Highway Capacity Software 2010

Version 6.50
April 8, 2014
Highway Capacity Software

Developed and maintained by McTrans

- Originally founded by the FHWA in 1986 as the Center for Microcomputers in Transportation (McTrans)

- Now a full-service software support center, associated with the University of Florida

HCS 2010

- HCS 2010 implements the procedures defined in the Highway Capacity Manual (HCM) 2010 published by the Transportation Research Board (TRB)

- This release includes the new Streets module that combines the Signalized Intersections with the Urban Streets Segments, Facilities and Multimodal procedures.
Fourteen Modules

Intersection Module

Highway Module

Streets
TRANSYT-7F
TWSC
AWSC
Roundabouts
Warrants
DAITA

Facilities
Freeways
Weaving
Ramps
Multilane
TwoLane
LOSPLAN

McTrans
Moving Technology

HCS
2010
Demonstration
Street Module

Signalized Intersections

- Signal analysis
- Interchange analysis
- Multimodal analysis
- LOS
Signalized intersections

- **Capacity**
 - Defined for each lane group
 - Lane group: one or more lanes that accommodate traffic and have a common stop-line and traffic move together
 - Lane group capacity: maximum rate of flow for the subject lane group that may pass through the intersection under prevailing traffic, roadway and signalized conditions
Signalized intersections

- Traffic Conditions
 - Approach volumes (left, through, right)
 - Vehicle type
 - Location of bus stops
 - Pedestrian crossing flows
 - Parking movement
Signalized intersections

- Roadway Conditions
 - Number and width of lanes
 - Grades
 - Lane use
 - Including parking lanes

- Traffic Signal Characteristics
 - Signal phasing
 - Signal timing
 - Type of control
 - Signal progression
Signalized intersections

- Delay experienced by a motorist includes many factors:
 - Signal control
 - Geometrics
 - Incidents
Signalized intersections

- **Total delay:**
 - Difference between actual travel time and ideal travel time
 - In the absence of traffic control, delay due to roadway geometries, incidents and when there are no vehicles on the road
 - In HCS control delay is quantified
 - Initial deceleration delay
 - Queue move-up time
 - Stopped delay
 - Final acceleration delay
Level of Service (LOS)

- Defined in terms of delay as a function of:
 - driver discomfort
 - Driver frustration
 - Fuel consumption
 - Lost travel time
Level of Service (LOS)

- LOS criteria are stated in terms of average control delay per vehicle
 - Delay on signal control depends on
 - Quality of progression
 - Cycle length
 - Green ratio
 - V/c ratio for lane group
- Designated by letters A - F
Level of Service (LOS)

<table>
<thead>
<tr>
<th>LEVEL OF SERVICE</th>
<th>CONTROL DELAY PER VEHICLE (SEC/VEHICLES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>≤ 10</td>
</tr>
<tr>
<td>B</td>
<td>>10 and ≤ 20</td>
</tr>
<tr>
<td>C</td>
<td>>20 and ≤ 35</td>
</tr>
<tr>
<td>D</td>
<td>>35 and ≤ 55</td>
</tr>
<tr>
<td>E</td>
<td>>55 and ≤ 80</td>
</tr>
<tr>
<td>F</td>
<td>> 80</td>
</tr>
</tbody>
</table>

Source: Highway Capacity Manual 2010
Operational Analysis Procedure

1. INPUT
 - Roadway conditions
 - Traffic conditions
 - Signalization conditions

2. VOLUME ADJUSTMENT
 - Peak hour factor
 - Establish lane groups
 - Assign volumes to lane groups

3. SATURATION FLOW RATE
 - Ideal saturation flow rate
 - Adjustments

4. CAPACITY ANALYSIS MODULE
 - Compute lane group capacities
 - Compute lane group v/c ratios
 - Aggregate results

5. LEVEL OF SERVICE MODULE
 - Compute lane group delays
 - Aggregate delays
 - Determine levels of service
Getting Started:

1. Open HCS 2010
2. Select the Streets *(handles signals and signalized corridors)*
Getting Started:

3. Complete The Quick Start Screen
4. Enter Information in the **General** Section
5. Enter **Lane Configuration**
6. Enter **Traffic** Data

![Traffic Data Table]

| Traffic | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
|------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Demand, veh/h | 350 | 1315| 285 | 385 | 740 | 125 | 130 | 320 | 240 | 225 | 780 | 310 |
| Lane Width, ft | 12.0| 12.0| 12.0| 12.0| 12.0| 12.0| 12.0| 12.0| 12.0| 12.0| 12.0| 12.0|
| Storage Length, ft| 350 | 0 | 300 | 0 | 0 | 190 | 0 | 300 | 200 | 0 | 370 |
| Saturation, pc/h/ln| 1900| 1900| 1900| 1900| 1900| 1900| 1900| 1900| 1900| 1900| 1900| 1900|
| Heavy Vehicles, %| 10 | 10 | 0 | 10 | 10 | 0 | 10 | 10 | 10 | 10 | 0 | 10 |
| Grade, % | -2 | 0 | 1 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 |
| Buses, per h | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Parking, per h | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Bicycles, per h | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pedestrians, per h| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Arrival Type | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Upstream Filtering (I)| | | | | | | | | | | | |
| Initial Queue, veh| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Speed Limit, mi/h| 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 |
| Detector, ft | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 |
| RTOR, veh/h | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7. Enter **Phasing** data
8. Enter **Timing**

![Timing Table]

<table>
<thead>
<tr>
<th></th>
<th>EBL</th>
<th>EBT</th>
<th>WBL</th>
<th>WBT</th>
<th>NBL</th>
<th>NBT</th>
<th>SBL</th>
<th>SBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase Split, s</td>
<td>150</td>
<td>40.0</td>
<td>15.0</td>
<td>40.0</td>
<td>0.0</td>
<td>45.0</td>
<td>0.0</td>
<td>45.0</td>
</tr>
<tr>
<td>Yellow Change, s</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Red Clearance, s</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Minimum Green, s</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Lag Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EL</td>
<td>ET</td>
<td>WL</td>
<td>WT</td>
<td>NL</td>
<td>NT</td>
<td>SL</td>
<td>ST</td>
</tr>
<tr>
<td>Passage Time, s</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Recall Mode</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual Entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EL</td>
<td>ET</td>
<td>WL</td>
<td>WT</td>
<td>NL</td>
<td>NT</td>
<td>SL</td>
<td>ST</td>
</tr>
<tr>
<td>Dallas Phasing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E/W</td>
<td>N/S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simultaneous Gap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E/W</td>
<td>N/S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Green Settings Table]

<table>
<thead>
<tr>
<th></th>
<th>Green</th>
<th>Yellow</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40.0</td>
<td>4.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>4.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>35.0</td>
<td>4.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
9. Enter the **Detailed** Data
10. Run **Full Optimization**
11. **Optimization Results**

![Optimization Results](image)

- **Overall Delay**
 - Original: 263.7 sec/veh
 - Optimum: 169.1 sec/veh
 - Average: 175.0 sec/veh
 - Improvement: 35.9%

- **Run Status**
 - Generation Number: 200 out of 200
 - Generation Optimum: 101
 - Total Time Elapsed: 43 sec

- **Diagnostic Messages**
 - No messages to report at this time.
HCS 2010 Signalized Intersection Results Summary

General Information
- **Agency:** DOT
- **Analyst:** Design Engineer
- **Analysis Date:** Aug 12, 2012
- **Area Type:** Street
- **Jurisdiction:** Clayton County
- **Time Period:** 2012 PM
- **Analysis Year:** 2012
- **Analysis Period:** 7:30 PM

Project Description
- **Project Name:** Signalized Design Year Traffic

Demand Information
<table>
<thead>
<tr>
<th>Approach Movement</th>
<th>EB</th>
<th>WB</th>
<th>NB</th>
<th>SB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach</td>
<td>L</td>
<td>T</td>
<td>R</td>
<td>L</td>
</tr>
<tr>
<td>**Demand (veh/h)</td>
<td>300</td>
<td>1815</td>
<td>289</td>
<td>395</td>
</tr>
</tbody>
</table>

Signal Information
- **Cycle, s:** 110.0
- **Phase, s:** 2
- **Reference Phase:** 12
- **Reference Time:** 12
- **Undirected:** No
- **Simulated:** Yes
- **Pulse Mode:** Fixed

Timer Results

Movement Group Results

Notes
- The report details the analysis of 12. View/Print **Results** Summary Report.
13. View Messages Report

- Look for any warnings

--- Messages ---

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---
RESULTS