CIVL - 7904/8904

TRAFFIC FLOW THEORY

LECTURE -2

Agenda for Today

- Review of last lecture
- Field observations
- Examples of four highways
- Various Flow Models
- Calibration of Flow Models

Field Observations (1)

- The relationship between speed-flow-density is important to observe before proceeding to the theoretical traffic stream models.
- Four sets of data are selected for demonstration
 - High speed freeway
 - Freeway with 55 mph speed limit
 - o A tunnel
 - An arterial street

High Speed Freeway (1)

• This data is obtained from Santa Monica Freeway (detector station 16) in LA

• This urban roadway incorporates

- o high design standards
- Operates at nearly ideal conditions
- A high percentage of drivers are commuters who use this freeway on regular basis.
- The data was collected by Caltrans

High Speed Freeway (2)

• Measurements are averaged over 5 min period

The speed-density plot shows

- o a very consistent data pattern
- Displays a slight S-shaped relationship

High Speed Freeway: Speed-Density

- Uniform density from 0 to 130 veh/mi/lane
- Free flow speed little over 60 mph
- Jam density can not be estimated
- Free flow speed portion shows like a parabola
- Congested portion is relatively flat

High Speed Freeway: Flow-Density

- Maximum flow appears to be just under 2000 veh per hour per lane (vhl)
- Optimum density is approx. 40-45 veh/mile/lane (vml)
- Consistent data pattern for flows up to 1,800 vhl

High Speed Freeway: Flow-Speed

- Consistent data pattern for flows up to 1,800 vhl
- Optimum speed is not well defined
 - But could range between 30-45 mph
- Relationship between speed and flow is not consistent beyond optimum flow

Break-Out Session (3 Groups)

• Find out important features from

- Figure 10.4
- Figure 10.5
- Figure 10.6

Difficulty of Speed-Flow-Density Relationship (1)

- A difficult task
- Unique demand-capacity relationship vary
 - o over time of day
 - o over length of roadway
- Parameters of flow, speed, density are difficult to estimate
 - As they vary greatly between sites

Difficulty of Speed-Flow-Density Relationship (2)

• Other factors affect

- o Design speed
- o Access control
- Presence of trucks
- Speed limit
- Number of lanes

There is a need to learn theoretical traffic stream models

Individual Models

Single Regime model Only for free flow or congested flow

Two Regime Model

- Separate equations for
 - × Free flow
 - × Congested flow

• Three Regime Model

- Separate equations for
 - × Free flow
 - × Congested flow
 - × Transition flow

• Multi Regime Model

Single Regime Models

Greenshield's Model

- Assumed linear speed-density relationships
- All we covered in the first class
- In order to solve numerically traffic flow fundamentals, it requires two basic parameters
 - × Free flow speed
 - × Jam Density

$$u = u_f - \left(\frac{u_f}{k_j}\right) * k$$

Single Regime Models: Greenberg

- Second regime model was proposed after Greenshields
- Using hydrodynamic analogy he combined equations of motion and one-dimensional compressive flow and derived the following equation

$$u = u_f * ln\left(\frac{k_j}{k}\right)$$

• Disadvantage: Free flow speed is infinite

Single Regime Models: Underwood

- Proposed models as a result of traffic studies on Merrit Parkway in Connecticut
- Interested in free flow regime as Greenberg model was using an infinite free flow speed
- Proposed a new model

$$u = u_f * e^{-\left(\frac{k}{k_0}\right)}$$

Single Regime Models: Underwood (2)

- Requires free flow speed (easy to compute)
- Optimum density (varies depending upon roadway type)
- Disadvantage
 - Speed never reaches zeroJam density is infanite

Single Regime Models: Northwestern Univ.

Northwestern University

$$u = u_f * e^{-\frac{1}{2\left(\frac{k}{k_0}\right)^2}}$$

- Formulation related to Underwood model
- Prior knowledge on free flow speed and optimum density
- Speed does not go to "zero" when density approaches jam density

Single Regime Model Comparisons (1)

- All models are compared using the data set of freeway with speed limit of 55mph (see fig. 10.4)
- Results are shown in fig. 10.7
- Density below 20vml
 - o Greenberg and Underwood models underestimate speed
- Density between 20-60 vml
 - All models underestimate speed and capacity

Single Regime Model Comparisons (2)

- Density from 60-90 vml
 - o all models match very well with field data
- Density over 90 vml
 - o Greenshields model begins to deviate from field data
- At density of 125 vml
 - Speed and flow approaches to zero

Single Regime Model Comparisons (3)

Flow Parameter	Data Set						
		Greenshields	Greenberg	Underwood	Northwestern		
Max. Flow (qm)	1800- 2000	1800	1565	1590	1810		
Free-flow speed (uf)	50-55	57	inf	75	49		
Optimum Speed (ko)	28-38	29	23	28	30		
Jam Density (kj)	185-250	125	185	inf	inf		
Optimum Density	48-65	62	68	57	61		
Mean Deviation	-	4.7	5.4	5.0	4.6		

Multiregime Models (1)

- Eddie first proposed two-regime models because
 - Used Underwood model for Free flow conditions
 - Used Greenberg model for congested conditions
- Similar models are also developed in the era
- Three regime model
 - Free flow regime
 - Transitional regime
 - Congested flow regime

Multiregime Models (2)							
Multiregime Model	Free Flow Regime	Transitional Flow Regime	Congested Flow Regime				
Eddie Model	$u = 54.9e^{-k/_{163.9}}$ $(k \le 50)$	NA	$u = 26.8ln\left(\frac{162.5}{k}\right)$ $(k \ge 50)$				
Two-regime Model	u = 60.9 - 0.515k $(k \le 65)$	NA	$u = 40 - 0.265k$ $(k \le 65)$				
Modified Greenberg Model	$u = 48$ $(k \le 35)$	NA	$u = 32ln\left(\frac{145.5}{k}\right)$ $(k \ge 35)$				
Three-regime Model	$u = 50 - 0.098k$ $(k \le 40)$	u = 81.4 - 0.91k $(40 \le k \le 65)$	$u = 40 - 0.265k$ $(k \ge 65)$				

Multiregime Models (3)

• Challenge

• Determining breakeven points

Advantage

• Provide opportunity to compare models

- Their characteristics
- o Breakeven points

Summary

- Multiregime models provide considerable improvements over single-regime models
- But both models have their respective
 - Strengths
 - o weaknesses
- Each model is different with continuous spectrum of observations

Model Calibration (1)

- In order calibrate any traffic stream model, one should get the boundary values,
 o free flow speed () and jam density ().
- Although it is difficult to determine exact free flow speed and jam density directly from the field, approximate values can be obtained
- Let the linear equation be y = ax +b; such that is
 Y denotes density (speed) and x denotes the speed (density).

Model Calibration (2)

• Using linear regression method, coefficient *a* and *b* can be solved as

$$b = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$a = \bar{y} - b\bar{x}$$

Example

• For the following data on speed and density, determine the parameters of the Greenshields' model. Also find the maximum flow and density corresponding to a speed of 30 km/hr.

k	v	
171	5	
129	15	
20	40	
70	25	

Model Calibration

x(k)	y(v)	[2] Without the state of the	$y_i - ar{y}$	$ ightarrow y_i - ar{y}$	[7] The long test is solved to depend
171	5	73.5	-16.3	-1198.1	5402.3
129	15	31.5	-6.3	-198.5	992.3
20	40	-77.5	18.7	-1449.3	6006.3
70	25	-27.5	3.7	-101.8	756.3
390	85			-2947.7	13157.2