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Discrete Choice Introduction (1) 
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 Discrete or nominal scale data often play a dominant 

role in transportation 

 because many interesting analyses deal with such data. 

 Examples of discrete data in transportation include  

 the mode of travel (automobile, bus, rail transit),  

 place to relocate (urban, sub-urban, local) 

 lane changing (lane to left, right or stay on the same lane) 

 the type or class of vehicle owned, and  

 the type of a vehicular crash (run-off-road, rear-end, head-

on, etc.). 



Discrete Choice Introduction (2) 
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 From a conceptual perspective,  

 such data are classified as those involving a behavioral 

choice (choice of mode or type of vehicle to own) or  

 those simply describing discrete outcomes of a physical 

event (type of vehicle accident). 



Models for Discrete Data 
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 The concept of discrete choice model is 

 the individual decision maker who, faced with a set of 

feasible discrete alternatives, selects the one that yields 

greatest utility 

 A set of discrete alternatives form a choice set 

 For a variety of reasons the utility of any 

alternative is, from the perspective of the analyst, 

best viewed as a random variable. 



Random Utility 
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 In a random utility model the probability of any 
alternative i being selected by person n from choice 
set Cn is given by 

 

 

 Where  

 i, and j are two alternatives 

 Uin->utility of alternative i as perceived by decision 
maker n 

 Cn-> choice set 

 



Random Utility 
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 We ignore situations where Uin = Ujn for any i and 
j in the choice set because  

 if Uin and Ujn are continuous random variables then the 
probability Pr(Uin = Ujn) that they are equal is zero. 

 

 Let us pursue the basic idea further by considering 
the special case where the choice set Cn contains 
exactly two alternatives.  

 Such situations lead to what are termed binary choice 
models. 



Random Utility 
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 For convenience we denote the choice set Cn as {i, 

j}, where, for example,  

 alternative i might be the option of driving to work and  

 alternative j would be taking the train. 

 The probability of person n choosing i is 

 

 

 the probability of choosing alternative j is 

 

 

 



Binary Choice 
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 Let us develop the basic theory of random utility models 
into a class of operational binary choice models 

 A detailed discussion of binary models serves a number 
of purposes.  

 First, the simplicity of binary choice situations makes it 
possible to develop a range of practical models, which is 
more tedious in more complicated choice situations. 

 Second, there are many basic conceptual problems that are 
easiest to illustrate in the context of binary choice.  

 Many of the solutions can be directly applied to situations 
with more than two alternatives. 



Systematic component and 

disturbances 
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 Uin and Ujn are random variables, we begin by 
dividing each of the utilities into two additive parts 
as follows 

 

 

 Where  

 Vin and Vjn are called the systematic (or 
representative) components of the utility of i and j;  

 εin and εjn are the random parts and are called the 
disturbances (or random components). 



Systematic component and 

disturbances 
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 It is important to stress that Vin and Vjn are 

functions and are assumed here to be deterministic 

(i.e., nonrandom).  

 The terms εin and εjn may also be functions, but 

they are random from the observational perspective 

of the analyst. 



Systematic component and 

disturbances 
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 Probability that alternative I is selected by decision 
maker n is 

 

 

 

 

 We can see that the absolute levels of V’s and ε’s 
do not matter; all that matters is the relative values 
of the differences 



Specification of the Systematic 

Component 
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 The first issue in specifying Vin and Vjn is to ask, what 
types of variables can enter these functions? 

 For any individual n any alternative i can be 
represented by a vector of attributes zin.  

 In a choice of travel mode, zin might include travel time, cost, 
comfort, convenience, and safety.  

 It is also useful to characterize the decision maker n by 
another vector of characteristics, which we shall denote 
by Sn.  

 These are often variables such as income, auto ownership, 
household size, age, occupation, and gender. 



Specification of the Systematic 

Component 
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 The problem of specifying the functions Vin and Vjn 

consists of defining combinations of zin, zjn, and Sn 

that reflect reasonable hypotheses about the effects 

of such variables 

 It is generally convenient to define a new vector of 

variables, which includes both zin and Sn.  

 We write the vectors xin = h(zin, Sn) and xjn = h(zjn, 

Sn), where h is a function 



Specification of the Systematic 

Component 
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 The function h can be as simple as a pure attribute 

model, with xin = zin,  

 but can also involve non-trivial interactions of zin 

with elements of Sn such as price, or travel cost, 

divided by income, or the log of income minus price. 

 Now we can write the systematic components of the 

utilities of i and j 



Specification of the Systematic 

Component 
16 

 If we denote βT = (β1, β2, . . . , βK) as the (row) 

vector of K unknown 

 

 

 

 When such a linear formulation is adopted, 

parameters β1,. . . ,βK are called coefficients. 



Specification of the Systematic 

Component 
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 A coefficient appearing in all utility functions is 

generic,  

 And a coefficient appearing in only one utility 

function is alternative specific. 

 Consider a binary mode choice example, where one 

alternative is auto (A) and the other is transit (T), 

and where the utility functions are defined as 

 



Specification of the Systematic 

Component 
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 In this case it appears as though the auto utility has 

an additional term equal to 0.37. We can “convert” 

this model into the form of equation by defining our 

x’s as follows 

 

 

 with K = 2, β1 = 0.37 is alternative specific, and 

β2 = −2.13 is generic. Thus 

 



Specification of the Systematic 

Component 
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 In this example, the variable xAn1 is an alternative 

specific (i.e., auto) dummy variable and β1 is called 

an alternative specific constant. 



Linearity in Parameters 
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 A model with a linear-in-parameter formulation can 

be described in a specification table.  

 A specification table has  

 as many columns as alternatives in the model (two in the 

specific context of binary choice), and  

 as many rows as coefficients (K).  

 Entry (k, i) of the table contains xik, the variable k for 

alternative i. 



Linearity in Parameters 
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 Linearity in the parameters is not as restrictive an 

assumption as one might first think. Linearity in the 

parameters is not equivalent to linearity in the 

variables z and S.  

 We allow for any function h of the variables so that 

polynomial, piecewise linear, logarithmic, 

exponential, and other transformations of the 

attributes are valid for inclusion as elements of x. 



Linearity in Parameters 
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 We note that we have implicitly assumed that the 
parameters β1, β2,. . . , βK are the same for all 
members of the population.  

 Again this is not as restrictive as it may seem at first 
glance.  

 If different socioeconomic groups are believed to 
have entirely different parameters β, then it is 
possible to develop a distinct model for each 
subgroup.  

 This is termed market segmentation. 



Linearity in Parameters 
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 In the extreme case a market segment corresponds to a 

single individual, and a vector of parameters is specific 

to an individual.  

 In addition, if the preferences or tastes of different 

members of the population vary systematically with 

some known socioeconomic characteristics, we can 

define some of the elements in x to reflect this.  

 For example, it is not unusual to define as a variable 

 cost divided by income, reflecting the a priori belief that the 

importance of cost declines as the inverse of income.  



Specification of the Disturbances 
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 Our last remaining component of an operational 

binary choice model is the disturbance terms.  

 As with the systematic components Vin and Vjn, we 

can discuss the specification of binary choice models 

by considering only the difference εjn −εin rather 

than each element εin and εjn separately. 



Specification of the Disturbances 
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 This implies that as long as one can add a constant 

to the systematic component, the means of 

disturbances can be defined as equal to any 

constant without loss of generality. 

 We can define new random variables 

𝜖𝑖𝑛
′ =𝜀𝑖𝑛 − 𝐸 𝜀𝑖𝑛  

𝜖𝑗𝑛
′ =𝜀𝑗𝑛 − 𝐸 𝜀𝑗𝑛  



Specification of the Disturbances 
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 Alternatively, 

 

 

 

 

 So that  𝐸[𝜖𝑖𝑛
′ ] = 𝐸[𝜖𝑗𝑛

′ ] = 0 

𝜖𝑖𝑛
′ =𝜀𝑖𝑛 − 𝑎𝑖𝑛 

𝜖𝑗𝑛
′ =𝜀𝑗𝑛 − 𝑎𝑗𝑛 



Specification of the Disturbances 
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 The revised utility equation becomes 

 

 

 

 Where ain, and ajn are unknown constants 

 

 Typically, we assume that the error components εin are 
identically distributed across n, so that ain = ai and ajn = 
aj, for all decision makers n, and ai and aj are unknown 
parameters to be estimated. 

 They are called alternative specific constants, and play the 
same role as intercepts in linear regression. 



Specification of the Disturbances 
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 As only the difference εjn − εin matters in this 

context, only the difference between the two 

constants can be estimated.  

 In practice, one of  the two constants is constrained to 

0 and the other one is estimated: 



Illustrative Example 
29 

 Let us consider the same example of choosing between 
auto and transit 

 

 

 Let us consider the traveler has only information about 
time and not the cost. 

 So the cost is added to the error term.  

 Depending on what unobserved variables we have the 
distribution of the error term will change.  

 Let us explore more on the functional forms later. 



Common Binary Choice Models 
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 Let us derive operational models by introducing 

 the most common binary choice models:  

 the binary probit and  

 the binary logit models. 

 

 In each subsection we begin by making some 
assumption about the distribution of the two 
disturbances, εin and εjn, or about the difference 
between them.  

 Given one of these assumptions, we then solve for the 
probability that alternative i is chosen. 



Common Binary Choice Models 
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 Let us re-specify the random utility model 

 

 

 Where 𝜀𝑛 = 𝜀𝑖𝑛 − 𝜀𝑗𝑛 

 

 It means that the probability for individual n to 
choose alternative i is equal to the probability that 
the difference Vin − Vjn exceeds the value of εn. 

 We need to know how εn is distributed 



Common Binary Choice Models 
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 A function providing the probability that the value of a 
random variable εn is below a given threshold is called 
a Cumulative Distribution Function (CDF), and is denoted 
by Fεn 

 

 The probability expression on the right hand side of 
utility equation is equal to the cumulative distribution 
function (CDF) of εn evaluated at Vin − Vjn as follows: 

 

 

 The choice model is obtained by deriving the CDF of εn. 



Binary Probit 
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 One possible assumption is to view the disturbances 

as the sum of a large number of unobserved but 

independent components.  

 By the central limit theorem the distribution of the 

disturbances would tend to be normal. 

 To be more specific, suppose that εin and εjn are both 

normal with zero means and variances σ2i  and σ2j  

respectively, and further that they have covariance 

σij 



Binary Probit 
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 Under these assumptions the term εn = εjn − εin is 

also normally distributed with mean zero but with 

variance σ2i + σ2j − 2σij = σ2. 

 Note that we implicitly assume here that the random 

variables εjn − εin are independent and identically 

distributed (i.i.d.) across individuals, and 

independent of the attributes xn. 



Binary Probit 
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 The choice probabilities can be solved as follows:  

 

 

 

 

 

 

 

 Where, u = ε/σ, and Φ(・) denotes the standardized 
cumulative normal distribution. This model is called 
binary probability unit or binary probit. 



Binary Probit 
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 In the case where Vin = βTxin and Vjn = βTxjn, 

 

 

 

 

 1/σ is the scale of the utility function that can be set 

to an arbitrary positive value, usually σ = 1 



Binary Probit Shape 
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 Note that the choice function has a characteristic sigmoidal shape and that 

the choice probabilities are never zero or one.  

 They approach zero and one as the systematic components of the utilities 

become more and more different 



Probit Model: Limiting Case 
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 There are two limiting cases of a probit model of 
special interest, both involving extreme values of the 
scale parameter. The first case is for σ → 0: 

 

 

 

 As σ → 0, the choice model is deterministic. On the 
other hand, when σ → ∞, the choice probability of i 
becomes 1/2. Intuitively the model predicts equal 
probability of choice for each alternative, irrespectively 
of Vin and Vjn 

 



Limiting Cases of Binary Probit 
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Limiting Cases of Binary Probit 
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 Although binary probit is intuitively reasonable and 
there are at least some theoretical grounds for its 
assumptions about the distribution of εin and εjn, it 
has the unfortunate property of not having a closed 
form. 

 Instead, we must express the choice probability as 
an integral.  

 Although it is not really an issue in the binary case, 
it becomes problematic when we consider more 
alternatives. 



Limiting Cases of Binary Probit 
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 This aspect of binary probit provides the motivation 

for searching for a choice model that is more 

convenient analytically.  

 One such model is binary logit. 

 Its derivation from the random utility model is 

justified by viewing the disturbances as the 

maximum of a large number of unobserved but 

independent utility components. 



Extreme Value 
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 The extreme value distribution, also called Gumbel 

distribution (Gumbel, 1958) has two forms.  

 One is based on the smallest extreme and the other 

is based on the largest extreme. 

 For utility maximization we consider the largest 

extreme value 

 Such distributions are called as Extreme Value 

Distribution.  



Extreme Value 
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 Similarly to the Central Limit Theorem which justifies the normal 

distribution as the limit distribution of the sum of many random 

variables,  

 The extreme value distribution is obtained as the limiting 

distribution of the maximum of many random variables 

 The random variable ε is said to be extreme value distributed 

with location parameter η and scale parameter μ > 0 if its 

cumulative distribution function (CDF) is given by 

 

 Pdf  



Extreme Value 
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 εn = εjn − εin is logistically distributed. 



Normal versus Logistic Distribution 
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 The logistic distribution has heavier tails than the normal 

 Normal and logistic distribution with mean 0 and variance 1 



Binary Logit 
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 For binary logit the choice probability for 

alternative i is given by 



Binary Logit Shape 
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Limiting Case of Binary Logit 
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 If Vin and Vjn are linear in their parameters 

 μ is the scale parameter 



Limiting Case of Binary Logit 
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 In the case of linear-in-parameters utilities, the 

parameter μ cannot be distinguished from the 

overall scale of the β’s.  

 For convenience we generally make an arbitrary 

assumption that μ = 1.  

 This corresponds to assuming the variances of εin 

and εjn are both π2/6, implying that Var(εjn − εin) 

= π2/3. 



Limiting Case of Binary Logit 
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 Note that this differs from the standard scaling of 

binary probit models, where we set Var(εjn−εin) = 

1, and it implies that the scaled logit coefficients 

are π/√3 times larger than the scaled probit 

coefficients.  

 A rescaling of either the logit or probit utilities is 

therefore required when comparing coefficients 

from the two models. 



Limiting Case of Binary Logit 
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 that is, as μ → ∞, the choice model is deterministic. 

On the other hand, 

 when μ → 0, the choice probability of i becomes 

1/2 



Estimation Approach 
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 The model coefficients reflect the sensitivity of the 

behavior to the variables. 

 To identify them, we use data on behavioral choices 

describing individuals, what they faced, and what 

they chose. 

 Therefore, we turn now to the problem of estimating 

the values of the unknown parameters β1,. . . ,βK 

from a sample of observations. 



Estimation Approach 
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 Each observation consists of the following 

 

 

 

 Two vectors of attributes xin = h(zin, Sn) and xjn = 

h(zjn, Sn), each containing K values of the relevant 

variables. 

 



Estimation Approach 
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 Given a sample of N observations, our problem 

then becomes one of finding estimates ^β1, . . . , 

^βK that have some or all of the desirable 

properties of statistical estimators. 

 We consider in detail the most widely used 

estimation procedure — maximum likelihood.  



Maximum Likelihood 
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 The maximum likelihood estimation (MLE) procedure 

is conceptually quite straightforward.  

 It consists in identifying the value of the unknown 

parameters such that the joint probability of the 

observed choices as predicted by the model is the 

highest possible.  

 This joint probability is called the likelihood of the 

sample. 



Maximum Likelihood 
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 Consider the likelihood of a sample of N  observations 
assumed to be independently drawn from the 
population.  

 The likelihood of the sample is the product of the 
likelihoods (or probabilities) of the individual 
observations 

 Let us define the likelihood function as  

 

 

 Where, Pn(i) and Pn(j) are functions of β1,. . . ,βK. 



Maximum Likelihood 
57 

 Note 

 

 

 The log likelihood is written as follows 

 

 

 Noting that 

 



Maximum Likelihood 
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 The log-likelihood function is given by  

 

 

 Maximize the log-likelihood 

 

 First order conditions 

 

 

 Or 



Maximum Likelihood 
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 Each entry k of the vector ∂L(bβ)/∂β represents the 

slope of the multi-dimensional log likelihood function 

along the corresponding kth axis.  

 If bβ corresponds to a maximum of the function, all 

these slopes must be zero 

 Essentially an optimization problem requires 

efficient techniques to solve for estimates 



Example-1: Netherland Mode Choice 
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 The example deals with mode choice behavior for 

intercity travelers in the city of Nijmegen (the 

Netherlands) using revealed preference data.  

 The survey was conducted during 1987 for the 

Netherlands Railways to assess factors that 

influence the choice between rail and car for 

intercity travel 



Example-1: Netherland Mode Choice 
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Example-1: Netherland Mode Choice 
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 Coefficient β1 is the alternative specific constant 

 β2 is the coefficient of travel cost 

 β3 and β4 are coefficients of car travel time. 

 β5 is the coefficient of train travel time 

 Coefficient β6 measures the impact on the utility of 
the train if the class preference for rail travel is first 
class. 

 β7, β8 and β9 are coefficients of alternative-
specific socioeconomic variables 
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 Input data format 



Binary Probit 
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Binary Probit 
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 P1(car) = Φ(1.6431) = 0.950. 

 We compute similarly that P2(car) = 0.0792 and 

P3(car) = 0.756 



Binary Logit 
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Comparison 
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 the coefficients of the binary logit must be divided 

by π/√3 in order to be compared to the 

coefficients of the binary probit model 



Review: Log-likelihood function 
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Spreadsheet Example-1 
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Estimation Results Goodness-of-fit 
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 Number of parameters: The number K of estimated 
parameters 

 Number of observations:  The number N of 
observations actually used for the estimation. 

 Null log likelihood: the value L(0) of the log 
likelihood function when all the parameters are 
zero. 

 Constant log likelihood:  the value L(c) of the log 
likelihood function when only an alternative-specific 
constant is included 



Estimation Results Goodness-of-fit 
73 

 Final log likelihood: the value of the log likelihood 

function at its maximum, L(β_hat). 

 Likelihood ratio:  test statistic used to test the null 

hypothesis that all the parameters are zero, and  

 is defined as −2(L(0) − L(^β)). 

 asymptotically distributed as χ2 with K degrees of freedom 

 Rho-square:  Denoted by ρ2, it is an informal goodness-

of-fit index that measures the fraction of an initial log 

likelihood value explained by the model.  

 It is defined as 1 − (L(^β)/L(0)). 



Estimation Results Goodness-of-fit 
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 Adjusted rho-square:  Denoted ¯ρ2, it is another 
informal goodness-of-fit measure that is similar to ρ2 
but corrected for the number of parameters estimated.  

 this measure is defined as ¯ρ2 = 1 − (L(^β) − K)/L(0). 

 Value:  Estimated value bβk. 

 Std. Err.:  Estimated standard error. 

 t-test:  Ratio between the estimated value of the 
parameter and the estimated standard error. 

 p-value:  Probability of obtaining a t-test at least as 
large at the one reported, given that the true value of 
the parameter is 0. 

 

 



Estimation Results Goodness-of-fit 
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 Let us take the same example of choice of mode 

between auto and transit 

 



Standard Representation of Results 
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 Binary logit 



Mode choice in the Netherlands, 

Revisited 
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 Binary probit 

 



Mode choice in the Netherlands, 

Revisited 
78 

 Binary logit 



Software Demonstration: Biogeme 
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 You can use any software you like 

 GUI biogeme 



Example Data File 
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Example Results 
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Specification Testing 
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 Model-1: Generic Attributes 

 Model-2: Alternative Specific Attributes 

 Model-3: Attributes and Characteristics 



Model-1: Generic Attributes 
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 Model form:  

 

 Results:  



Model-2: Alternate Specific Attributes 
85 

 Model form:  

 

 Results:  



Model-2: Attributes and Characteristics 
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 Model form:  

 

 Results:  



Comparison between Generic and Alternate Specific 
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 where G and AS denote the generic and alternative-
specific models, respectively.  

 It is chi-square distributed with the number of degrees 
of freedom equal to the number of restrictions (KAS − 
KG). In this case, −2(−123.133 + 118.023) = 10.220. 
Since 2 0.95,1 = 3.841 at a 95% level of confidence,  

 we can conclude that the model with the alternative-
specific coefficients has a significant improvement in fit. 



Choice with Multiple Alternatives 
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 Corresponding logit model is known as multinomial logit 
model 

 

 Probability:  

 

 

 Bound 

 

 

 Sum 



Netherland Mode Choice Case 
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 Model 

 

 Results 



Interpretation 
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 Alternate specific constants:  

 The estimated values for the alternative specific constants 

ASCcar and ASCSM show that, all the rest remaining constant, there 

is a preference in the choice of car and Swissmetro with 

respect to train. 

 Moreover, the higher value of ASCSM shows a greater 

preference for Swissmetro compared to car. 



Interpretation 
91 

 Generic Coefficients:  

 The higher the travel time or the cost of an alternative, 

the lower the related  utility. 

 The negative estimate of the headway coefficient 

beta-he indicates that the higher the headway, the 

lower the frequency of service, and thus the lower the 

utility. 



MNL Model-Alternate Specific 

Attributes 
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 Model  

 

 

 Results 



Interpretation 
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 Alternate Specific Constants:  

 In this model, the ASC’s are negative implying a 

preference, with all the rest constant, for the train 

alternative.  

 These results are different from those of the previous 

model where ASCcar and ASCSM were positive and 

significant. 

 The larger negative value of ASCcar implies that this 

alternative is more negatively perceived with respect to 

train than the Swissmetro alternative. 

 



Interpretation 
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 Alternate Specific Attributes: The influence of the 

cost is different, showing a larger negative impact 

on the train alternative with respect to car and 

Swissmetro. 



Generic vs. Alternate Specific Model 

Comparison 
95 

 To test whether a coefficient should be generic or 

alternative-specific, we use the likelihood ratio test 

 The restricted model includes generic travel cost 

coefficients over the three alternatives, and the 

unrestricted model includes alternative-specific 

travel cost coefficients. 

 Null hypothesis 

 

 Test statistic:  



Generic vs. Alternate Specific Model 

Comparison 
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 Reject the null hypothesis if  

 

 

 

 For the example case  

  −2(−5315.386 + 5068.559) = 493.654 > 5.991 

 

 Reject the null hypothesis and conclude the travel 
cost coefficient should be alternative-specific 



Model Specification with 

Characteristics 
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 Model 

 

 

 Results 



Interpretation  
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 Interpretation (SENIOR) 

 The negative sign of the age coefficient (referring to 

SENIOR dummy variable) reflects a preference of 

older individuals for the train alternative 

 It seems a reasonable conclusion, dictated  probably by safety 

reasons with respect to the car choice and a kind of “inertia” 

with respect to the modal innovation represented by the 

Swissmetro alternative. 

 



Interpretation 
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 Interpretation (GA) 

 The coefficient related to the ownership of the Swiss 

annual season ticket (GA) is positive, as expected. It 

reflects a preference for the SM and train alternative 

with respect to car, given that the traveler possesses a 

season ticket. 

 ASCs: The interpretation of the alternative specific 

constants is similar to that of the previous model 

specification. 



Generalized Extreme Value (GEV) 

Models 
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 MNL has IIA properties 

 Remember the blue bus and red bus paradox 

 Alternatives 

 Nested Logit 

 Cross Nested Logit 
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 Structure 

 

 

 

 Model 

 



NL Model Results 
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Interpretation 
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 ASC:  

 The alternative specific constants show a preference for 

the Swissmetro alternative compared to the other 

modes, all the rest remaining constant. 



Cross Nested Logit Model 
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 Structure:  
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