Transportation Economics and Decision Making

Lecture-5

Pay Off or Pay Back Period

- How long does it take the project to "pay back" its initial investment?
- Payback Period = number of years to recover initial costs
- By the time you have discounted the cash flows, you might as well calculate the NPV.
- When benefits = costs

MARR = 6%

Year	Abs. Cost	Abs. Benefit	PW Cost	PW Benefit	Cummulative Revenue
0	85,000		-85,000	0	-85,000
1		15,000		14,151	-70,849
2		25,000		22,250	-48.599
3		35,000		29,387	-19,212
4		45,000		35,644	16,432
5		45,000		33,627	50,058
6		35,000		24,674	74,732

Change in sign occurs between 3 to four years Use interpolation to assess the exact year (say up to one decimal place)

-19,212

- Assume you have the following information on Project X:
 - Initial outlay -\$1,000
 - Required return = 10%

• Annual that cash flows and their PVs are as follows:

Year	Cash flow	PV of Cash flow
1	\$ 200	\$ 182
2	400	331
3	700	526
4	300	205

Year Cummulative discounted CF 1 \$ 182 2 513 3 1,039 4 1,244

• Discounted payback period is just under 3 years

Nominal and Effective Rates of Interest

- Nominal and effective interest rates have similar relationship to that of simple and compound interest rates.
- The difference is that nominal and effective interest rates are used when compounding period (or interest period) is less than one year.
- Let i= interest rate per base period conversion; quoted interest rate
 - r = nominal rate per annum
 - j = effective rate per annum

m= times per year, or base period, the nominal rate is converted

Effective Rates of Interest

- Let i= interest rate per base period conversion; quoted interest rate
 - r = nominal rate per annum
 - j = effective rate per annum

m= times per year, or base period, the nominal rate is converted

Example :

Find the effective rate of interest for \$100 for 1 year at nominal interest of 12% per year, interest payable monthly:

F = 100*
$$\left[1 + \frac{0.12}{12}\right]^{12}$$
 = 100*(1.01)¹² = 112.6825

Effective Interest Rate = $(1+.01)^{12} - 1 = 0.1268 = 12.68\%$

• A bank pays 6% nominal interest rate. Calculate the effective interest with

• a) monthly, b) daily, c) hourly d) secondly compounding

$$o i = (1 + r/m)^m - 1$$

o
$$i \text{ monthly} = (1 + .06/12)^{12} - 1 = 6.1678 \%$$

•
$$i \text{ daily} = (1 + .06/365)^{365} - 1 = 6.183\%$$

- o *i* hourly = $(1 + .06/8760)^{8760} 1 = 6.1836$ %
- o *i* secondly = $(1 + .06/31.5M)^{31.5M} 1 = 6.18365\%$

Kraft Demand Model

 We occasionally come across a demand function where the elasticity of demand of travel with respect to price is constant. The demand function is represented as

$$q = \alpha(p)^{\beta}$$

$$e_{p} = \frac{\delta q}{\delta p} \frac{p}{q}$$

$$= \alpha \beta p^{\beta - 1} \frac{p}{q}$$

$$= \alpha \beta p^{\beta - 1} \frac{p}{\alpha(p)^{\beta}}$$

$$= \beta$$

The elasticity of transit demand with respect to price has been found to be -2.75. A transit line on this system carries 12,500 passengers per day with a flat fare of 50 cents/ride. The management would like to rise the fare to 70 cents/ride. Will this be a prudent decision?

 $q = \alpha(p)^{\beta}$ 12,500 = $\alpha(50)^{-2.75}$ $\alpha = 5.876 \times 10^{8}$

Hence $q= 5.876 \text{ x } 10^8 (50)^{-2.75}$

Fare 70 cents would result in demand = $5.876 \times 10^8 (70)^{-2.75 = 4995 \text{ passengers}}$

Revenue @ 50cents/ride = 50 * 12, 50 = \$6,250

Revenue @ 70cents/ride = 70 * 4,995 = \$3,486.50

It would not be prudent to increase the fare.

• The demand function from suburbs to university of Memphis is given by

 $Q = T^{-0.3} C^{-0.2} A^{0.1} I^{-0.25}$ Where Q-> number of transit trips T-> travel time on transit (hours) C-> Fare on transit (dollars) A-> Average cost of automobile trip (dollars) I-> Average income (dollars)

- There are currently 10,000 persons per hour riding the transit system, at a flat fare of \$1 per ride. What would be the change in ridership with a 90 cent fare?
- By auto the trip costs \$3 (including parking). If the parking fees are raised by 30 cents, how would it affect the transit ridership?

Solution

- This is essentially a modified kraft demand model. The price elasticity of demand for transit trips is $\frac{\delta Q/Q}{\delta C/C} = 0.2$
- This means 1% reduction in fare would lead to a 0.2% increase in transit ridership.
- Because the fare reduction is (100-90)/100 = 10%, one would expect 2% increase in ridership.
- New ridership will be 10,000 * 1.02 = 10,200
- Revenue @\$1/ride = 10,000 * 1 = \$10,000
- Revenue @\$0.9/ride = 10,200*0.9 = \$9,180
- The company will loose \$820

Solution

- The automobile elasticity of demand is 0.1, i.e. $\frac{\delta Q/Q}{\delta C/C} = 0.1$,
- 1% rise in auto costs will lead to a 0.1% rise in transit trips,
- 10% rise in auto cost (0.3 is 10% of \$3) would result in 1% increase in transit ridership, i.e. 1.1*10,000 = 10,100

Direct and Cross Elasticity

• Direct elasticity

• The effect of change in the price of a good on the demand for the same good is referred as direct elasticity

Cross elasticity

• The measure of responsiveness of the demand for a good to the price of another good is referred as cross elasticity

Consumer Surplus (CS)

- Demand = fⁿ(quantity of trip making, price of travel)
- Price of travel includes all private time, effort, and expenses incurred by the traveller.
- Demand is related to "Willingness to Pay (WTP)" (choice of making a trip or not)
- WTP is the primary measure of (individual) value or benefit derived from a particular trip

CS-WTP

• First, we must distinguish what

- Users do actually pay
- Users are willing to pay
- CS from price, p_B and q_B users = area HBC Trip Price

CS-WTP

- If the price is lowered then consumer surplus would increase to HAD
- Additional CS resulted = BADC

Benefit

- Benefit is equivalent to the value which travellers are expected to receive from making trips as measured by the gross amount which travellers would be willing to pay.
- In the example,
 - for price p_B , total benefit = HOFC
 - For price p_A , total benefit = HOGD

Benefit

- Net user benefit before change of price
 - Travel benefits at p_B = value derived from q_B trips = HOFC
 - User costs at price p_B = user payments for trips = BOFC
 net user benefit at price p_B = CS = HBC = NUB_B
- Net user benefit after change of price
 - Travel benefits at p_A = value derived from q_A trips = HOGD
 User costs at price p_A = user payments for trips = AOGD
 net user benefit at price p_A = CS = HBD = NUB_A
- Change in net user benefit p_B = user payments for trips = BADC = NUB_A-NUB_B

User Cost

- Reduction in user cost accompanies a price change , where the price is construed broadly in terms of time, effort, and expenses of travel.
- Initially, when price is *p_B*, then cost to each user is same as what is actually paid, i.e. *p_B*, of course all trip makers except the one at the margin would be willing to pay more than *p_B*.
- When the price is p_A dropped to user cost difference $(p_B p_A)$

• Benefit accrued per trip

• So the benefit is BADC

Benefit and User Cost Measure

- Considering the benefit measure or road user cost measure will lead to the same CS.
 - Benefit measure: BACD = HOGD-HOFC
 - User Cost measure: BACD = BAEC + CED

Benefits for Different Facilities

- Benefits are associated when there is a change in facility capacity.
- Example: highways or transit.
- There exists a relationship
 - o between price and volume
 - average variable cost and price paid by the travellers during tripmaking

Benefits for Different Facilities

• Improvement in facility from A to B

- will drop the equilibrium price from p_A to p_B .
- o induce more trip making
- o (i.e. quantity of travel demand will increase from volume q_A to q_B .)
- the difference: q_B q_A , is the diverted volume
- Often called as "induced" or "generated" demand
- Note that the change is <u>NOT</u> called as <u>increase in demand</u> (because increase in demand relates to shift in the demand function)

Total benefit

- Benefit from facility A: AFOC
- Benefit from facility B: BGOC
- Additional or extra benefit accrued because of improvement is: ABGF = BGOC - AFOC

• User Cost

- User cost or Net benefit (i.e. difference between total user benefit, and the user payments)
- Net User Benefit from facility A: ADC
- Net User Benefit from facility B: BEC
- Net user travel benefit (consumer surplus) because of improvement is: ABED = BEC-ADC
- ABGF is the change in consumer surplus

- Diverted travellers accrue larger increment in net benefit than new/induced travellers (Area AHED): (*p_B*-*p_A*) *q_A*
- The induced travellers will receive benefits= (q_B- q_A)
 0.5*(p_A- p_B)
 - Assuming the demand curve is linear or nearly linear in this range
- Observation: The first induced traveller will receive benefits (*p_A- p_B*), the last traveller (*q_B th*) will receive no increase in benefit.

Long Term Effects of Demand Shift

- If facility A were improved to the level of B and opened for usage at end of year 0, $q_{A,o}$ is the diverted traffic
- $q_{B,o}$ $q_{A,o}$ is the induced traffic
- The additional increase in traffic flow from year to year can be regarded as normal traffic growth for facility B
 - o During the first full year, the normal traffic growth for B would be $q_{B,1}$ $q_{A,1}$
 - During year 0 to 5, increased growth is $q_{B,5}$ $q_{A,5}$

Consumer Surplus

• If we would like to measure changes in CS over five years then

• We should measure changes year by year and then accumulate over the planning horizon.

Costs

• The total cost of owning and operating a facility is broken into

- Fixed cost
- Variable cost
- Total cost = Fixed Cost + Variable Cost

• Fixed cost does not depend on production levels or degree of utilization

• Purchase price

- Variable cost depends on degree of production or utilization
 - Depends on use (increased wear and tear)

Case-A: When production is doubled unit cost drops from \$0.10 to \$0.09 (10% reduction) Case-B: When production is doubled unit cost drops from \$0.20 to \$0.11 (45% reduction)

Economy of Scale

• Economy of scale is defined as the decrease in average cost as the output increases.

Number of Wagons	Fixed Cost	Varibale Cost
0	0	0
1	55	30
2	55	55
3	55	75
4	55	105
5	55	155
6	55	225
7	55	315
8	55	425
9	55	555
10	55	705

Number of Wagons						Marginal Cost
	0	0	0	0	0	0
	1	55	30	85	85.00	
	2	55	55	110	55.00	25
	3	55	75	130	43.33	20
	4	55	105	160	40.00	30
	5	55	155	210	42.00	50
	6	55	225	280	46.67	70
	7	55	315	370	52.86	90
	8	55	425	480	60.00	110
	9	55	555	610	67.78	130
]	10	55	705	760	76.00	150

• A city is considering building one of the following two types of transit systems, Type A and Type B. Type A is a conventional high-speed bus system on a freeway network, and Type B is an advanced, energy-efficient, light-trail transit system on a fully controlled-access network.

Type A

Type B

Initial Cost Project Life Operating Cost Ridership \$45 x 10⁶ 20 years \$0.25/pass. mile 180,000 Pass. Miles/day \$80 x 10⁶ 20 years \$0.18/pass. mile 216,000 Pass. Miles/day

(a) Using a discount rate of 6% per year, compute the fixed cost, variable cost and total cost of the two systems on an annualized basis, as well as the unit cost/pass. mile. Which system should be built?

(b) Assuming an average 15-mile trip length per passenger, and a 30% subsidy, what should be the fare/passenger for the recommended system? Also compute the minimum demand for the Type B system in order for it to be more cost efficient than Type A. Assume demand for Type B to be 20% higher than that for Type A.