







# **Stochastic Simulations**

Point-source stochastic simulation of ground motion amplitudes for both WNA and ENA are determined.

| Parameter                               | WNA                                                                        | ENA                                                                                                                              |
|-----------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Source spectrum model                   | Single-corner-frequency $\omega^{-2}$                                      | Single-corner-frequency $\omega^{-2}$                                                                                            |
| Stress parameter, $\Delta\sigma$ (bars) | 80                                                                         | 250                                                                                                                              |
| Shear-wave velocity at source depth,    | 3.5                                                                        | 3.7                                                                                                                              |
| $\beta_s (km/s)$                        |                                                                            |                                                                                                                                  |
| Density at source depth,                | 2.8                                                                        | 2.8                                                                                                                              |
| $\rho_s (gm/cc)$                        |                                                                            |                                                                                                                                  |
| Geometric spreading, $Z(R)$             | $\begin{cases} R^{-1.0}; R < 40  km \\ R^{-0.5}; R \ge 40  km \end{cases}$ | $\begin{cases} R^{-1.3}; R < 70  km \\ R^{+0.2}; 70 \le R < 140  km \\ R^{-0.5}; R \ge 140  km \end{cases}$                      |
| Quality factor, $Q$                     | $180 f^{0.45}$                                                             | $\max(1000, 893f^{0.32})$                                                                                                        |
| Source duration, $T_s(sec)$             | $1/f_a$                                                                    | $1/f_{a}$                                                                                                                        |
| Path duration, $T_{\rho}(sec)$          | 0.05 <i>R</i>                                                              | $\begin{cases} 0; & R \le 10  km \\ +0.16R;  10 < R < 70  km \\ -0.03R;  70 < R \le 130  km \\ +0.04R;  R > 130  km \end{cases}$ |
| Site amplification, $A(f)$              | Boore and Joyner (1997)                                                    | Atkinson and Boore (2006)                                                                                                        |
| Kappa, $\kappa_0$ (sec)                 | 0.04                                                                       | 0.005                                                                                                                            |







# **Effective Distance •** To mimic the finite-fault effects in point-source simulations, the effective distance, $R'_{rup}$ , of Atkinson and Silva (2000) and Yenier and Atkinson (2014) recommendations are used in our stochastic simulations. $R'_{rup} = \sqrt{R^2_{rup} + h^2}$ $\log h = \max(-0.05 + 0.15M, -1.72 + 0.43M)$

























| ear Models for ENA and WN                               |                                                                               |                                                                                                        |  |  |
|---------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|
| Parameters                                              | WNA (from inversion)                                                          | ENA                                                                                                    |  |  |
| Source spectrum model                                   | Single-corner-frequency $\omega^{-2}$                                         | Single-corner-frequency $\omega^{-2}$                                                                  |  |  |
| Stress parameter, $\Delta\sigma$ (bars)                 | 125                                                                           | 400 to be consistent with Path Duration                                                                |  |  |
| Shear-wave velocity at source depth, $\beta_s \ (km/s)$ | 3.5                                                                           | 3.7                                                                                                    |  |  |
| Density at source depth,                                | 2.8                                                                           | 2.8                                                                                                    |  |  |
| $\rho_s  (gm/cc)$                                       |                                                                               |                                                                                                        |  |  |
| Geometric spreading, $Z(R)$                             | $\begin{cases} R^{-1.6075}; R \le 96  km \\ R^{-0.5}; R > 96  km \end{cases}$ | Atkinson and Boore (2014):<br>$\begin{cases} R^{-1.3}; R < 50 km \\ R^{-0.5}; R \ge 50 km \end{cases}$ |  |  |
| Quality factor, $Q$                                     | 243 <i>f</i> <sup>0.446</sup>                                                 | $525f^{0.45}$ all regions except Gulf<br>Atkinson and Boore (2014)                                     |  |  |
| Source duration, $T_s(sec)$                             | $1/f_{a}$                                                                     | $1/f_a$                                                                                                |  |  |
| Path duration, $T_p(sec)$                               | Table 1 of Boore and Thompson (2014) corrected for depth dependent magnitude. | Table 2 of Boore and Thompson (2014)<br>corrected for depth dependent<br>magnitude.                    |  |  |
| Site amplification, $A(f)$                              | Atkinson and Boore (2006) Table 4                                             | Boore and Thompson (2014) Table 4                                                                      |  |  |
| Kappa, $\kappa_0$ (sec)                                 | 0.0375                                                                        | 0.006 (Hashash, et al. 2014)                                                                           |  |  |













| inear Mode                                            | and WNA                                                                                                         |                                                                                                                                                        |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameters                                            | WNA (from inversion)                                                                                            | ENA                                                                                                                                                    |
| Source spectrum model                                 | Single-corner-frequency $\omega^{-2}$                                                                           | Single-corner-frequency $\omega^{-2}$                                                                                                                  |
| Stress parameter, $\Delta\sigma$ (bars)               | 94.5                                                                                                            | 400 to be consistent with Path Duration                                                                                                                |
| Shear-wave velocity at source depth, $\beta_s$ (km/s) | 3.5                                                                                                             | 3.7                                                                                                                                                    |
| Density at source depth, $\rho_s$ (gm/cc)             | 2.8                                                                                                             | 2.8                                                                                                                                                    |
| Geometric spreading, $Z(R)$                           | $\begin{cases} R^{-1.6387}; R < 45  km \\ R^{-0.33}; 45 \le R < 125  km \\ R^{-0.5}; R \ge 125  km \end{cases}$ | Pezeshk and Chapman Communications<br>(2014)<br>$\begin{cases} R^{-1.3}; R < 60  km \\ R^0; 60 \le R < 120  km \\ R^{-0.5}; R \ge 120  km \end{cases}$ |
| Quality factor, $Q$                                   | 211 <i>f</i> <sup>0.992</sup>                                                                                   | Pezeshk and Chapman Communications<br>(2014)<br>$440 f^{0.470}$ all regions except Gulf                                                                |
| Source duration, $T_s(sec)$                           | $1/f_a$                                                                                                         | 1/f <sub>a</sub>                                                                                                                                       |
| Path duration, $T_p(sec)$                             | Table 1 of Boore and Thompson (2014)           corrected for depth dependent magnitude           (see below).   | Table 2 of Boore and Thompson (2014)           corrected for depth dependent magnitude           (see below).                                          |
| Site amplification, $A(f)$                            | Atkinson and Boore (2006) Table 4                                                                               | Boore and Thompson (2014) Table 4                                                                                                                      |
| Kappa, $\kappa_0$ (sec)                               | 0.0325                                                                                                          | 0.006 (Hashash, et al. 2014)                                                                                                                           |





















## Correction for Site Effects (BSSA2014)

$$F_{S,B} = \ln(F_{lin}) + \ln(F_{nl})$$

$$\ln(F_{lin}) = \begin{cases} c \ln\left(\frac{V_{s30}}{V_{ref}}\right) & V_{s30} \le V_c \\ c \ln\left(\frac{V_{s30}}{V_{ref}}\right) & V_{s30} > V_c \end{cases}$$

$$\ln(F_{nl}) = f_1 + f_2 \ln\left(\frac{PGA_r + f_3}{f_3}\right)$$

where c describes the  $V_{S30}$  -scaling in the model,  $V_c$  is the limiting velocity beyond which ground motions no longer scale with  $V_{S30}$ , and  $V_{ref}$  is the site condition for which the amplification is unity (taken as 760 m/sec).

 $PGA_r$  is the median peak horizontal acceleration for reference rock (taken as  $V_{S30}$ =760 m/sec).



#### HYBRID EMPIRICAL GROUND-MOTION PREDICTION EQUATIONS FOR EASTERN NORTH AMERICA

$$log(\overline{Y}) = c_1 + c_2 M_w + c_3 M_w^2 + (c_4 + c_5 M_w) \times \min\{log(R), log(R_1)\} + (c_6 + c_7 M_w) \times \max[\min\{log(R / R_1), log(R_2 / R_1)\}, 0] + (c_8 + c_9 M_w) \times \max[log(R / R_2), 0] + c_{10} R$$

where

$$R = \sqrt{R_{rup}^2 + c_{11}^2}$$

The mean aleatory standard deviation of to be associated with the predictions is defined as a function of earthquake

 $\sigma_{\log(\bar{Y})} = \begin{cases} c_{12}M_w + c_{13} & M \le 7 \\ -6.95 \times 10^{-3}M_w + c_{14} & M > 7 \end{cases}$ 



















## Future Work

- Residuals show that we are overestimating data within about 30 km.
- $\Box$  Look at Q(f) more carefully for high frequencies.
- Consider both bilinear and trilinear models.
- □ Use NGA-East site corrections.
- Calibrate against NGA-East Database.
- □ Consider induced events separately.



- □ S. Pezeshk, <u>spezeshk@memphis.edu</u>
- □ A. Zandieh, <u>arash.zandieh@live.com</u>
- □ K. Campbell, <u>kcampbell@corelogic.com</u>
- B. Tavakoli, <u>btavakol@bechtel.com</u>





















### ACKNOWLEDGMENTS

Dr. Paul Spudich, USGS Dr. Martin Mai, KAUST Dr. Hugo C. Jimenez, KAUST

| Parameter                                                                                              | WNA                                   | ENA                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |  |
|--------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|
| Source spectrum model                                                                                  | Single-corner-frequency $\omega^{-2}$ | Single-corner-frequency $\omega^{-2}$                                                                                            |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |  |
| Stress parameter $\Lambda\sigma$ (bars)                                                                |                                       | 250                                                                                                                              |                                                                                                                                                                                          | Table 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |  |
|                                                                                                        | 80                                    |                                                                                                                                  | Alternative Seismological Parameters Used with the Stochastic<br>Method in WNA and ENA*                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |  |
| Shear-wave velocity at source depth,                                                                   | 3.5                                   | 3.7                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EN A                                  |  |
| $\beta_{s}$ (km/s)                                                                                     |                                       |                                                                                                                                  | Parameters                                                                                                                                                                               | WNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ENA                                   |  |
| Density at source depth,                                                                               | 2.8                                   | 2.8                                                                                                                              | Source spectrum model                                                                                                                                                                    | SCPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SCPS                                  |  |
| $\rho_{\rm s}  ({\rm gm/cc})$                                                                          |                                       |                                                                                                                                  |                                                                                                                                                                                          | DCPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DCPS                                  |  |
| Geometric spreading, $Z(R)$ $\begin{cases} R^{-1.0}; R < 40  km \\ R^{-0.5}; R \ge 40  km \end{cases}$ | $[R^{-1.3}; R < 70  km]$              | Stress drop (bars)                                                                                                               | 120-90 (SCPS)<br>90-60 (DCPS)                                                                                                                                                            | 105(0.05), 125(0.25), 150(0.40), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25), 180(0.25) |                                       |  |
|                                                                                                        | $\int R^{-1.0}; R < 40  km$           | $R^{+0.2}$ : 70 $\leq R < 140  km$                                                                                               | Quality factor                                                                                                                                                                           | 90 00 (D CI D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 215 (0.05)                            |  |
|                                                                                                        | $R^{-0.5}; R \ge 40  km$              | $R^{-0.5} \cdot R > 140  km$                                                                                                     |                                                                                                                                                                                          | $180f^{0.45}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $400f^{0.40}(0.3),^{\dagger}$         |  |
|                                                                                                        | [ <i>R</i> , <i>R</i> ≥ 140 km        |                                                                                                                                  |                                                                                                                                                                                          | $680f^{0.36}(0.4),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |  |
| Quality factor, $Q$                                                                                    | $180 f^{0.45}$                        | $\max(1000, 893 f^{0.32})$                                                                                                       | <i>V</i>                                                                                                                                                                                 | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1000f^{0.30}(0.3)$                   |  |
| Source duration, $T_s(sec)$                                                                            | $1/f_{a}$                             | $1/f_a$                                                                                                                          | карра                                                                                                                                                                                    | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.003 (0.3), 0.000 (0.4), 0.012 (0.3) |  |
| Path duration, $T_p(sec)$                                                                              | 0.05 <i>R</i>                         | $\begin{cases} 0; & R \le 10  km \\ +0.16R;  10 < R < 70  km \\ -0.03R;  70 < R \le 130  km \\ +0.04R;  R > 130  km \end{cases}$ | *WNA, western North America; ENA, eastern North America; SCPS<br>single-corner point source; DCPS, double-corner point source.<br><sup>†</sup> Weighting factors. After Campbell (2003). |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |  |
| Site amplification, $A(f)$                                                                             | Boore and Joyner (1997)               | Atkinson and Boore (2006)                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |  |
| Kappa, $\kappa_0$ (sec)                                                                                | 0.04                                  | 0.005                                                                                                                            |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |  |

