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Discrete Choice Introduction (1)

Discrete or nominal scale data often play a dominant
role in transportation

because many interesting analyses deal with such data.

Examples of discrete data in transportation include
the mode of travel (automobile, bus, rail transit),
place to relocate (urban, sub-urban, local)
lane changing (lane to left, right or stay on the same lane)
the type or class of vehicle owned, and

the type of a vehicular crash (run-off-road, rear-end, head-
on, etc.).



Discrete Choice Introduction (2)

From a conceptual perspective,

such data are classified as those involving a behavioral
choice (choice of mode or type of vehicle to own) or

those simply describing discrete outcomes of a physical
event (type of vehicle accident).



Models for Discrete Data

The concept of discrete choice model is

the individual decision maker who, faced with a set of
feasible discrete alternatives, selects the one that yields
greatest utility

A set of discrete alternatives form a choice set
For a variety of reasons the utility of any

alternative is, from the perspective of the analyst,
best viewed as a random variable.



Random Utility

In a random utility model the probability of any
alternative | being selected by person n from choice
set Cn is given by

P“(—Tu] — Pl'[uiu = uinv]"jj e Cnl.

Where

i, and | are two alternatives

Uin->utility of alternative i as perceived by decision
maker n

Cn-> choice set



Random Utility

We ignore situations where Uin = Ujn for any i and
| in the choice set because

if Uin and Ujn are continuous random variables then the
probability Pr(Uin = Ujn) that they are equal is zero.

Let us pursue the basic idea further by considering
the special case where the choice set Cn contains
exactly two alternatives.

Such situations lead to what are termed binary choice
models.



Random Utility

For convenience we denote the choice set Cn as {i,
i}, where, for example,

alternative i might be the option of driving to work and

alternative | would be taking the train.

The probability of person n choosing i is

Pu [ﬂ' — PT“-J-'H'L > uju]1

the probability of choosina alternative j is
P.(i) = 1= Py(i).



Binary Choice

Let us develop the basic theory of random utility models
into a class of operational binary choice models

A detailed discussion of binary models serves a number
of purposes.

First, the simplicity of binary choice situations makes it
possible to develop a range of practical models, which is
more tedious in more complicated choice situations.

Second, there are many basic conceptual problems that are
easiest to illustrate in the context of binary choice.

Many of the solutions can be directly applied to situations
with more than two alternatives.



Systematic component and
disturbances

Uin and Ujn are random variables, we begin by
dividing each of the utilities into two additive parts
as follows

uin
(UP

1I|"'rin'l + Eins
vin + Ein-

Where

Vin and Vjn are called the systematic (or
representative) components of the utility of i and j;

€in and €jn are the random parts and are called the
disturbances (or random components).



Systematic component and
disturbances

It is important to stress that Vin and Vijn are
functions and are assumed here to be deterministic

(i.e., nonrandom).

The terms €in and €jn may also be functions, but
they are random from the observational perspective
of the analyst.



Systematic component and
disturbances

Probability that alternative | is selected by decision
maker n is

Vin ]

Pn “] — Fr[vin + Ep = vjn. + Eju] — PI‘(Em — &in = 1"",jn
— 1:Ilri'-';iﬂ — Ein i Vin

IT'lJ'

We can see that the absolute levels of V’s and €’s
do not matter; all that matters is the relative values
of the differences



Specification of the Systematic
Component

The first issue in specifying Vin and V|n is to ask, what
types of variables can enter these functions?

For any individual n any alternative i can be
represented by a vector of attributes z, .

In a choice of travel mode, z, might include travel time, cost,
comfort, convenience, and safety.

It is also useful to characterize the decision maker n by

another vector of characteristics, which we shall denote
by Sn.

These are often variables such as income, auto ownership,
household size, age, occupation, and gender.




Specification of the Systematic
Component
The problem of specifying the functions Vin and V|n

and S,
that reflect reasonable hypotheses about the effects

consists of defining combinations of z. , z

in? “=jn’

of such variables

It is generally convenient to define a new vector of
variables, which includes both z, and S, .

We write the vectors x;, = h(z;, S,) and x,; = h(z

in? in?

S, ), where h is a function



Specification of the Systematic
Component

The function h can be as simple as a pure attribute

model, with x, = z.,

but can also involve non-trivial interactions of z._
with elements of S_ such as price, or travel cost,
divided by income, or the log of income minus price.

Now we can write the systematic components of the
utilities of i and j

Vin = U[xm} and 1IIII"r‘jn — 1III|"I’[:"iiT'LJ'



Specification of the Systematic
Component

1 If we denote B" = (B1, B2, ..., PK) as the (row)

vector of K unknown

1||I"";1.11.'[Hf"':-u'l.*.n E’
Vin (Xjn, B)

E’ T:':in

i BiXint + P2Xin2 + - - - + PrXink,
B Xjn

Bixint + P2Xjn2 + - - + PrXjnk.

1 When such a linear formulation is adopted,

parameters 31,...,BK are called coefficients.



Specification of the Systematic
Component

A coefficient appearing in all utility functions is
generic,

And a coefficient appearing in only one utility
function is alternative specific.

Consider a binary mode choice example, where one
alternative is auto (A) and the other is transit (T),
and where the utility functions are defined as

Van = 037 — 2.13ta,
Vi = —  2.13ty,.



Specification of the Systematic
Component

In this case it appears as though the auto utility has
an additional term equal to 0.37. We can “convert”
this model into the form of equation by defining our
x’s as follows

XAnl = 1 3
XTnl = Q,

Xan2 = tan,
X2 = tm,

with K = 2, B1 = 0.37 is alternative specific, and
B2 = —2.13 is generic. Thus

[3 Xan = lemﬂ + [5 X An2?
Blxm = Pixt + Brxm2

0.37 — 2.13tan,
—  2.13ty,.



Specification of the Systematic

Component
o

7 In this example, the variable xAn1 is an alternative
specific (i.e., auto) dummy variable and 31 is called
an alternative specific constant.



Linearity in Parameters

A model with a linear-in-parameter formulation can
be described in a specification table.

A specification table has

as many columns as alternatives in the model (two in the
specific context of binary choice), and

as many rows as coefficients (K).

Entry (k, i) of the table contains xik, the variable k for

alternative i.
| Auto  Train
B, 0.37 1 0
B.’ -2.13 t-r‘m tTT‘l




Linearity in Parameters

Linearity in the parameters is not as restrictive an
assumption as one might first think. Linearity in the
parameters is not equivalent to linearity in the
variables z and S.

We allow for any function h of the variables so that
polynomial, piecewise linear, logarithmic,
exponential, and other transformations of the
attributes are valid for inclusion as elements of x.



Linearity in Parameters

We note that we have implicitly assumed that the

parameters B1, B2,. .., BK are the same for all
members of the population.

Again this is not as restrictive as it may seem at first
glance.

If different socioeconomic groups are believed to
have entirely different parameters 3, then it is
possible to develop a distinct model for each
subgroup.

This is termed market segmentation.



Linearity in Parameters

In the extreme case a market segment corresponds to o
single individual, and a vector of parameters is specific
to an individual.

In addition, if the preferences or tastes of different
members of the population vary systematically with
some known socioeconomic characteristics, we can
define some of the elements in x to reflect this.

For example, it is not unusual to define as a variable

cost divided by income, reflecting the a priori belief that the
importance of cost declines as the inverse of income.



Specification of the Disturbances

Our last remaining component of an operational
binary choice model is the disturbance terms.

As with the systematic components Vin and Vijn, we
can discuss the specification of binary choice models
by considering only the difference €jn —€in rather
than each element €in and €jn separately.



Specification of the Disturbances

This implies that as long as one can add a constant
to the systematic component, the means of
disturbances can be defined as equal to any
constant without loss of generality.

We can define new random variables

Elfnzgin _ E[Ein]

€n=¢in — E|gjn]



Specification of the Disturbances
N

01 Alternatively,

I
€Ein—¢in — Qin

r

0 So that E[€;,] = E[€j,] =0



Specification of the Disturbances

The revised utility equation becomes

Uin = Vint+a;m+ £;

in?
r
uiﬂ Vin + Qjn + Eins

Where a.

., and a,, are unknown constants

Typically, we assume that the error components €in are
identically distributed across n, so that ain = ai and ajn =
aj, for all decision makers n, and ai and aj are unknown
parameters to be estimated.

They are called alternative specific constants, and play the
same role as intercepts in linear regression.



Specification of the Disturbances

As only the difference €jn — €in matters in this
context, only the difference between the two
constants can be estimated.

In practice, one of the two constants is constrained to
O and the other one is estimated:

Ll"LT — Hi.ll.‘l.ﬂ + I:I':. + E':_Inl
Ll'ir. = 1|i"I:|1' T E-il-r_'-
W, = Vi te!

Wn = Vint+a +el.



lllustrative Example

Let us consider the same example of choosing between
auto and transit

U."'m. -— E‘f 1 |3It.-'n'. T Elcﬁ.nt
Ur, = E't'-r. T E‘l':rn'-

Let us consider the traveler has only information about
time and not the cost.

So the cost is added to the error term.

Depending on what unobserved variables we have the
distribution of the error term will change.

Let us explore more on the functional forms later.



Common Binary Choice Models

Let us derive operational models by introducing

the most common binary choice models:
the binary probit and
the binary logit models.

In each subsection we begin by making some
assumption about the distribution of the two
disturbances, €in and €jn, or about the difference
between them.

Given one of these assumptions, we then solve for the
probability that alternative i is chosen.



Common Binary Choice Models

Let us re-specify the random utility model

Fr.li-.l = Prf Ein — Ein = 1"'lr1' - .II"'ll:h'.-I
= []Tl En = 1""lr'i.1'. — 1"'ll:|1' lln

Where &, = &, — €jp

It means that the probability for individual n to
choose alternative i is equal to the probability that
the difference Vin — Vjn exceeds the value of en.

We need to know how €n is distributed



Common Binary Choice Models

A function providing the probability that the value of a
random variable €n is below a given threshold is called
a Cumulative Distribution Function (CDF), and is denoted

by F&En
Y Prie, < c] =F_[c].

The probability expression on the right hand side of
utility equation is equal to the cumulative distribution
function (CDF) of €n evaluated at Vin — Vjn as follows:

P.l1)=F,. (Vi — 1._.?1*__

The choice model is obtained by deriving the CDF of €n.



Binary Probit

One possible assumption is to view the disturbances

as the sum of a large number of unobserved but
independent components.

By the central limit theorem the distribution of the
disturbances would tend to be normal.

To be more specific, suppose that €.and & are both
normal with zero means and variances 02 and 03

respectively, and further that they have covariance
Oij



Binary Probit

Under these assumptions the term €n = €jn — €in is
also normally distributed with mean zero but with
variance O2i + 02j — 20ij = o2.

Note that we implicitly assume here that the random
variables €jn — €in are independent and identically
distributed (i.i.d.) across individuals, and
independent of the attributes xn.



Binary Probit

The choice probabilities can be solved as follows:

F'nl:il — ]}TI:EE'L — Ein < Hi'lr'i.n - 1|i'lr11'|.|

l'llli_n_ 1'-'. - ] ] i, :_
= exp |—= {/—:l de, o =0,
.[:_ b U\.‘E [ 2 O .

in—Yim /O B

= — [ exp —71:‘] du

=

Where, u = €/0, and @O( * ) denotes the standardized
cumulative normal distribution. This model is called
binary probability unit or binary probit.



Binary Probit

In the case where Vin = B'xin and Vjn = B'xjn,

. ] EI':"-'.-. Xin /O
Prll) = [ exp

1||.' e .

M- — e )
] = o (Elemxe))

o

1

—

F=

1/0 is the scale of the utility function that can be set
to an arbitrary positive value, usually O = 1



Binary Probit Shape

1 Note that the choice function has a characteristic sigmoidal shape and that
the choice probabilities are never zero or one.

1 They approach zero and one as the systematic components of the utilities

become more and more different

0.5

1""Ir'i.1'. - 1|IIlIl;i1'.



Probit Model: Limiting Case

There are two limiting cases of a probit model of
special interest, both involving extreme values of the
scale parameter. The first case is for 0 — O:

o 1 i Vi — Vi = 0,
lim P (1] { 0 if Vi — Vi < O

As O — 0, the choice model is deterministic. On the
other hand, when 0 — 0, the choice probability of i
becomes 1/2. Intuitively the model predicts equal

probability of choice for each alternative, irrespectively
of Vin and Vjn



Limiting Cases of Binary Probit

a Paln)
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Limiting Cases of Binary Probit

Although binary probit is intuitively reasonable and
there are at least some theoretical grounds for its
assumptions about the distribution of €in and gjn, it

has the unfortunate property of not having a closed
form.

Instead, we must express the choice probability as
an integral.

Although it is not really an issue in the binary case,
it becomes problematic when we consider more
alternatives.



Limiting Cases of Binary Probit

This aspect of binary probit provides the motivation
for searching for a choice model that is more
convenient analytically.

One such model is binary logit.

Its derivation from the random utility model is
justified by viewing the disturbances as the
maximum of a large number of unobserved but
independent utility components.



Extreme Value

The extreme value distribution, also called Gumbel
distribution (Gumbel, 1958) has two forms.

One is based on the smallest extreme and the other
is based on the largest extreme.

For utility maximization we consider the largest
extreme value

Such distributions are called as Extreme Value
Distribution.



Extreme Value

Similarly to the Central Limit Theorem which justifies the normal
distribution as the limit distribution of the sum of many random
variables,

The extreme value distribution is obtained as the limiting
distribution of the maximum of many random variables

The random variable € is said to be extreme value distributed
with location parameter N and scale parameter U > O if its
cumulative distribution function (CDF) is given by

Fle) = el
Pdf

ple—ml

b

fle) = pe HE et ™"



Extreme Value

I
1 €n = gjn — €in is logistically distributed.

If e, ~ EV{ng, n) and ey, ~ EV(ny, u) are independent with
scale parameter p, then

£ = Eq — £p ~ Logistic(n, — M, 1),
namely
pe—p[f-—ﬂuﬂu-]
(14 g HleMaimp)2’
1

Fe) = =TT w=>0,—oo < £ < oo.




Normal versus Logistic Distribution
B

11 The logistic distribution has heavier tails than the normal

1 Normal and logistic distribution with mean O and variance 1

- Normal distribution
. Logistic distribution - -




Binary Logit

o1 For binary logit the choice probability for
alternative i is given by
P.(1) = Prle, € Vin— Vi)
= F(Via— Vi)

1
] + E_ F"Iv'i.n_ IIIII:|1'|.]

El-lv'i.n
erVin 4 pe¥in’




Binary Logit Shape




Limiting Case of Binary Logit
S
0 If Vin and Vjn are linear in their parameters

0 M is the scale parameter

. ptBxin
Pn{l} = EI-'-E.'"-'m + EI-'-ET .
] Pali)
N P " : L= 00
s n=>0




Limiting Case of Binary Logit

In the case of linear-in-parameters utilities, the
parameter J cannot be distinguished from the
overall scale of the [3’s.

For convenience we generally make an arbitrary
assumption that 4 = 1.

This corresponds to assuming the variances of €in
and €jn are both m?/6, implying that Var(€jn — €in)
= m?/3.



Limiting Case of Binary Logit

Note that this differs from the standard scaling of
binary probit models, where we set Var(€jn—€in) =
1, and it implies that the scaled logit coefficients
are /3 times larger than the scaled probit

coefficients.

A rescaling of either the logit or probit utilities is
therefore required when comparing coefficients
from the two models.



Limiting Case of Binary Logit
s

0 that is, as 4 — *©, the choice model is deterministic.
On the other hand,

1 when 4 — 0O, the choice probability of i becomes

i o= 1 Vie— Vi >0,
rar—R b 0 if Vin— Vi < O

p= oo

=10




Estimation Approach

The model coefficients reflect the sensitivity of the
behavior to the variables.

To identify them, we use data on behavioral choices
describing individuals, what they faced, and what
they chose.

Therefore, we turn now to the problem of estimating
the values of the unknown parameters 31,...,BK
from a sample of observations.



Estimation Approach

Each observation consists of the following
An indicator variable defined as

1 if person n chose alternative 1,
din 0 if person n chose alternative j.

Two vectors of attributes xin = h(zin, Sn) and xjn =
h(zjn, Sn), each containing K values of the relevant
variables.



Estimation Approach

Given a sample of N observations, our problem
then becomes one of finding estimates *p1, ...,
BK that have some or all of the desirable
properties of statistical estimators.

We consider in detail the most widely used
estimation procedure — maximum likelihood.



Maximum Likelihood

The maximum likelihood estimation (MLE) procedure
is conceptually quite straightforward.

It consists in identifying the value of the unknown
parameters such that the joint probability of the
observed choices as predicted by the model is the
highest possible.

This joint probability is called the likelihood of the
sample.



Maximum Likelihood

Consider the likelihood of a sample of N observations
assumed to be independently drawn from the
population.

The likelihood of the sample is the product of the
likelihoods (or probabilities) of the individual
observations

Let us define the likelihood function as

M
-'lr—". I.E;'l'\- Ij-'ll " aw oy E‘KI = H P'I.III":IL"' P'I.I] I'r|1-r|."
n=1

Where, Pn(i) and Pn(j) are functions of 31,. .. ,BK.



Maximum Likelihood
N

1 Note

o o Pult) fyin=1,y:n=10
Yim Yin — ™
Pnh] Fn{_]] = { Pn[]} ir'l_.l-i_“ — ﬂ'. Ui = 1.

11 The log likelihood is written as follows

N
LBryeeeyPr) =D (YinIn Po(i) +yjn In Pa(j)),

=1

71 Noting that

noting that Yin =1 —up and Po()) = 1 — Pol1],



Maximum Likelihood

_ 58|
0 The log-likelihood function is given by

Iy
L(B)=L(P1y-..,Bx) = Z[Elin]" Po(i) + (1 — yin) In{1 — P,(i)))

=1

1 Maximize the log-likelihood

anl[gj Ll E ~ﬁ:--_ ----- ﬁuh
-1 First order conditions

L - AP (i)/3Ps AP, (3P
=7(B) Z (‘:lmW +HmnTm) 0, k=1,...,

1 Or ac

E-.*13'*.- = 0.



Maximum Likelihood

Each entry k of the vector dL(b[3)/df3 represents the
slope of the multi-dimensional log likelihood function
along the corresponding kth axis.

If b3 corresponds to a maximum of the function, all
these slopes must be zero

Essentially an optimization problem requires
efficient techniques to solve for estimates



Example-1: Netherland Mode Choice

The example deals with mode choice behavior for
intercity travelers in the city of Nijmegen (the
Netherlands) using revealed preference data.

The survey was conducted during 1987 for the
Netherlands Railways to assess factors that
influence the choice between rail and car for
intercity travel



Example-1: Netherland Mode Choice
I

Car Train
B 1 0
B: | cost of trip by car (in Guilders) | cost of trip by train (in
Guilders)
B3 | travel time by car (hours) if | O
trip purpose is work, 0 other-
wise
Ba | travel time by car (hours) if | O
trip purpose is not work, 0 oth-
erwise
Bs [0 travel time by train (hours)
Bg | O 1 if first class is preferred, 0
otherwise
B7 | 1 if commuter is male, 0 other- | 0
wise
Bg | 1 if commuter is the main | 0
earner in the family, 0 other-
wise
Be | 1 if commuter had a fixed ar- | 0

rival time, 0 otherwise




Example-1: Netherland Mode Choice

Coefficient 31 is the alternative specific constant
32 is the coefficient of travel cost

33 and 34 are coefficients of car travel time.

35 is the coefficient of train travel time

Coefficient 36 measures the impact on the utility of
the train if the class preference for rail travel is first
class.

B7, B8 and B9 are coefficients of alternative-
specific socioeconomic variables



Example-1: Netherland Mode Choice
B

0 Input data format

Individual 1 Individual 2 Individual 3

Train cost 40.00 T.80 40.00

Car cost 5.00 8.33 3.20

Train travel time 2.50 1.75 2.67
Car travel time 1.17 2.00 2.55
Gender M F F

Trip purpose Not work Work Not work
Class Second First Second

Main earner No Yes Yes

Arrival time Variable Fixed Variable



Binary Probit

Individual 1 Individual 2 Individual 3
Variables | Coef. | Value Car  Train Car  Train Car  Train
Car dummy | By | L77 1 0 1 0 I 0
Cost | Bz | -0.0296 5.0 40.00 8.33 V.80 3.20 40.00
Travel time by car (work) | B3 | -L1.51 0 0 2.00 0 0 0
Travel time by car (not work) | Bsg | -1.26 1.17 0 0 0 2.55 0
Travel time by train Bs | -0.308 0 2.50 0 1.75 0 2.67
First class dummy | Bg 0.545 0 0 0 1 0 0
Male dummy | B |-0.471 1 0 0 0 0 0
Main earner dummy | Bs 0.213 0 0 1 0 1 0
Fixed arrival time dummy | Be | -0.355 0 0 1 0 0 0
Vin -0.3120 -1.9551 | -1.6354 -0.2252 | -1.3126 -2.0065
P.(1) 0950 0.0502 | 0.0792 0.921 0.756 0.244

e ey s e e s e — * e e e e ———

Pilcar] = Pr(—0.3120 + &1 = —1.9551 + €4ruint )
Pr(1.6431 = &),



Binary Probit

P1(car) = ©(1.6431) = 0.950.

We compute similarly that P2(car) = 0.0792 and
P3(car) = 0.756



Binary Logit

Individual 1 Individual 2 Individual 3
Variables | Coef. | Value Car  Train Car  Train Car  Train
Car dummy | PBr | 3.04 1 0 1 0 I 0
Cost | P2 | -0.0627 SALI 40.00 833 7.80 3.20 40.00
Travel time by car (work) | B3y | -2.66 0 0 2 0 0 0
Travel time by car (not work) [ Py | -2.22 L17 0 0 0 2.55 0
Travel time by train Bs | -0.576 0 2.50 0 1.75 0 2.67
First class dummy | Ps 0.961 0 0 0 1 0 0
Male dummy | B; | -0.850 1 0 0 0 0 0
Main earner dummy | Ps 0.383 0 0 1 0 1 0
Fixed arrival time dummy | Pe | -0.624 0 0 1 0 0 0
Vin 06642 -3.5504 | -2.9596 -0.4589 | -2.4072 -3.6464
P.(1) 0.947 0.0528 | 0.0758 0.924 0.775 0.225
o 06612
Py(car) = P R = ﬂ'.?-'i;'r:

Py(train) = 1—P,(car) = 0.0528



Comparison

1 the coefficients of the binary logit must be divided
by /3 in order to be compared to the
coefficients of the binary probit model

Logit  Scaled logit  Probit

B 3.04 1.68 1.77
B: -0.0527 -0.0291 -0.0296
B3 -2.66 -1.47 -1.5]
Ba -2.22 -1.22 -1.26
Pz -0.576 -0.318 -0.308
Pe  0.96] 0.53 0.545
Br -0.85 -0.469 -0.471
Pg 0.383 0.211 0.213

Be -0.624 -0.344 -0.355



Review: Log-likelihood function
I

L -1og(C) - og{ [ T " (3
=i_1:1ngﬂ=r,m*- Pr, ()7
- il:{ari.lng[ﬁ.ml +y JogfPr, ()])

= é:ﬁi.lﬂg[l’f.(f}] + (1, log[1 - Pr, (1)])



Spreadsheet Example-1

B C D E E G H I J K L M N (o] P Q R [
Modal Split Examples of Logit Model Equations: Pauto + Pous = 1
Method: Logit Model
exp(U,
Inputs: Travel Time between zones, cost, etc. P 1 p( autﬂ)
. : auto T
Outputs:  Trips for each mode of travel exp (Uauta) + exp (Ubus)
P exp(Ubus)
Logit Model: bus —
(U ) P, = probability of using mode i exp (Uauw) + exp(Ubus)
P _ exp i U; = Utility of using mode i
i Z ; exp (U) j represents different modes (Auto, HOV, Transit, etc.) Simple Utility Function: We can use survey data to calibrate
I ] Utlllty = Beta (TT) our utility function, as seen below.
Calibration Process: Without modal constant |6]t : Which modes they chose | We need to find the Beta coefficient which best predicts traveler choice.
Utility of each mode: ‘Our Prediction of their Choice: I
Survey Data: ‘ T ‘ ‘ T | Log-Likelihood
Traveler Auto TT (min) Bus TT (min) Chosen Mode_Auto Chosen Mode_Bus U_Auto U_Bus SUM_Exp(U) Prob_Auto Prob_Bus LL_Auto LL_Bus
1 30 50 1 0 -1.13 -1.89 0.47 0.68 0.32 -0.38485| 0.00000
2 20 10 1 0 -0.76 0.00 1.47 0.32 0.68 -1.14116( 0.00000
3 40 30 0 1 -1.51 0.00 1.22 0.18 0.82 0.00000] -0.19912
To find the best Beta coefficient, we use the Solver to maximize the log likelihood function.
Function Variables: Optimization Objective:
Beta _ Obj _LL X X j=mode P.. = Probabity of traveler t using mode j
L oo E E 8 In(Py.) o o
- t=traveler ;= 1if traveler t chose mode j, 0if they did not
1 ] c }
Ex-1&2 | Ex-384 | EBxamples | @

HEa|




FILE HOME INSERT

Spreadsheet Example-2
B

B H® ¢ =

PAGE LAY

BB 0B B

From From Frem From Other Existing

Access Web Tet Sources=  Comnections  All- |t EditLinks

Get External Data

WBMAX v | E3

30
3
3
33
34
35
36
37
38
39
40
41
4
43

L8]

)

aa

45
46
47
48
49
50
51
52
53
54
55

ouT FORMULAS DATA REVIEW VIEW ADD-INS

C tii Cls
rﬁ (2] Connections 5] B Clear

[E] Properties Ve Reapply

Connections Sort & Filter

=SUM(038:P40)

Risk Solver Platform

] —
Bm = E"E ]
Refresh zl Sort. Filter Textte Flash  Remove

ToAdvanced  Columns  Fill  Duplicates Validation =

ModeSplity3.xlsx - Excel

g R -’r €LE  EEE = ShowDetail | % Solver
E"E' En}; Bg mE o

s B

= Hide Detail B Data Analysis

Consolidate WhatIf Relationships  Group Ungroup Subtotal

Analysis =
Outline N Analysis

? @ - x
Sabyasachee Mishra (smishied) ~ [

Calibration Process:

Survey Data:
Traveler Auto TT
1
2

3

Function Variables:
Const.
Beta

With modal constant
(accounts for factors not considered in our utility
function, or modal bias)

Bus TT Chosen Mode_Auto Chosen Mode Bus
30 50 1
20 10 1
40 30 0

Optimization Objective:
Obj LL

[ aase20a3e6]

0
0
1

Utility,,:o = Const.+ Beta(TT)
Utility,, . = Beta(TT)
U _Auto U Bus SUM_Exp(U) Prob Auto Prob Bus
-12.92 -32.31 0.000002440 1.00 0.00
-6.46 -6.46 0.003124059 0.50 0.50

-19.39 -19.39 0.000000008 0.50 0.50

We use the Solver again to maximize the log likelihood function.

LL Auto LL Bus
0.00000 0.00000
-0.69312 0.00000
0.00000 -0.69317

| Ex182 | Ex-384 | Examples | @
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Bl o < s

Spreadsheet Example-3

ModeSplitV3 xdsx - Excel

7?7 B - 8 X

HOME  INSERT  PAGELAYOUT ~ FORMULAS ~ DATA | REVIEW  VIEW  ADD-NS  Risk Solver Platform Sabyasachee Mishra (smishra3) = H
B2 B Teprmr oM@ Yoo, @O0 % B B 2 6 HE LD e
From from frem from Otner _ Gisting  Refresn Fﬁmumk; | Sert  Fiter Dﬁ;dvan:ed Totte fan Remeve  Data  Consalidste Whatf felstonshiss  Group Ungroup Subiota h
Access Web  Tet  Sources~  Conmections  All= <t Columns  Fill  Duplicates Validation Analysis
Get External Data Connections Sort & Filter Data Tools Outline F] Analysis ~
E30 v £ || =SUM(N4:028) ~
A B C D | E ‘ F G H 1 J K L N o P Q R [
3 Obs. transit time (tTN)  auto time (tAN) Choice (Car=1; Rail=0) Choice (Rail=1; Car=0) U_Auto U _Transit SUM_Exp(U) Prob_Auto Prob_Transit LL_Auto LL_Bus
4 1 1.916 1.283 1 0 1.92605 -3.94078 -2.0147342 0.997176 0.00282383 -0.00283 ]
5 2 1.833 1.416 1 0 1.6525 0 1.65249827 0.839228 0.16077159 -0.17527 0
6 3 2.084 1.417 1 0 1.65044 0 1.6504415 0.838951 0.16104929 -0.1756 0
7 4 2.25 1.533 1 0 1.41186 0 1.41185542 0.804058 0.19594157 -0.21808 0
8 5 2.083 1.517 1 0 1.44476 0 1.44476385 0.809191 0.19080872 -0.21172 0
9 6 1.583 1.583 0 1 1.30902 0 1.3090166 0.787349 0.21265145 0 -1.5481
10 7 1.25 1.517 1 0 1.44476 0 1.44476385 0.809191 0.19080872 -0.21172 0
11 8 1.917 2.084 1 0 0.27857 0 0.27857158 0.569196 0.43080401 -0.56353 ]
12 9 2.416 1.283 0 1 1.92605 0 1.92604955 0.872812 0.12718848 0 -2.06209
13 10 1.75 1.583 1 0 1.30902 0 1.3090166 0.787349 0.21265145 -0.23908 0
14 11 1.883 1.667 1 0 1.13625 0 1.13624737 0.75699 0.24301001 -0.27841 0
15 12 2.416 1.583 1 0 1.30902 0 1.3090166 0.787349 0.21265145 -0.23908 0
16 13 1.717 1.583 0 1 1.30902 0 1.3090166 0.787349 0.21265145 0 -1.5481
17 14 2.75 2.083 1 0 0.28063 0 0.28062835 0.5697 0.43029973 -0.56264 0
18 15 1.866 1.583 1 0 1.30902 0 1.3090166 0.787349 0.21265145 -0.23908 ]
19 16 1.834 2.583 0 1 -0.74776 0 -0.7477599 0.32131 0.67869039 0 -0.38759
20 17 25 1.517 1 0 1.44476 0 1.44476385 0.809191 0.19080872 -0.21172 0
21 18 2.167 1.583 1 0 1.30902 0 1.3090166 0.787349 0.21265145 -0.23908 0
22 19 1.5 2.333 0 1 -0.23357 0 -0.2335658 0.441873 0.55812743 0 -0.58317
23 20 2.25 1.434 1 0 1.61548 0 1.6154763 0.83417 0.16582969 -0.18132 0
24 21 2.25 1.533 1 0 1.41186 0 1.41185542 0.804058 0.19594157 -0.21808 0
25 22 2.333 1.55 1 0 1.37689 0 1.37689022 0.798491 0.20150891 -0.22503 ]
26 23 2.75 2.583 1 0 -0.74776 0 -0.7477599 0.32131 0.67869039 -1.13535 0
27 24 2.117 2.25 0 1 -0.06285 0 -0.0628533 0.484292 0.51570816 0 -0.66221
28 25 2.5 2.033 ] 1 0.38347 0 0.38346718 0.594709 0.40529093 0 -0.90315
29
30 sumLL |
31 Constant 4.564893784
32 Beta -2.05677649

Ex-182 | Ex-3&4 | Examples *®




Estimation Results Goodness-of-fit

Number of parameters: The number K of estimated
parameters

Number of observations: The number N of
observations actually used for the estimation.

Null log likelihood: the value L(0O) of the log
likelihood function when all the parameters are
Zero.

Constant log likelihood: the value L(c) of the log
likelihood function when only an alternative-specific
constant is included



Estimation Results Goodness-of-fit

Final log likelihood: the value of the log likelihood
function at its maximum, L(B_hat).

Likelihood ratio: test statistic used to test the null
hypothesis that all the parameters are zero, and

is defined as —2(L(0) — L(*B)).

asymptotically distributed as X.with K degrees of freedom
Rho-square: Denoted by P2, it is an informal goodness-
of-fit index that measures the fraction of an initial log
likelihood value explained by the model.

It is defined as 1 — (L(*B)/L(0)).



Estimation Results Goodness-of-fit

Adijusted rho-square: Denoted P2, it is another
informal goodness-of-fit measure that is similar to P2
but corrected for the number of parameters estimated.

this measure is defined as p2 = 1 - (L(*B) - K)/L(0).
Value: Estimated value bpk.
Std. Err.: Estimated standard error.

t-test: Ratio between the estimated value of the
parameter and the estimated standard error.

p-value: Probability of obtaining a t-test at least as

large at the one reported, given that the true value of
the parameter is O.



Estimation Results Goodness-of-fit
O

0 Let us take the same example of choice of mode

between auto and transit v,
vTI'L

0.37 — 2.13ta,
—  2.13ty,.

Number of estimated parameters : 2
Number of observations : 25
L{0) : -17.329

Llc) : -14.824

CB) : -12.377
~2(L(0)— L(B)) - 9.004
p? : 0.286

p* : 0.170




Standard Representation of Results
T

01 Binary logit

Robust
Parameter Coeff. Asympt.
mumber Description estimate std. error t-stat  p-value
1 Auto constant 0.372 0.492 075  0.45
2  Travel time -2.13 1.22 -1.75  0.08

summary statistics

Number of observations = 25

£(0)
£lc)

L(f)

—2((0) — L(B)]
p*

.

—17.329
—14.824
—12.377
9.904
0.286
0.170



Mode choice in the Netherlands,

Revisited
A

01 Binary probit

Robust

Param. Cooff. Asympt.

number Deseription estimate std. error t-stat  p-value
1 Car dummy .77 0.632 281 0.00
2 Cost -0.0296  0.00706 -4.20  0.00
3  Travel time by car (work) -1.51 0.347 -4.35 0.00
4 Travel time by car (not work) -1.26 0.312 -4.03  0.00
5 Travel time by train -0.308 0.258 -1.20  0.23
6 First class dummy 0.545 0.414 1.32 0.19
7 Male dummy -0.471 0.206 220 0.02
8 Main earner dummy 0.213 0.208 1.02 0.31
9 Fixed arrival time dummy -0.355 0.211 -1.68 0.0

Summary statistics
Number of observations = 228

L£i0) = —158.038

Llc) = —148.347

L) = —109544
—2[L(0)— LB = 96.987
o2 = 0307
2 = 0.250



Mode choice in the Netherlands,

Revisited
N

o Binary logit

Robust

Param. Coeff. Asvmpt.

number Description estimate std. error t-stat  p-value
1 Car dummy 3.04 1.09 278 0.01
2 Cost 0,052 0.0127 -4.17  0.00
3 Travel time by car (work) -2.66 0.578 -4.60  0.00
4 Travel time by car (not work) -2.22 0.499 -4.46  0.00
5 Travel time by train -0.576 0. 460 -1.25 0.21
6 First class dummy 0961 0. 7GR 1.25 0.21
7 Male dummy -0.850 0.358 237 0.02
8 Main earner dummy 0.383 0.353 1.09 0.28
9  Fixed arrival time duommy -0.624 0.370 -1.69  0.09

Summary statistics
Number of observations — 228

L[0) = —158.038

Lic) = —148347

CiB) = —108.83
—2[C(0)— LB = 98.404
pz = (0.311
2 = 0.254



Software Demonstration: Biogeme
N

7 You can use any software you like
11 GUI bicaeme

i biogeme 2.2 [Thu Mar 15 14:58:02 WEST 2012] l ==
Mode! spec. fle: | selectfle |
Data file: | [ s =liis ]

Working directory:l

|
|
|
[ Estimate ] [ Simulate ]

Report file: ‘ [ Display file ]




Example Data File
B

id choice rail_cost rail_time car_cost car_time
1 0 40 2.5 5 1.167
2 0 35 2.016 9 1.517
3 0 24 2.017 11.5 1.966
4 0 7.8 1.75 8.333 2

5 0 28 2.034 5 1.267
210 1 35 2.416 6.4 1.283
220 1 30 2.334 2.083 1.667
221 1 35.7 1.834 16.667 2.017
222 1 47 1.833 T2 1.533
223 1 30 1.967 30 1.267



Example Model File
B

[Choice]

choice

[Betal

// Name DefaultValue LowerBound UpperBound status
ASC_CAR 0.0 -100.0 100.0 O
ASC_RATL 0.0 -100.0 100.0 1
BETA_COST 0.0 -100.0 100.0 4]
BETA_TIME 0.0 -100.0 100.0 4]
[Utilities]

//Id Name Avail linear-in-parameter expression

0 Car ome  ASC_CAR #= one + BETA_COST * car_cost +
BETA_TIME # car_time

1 Rail ome  ASC_RAIL # one + BETA_COST # rail_cost +
BETA_TIME * rail_time

[Expressions]

// Define here arithmetic expressions for name that are not directly
// available from the data
one = 1

[Model]

// Currently, only $MNL (multinomial logit), $NL (nested logit), $CHNL

// (cross-nested logit) and $NGEV (Network GEV model) are valid keywords
!

$MNL



Example Results
B

Estimation results

Parameter Parameter Parameter Robust Robust
number name estimate  standard error t statistic
1 ASC_.; 2.85 1.02 2.80
2 E’mst -0.130 0.0265 -4.80
3 B eendert -0.335 H.80e+06 0.00
4 B aenders 0.338 5.80e+06 0.00
D B time_car -2.34 0.495 -4.73
§ B time_rail -0.529 0.414 -1.28

Summary statistics
Number of observations = 228

L£(0) = —158.038
L(PB) =—115.880
p? = 0.229




Specification Testing

Model-1: Generic Atiributes
Model-2: Alternative Specific Attributes
Model-3: Atiributes and Characteristics




Model-1: Generic Attributes
B

Vcar — J|§'*S'Eu::ar + Btimeﬂartime + Bﬁﬂﬂt CaTcost

1 Model forn _ _
1""'Irl'zl.il — E’timera]-lt.ime + Bmstrallﬂcrst

1 Resl+e-
Estimation results
Parameter Parameter Parameter Robust Robust
number name estimate  standard error { statistic
1 ASC_ ., -0.798 0.275 -2.90
2 B ost -0.113 0.0241 -4.67
3 Btime -1.33 0.354 -3.75

Summary statistics
Number of observations = 228
L(0) = —158.038

L(B) = —123.133

p* = 0.202




Model-2: Alternate Specific Attributes
s

- Model form Vear = ASCear + Brime carCaTtime + Beost Cacost
Viail = PrimeraitTailtime + PoostTailcost

1 Resuilts.
Estimation results
Parameter Parameter Parameter Robust Robust
number name estimate  standard error { statistic

1 ASC.,; 2.43 0.973 2.50
2 B cost -0.123 0.0256 -4.79
3 B time._car -2.26 0.485 -4.66
4 B time_rail -0.543 0.396 —1.37%

Summary statistics
Number of observations = 228
L(0) = —158.038
L(B)=—118.023

p* = 0.228




Model-2: Attributes and Characteristics
T

L] MOdel fOI‘I‘T Vear = ASCear + Piime_carCaltime + Peost CAlcost
Vrail = Prtime_raillalltime + PeostTalleost + Pgendergender

1 Results-
Estimation results
Parameter Parameter Parameter Robust Robust
number name estimate  standard error f statistic

1 ASC..; 2.85 1.02 2.80
2 B eender 0.675 0.329 2.05
3 P cost -0.130 0.0265 -4.89
4 Btime_n:.ar -2.34 0.495 -4.73
5 Btime._rail -0.529 0.414 —1.287

Summary statistics
Number of observations = 228
L£(0) = —158.038

L(B) = —115.880

p? =0.235




Comparison between Generic and Alternate Specific

—2(L{Be) — L(Pas))

where G and AS denote the generic and alternative-
specific models, respectively.

It is chi-square distributed with the number of degrees

of freedom equal to the number of restrictions (KAS —
KG). In this case, —2(—123.133 + 118.023) = 10.220.
Since 2 0.95,1 = 3.841 at a 95% level of confidence,

we can conclude that the model with the alternative-
specific coefficients has a significant improvement in fit.



Choice with Multiple Alternatives

I T
11 Corresponding logit model is known as multinomial logit
model

0 Probability:  , __e*

N Eiﬁﬂ. g#lin’

1 Bound
0<P. =<1, foralli e,

7 Sum

D Pulil=1.

1650



Netherland Mode Choice Case

- Mode Vear = ASClar + Ptime CAR_TT 4+ Pt CAR_CO
Virain = Ptime TRAIN_TT + Pt TRAIN_COST + P TRAIN_HE
Vem = ASCapy + Brimeo M_TT + Bt SM_COST 4+ B.SM_HE

1 Results ‘ , , ,
Logit model with generic attributes
Parameter Parameter Parameter Robust Robust
number name estimate  standard error {f statistic

1 ASC.,; 0.159 0.0798 2.37
2 ASCqay 0.451 0.0932 4.84
3 B cost -0.0108 0.000682 -15.90
4 Phe -0.00535 0.000983 -5.45
5 Btime -0.0128 0.00104 -12.23

Summary statistics

Number of observations = 6768
L(0) = —6964.663

L(B) = —5315.386

p? =0.236




Interpretation

Alternate specific constants:

The estimated values for the alternative specific constants
ASC..and ASCs.show that, all the rest remaining constant, there
is a preference in the choice of car and Swissmetro with
respect to train.

Moreover, the higher value of ASCswwshows a greater
preference for Swissmetro compared to car.



Interpretation

Generic Coefficients:

The higher the travel time or the cost of an alternative,
the lower the related utility.

The negative estimate of the headway coefficient

beta-he indicates that the higher the headway, the

lower the frequency of service, and thus the lower the
utility.



MNL Model-Alternate Specific

Attributes
Te |

0 Mode Vear = ASCear + Btime CAR_TT + Bearcost CAR_CO

car

Virain = Prime LRAIN_TT 4 Pirain_cost | RAIN_COST + B. TRAIN_HE
Vsm = ASCgy + BtimeSM—TT + E’Sh{ItShi—COST + E’heSM—HE'

Logit model with alternative specific travel cost

L Re SU I 1 Parameter Parameter Parameter Robust Robust
number name estimate  standard error ¢ statistic

1 ASC,,, -0.971 0.134 -7.22
2 ASCsym -0.444 0.102 -4.34
3 Bear.cost -0.00949 0.00116 -8.21
4 Brhe -0.00542 0.00101 -5.36
5 Bsn_cost -0.0109 0.000703 -15.49
6 P time -0.0111 0.00120 -9.26
7 P train_cost -0.0293 0.00169 -17.32

Summary statistics

Number of observations = 6768
L{0) = —6964.663

L(B) = —5068.559

p? =0.271




Interpretation

Alternate Specific Constants:

In this model, the ASC’s are negative implying a
preference, with all the rest constant, for the train

alternative.

These results are different from those of the previous
model where ASCcar and ASCSM were positive and
significant.

The larger negative value of ASCcar implies that this
alternative is more negatively perceived with respect to
train than the Swissmetro alternative.



Interpretation

Alternate Specific Attributes: The influence of the
cost is different, showing a larger negative impact
on the train alternative with respect to car and
Swissmetro.



Generic vs. Alternate Specific Model
Comparison

To test whether a coefficient should be generic or
alternative-specific, we use the likelihood ratio test

The restricted model includes generic travel cost
coefficients over the three alternatives, and the

unrestricted model includes alternative-specific

travel cost coefficients.

HL'I : B[*nr_u:'- wt — ﬁlrnin_r[:-:-ﬂ — [35h1_u:'[:-:-:1

Null hypothesis

—2(Lg— Ly
Test statistic:



Generic vs. Alternate Specific Model
Comparison

Reject the null hypothesis if

—2[.—EE — LL[] = }{;1; |—ex),df)

For the example case

—2(—5315.386 + 5068.559) = 493.654 > 5.991

Reject the null hypothesis and conclude the travel
cost coefficient should be alternative-specific



Model Specification with

Characteristics
[
Mode Ve = ASCear + Brime CAR-TT + Bear_cost CAR-CO + Brenior SENIOR
- Viodie Virain = Ptime TRAIN_TT + Birain_cost TRAIN_COST + pp. TRAIN_HE+
B..CA
Vo = ASCspyt 4 BrimeSM_TT + Bsnicost SM_COST + Br.SM_HE4+
Beenicr SENIOR + B..GA

D ReSU I'I'S Logit model with socio-economic variables
Parameter Parameter Parameter Robust Robust
number name estimate  standard error f stafzstic

1 ASC..r -0.608 0.143 -4.24
2 ASCsm -0.135 0.106 -1.26
3 B ear_cost -0.00936 0.00117 -8.02
4 Bhe -0.00586 0.00106 -5.55
5] BsM_cost -0.0104 0.000744 -14.02
6 Biime -0.0111 0.00121 -9.20
T PBtrain_cost -0.0268 0.00176 -15.24
8 Psenior -1.88 0.109 -17.31
9 Bea 0.557 0.191 2.91

Summary statistics

Number of observations = 6759

L(0) = —6958.425

L(B) = —4927.167

p? = 0.291




Interpretation

Interpretation (SENIOR)

The negative sign of the age coefficient (referring to
SENIOR dummy variable) reflects a preference of
older individuals for the train alternative

It seems a reasonable conclusion, dictated probably by safety
reasons with respect to the car choice and a kind of “inertia”

with respect to the modal innovation represented by the
Swissmetro alternative.



Interpretation

Interpretation (GA)

The coefficient related to the ownership of the Swiss
annual season ticket (GA) is positive, as expected. It
reflects a preference for the SM and train alternative
with respect to car, given that the traveler possesses a
season ticket.

ASCs: The interpretation of the alternative specific
constants is similar to that of the previous model
specification.



Generalized Extreme Value (GEV)

Models
“100 |

7 MNL has IlA properties
Remember the blue bus and red bus paradox
71 Alternatives

Nested Logit
Cross Nested Logit



NL Model Example

®
1 Structure / \

Innovative Classic
@ @ @
SM Car Train

-1 Model

vcur — ASCEELT + B‘CﬂR,_timECAR——-IT + E’cnst CAR_CO
1""Ilrtm.iﬂ. — BTEAIN.ﬁTI‘lEmAIN 1T + E’cnsthIN _CO+ Bhemﬂ[w _HE +
BcaGA

Vsm — Jll:"tS‘CSE'".«'l + BSNL_timESM—-IT + BcustSM—CD + BMSM—HE
BGAGA‘.I



NL Model Results

NL model
Parameter Parameter Parameter Robust Robust  Robust
number name estimate  standard error t-stat. 0 t-stat. 1
1 ASC_ ., 0.0272 0.119 0.23
2 ASCgy 0.243 0.119 2.05
3 Beost -0.000986 0.000105 -0.36
4 Pear_time -0.00874 0.00101 -8.64
5! Birain_time -0.0113 0.000958 -11.77
§] Bsm_time -0.00995 0.00163 -6.09
T Pre -0.00472 0.000862 -5.48
8 Bga 5.39 0.582 0.26
4] Mclassic 1.64 0.132 12.42 4.86
Summary statistics
Number of observations = 6759
L(0) = —6958.425
L(B) = —5207.794
p? = 0.250




Interpretation

ASC:

The alternative specific constants show a preference for
the Swissmetro alternative compared to the other
modes, all the rest remaining constant.



Cross Nested Logit Model

/ .\
Rail-Based Classic

AN

® ® ®
SM Train Car

1 Structure:




Results
T

CNL model with fixed «'s
Parameter Parameter Parameter Robust Robust  Robust
number name estimate  standard error t-staf. (0 t-staf. 1
1 ASC_ 4 -0.838 0.0787 -10.65
2 ASCsp -0.457 0.0744 -6.15
3 Bcust -0.00705 0.000526 -13.39
4 Bcar_time -0.00628 0.00122 -5.17
5 Biraintime  -0.00863 0.00105 -8.18
6 Bsn_time -0.00715 0.00151 -4.74
7 Bre -0.00298 0.000533 -5.58
8 Bga 0.618 0.0940 6.57
9 Kelassic 2.85 0.260 10.93 7.00
10 Wrail_based 4.73 0.483 9.78 7.71
Summary statistics
Number of observations = 6759
L(0) = —6958.425
L(B) =—5120.738
p? =0.263




Typical Steps for Choice Models
B

Logit, Nested Logit, and
Probit Methodology

| |Pomuenmﬁonalmlaﬁmshbsmnmwandpastmm | |

Refine medel: assess goodness of fit,
variables selection, check for multi-collinearity problems

Try aliemative

Logit, and multi-nomial
Probit




