Lecture-5: Multiple Linear Regression-Inference
In Today’s Class

- Recap
- Simple regression model estimation
- Gauss-Markov Theorem
- Hand calculation of regression estimates
Now we know that the sampling distribution of our estimate is centered around the true parameter.

Want to think about how spread out this distribution is.

Much easier to think about this variance under an additional assumption, so:

Assume \(\text{Var}(u|x_1, x_2, \ldots, x_k) = \sigma^2 \) (Homoskedasticity)
Let \mathbf{x} stand for (x_1, x_2, \ldots, x_k)

Assuming that $\text{Var}(u|\mathbf{x}) = \sigma^2$ also implies that $\text{Var}(y|\mathbf{x}) = \sigma^2$

The 4 assumptions for unbiasedness, plus this homoskedasticity assumption are known as the Gauss-Markov assumptions
Given the Gauss - Markov Assumptions

\[
\text{Var}\left(\hat{\beta}_j\right) = \frac{\sigma^2}{SST_j \left(1 - R_j^2\right)}, \text{ where}
\]

\[
SST_j = \sum \left(x_{ij} - \bar{x}_j\right)^2 \text{ and } R_j^2 \text{ is the } R^2 \text{ from regressing } x_j \text{ on all other } x\text{'}s
Components of OLS Variances

- The error variance: a larger σ^2 implies a larger variance for the OLS estimators
- The total sample variation: a larger SST_j implies a smaller variance for the estimators
- Linear relationships among the independent variables: a larger R_j^2 implies a larger variance for the estimators
Misspecified Models

Consider again the misspecified model

$$\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1,$$

so that

$$Var(\tilde{\beta}_1) = \frac{\sigma^2}{SST_1}$$

Thus, $Var(\tilde{\beta}_1) < Var(\hat{\beta}_1)$ unless x_1 and x_2 are uncorrelated, then they're the same...
While the variance of the estimator is smaller for the misspecified model, unless $\beta_2 = 0$ the misspecified model is biased.

As the sample size grows, the variance of each estimator shrinks to zero, making the variance difference less important.
Estimating Error Variance

We don’t know what the error variance, σ^2, is, because we don’t observe the errors, u_i.

What we observe are the residuals, \hat{u}_i.

We can use the residuals to form an estimate of the error variance.
Estimating Error Variance

\[\hat{\sigma}^2 = \left(\sum \hat{u}_i^2 \right) / (n - k - 1) = \frac{SSR}{df} \]

thus, \(se(\hat{\beta}_j) = \hat{\sigma} / \left[SST_j (1 - R^2_j) \right]^{1/2} \)

- \(df = n - (k + 1) \), or \(df = n - k - 1 \)
- \(df \) (i.e. degrees of freedom) is the (number of observations) – (number of estimated parameters)
The Gauss-Markov Theorem

- Given our 5 Gauss-Markov Assumptions it can be shown that OLS is “BLUE”
 - Best
 - Linear
 - Unbiased
 - Estimator
- Thus, if the assumptions hold, use OLS
Assumptions of the Classical Linear Model (CLM)

- So far, we know that given the Gauss-Markov assumptions, OLS is BLUE,
- In order to do classical hypothesis testing, we need to add another assumption (beyond the Gauss-Markov assumptions)
- Assume that u is independent of $x_1, x_2, ..., x_k$ and u is normally distributed with zero mean and variance σ^2: $u \sim \text{Normal}(0, \sigma^2)$
Under CLM, OLS is not only BLUE, but is the minimum variance unbiased estimator

We can summarize the population assumptions of CLM as follows

\[y|\mathbf{x} \sim \text{Normal}(\beta_0 + \beta_1x_1 + \ldots + \beta_kx_k, \sigma^2) \]

While for now we just assume normality, clear that sometimes not the case

Large samples will let us drop normality
The homoskedastic normal distribution with a single explanatory variable

\[E(y|x) = \beta_0 + \beta_1 x \]
Normal Sampling Distributions

Under the CLM assumptions, conditional on the sample values of the independent variables \(\hat{\beta}_j \sim \text{Normal}[\beta_j, \text{Var}(\hat{\beta}_j)] \), so that

\[
\frac{(\hat{\beta}_j - \beta_j)}{\text{sd}(\hat{\beta}_j)} \sim \text{Normal}(0, 1)
\]

\(\hat{\beta}_j \) is distributed normally because it is a linear combination of the errors.
The t Test

Under the CLM assumptions

\[
\frac{(\hat{\beta}_j - \beta_j)}{se(\hat{\beta}_j)} \sim t_{n-k-1}
\]

Note this is a t distribution (vs normal) because we have to estimate \(\sigma^2 \) by \(\hat{\sigma}^2 \).

Note the degrees of freedom: \(n - k - 1 \)
The t Test (cont)

- Knowing the sampling distribution for the standardized estimator allows us to carry out hypothesis tests
- Start with a null hypothesis
- For example, $H_0: \beta_j = 0$
- If accept null, then accept that x_j has no effect on y, controlling for other x’s
To perform our test we first need to form "the" t statistic for $\hat{\beta}_j : t_{\hat{\beta}_j} = \frac{\hat{\beta}_j}{se(\hat{\beta}_j)}$

We will then use our t statistic along with a rejection rule to determine whether to accept the null hypothesis H_0
t Test: One-Sided Alternatives

- Besides our null, \(H_0 \), we need an alternative hypothesis, \(H_1 \), and a significance level.
- \(H_1 \) may be one-sided, or two-sided.
- \(H_1: \beta_j > 0 \) and \(H_1: \beta_j < 0 \) are one-sided.
- \(H_1: \beta_j \neq 0 \) is a two-sided alternative.
- If we want to have only a 5% probability of rejecting \(H_0 \) if it is really true, then we say our significance level is 5\%.
One-Sided Alternatives (cont)

- Having picked a significance level, α, we look up the $(1 - \alpha)^{th}$ percentile in a t distribution with $n - k - 1$ df and call this c, the critical value.
- We can reject the null hypothesis if the t statistic is greater than the critical value.
- If the t statistic is less than the critical value then we fail to reject the null.
One-Sided Alternatives (cont)

\[y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + u_i \]

\[H_0: \beta_j = 0 \quad \text{H}_1: \beta_j > 0 \]

Fail to reject

\[(1 - \alpha) \]

\[0 \]

\[c \]

reject

\[\alpha \]
Because the \(t \) distribution is symmetric, testing \(H_1: \beta_j < 0 \) is straightforward. The critical value is just the negative of before.

We can reject the null if the \(t \) statistic < \(-c\), and if the \(t \) statistic > than \(-c\) then we fail to reject the null.

For a two-sided test, we set the critical value based on \(\alpha/2 \) and reject \(H_1: \beta_j \neq 0 \) if the absolute value of the \(t \) statistic > \(c \).
Two-Sided Alternatives

\[y_i = \beta_0 + \beta_1 X_{i1} + \ldots + \beta_k X_{ik} + u_i \]

\[H_0: \beta_j = 0 \quad \text{fail to reject} \]

\[H_1: \beta_j \neq 0 \quad \text{reject} \quad \alpha/2 \quad (1 - \alpha) \quad \text{reject} \quad \alpha/2 \]

Two-Sided Alternatives
Summary for $H_0: \beta_j = 0$

- Unless otherwise stated, the alternative is assumed to be two-sided.
- If we reject the null, we typically say “x_j is statistically significant at the $\alpha \%$ level.”
- If we fail to reject the null, we typically say “x_j is statistically insignificant at the $\alpha \%$ level.”
Testing other hypotheses

- A more general form of the t statistic recognizes that we may want to test something like $H_0: \beta_j = a_j$
- In this case, the appropriate t statistic is

$$t = \frac{(\hat{\beta}_j - a_j)}{se(\hat{\beta}_j)}$$

where $a_j = 0$ for the standard test
• Another way to use classical statistical testing is to construct a confidence interval using the same critical value as was used for a two-sided test.

• A \((1 - \alpha)\) % confidence interval is defined as

\[
\hat{\beta}_j \pm c \cdot se(\hat{\beta}_j), \text{ where } c \text{ is the } \left(1 - \frac{\alpha}{2}\right) \text{ percentile in a } t_{n-k-1} \text{ distribution}
\]
Computing *p*-values for *t* tests

- An alternative to the classical approach is to ask, “what is the smallest significance level at which the null would be rejected?”
- So, compute the *t* statistic, and then look up what percentile it is in the appropriate *t* distribution – this is the *p*-value
- *p*-value is the probability we would observe the *t* statistic we did, if the null were true
Stata and p-values, t tests, etc.

- Most computer packages will compute the p-value for you, assuming a two-sided test.
- If you really want a one-sided alternative, just divide the two-sided p-value by 2.
- Stata provides the t statistic, p-value, and 95% confidence interval for $H_0: \beta_j = 0$ for you, in columns labeled “t”, “P > |t|” and “[95% Conf. Interval]”, respectively.
Testing a Linear Combination

• Suppose instead of testing whether β_1 is equal to a constant, you want to test if it is equal to another parameter, that is $H_0 : \beta_1 = \beta_2$

• Use same basic procedure for forming a t statistic

$$t = \frac{\hat{\beta}_1 - \hat{\beta}_2}{se(\hat{\beta}_1 - \hat{\beta}_2)}$$
Since

\[se(\hat{\beta}_1 - \hat{\beta}_2) = \sqrt{Var(\hat{\beta}_1 - \hat{\beta}_2)}, \]

\[Var(\hat{\beta}_1 - \hat{\beta}_2) = Var(\hat{\beta}_1) + Var(\hat{\beta}_2) - 2Cov(\hat{\beta}_1, \hat{\beta}_2) \]

\[se(\hat{\beta}_1 - \hat{\beta}_2) = \left(se(\hat{\beta}_1)^2 + se(\hat{\beta}_2)^2 - 2s_{12} \right)^{\frac{1}{2}} \]

where \(s_{12} \) is an estimate of \(Cov(\hat{\beta}_1, \hat{\beta}_2) \).
So, to use formula, need s_{12}, which standard output does not have

Many packages will have an option to get it, or will just perform the test for you

In Stata, after `reg y x1 x2 ... xk` you would type `test x1 = x2` to get a p-value for the test

More generally, you can always restate the problem to get the test you want
Example:

- Suppose you are interested in the effect of campaign expenditures on outcomes
- Model is \(voteA = \beta_0 + \beta_1 \log(expendA) + \beta_2 \log(expendB) + \beta_3 \text{prtystrA} + u \)
- \(H_0: \beta_1 = -\beta_2 \), or \(H_0: \theta_1 = \beta_1 + \beta_2 = 0 \)
- \(\beta_1 = \theta_1 - \beta_2 \), so substitute in and rearrange \(\Rightarrow \)
 \(voteA = \beta_0 + \theta_1 \log(expendA) + \beta_2 \log(expendB - expendA) + \beta_3 \text{prtystrA} + u \)
Example (cont):

- This is the same model as originally, but now you get a standard error for $\beta_1 - \beta_2 = \theta_1$ directly from the basic regression.
- Any linear combination of parameters could be tested in a similar manner.
- Other examples of hypotheses about a single linear combination of parameters:
 - $\beta_1 = 1 + \beta_2$; $\beta_1 = 5\beta_2$; $\beta_1 = -1/2\beta_2$; etc.
Multiple Linear Restrictions

- Everything we’ve done so far has involved testing a single linear restriction, (e.g. $\beta_1 = 0$ or $\beta_1 = \beta_2$)
- However, we may want to jointly test multiple hypotheses about our parameters
- A typical example is testing “exclusion restrictions” – we want to know if a group of parameters are all equal to zero
Testing Exclusion Restrictions

- Now the null hypothesis might be something like $H_0: \beta_{k-q+1} = 0, \ldots, \beta_k = 0$
- The alternative is just $H_1: H_0$ is not true
- Can’t just check each t statistic separately, because we want to know if the q parameters are jointly significant at a given level – it is possible for none to be individually significant at that level
Exclusion Restrictions (cont)

To do the test we need to estimate the “restricted model” without \(x_{k-q+1}, \ldots, x_{k} \) included, as well as the “unrestricted model” with all \(x \)'s included.

Intuitively, we want to know if the change in SSR is big enough to warrant inclusion of \(x_{k-q+1}, \ldots, x_{k} \)

\[
F \equiv \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n - k - 1)}, \text{ where}
\]

\(r \) is restricted and \(ur \) is unrestricted.
The F statistic

- The F statistic is always positive, since the SSR from the restricted model can’t be less than the SSR from the unrestricted.
- Essentially the F statistic is measuring the relative increase in SSR when moving from the unrestricted to restricted model.
- $q = \text{number of restrictions, or } df_r - df_{ur}$
- $n - k - 1 = df_{ur}$
To decide if the increase in SSR when we move to a restricted model is “big enough” to reject the exclusions, we need to know about the sampling distribution of our F stat

Not surprisingly, $F \sim F_{q, n-k-1}$, where q is referred to as the numerator degrees of freedom and $n - k - 1$ as the denominator degrees of freedom
The F statistic (cont)

$\frac{1}{c}$

$\text{f}(F)$

Reject H_0 at α significance level if $F > c$

fail to reject

$(1 - \alpha)$

α

0

c

F
Because the SSR’s may be large and unwieldy, an alternative form of the formula is useful.

We use the fact that $SSR = SST(1 - R^2)$ for any regression, so can substitute in for SSR_u and SSR_{ur}

\[F \equiv \frac{(R_{ur}^2 - R_r^2) / q}{(1 - R_{ur}^2) / (n - k - 1)}, \text{ where again} \]

\[r \text{ is restricted and } ur \text{ is unrestricted} \]
A special case of exclusion restrictions is to test $H_0: \beta_1 = \beta_2 = \ldots = \beta_k = 0$

Since the R^2 from a model with only an intercept will be zero, the F statistic is simply

$$F = \frac{R^2/k}{(1 - R^2)/(n - k - 1)}$$
General Linear Restrictions

- The basic form of the F statistic will work for any set of linear restrictions
- First estimate the unrestricted model and then estimate the restricted model
- In each case, make note of the SSR
- Imposing the restrictions can be tricky – will likely have to redefine variables again
Example:

- Use same voting model as before
- Model is $vote_A = \beta_0 + \beta_1 \log(expendA) + \beta_2 \log(expendB) + \beta_3 prtystrA + u$
- now null is $H_0: \beta_1 = 1, \beta_3 = 0$
- Substituting in the restrictions: $vote_A = \beta_0 + \log(expendA) + \beta_2 \log(expendB) + u$, so
- Use $vote_A - \log(expendA) = \beta_0 + \beta_2 \log(expendB) + u$ as restricted model
F Statistic Summary

- Just as with *t* statistics, *p*-values can be calculated by looking up the percentile in the appropriate *F* distribution.
- Stata will do this by entering: display fprob(*q*, *n* – *k* – 1, *F*), where the appropriate values of *F*, *q*, and *n* – *k* – 1 are used.
- If only one exclusion is being tested, then *F* = *t*², and the *p*-values will be the same.