TRAFFIC ASSIGNMENT
Outline

1. Introduction
2. Assignment types and modeling methods
3. User equilibrium (UE) assignment
4. Solution methods and issues
5. Validation
The procedure used to obtain expected traffic volume on the network is known as trip assignment.
Traffic Assignment

- **Final step: Traffic assignment**
 - **What:** When a person decides where to go and which mode to use, he/she has to decide on the route to take
 - **Alternatives:** The set of O-D routes in the route choice set for the person
 - **Why:** Traffic assignment estimates the route/link flows and travel times in the network
Traffic Assignment

- Traffic assignment
 - **How**: By distributing the total O-D demand between various routes for that O-D pair
 - **Network loading mechanism**: The process of loading O-D trip table to the network links
 - **Difficulty**: Individuals are not homogenous
 - **Behavior**: Different individuals behave differently based on their socio-economic characteristics and past experience
 - **Choice set**: Different individuals may have different route choice sets
 - **Objective**: Routing objective may differ across individuals
Assignment Definition

- **Given**
 - A graph representation of the urban transportation network
 - The associated link performance functions, and
 - An origin-destination matrix

- **Find**
 - the flow and the associated travel time on each of the network links.

- This problem is known as that of traffic assignment as the objective is to assign the O-D matrix onto the network.
Significance

- Significance of traffic assignment
 - Represents the “basic” level of what we mean by “traffic conditions”
 - Essential to make planning, operational, renewal, and policy decisions
 - Provides “feedback” to trip distribution and mode split steps of the 4-step model
 - Provides input to assess and influence energy and environmental impacts
 - Aids transportation operators in making “supply” decisions
 - Key methodological engine for intelligent transportation systems (ITS) applications
Cost Function

- Conventional Economics: Demand (D) and Supply (S)
- Equilibrium between D&S defines the price
- Equilibrium point
 - Marginal cost = Marginal revenue
- In TA Cost is a function of a number of attributes
 - Distance
 - Free Flow Speed
 - Capacity
 - Speed-Flow Relationship
 - Fares, Fuel,
- Demand = Origin-Destination (OD) matrix
- Supply = Network Capacity
Some dimensions of traffic assignment

- **Mode**: Non-scheduled, scheduled (transit)
- **Time**: Static, dynamic
- **Randomness/uncertainty**: Deterministic, stochastic (demand and/or supply)
- **Objective**: User equilibrium (UE), system optimal (SO), boundedly-rational (BR)
- **Behavior**: Several factors (such as familiarity, risk willingness, etc.)
- **Function**: Descriptive, prescriptive
Dimension-Mode

- (Road) Traffic assignment
 - Assign non-scheduled O-D trip demand for each O-D pair

- Transit assignment
 - Assign passengers who use the routes on a transit network using the transit O-D demand
 - Increasing future importance as transit (bus, rail, etc.) becomes a preferred solution

- Intermodal assignment
 - Assign intermodal trips (such as park-and-ride, ferry and bus)
 - Increasingly important in the future
 - Future research needs
Static traffic assignment
- Time is not a consideration
- O-D trip rate is constant
- Link travel times are constant
- Appropriate for analysis of “off-peak” and/or homogenous conditions
- Useful for long-term planning purposes

Dynamic traffic assignment (DTA)
- Time-dependency of traffic conditions is explicitly considered
- O-D trip demand and travel times (flows) are time-dependent
- Appropriate for “peak-period” analyses and to capture time-dependency when it is a significant aspect of the analysis
- Useful for real-time operations and management, including for assessing various ITS strategies
- In recent years, used for planning applications
Dimension-Objective

- **User equilibrium assignment**
 - Will be discussed in detail later
 - User behavior is “selfish”
 - Reasonable estimate of actual driver behavior
 - Equilibrium
 - Adequate for long-term planning

- **System optimal assignment**
 - “Socially optimal”
 - Seeks best system performance
 - Behaviorally untenable; not an equilibrium
 - Requires coordination and/or collaboration
 - Provides a benchmark for comparing various traffic management strategies
 - Useful for developing prescriptive traffic strategies
 - Useful for many ITS applications
Dimension- Objective

- **Deterministic assignment**
 - Demand, supply, performance aspects are known *a priori*
 - Focus is on randomness, not time-dependency

- **Stochastic assignment**
 - One or more of demand, supply, and performance characteristics have randomness
 - Useful for modeling heterogeneity in individuals
 - For example, stochastic user equilibrium (SUE) assumes that individuals perceive link/route travel times differently (based on their behavioral tendencies)
Assignment Types

- Trip Assignment
 - Transit Assignment
 - Traffic Assignment
 - Static TA
 - Dynamic TA
Static Traffic Assignment - Assumptions

- Standard assumptions
 - O-D demand is constant (does not vary with time)
 - Link travel times are time-invariant
 - A route flow exists on all the links comprising that route simultaneously

- Performance function: Travel time on a link depends only on the flow on that link and does not depend on flows on other links (though this assumption is not necessary)
Mathematical Relationship Between Traffic Flow and Travel Time
Link Performance Functions

- A steady-state link performance function is a positive, increasing, and convex curve.

- Typical link performance functions do not consider queued vehicles in the traffic stream.
Link Performance Functions

\[t = t_0 \left[1 + \alpha \left(\frac{V}{C} \right)^\beta \right] \]

\(\alpha = 0.15, \beta = 4.0 \)

Volume in Vehicles/hour

V = volume, C = capacity, \(t_0 = \) free flow travel time
Static UE Assignment

Static Traffic Assignment

- Stochastic Approach
 - User equilibrium
 - System optimal

- Deterministic Approach
 - User Equilibrium
 - System Optimal
To solve the traffic assignment problem, it is required that the rule by which motorists choose a route be specified.

It is reasonable to assume that every motorist will try to minimize his or her own travel time when traveling from origin to destination.

A stable condition is reached only when no traveler can improve his/her travel time by unilaterally changing routes.
Equilibrium

- UE definition implies that
 - motorists have **full** information (choice set and travel times),
 - motorists **consistently** make the **correct** route choice decision
 - all motorists are **identical** in their behavior

- These assumptions can be **partially relaxed** in the context of route choice under information provision.
 - distinction between the travel time that individuals **perceive** and the **actual** travel time
 - This definition characterizes the stochastic-user-equilibrium (SUE) condition.
Wardrop’s Equilibrium

- Flow allocation rules
 - Wardrop's first principle
 “For each O-D pair, the journey times on all used routes are equal, and less than or equal to those on any unused route”
 - Defines User Equilibrium (UE) flow
 - Wardrop's Second principle
 “The total system travel time is minimum (that is, the average journey time is minimum)”
 - Defines System Optimal (SO) flow
UE Characteristics

- Characteristics
 - At user equilibrium, the travel time on all used routes are equal and less than or equal to those on any unused route
 - At user equilibrium, no user can improve his/her travel time by unilaterally switching routes
UE-Assumptions

- Assumptions
 - Individuals have **full knowledge** of travel times on all possible routes
 - All individuals are **identical** in their behavior (for example, perceive travel time identically)
 - Travel time is the **only factor** in the decision-making (all individuals unilaterally seek to decrease their travel times)
Example

Given

- Network with 1 O-D pair and 2 routes (each route has just one link)
- O-D demand = 10
- Link performance functions (shown on next slide)

Determine UE:

- Route flows
- Travel times
A simple example of UE

\[q^{OD} = x_1 + x_2 \]

Diagram showing two links, \(O \) to \(D \) and \(D \) back to \(O \), with variables \(t_1(x_1) \) and \(t_2(x_2) \) on the graph.
Operational definition of UE:

For each O-D pair, at user equilibrium, the travel time on all used paths is equal, and (also) less than or equal to the travel time that would be experienced by a single vehicle on any unused path.
User Equilibrium is reached when no traveler can improve his travel time by unilaterally changing routes.
UE-Example

Demand = 10

\[
t_1 = 10 \left[1 + 0.15 \left(\frac{x_1}{2} \right)^4 \right]
\]

\[
t_2 = 25 \left[1 + 0.15 \left(\frac{x_2}{3} \right)^4 \right]
\]

t denotes time
x denotes flow

Ref: Sheffi (1984)
UE-Example Concept

\[x_2 = 10 - x_1 \]
Flow on link 2 \((x_2) = 10-x_1\)

\(x_1=4.8, \ x_2=5.2; \ t_1=t_2=59 \) (approx)
Suppose that the flow on link 1 is higher than the equilibrium flow.

- Sum of area under the curves is minimum at equilibrium point.
Graphical Approach

- Problem with graphical approach
 - Cannot be used when an O-D pair has more than two routes
 - Cannot be used when routes have more than one link, and when some links are common to routes on the same or different O-D pair
UE Approaches

- **Heuristic methods** *(we will not talk in this presentation)*
 - All-or-nothing (AON)
 - Capacity restraint
 - Incremental assignment

- **Analytical methods** *(Feasible direction methods)*
 - Frank-Wolfe (F-W) algorithm
 - Link-based methods
 - Modified F-W methods
 - Origin-based methods
 - Path-based methods
Analytical Approach

- Feasible direction methods
 - Mathematical formulation for UE problem as an optimization problem
 - Consists of objective function and constraints
 - Equivalency of optimization problem and UE conditions
Formulating the Assignment Problem

- **NOTATIONS**
 - Network G \((N,A)\)
 - \(N\) is set of consecutively numbered nodes
 - \(A\) is a set of consecutively numbered arcs (links)
 - \(R\) denote the set of origin centroids (which are the nodes at which flows are generated)
 - \(S\) denote the set of destination centroids (which are the nodes at which flows terminate)
 - \(q_{rs}\) is the trip rate between origin “\(r\)” and destination “\(s\)” during the period of analysis
 - \(x_a\) and \(t_a\), represent the flow and travel time, respectively, on link \(a\)
Formulating the Assignment Problem

NOTATIONS

\[t_a = t_a(x_a) \] where \(t_a(.) \) represents the relationship between flow and travel time for link \(a \)

\[f_{rs}^k \] represents flow on path \(k \) connecting origin \(r \) and destination \(s \) such that path \(k \in K_{rs} \)

\[c_{rs}^k \] is travel time on path \(k \) is the sum of the travel time on the links comprising this path.

\[
c_{rs}^k = \sum_{a} t_a \delta_{rs}^k \quad \forall k \in K_{rs}, \forall r \in R, \forall s \in S
\]

where

\[\delta_{rs}^k = 1 \text{ if link is part of path } k \text{ connecting O-D pair } r-s \]

\[= 0 \text{ otherwise} \]

Using the same indicator variable, the link flow can be expressed as a function of the path flow, that is

\[
x_a = \sum_{a} \sum_{r} \sum_{s} f_{rs}^k \delta_{a,k}^{rs}
\]
User Equilibrium Formulation

\[
\min \ z(x) = \sum_{a}^{x_a} \int_{0}^{t_a(\omega)} d\omega
\]

subject to

\[
\sum_{k} f_{k}^{rs} = q_{rs} \quad \forall \ r, s
\]

\[
f_{k}^{rs} \geq 0 \quad \forall \ k, r, s
\]

\[
x_{a} = \sum_{a}^{x_a} \sum_{r}^{f_{r}} \sum_{s}^{f_{s}} f_{k}^{rs} \delta_{a,k}^{rs} \quad \forall a
\]

\[
\delta_{a,k}^{rs} = \begin{cases} 1 & \text{if link a is on path k between o – d pair rs} \\ 0 & \text{otherwise} \end{cases}
\]

- Flow conservation constraint
- Non-negativity constraint
- Definitional constraints
Significance of User Equilibrium

- **Significance:**
 - Reasonable assumption for representation of human behavior
 - In order to assess the network performance for given demands UE conditions are assumed

- **Limitations:**
 - Assumption that each user minimizes travel time implies each user has perfect information on all conditions and routes
 - Individuals are assumed to behave identically
UE-Solution Method

- Developments
 - Beckmann et al. (1956) proved the equivalency between their transformation and UE problem
 - They also proved that their formulation has unique solution in terms of link flows
 - Frank-Wolfe (F-W) algorithm (1956) was used to solve Beckmann’s UE formulation (most commonly used)
 - Since then many researchers have contributed to this field and many algorithms have developed
F-W Formulation

- In Frank-Wolfe algorithm, the updated route flows in each iteration are obtained by combining the current set of route flows with current all-or-nothing assignment flows:

\[
f_{kij}^{(n+1)} = \begin{cases}
(1 - \alpha)f_{kij}^n & kij \neq kij^* \\
(1 - \alpha)f_{kij}^n + \alpha f_{ij} & kij = kij^*
\end{cases}
\]

- In each iteration, the flow on minimum cost route increases and that on other routes decreases for an O-D pair.

- The shift of flows from expensive routes to the cheapest route is proportional to current flow and step size.

- The route flows are used to generate the link flows.

- In terms of the link flows:

\[
x_{a}^{n+1} = x_{a}^{n} + \alpha_n(y_{a}^{n} - x_{a}^{n}),
\]
F-W Merits

- **Merits**
 - Easy to implement
 - Converges very fast in early iterations
 - Solution is much better than heuristic techniques such as incremental assignment
 - Requires less memory (RAM)
F-W Limitations

- Limitations
 - Tails badly into creep and is very slow in reaching objective function minimum (less efficient)
 - Provides only link flows, but for many planning applications, we need route flows
Demand for travel depends on the activity pattern, and hence not uniform over time and space.

However transportation planners analyze networks only for certain periods of the day – morning peaks, evening peaks etc. depending on objective of analysis.

⇒ O-D flows are considered constant for such analysis (steady-state) → static assignment

Flow is present simultaneously on all links of a path (static conditions)
System Optimal Assignment

\[\min \ z(x) = \sum_{a} x_{a} \ t_{a}(x_{a}) \]

subject to

\[\sum_{k} f_{k}^{rs} = q_{rs} \quad \forall \ r, s \]

\[f_{k}^{rs} \geq 0 \quad \forall \ k, r, s \]

\[x_{a} = \sum_{a} \sum_{r} \sum_{s} f_{k}^{rs} \delta_{a,k}^{rs} \quad \forall \ a \]

\[\delta_{a,k}^{rs} = \begin{cases} 1 & \text{if link } a \text{ is on path } k \text{ between } o - d \text{ pair } rs \\ 0 & \text{otherwise} \end{cases} \]
The SO formulation is subject to the same set of constraints as the UE problem and differs only in its objective function.

The SO flow pattern does not generally represent an equilibrium solution in congested networks.

Consequently, the SO flow pattern is not an appropriate descriptive model of actual user behavior.
Significance of System Optimal

1. In many transportation system analysis problem it is useful to know the best performance possible for the network and OD demand

2. This is useful for control action (pricing, tolling) as well as to compare alternative solution strategies

3. Solution procedures for SO are virtually identical to those for UE
Solving UE

Figure 2: Two Link Problem with variable travel time function

Let's now take a case where travel time functions for both the links is given by:

\[t_1 = 10 + 3x_1 \]
\[t_2 = 15 + 2x_2 \]

and total flows from 1 to 2.

\[q_{12} = 12 \]
Solving UE

\[\min Z(x) = \int_0^{x_1} (10 + 3x_1) \, dx_1 \]
\[+ \int_0^{x_2} (15 + 2x_2) \, dx_2, \]
\[= 10x_1 + \frac{3x_1^2}{2} + 15x_2 + \frac{2x_2^2}{2}, \]

\[\text{st: } x_1 + x_2 = 12. \]

- Substitute \(x_2 = 12 - x_1 \)

\[\min Z(x) = 10x_1 + \frac{3x_1^2}{2} + 15(12 - x_1) + \frac{2(12 - x_1)^2}{2} \]

- Differentiate w.r.t \(x_1 \) and equate to zero

- \(x_1 = 5.8, \ x_2 = 6.2. \)
Solving SO

Let us consider the same example

For S, $\min Z(x) = x_1 \cdot (10 + 3x_1) + x_2 \cdot (15 + 2x_2)$

$= 10x_1 + 3x_1^2 + 15x_2 + 2x_2^2$
Solving SO

- Substitute \(x_2 = 12 - x_1 \)

\[
\min Z(x) = 10x_1 + 3x_1^2 + 15(12 - x_1) + 2(12 - x_1)^2
\]

- Differentiate the equation and set it to zero

- \(x_1 = 5.3, x_2 = 6.7 \)
Comparison of Methods

<table>
<thead>
<tr>
<th>Type</th>
<th>t1</th>
<th>t2</th>
<th>x1</th>
<th>x2</th>
<th>UE Z(x)</th>
<th>SO Z(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AON</td>
<td>10.00</td>
<td>15.00</td>
<td>12.00</td>
<td>0.00</td>
<td>336.00</td>
<td>552.00</td>
</tr>
<tr>
<td>UE</td>
<td>27.40</td>
<td>27.40</td>
<td>5.80</td>
<td>6.20</td>
<td>239.90</td>
<td>328.80</td>
</tr>
<tr>
<td>SO</td>
<td>30.10</td>
<td>25.60</td>
<td>5.30</td>
<td>6.70</td>
<td>240.53</td>
<td>327.55</td>
</tr>
</tbody>
</table>
Stochastic Methods

- Emphasize the variability in driver perception of cost
- Need to consider second best routes
- No perfect information about network characteristics
- Different travel costs perception
- Eliminates “zero volume” links
- Requires large number of iterations and hence a longer run time

See more in Modeling Transport by Ortuzar and Williumsen, Chapter 10. or Sheffi (1984) Chapter 7
Stochastic Methods

- Need to consider second-best routes (in terms of engineering or modelled costs);
- Generates additional problems as the number of alternative second-best routes between each O–D pair may be extremely large
Several methods have been proposed to incorporate these aspects but only two have relatively widespread acceptance:

- *simulation-based methods*
 - Uses ideas from stochastic (Monte Carlo) simulation to introduce variability in perceived costs.

- *proportion-based methods*
 - Allocates flows to alternative routes from proportions calculated using logit-like expressions.
There is a distribution of perceived costs for each link with the engineering costs as the mean.
Assumptions

- The distributions of perceived costs are assumed to be independent.
- Drivers are assumed to choose the route that minimizes their perceived route costs, which are obtained as the sum of the individual link costs.
Virtually all these methods are based on a loading algorithm which splits trips arriving at a node between all possible exit nodes,

- as opposed to the all-or-nothing method which assigns all trips to a single exit node.

Very often the implementation of these methods reverses the problem so that the division of trip at a node is actually based upon where the trips are coming from rather than where they are going to.
Proportional Based Methods

- Consider node B in Figure; there are a number of possible entry points denoted by A1, A2, A3, A4 and A5 for trips from I to J.
- Splitting functions

\[
\begin{align*}
 f_i &= 0 & \text{if } & d_{A_i} \geq d_B \\
 0 < f_i \leq 1 & \text{if } & d_{A_i} < d_{B_i}
\end{align*}
\]

\[
F(A_i, B) = \frac{T_B f_i}{\sum_i f_i}
\]
Model Validation

- Truck counts
 - By vehicle class
 - By facility type
 - By time of day
 - Screen lines
 - Cordon lines

- Develop RMSE, R^2 or other goodness-of-fit measures
Screenlines Example

Share of counts per screenline

- **Green** > 75%
- **Orange** 50% - 75%
- **Red** < 50%
All vehicles all day

Model Validation Example

\[R^2 = 0.7826 \]
VMT based comparison

![Bar chart showing Daily VMT for different types of roads (Interstate, Freeways/Expressways, Other Principal Arterial, Minor Arterial, Collector, Local). The chart compares observed and modeled VMT values. The highest observed VMT is for Interstate, followed by Other Principal Arterial, Minor Arterial, Collector, and Local. The modeled values for Interstate are slightly lower than the observed values.]
Volume class comparison