CIVL - 7904/8904

TRAFFIC FLOW THEORY

LECTURE -5

Agenda for Today

Headway Distributions

- Pearson Type –III
- Composite
- Goodness of fit

Visit to the Traffic Management Center (April **)

Pearson Type III Distribution

- Pearson Type III Distribution is a generalized mathematical approach
- The probability density function is given by

$$f(t) = \frac{\lambda}{\Gamma(K)} \left[\lambda \left(t - \alpha \right) \right]^{K-1} e^{-\lambda(t-\alpha)}$$

Where

f(t)-> Probability distribution

 $\lambda \rightarrow$ Parameter that is a function of K and

K-> Parameter between 0 and ∞ (that affects shape of the distribution)

 α -> Parameter greater than zero (that affects shift of the distribution)

t-> time headway being investigated

e-> Napier's constant 2.718

 $\Gamma(K)$ -> Gamma function, equivalent to (K-1)!

Pearson Type III Distribution (2)

• Integration of F(t) between 0 and ∞

Pearson Type III Distribution (2)

Probability of headway greater than t

• $P(h \ge t) = \int_t^\infty f(t) dt$

Pearson Type III Distribution (3)

• Probability of headway lying between *t* and and $t + \Delta t$ • $P(h \ge t) = \int_t^{\infty} f(t) dt - \int_{t+\Delta t}^{\infty} f(t + \Delta t) dt$

Pearson Type III Distribution (3)

- If Δt is very small
- And an approximate solution is possible
- The probability can be defined as

$$P(t \le h < t + \Delta t) = \left[\frac{f(t) + f(t + \Delta t)}{2}\right] \Delta t$$

Other Distributions

Distribution	Estimating K	Calculating λ	Probability Density Function	
Pearson Type-III (K and α)	$\frac{\overline{t} - \alpha}{s}$	$\frac{K}{\overline{t}-\alpha}$	$\frac{\lambda}{\Gamma(K)} \left[\lambda \left(t - \alpha \right) \right]^{K-1} e^{-\lambda(t-\alpha)}$	
Gamma (K and $\alpha = 0$)	$\frac{\overline{t}}{s}$	$\frac{K}{\overline{t}}$	$\frac{\lambda}{\Gamma(K)} [\lambda t]^{K-1} e^{-\lambda t}$	
Erlang (K = +ve integer, $\alpha = 0$)	$\frac{\overline{t}}{s}$	$\frac{K}{\overline{t}}$	$\frac{\lambda}{(K-1)!} [\lambda t]^{K-1} e^{-\lambda t}$	
Neg. Exponential (K =1 and α = 0)	$\frac{\overline{t}}{s}$	$\frac{1}{\overline{t}}$	$\lambda e^{-\lambda t} \ or \lambda e^{-t/\overline{t}}$	
Shifted Neg. Exponential (K =1 and $\alpha > 0$)	$\frac{\overline{t} - \alpha}{s}$	$\frac{1}{\overline{t}-\alpha}$	$\lambda e^{-\lambda(t-\alpha)} or \lambda e^{-(t-\alpha)/(\overline{t}-\alpha)}$	

Eight Steps for Pearson Type-III

• Step-1

• Calculate mean time headway and standard deviation of headway

• Step-2

• Select appropriate value of α

• Step-3

• Calculate approximate value of K

$$\widehat{K} = \frac{\overline{t} - \alpha}{s}$$

Eight Steps for Pearson Type-III

- Step-4
 - Calculate λ

$$\lambda = \frac{K}{\overline{t} - \alpha}$$

• Calculate Gamma Function

 $\Gamma(K) = (K-1)!$

• Check gamma value for fractional number

Eight Steps for Pearson Type-III

- Step-6
 - Solve for f(t)
- Step-7
 Solver for P(t)
- Step-8
 - Solver for F(t)

Derive Table

Apply Pearson Type-III to the lowest flow condition Derive Table in-class

Observations

- The probabilities decrease as the time headway increases
- Appears that Pearson Type III matches with the observed distribution well
- As headway>4sec, theoretical headways are less than observed
- For headways less than 1 sec there is little mismatch
- Pearson Type III involves assumption of K and α, but these values are approximate
- Sensitivity analysis should be conducted to determine best Pearson Type-III distribution

Composite Model Approach

Vehicles in platoon

• Normal distribution

Vehicles not in platoon

• Shifted negative exponential distribution

Composite Model Approach

- Overall four parameters are needed
 - Normal distribution
 - × Mean and standard deviation of headway
- Shifted negative exponential distribution
 - Minimum time headway for vehicles not in platoon
 - Proportion of vehicles not in platoon

Composite Model Approach

- Proportion of vehicles in platoon + Proportion of vehicles not in platoon =1.00
- Mean time headway of the vehicles not in platoon can be computed from the following equation

$$\overline{t} = \overline{t_p} P_P + \overline{t_{Np}} P_{Np}$$

 $P_P \rightarrow$ Proportion of vehicles in platoon $P_{Np} \rightarrow$ Proportion of vehicles not in platoon $\overline{t_p} \rightarrow$ Time headway for vehicles in platoon $\overline{t_{Np}} \rightarrow$ Time headway for vehicles not in platoon

Proportion of Vehicles in Platoon

- If we assume all vehicles at headways of less than 1.5 sec. are in platoons and others not in platoons
 Then properties of vehicles in platoon
- Then proportion of vehicles in platoon

 $P_p = \frac{1.5}{-1}$

$$P_p = \frac{1.5}{5} = 30\%$$

Proportion of Vehicles not in Platoon

- Proportion of vehicles not in platoon = 70%
- Headway for vehicles not in platoon can be computed as following

$$\overline{t_{Np}} = \frac{\overline{t_p} P_P - \overline{t}}{P_{Np}} = \frac{1.5 * 0.3 - 5}{0.7} = 6.5$$

• The standard deviation is $\overline{t} - \alpha = 6.5 - 2.0 = 4.5$ sec

Input Values

Parameter	Platoon	Not in Platoon
Mean Headway	1.5	6.5
S.D. Headway	0.5	4.5
Proportion	30%	70%

 $\alpha = 2 sec$

Create Table

• Derive Composite Distribution

Observations

- Two distributions appear to have the same general shape
- The two distributions
- are most different under low flow conditions
- But becomes similar as flow level increases
- Theoretical distribution > measured when headway is more than 4 sec
- Larger differences when headway is between 1 and 2.5 sec

Other Approaches

- Schuhl's model
- Two classes of vehicles
 - Constrained vehicles
 - Free-moving vehicles
- Constrained vehicles:
 - Shifted negative exponential distribution
- Free flowing vehicles

• Negative exponential distribution

$$P(h \ge t) = Pe^{-(t-\alpha)/(\overline{t}-\alpha)} + (1-P) e^{-t/\overline{t}}$$