   
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Figure B.19. Similar to Figure B.11 for backward approach, mute line #9. 
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Appendix C.  Details for 22 Cases of Inversion 

The match between the theoretical and experimental dispersion curves, comparison 

of inverted velocity profile with downhole, and details of the inversion are provided. In 

Addition, for five reasonable cases indicated in Table 6.1, the synthetic seismograms are 

plotted against the observed time series, after the cross-correlation correction is applied. 

The quality of match between the downhole seismic survey and the inverted velocity 

profiles are calculated as the coefficient of determination (R2) for 22 cases. Cases 12 and 

18 have R2 values of 0.663 and 0.600. Figure C.1 to Figure C.22 provide inversion detail 

for 22 cases. Figure C.23 to Figure C.29 provide seismogram comparisons. 

  

Figure C.1. The quality of inversion is provided as the match between the experimental 
and the theoretical dispersion curves (top left), and the inversion details including the 
damping factor and the error percentage is provided for each iteration (bottom left). The 
inverted velocity profile is plotted against the downhole counterpart (right), and the 
similarity between the two is indicated by the R2 regression coefficient value. 
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 Figure C.2. Similar to Figure C.1 for Case 2. 
 
 

 

Figure C.3. Similar to Figure C.1 for Case 3. 
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Figure C.4. Similar to Figure C.1 for Case 4 
 

 

 

Figure C.5. Similar to Figure C.1 for Case 5. 
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Figure C.6. Similar to Figure C.1 for Case 6 
 

 

  

Figure C.7. Similar to Figure C.1 for Case 7. 
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Figure C.8. Similar to Figure C.1 for Case 8. 
 

 

 

Figure C.9. Similar to Figure C.1 for Case 9. 
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Figure C.10. Similar to Figure C.1 for Case 10. 
 

 

  

Figure C.11. Similar to Figure C.1 for Case 11. 
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Figure C.12. Similar to Figure C.1 for Case 12. 
 

 

  

Figure C.13. Similar to Figure C.1 for Case 13. 
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Figure C.14. Similar to Figure C.1 for Case 14. 
 

 

  

Figure C.15. Similar to Figure C.1 for Case 15. 
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Figure C.16. Similar to Figure C.1 for Case 16. 
 

 

  

Figure C.17. Similar to Figure C.1 for Case 17. 
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Figure C.18. Similar to Figure C.1 for Case 18. 
 

 

 

  

Figure C.19. Similar to Figure C.1 for Case 19. 
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Figure C.20. Similar to Figure C.1 for Case 20. 
 

 

 

Figure C.21. Similar to Figure C.1 for Case 21. 
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Figure C.22. Similar to Figure C.1 for Case 22. 
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Figure C.23. Observed (dashed) and synthetic (solid) time series for Case 1. (Top) 
Original synthetics, (bottom) synthetics are shifted in time for best match. 



183 
 

 

 

Figure C.24. Time series for Case 1 are plotted with reduction velocity of 160 m/s. (Top 
left) Original time series, (top right) time shifted time series with respect to best match 
ratio contour as a function of time lag (bottom). 
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Figure C.25. Similar to Figure C.23 for Case 9. 



185 
 

 

 

Figure C.26. Similar to Figure C.24 for Case 9. 
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Figure C.27. Similar to Figure C.23 for Case 12. 
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Figure C.28. Similar to Figure C.24 for Case 12. 
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Figure C.29. Similar to Figure C.23 for Case 15. 
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Figure C.30. Similar to Figure C.24 for Case 15. 
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Figure C.31. Similar to Figure C.23 for Case 18. 
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Figure C.32. Similar to Figure C.24 for Case 18. 
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Appendix D.  MATLAB Scripts 

This appendix provides two MATLAB scripts. The first one reads the SEGY file 

called ‘1001.sgy’ and stack them together after applying time shift to synchronize time 

series. This script save the stacked data in a variable file called ‘dstack.mat’. This script 

requires a series of libraries to read SEGY files. You can find required libraries at internet 

address: ‘segymat.sourceforge.net’ and save them in a folder with name ‘SegyMAT’ 

along with the SEGY file. This script automatically adds it to the MATLAB path list.  

Second script calculates the theoretical dispersion contour and is used in this study to 

calculate the experimental dispersion curves throughout this dissertation. The script looks 

for a MATLAB data file called ‘dstack.mat’ and calculates dispersion curves and plot 

them as 2D and 3D contours. The script also prepares 2D and 3D plots for Fourier 

amplitudes. There is an option in the program to normalize dispersion curve at each 

frequency which if set as 1, will yield a better visualization.  

These scripts are bundled in a specific folder structure to avoid confusion while 

analyzing files from different projects and different shot locations and reader can e-mail 

author at shsseini@memphis.edu or spezeshk@memphis.edu to obtain an electronic 

version.  
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% Developed by Seyed Mehrdad Hosseini, 2012-2014, The University of Memphis 
% All Rights Reserved. You should possess written permission of program 
% author/University of Memphis to use/modify this code for any purpose in any level 
% and capacity, or to use its results, outputs, or algorithms. Contact info: 
% shsseini@memphis.edu, spezeshk@memphis.edu. 
 
warning off all 
clc 
clear all 
close all 
 
if ispc 
    fd='\'; 
else 
    fd='/'; 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%       SETTINGS 
 
% Adds the libraries to MATLAB path 
 
hitno=5;        % number of hits at each location 
addpath(['SegyMAT']) 
 
% READS FIELD OBSERVED DATA 
 
pth=['.'];      % path to SEGY files 
fnm='1001.sgy'; % segy filename to read and stack 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%       END OF SETTINGS 
 
fn=[pth fd fnm];               % full path file name to read 
[data,THdrs,Hdr]=ReadSegy(fn); % reads the SEGY file 
[m n]=size(data);              % data size [8000 x 360] in this case (5 hits) 
trno=n/hitno;                  % number of geophones 
 
dt=Hdr.dt/1000000;             % delta t 
t=(0:(Hdr.ns-1))*dt;           %makes time vector 
 
clrs=char('-k','--k','-.k',':k','-k'); % for plotting purposes 
lw=[1 1 1 1 2];                        % line widths for plot purposes 
 
% Sets up correct legends 
figure(1) 
for i=1:hitno 
    plot([-5 -5],[-5 -5],clrs(i,:),'linewidth',lw(i)) 
    hold on 
end 
 
% Plots real data 
for i=1:hitno % number of hits 
    for j=1:trno 
        tmp{i}(:,j)=data(:,(i-1)*trno+j)/max(abs(data(:,(i-1)*trno+j)))+(j-1)*2; % 
normalize data 
 
        d{i}(:,j)=data(:,(i-1)*trno+j); % plot purposes 
    end 
    plot(t,tmp{i}(:,:),clrs(i,:),'linewidth',lw(i)); 
    hold on 
end 
 
xlim([0 0.8]); 
ylim([-1 73]); 
 
lg=legend('1','2','3','4','5'); % change this for more hits 
set(gca,'FontName','times','fontsize',11); 
 
xlabel('Time (S.)','FontName','times','fontsize',11); 
ylabel('Geophone Number','FontName','times','fontsize',11); 
set(gcf,'units','centimeters','position',[0 0 12 8.5]); 
set(lg,'FontName','times','fontsize',11); 
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set(gca,'ytick',0:2:142); 
set(gca,'yticklabel',1:72); 
print('-depsc2','-r500','Stack_g10.eps'); 
 
% SYNCHRONIZATION USING CROSS CORRELATION WITH RESPECT TO SECOND RECORDE TIME SERIES 
% we use cross correlation to find time shift needed for different traces 
 
for i=1:trno % loop for each trace number (we got 72) 
    dstack(:,i)=d{1}(:,i); 
    jtarget=2; % TARGET HIT NUMBER, OTHER TRACES ARE MOVED WITH RESPECT TO THIS HIT 
    for j=1:hitno % number of hits 
        if j==jtarget 
            continue 
        end 
         
        tmp=xcorr(d{jtarget}(:,i),d{j}(:,i)); 
        [junk itmp]=max(abs(tmp)); 
        timeshift(i,j)=itmp-m; 
 
        if timeshift(i,j)>0                        % shifts forward 
            dstack(:,i)=dstack(:,i)+[zeros(timeshift(i,j),1); d{j}(1:m-
timeshift(i,j),i)]; 
            dm{j}(:,i)=[zeros(timeshift(i,j),1); d{j}(1:m-timeshift(i,j),i)]; 
        end 
 
        if timeshift(i,j)==0                       % no shift 
            dstack(:,i)=dstack(:,i)+d{j}(:,i); 
            dm{j}(:,i)=d{j}(:,i); 
        end 
 
        if timeshift(i,j)<0                        % shifts backward  
            dstack(:,i)=dstack(:,i)+[d{j}(abs(timeshift(i,j))+1:m,i); 
zeros(abs(timeshift(i,j)),1)]; 
            dm{j}(:,i)=[d{j}(abs(timeshift(i,j))+1:m,i); 
zeros(abs(timeshift(i,j)),1)]; 
        end 
    end 
end 
 
dstack=dstack/hitno; 
save('dstack','dstack') 
save('dt','dt') 
 
clrs2=char('-r','--r','-.r',':r','-r'); % For plotting purposes 
clear tmp 
for i=1:hitno % number of hits 
    if i==jtarget 
        continue 
    end 
    for j=1:trno 
        tmp{i}(:,j)=dm{i}(:,j)/max(dm{i}(:,j))+(j-1)*2; % Normalizes data 
    end 
    plot(t,tmp{i}(:,:),clrs2(i,:),'linewidth',lw(i)); 
    hold on 
end 
 
figure(2) 
clrs=char('ok','^k','vk','sk','xk'); 
xn=0; 
lg_=''; 
for i=1:hitno 
    xn=xn+1; 
    if i==jtarget 
        continue 
    end 
    jp(xn)=i; 
    plot(timeshift(:,i),clrs(i,:)); 
    hold on 
    lg_=char(lg_,['Hit ' num2str(jp(xn))]); 
end 
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lg_=lg_(1:4,:); 
xlim([0 73]); 
ylim([-2 35]); 
 
lg=legend(lg_); 
set(gca,'FontName','times','fontsize',12); 
ylabel(['Lag of Time Series with Respect to' char(13) char(10) 'The First Hit 
(Count)'],'FontName','times','fontsize',12); 
xlabel('Geophone Number','FontName','times','fontsize',12); 
set(gcf,'units','centimeters','position',[0 0 8.5 6]); 
set(lg,'FontName','times','fontsize',12); 
print('-djpeg','-r500','Stack_lag.jpg'); 
 

 
Figure D.1. MATLAB Script for stacking time series from different hits. 
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% Developed by Seyed Mehrdad Hosseini, 2012-2014, The University of Memphis 
% All Rights Reserved. You should possess written permission of program 
% author/University of Memphis to use/modify this code for any purpose in any level 
% and capacity, or to use its results, outputs, or algorithms. Contact info: 
% shsseini@memphis.edu, spezeshk@memphis.edu   
 
% This program calculates the dispersion curve from PARK et al. (1998) 
 
 
warning off all 
clc 
clear all 
close all 
 
if ispc 
    fd='\'; 
else 
    fd='/'; 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SETTINGS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SETTINGS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
size1=12; % fontsize1 (title and labels texts) 
size2=12; % fontsize (legend and axis numbers) 
 
 
normalized=1; % better to be 1, you can change to zero as well  
 
% The range for dispersion curve calculation, frequency 
fmin=1;    % starts from 1 Hz 
fmax=100;  % end to 100 Hz as default 
 
% The range for dispersion curve calculation, phase velocity 
vrmax=275; %m/s 
vrmin=50;  %m/s 
numv=2^9;  % number of steps between vrmin and vrmax 
dx=3;      % ft geophone spacing 
 
g1=7;      % starting geophone 
g2=66;     % final geophone  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
close all 
pth=[‘.’]; 
 
% Loads the stacked section 
load([pth fd 'dstack.mat']); 
Data=dstack; 
 
% Loads delta t 
load([pth fd 'dt.mat']); 
 
[m n]=size(Data); 
xnhit=0;  
 
% Zero-padds time series for next power of two 
np2=nextpow2(m); 
u(1:2^np2,1:n)=0; 
u(1:m,:)=Data; 
 
% Calculates fast Fourier transform (fft) 
U=fft(u); 
 
% Uses half of data because of the Nyquist frequency 
U=U(1:(2^(np2-1))+1,:); 
 
% Nyquist frequency and frequency vector 
fnyq=1/(2*dt); 
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df=fnyq/((2^(np2-1))); 
fvec=fnyq*((1:(2^(np2-1))+1)-1)/((2^(np2-1))); % frequency vector 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FFT PLOT NORMALIZED  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Plots the FFT of recorded seismograms  
 
for i=1:72 
    Unormalized(:,i)=abs(U(:,i))./max(abs(U(:,i))); % normalized frequency 
end 
figure(1) 
surf(5:72,fvec(10:205),abs(Unormalized(10:205,5:72))); 
set(gcf, 'units', 'centimeters', 'Position', [0 0 8.5 6]); 
ylim([fvec(10) fvec(205)]) 
xlim([5 72]); 
set(gca,'ztick',[0 1]); 
set(gca,'xtick',[5 10:10:70]); 
shading interp 
set(gcf,'PaperPositionMode','Auto'); 
set(gca,'FontSize',size1,'FontName','Times'); 
print('-djpeg','-r500','dispersion_experimental_3D.jpg'); 
ylabel('Frequency (Hz.)','FontSize',size1,'FontName','Times'); 
xlabel('Geophone Number','FontSize',size1,'FontName','Times'); 
zlabel('Normalized FFT Amplitude','FontSize',size1,'FontName','Times'); 
 
%3D VERSION of FFT 
view(55,83); 
print('-djpeg','-r500','FFT3D_normalized.jpg'); 
 
%2D VERSION OF FFT 
view(0,90) 
print('-djpeg','-r500','FFT2D_normalized.jpg'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FFT PLOT NOT NORMALIZED  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
for i=1:72 
    Unormalized(:,i)=abs(U(:,i))./max(abs(U(:,1))); 
end 
 
figure(2) 
surf(5:72,fvec(10:205),abs(Unormalized(10:205,5:72))); 
set(gcf, 'units', 'centimeters', 'Position', [0 0 8.5 6]); 
ylim([fvec(10) fvec(205)]) 
xlim([5 72]); 
set(gca,'ztick',[0 1]); 
set(gca,'xtick',[5 10:10:70]); 
shading interp 
set(gcf,'PaperPositionMode','Auto'); 
set(gca,'FontSize',size1,'FontName','Times'); 
print('-djpeg','-r500','dispersion_experimental_3D.jpg'); 
ylabel('Frequency (Hz.)','FontSize',size1,'FontName','Times'); 
xlabel('Geophone Number','FontSize',size1,'FontName','Times'); 
zlabel('FFT Amplitude','FontSize',size1,'FontName','Times'); 
 
%3D VERSION OF FFT 
view(55,83); 
print('-djpeg','-r500','FFT3D_not_normalized.jpg'); 
 
%2D VERSION OF FFT 
view(0,90) 
print('-djpeg','-r500','FFT2D_not_normalized.jpg'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EXPERIMENTAL PHASE VELOCITY DISPERSION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
fmini=min(find(abs(fvec-fmin)<1)); 
fmaxi=min(find(abs(fvec-fmax)<1)); 
Vtrial=linspace(vrmin,vrmax,numv); 
clear V2 V; 
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V(1:length(Vtrial),1:length(fmini:fmaxi))=0; 
xnf=0; 
for fi=fmini:fmaxi; % Index of current frequency 
    xnf=xnf+1; 
    keq=2*pi*fvec(fi)./Vtrial; 
    for xi=g1:g2 
        e=exp(1i*keq*abs(xi-1)*dx*0.3048); 
        V(:,xnf)=V(:,xnf)+(U(fi,xi)./abs(U(fi,xi))).*e(:); 
    end 
end 
 
fnd=0; 
VR=squeeze((V)); 
if normalized==1 
    [tmpm tmpn]=size(VR); 
    for im=1:tmpn 
        VR(:,im)=VR(:,im)./max(abs(VR(:,im))); 
    end 
end 
 
figure(3); 
vri=squeeze(Vtrial(1,:)); 
ffi=fvec(fmini:fmaxi); 
[vr,ff]=meshgrid(vri,ffi); 
plt=griddata(fvec(fmini:fmaxi),vri,VR,ff,vr,'cubic'); 
 
% COLOR MAP 
colormap(jet);surf(ff,vr,abs(plt)); 
shading flat 
set(gcf,'units', 'centimeters', 'Position', [0 0 8.5 6]); 
set(gcf,'PaperPositionMode','Auto'); 
set(gca,'FontSize',size1,'FontName','Times'); 
 
xlabel('Frequency (Hz.)','FontSize',size1,'FontName','Times'); 
ylabel('Phase Velocity (m/s)','FontSize',size1,'FontName','Times'); 
ylim([vrmin vrmax]) 
pbaspect([1.5 1 1]) 
 
%2D VERSION OF DISPERSION CONTOUR 
view(0,90) 
print('-djpeg','-r500','dispersion_experimental.jpg'); 
 
figure(4) 
 
surf(ffi(20:180),Vtrial,abs(VR(:,20:180))) 
xlim([ffi(20) ffi(180)]) 
ylim([50 275]); 
zlim([0 1]); 
shading flat 
set(gcf, 'units', 'centimeters', 'Position', [0 0 8.5 6]); 
set(gcf,'PaperPositionMode','Auto'); 
set(gca,'FontSize',size1,'FontName','Times'); 
 
%3D VERSION OF DISPERSION CONTOUR 
view(-30,75); 
print('-djpeg','-r500','dispersion_experimental_3D.jpg'); 
 
 

 
Figure D.2. MATLAB Script for experimental dispersion curve. 


