Agenda for Today

- Introduction
- Review of Syllabus
- Traffic Flow Theory Basics
- Text Book Example
Background

- Traffic Engineering Course
- Math Background
 - Algebra
 - Calculus
 - Introductory Probability / Statistics
 - Introductory Optimization
- Field Surveys
By restricting the scope of analysis, we can take a much more detailed look at how transportation facilities function.
Few questions come to mind!

Typical operations questions:

- How long will people have to wait to turn left from a driveway?
- How much delay will people face at this signal?
- How do heavy vehicles affect traffic speeds?
- What is the “capacity” of a freeway?
Consider a long, uninterrupted, single-lane roadway:

No passing, no opposing traffic, no intersections
Traffic Flow Basics (2)
Traffic Flow Basics - Speed

Distance (x) vs. Time (t)

Δx, Δt
Traffic Flow Basics - Trajectories

Distance (x)

Time (t)
This is called a **time-space** diagram.
Consider a horizontal “slice” of the diagram
The number of trajectories crossing this line is the number of vehicles passing a fixed point on the road.

This is called the **volume** or **flow**, and has units of vehicles per time (usually veh/hr).
Traffic Flow Basics - Volume

What does a vertical slice tell us?

Distance (x)
Time (t)
The number of trajectories crossing this line is the number of vehicles on the road at one instant in time.

This is called the **density**, and has units of vehicles per distance (usually veh/mi).
<table>
<thead>
<tr>
<th>Flow</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>veh/hr</td>
<td>veh/mi</td>
</tr>
<tr>
<td>Measured over time at a fixed point</td>
<td>Measured over space at a fixed time</td>
</tr>
<tr>
<td>How many vehicles are getting somewhere?</td>
<td>How crowded is the roadway?</td>
</tr>
<tr>
<td>Can measure with a point detector</td>
<td>Can measure with an aerial photo</td>
</tr>
<tr>
<td>q</td>
<td>k</td>
</tr>
</tbody>
</table>
Traffic Flow Basics-Summary (2)

<table>
<thead>
<tr>
<th>Individual vehicle</th>
<th>Traffic stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed [L/T]</td>
<td>Flow [V/T]</td>
</tr>
<tr>
<td></td>
<td>Density [V/L]</td>
</tr>
</tbody>
</table>
Traffic Flow Basics-Summary (3)

Classify the quantities

<table>
<thead>
<tr>
<th>Individual vehicle</th>
<th>Traffic stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed [L/T]</td>
<td></td>
</tr>
<tr>
<td>Flow [V/T]</td>
<td></td>
</tr>
<tr>
<td>Density [V/L]</td>
<td></td>
</tr>
</tbody>
</table>

Brackets describe units... L = length, T = time, V = vehicles
Let’s try to fill in the rest of the table.

<table>
<thead>
<tr>
<th>Individual vehicle</th>
<th>Traffic stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed [L/T]</td>
<td>Flow [V/T]</td>
</tr>
<tr>
<td>Time Headway [T]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Density [V/L]</td>
</tr>
</tbody>
</table>
The **time headway** is the time between two vehicles passing a point.
On a space-time diagram, it is the **horizontal distance** between two adjacent trajectories.
Let’s try to fill in the rest of the table.

<table>
<thead>
<tr>
<th>Individual vehicle</th>
<th>Traffic stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed [L/T]</td>
<td>Flow [V/T]</td>
</tr>
<tr>
<td>Time Headway [T]</td>
<td>Density [V/L]</td>
</tr>
<tr>
<td>Space Headway [L]</td>
<td></td>
</tr>
</tbody>
</table>
The **space headway** is the distance between two vehicles.
On a space-time diagram, it is the **vertical distance** between two adjacent trajectories.
Traffic Flow Basics-Summary

Let’s try to fill in the rest of the table.

<table>
<thead>
<tr>
<th>Individual vehicle</th>
<th>Traffic stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed [L/T]</td>
<td>Average Speed [L/T]</td>
</tr>
<tr>
<td>Time Headway [T]</td>
<td>Flow [V/T]</td>
</tr>
<tr>
<td>Space Headway [L]</td>
<td>Density [V/L]</td>
</tr>
</tbody>
</table>
Three Parameters of Traffic Flow

- Macroscopic:
 - Speed (V)
 - Density (K)
 - Flow (Q)

\[Q = KV \]
Spacing

- **Spacing** is defined as the distance between successive vehicles in a traffic lane; measured from common reference
 - Front bumper or
 - Front wheels
- **Average spacing** in a traffic lane is related to density

\[d_a = \frac{5280}{k} \]

Where,
- \(k \) = density in veh/mile/lane
- \(d_a \) = *Average spacing between vehicles* in ft
Headway

- **Headway** is defined as the time interval between successive vehicles as they pass along a lane.
- Also measured between common point of reference.

\[h_a = \frac{3,600}{q} \]

Where,
- \(q \) = traffic volume in veh/hour/lane
- \(h_a \) = *Average headway in the lane* in sec
Example

Traffic in an interstate at 7:15 AM is observed to have spacing of 250 feet; and average headway of 3 sec. Estimate

- Volume
- Density
- Speed
Step 1: Calculate flow
\[q = \frac{3,600}{h_a} = \frac{3,600}{3} = 1,200 \text{ veh/hour/lane} \]

Step 2: Calculate density
\[k = \frac{5,280}{d_a} = \frac{5,200}{250} = 20.8 \text{ veh/mile/lane} \]

Step 3: Calculate Speed
\[q = uk \Rightarrow u = \frac{q}{k} = \frac{1200}{20.8} = 57.69 \text{ miles/hour} \]
Speed

- **Time mean speed (spot speed)**
 - Arithmetic mean of all instantaneous vehicle speeds at a given “spot” on a roadway section

- **Space mean speed (u)**
 - The mean travel speed of vehicles traversing a roadway segment of a known distance (d)
 - More useful for traffic applications
Time Mean Speed

- Time mean speed is the average of all vehicles passing over a point over a duration of time.
- It is simple average of spot speed
- Mean speed is given by
 \[v_t = \frac{1}{n} \sum_{i=1}^{n} v_i \]
- Often speeds are given as frequency tables. Then TMS is
 \[v_t = \frac{\sum_{i=1}^{n} q_i v_i}{\sum_{i=1}^{n} q_i} \]
- Where \(q_i \) is the number of vehicles having speed \(v_i \), and \(n \) is number of such speed categories
Space Mean Speed

- Space mean speed also averages spot speeds but spatial weights is given instead of temporal.
- Consider a unit length of road and let v_i is the spot speed, and let t_i is the time vehicles takes to complete unit distance and is given by $1 / v_i$.
- If we have n such vehicles, then average travel time is given by
 \[t_s = \frac{\sum t_i}{n} = \frac{1}{n} \sum \frac{1}{v_i} \]

 or
 \[\frac{1}{t_s} = v_s = \frac{n}{\sum_{i=1}^{n} \frac{1}{v_i}} \]

 or
 \[v_s = \frac{\sum_{i=1}^{n} q_i}{\sum_{i=1}^{n} q_i / v_i} \]
Example

• Question: If the spot speeds are 50, 40, 60, 54 and 45, then find the time mean speed and space mean speed.

• Sol.
 - Time mean speed is the average of spot speed. Therefore, \(v_t = \frac{1}{n} \sum_{i=1}^{n} v_i \)
 - Space mean speed is the harmonic mean of spot speed. Therefore, \(t_s = \frac{\sum t_i}{n} = \frac{1}{n} \sum \frac{1}{v_i} \)
Proof:

\[v_t = v_s + \frac{\sigma^2}{v_s} \]