Transportation Economics and Decision Making

Lecture-4
Example of Mutually Exclusive Alternatives

- **Problem definition**
 - A certain section of highway is now in location A. Number of perspective designs are proposed. A total of 13 alternatives are proposed.
 - Current location
 - New location-B
 - B-1, B-2, B-3, B-4, B-5
 - New location-C
 - C-1, C-2, C-3, and C-4
Example with Multiple Alternatives

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Capital Cost</th>
<th>Annualized Maintenance Cost</th>
<th>Annual Road User Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>-</td>
<td>60</td>
<td>2,200</td>
</tr>
<tr>
<td>A-2</td>
<td>1,500</td>
<td>35</td>
<td>1,920</td>
</tr>
<tr>
<td>A-3</td>
<td>2,000</td>
<td>30</td>
<td>1,860</td>
</tr>
<tr>
<td>A-4</td>
<td>3,500</td>
<td>40</td>
<td>1,810</td>
</tr>
<tr>
<td>B-1</td>
<td>3,000</td>
<td>30</td>
<td>1,790</td>
</tr>
<tr>
<td>B-2</td>
<td>4,000</td>
<td>20</td>
<td>1,690</td>
</tr>
<tr>
<td>B-3</td>
<td>5,000</td>
<td>30</td>
<td>1,580</td>
</tr>
<tr>
<td>B-4</td>
<td>6,000</td>
<td>40</td>
<td>1,510</td>
</tr>
<tr>
<td>B-5</td>
<td>7,000</td>
<td>45</td>
<td>1,480</td>
</tr>
<tr>
<td>C-1</td>
<td>5,500</td>
<td>40</td>
<td>1,620</td>
</tr>
<tr>
<td>C-2</td>
<td>8,000</td>
<td>30</td>
<td>1,470</td>
</tr>
<tr>
<td>C-3</td>
<td>9,000</td>
<td>40</td>
<td>1,400</td>
</tr>
<tr>
<td>C-4</td>
<td>11,000</td>
<td>50</td>
<td>1,340</td>
</tr>
</tbody>
</table>
Other Assumptions

- Project life: 30 years
- Minimum attractive rate of return: 7%
- A fixed road user cost throughout the lifetime (simplified for the example problem)
- No terminal or salvage value
Observations

- Alternative A-1 is do nothing, no capital costs involved but has highest road user cost
- Alternative C-4 is involved with highest cost but least road user cost
- All other alternatives have intermediate capital cost
Analysis Based on Total Cost

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Capital Cost</th>
<th>Annualized Cost</th>
<th>Annualized Maintenance Cost</th>
<th>Annual Highway Cost</th>
<th>Annual Road User Cost</th>
<th>Total Annual Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>60</td>
<td>2,200</td>
<td>2,260</td>
</tr>
<tr>
<td>A-2</td>
<td>1,500</td>
<td>121</td>
<td>35</td>
<td>156</td>
<td>1,920</td>
<td>2,076</td>
</tr>
<tr>
<td>A-3</td>
<td>2,000</td>
<td>161</td>
<td>30</td>
<td>191</td>
<td>1,860</td>
<td>2,051</td>
</tr>
<tr>
<td>A-4</td>
<td>3,500</td>
<td>282</td>
<td>40</td>
<td>322</td>
<td>1,810</td>
<td>2,132</td>
</tr>
<tr>
<td>B-1</td>
<td>3,000</td>
<td>242</td>
<td>30</td>
<td>272</td>
<td>1,790</td>
<td>2,062</td>
</tr>
<tr>
<td>B-2</td>
<td>4,000</td>
<td>322</td>
<td>20</td>
<td>342</td>
<td>1,690</td>
<td>2,032</td>
</tr>
<tr>
<td>B-3</td>
<td>5,000</td>
<td>403</td>
<td>30</td>
<td>433</td>
<td>1,580</td>
<td>2,013</td>
</tr>
<tr>
<td>B-4</td>
<td>6,000</td>
<td>484</td>
<td>40</td>
<td>524</td>
<td>1,510</td>
<td>2,034</td>
</tr>
<tr>
<td>B-5</td>
<td>7,000</td>
<td>564</td>
<td>45</td>
<td>609</td>
<td>1,480</td>
<td>2,089</td>
</tr>
<tr>
<td>C-1</td>
<td>5,500</td>
<td>443</td>
<td>40</td>
<td>483</td>
<td>1,620</td>
<td>2,103</td>
</tr>
<tr>
<td>C-2</td>
<td>8,000</td>
<td>645</td>
<td>30</td>
<td>675</td>
<td>1,470</td>
<td>2,145</td>
</tr>
<tr>
<td>C-3</td>
<td>9,000</td>
<td>725</td>
<td>40</td>
<td>765</td>
<td>1,400</td>
<td>2,165</td>
</tr>
<tr>
<td>C-4</td>
<td>11,000</td>
<td>886</td>
<td>50</td>
<td>936</td>
<td>1,340</td>
<td>2,276</td>
</tr>
</tbody>
</table>
Analysis Based on Benefit Cost Ratio (Compare do nothing with all alternatives)

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Capital Cost</th>
<th>Annualized Cost</th>
<th>Annualized Maintenance Cost</th>
<th>Annual Highway Cost</th>
<th>Annual Road User Cost</th>
<th>Total Annual Cost</th>
<th>User Benefits Compared to A-1</th>
<th>Highway Costs Compared to A-1</th>
<th>B/C Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>60</td>
<td>2,200</td>
<td>2,260</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-2</td>
<td>1,500</td>
<td>121</td>
<td>35</td>
<td>156</td>
<td>1,920</td>
<td>2,076</td>
<td>280</td>
<td>96</td>
<td>2.92</td>
</tr>
<tr>
<td>A-3</td>
<td>2,000</td>
<td>161</td>
<td>30</td>
<td>191</td>
<td>1,860</td>
<td>2,051</td>
<td>340</td>
<td>131</td>
<td>2.59</td>
</tr>
<tr>
<td>A-4</td>
<td>3,500</td>
<td>282</td>
<td>40</td>
<td>322</td>
<td>1,810</td>
<td>2,132</td>
<td>390</td>
<td>262</td>
<td>1.49</td>
</tr>
<tr>
<td>B-1</td>
<td>3,000</td>
<td>242</td>
<td>30</td>
<td>272</td>
<td>1,790</td>
<td>2,062</td>
<td>410</td>
<td>212</td>
<td>1.94</td>
</tr>
<tr>
<td>B-2</td>
<td>4,000</td>
<td>322</td>
<td>20</td>
<td>342</td>
<td>1,690</td>
<td>2,032</td>
<td>510</td>
<td>282</td>
<td>1.81</td>
</tr>
<tr>
<td>B-3</td>
<td>5,000</td>
<td>403</td>
<td>30</td>
<td>433</td>
<td>1,580</td>
<td>2,013</td>
<td>620</td>
<td>373</td>
<td>1.66</td>
</tr>
<tr>
<td>B-4</td>
<td>6,000</td>
<td>484</td>
<td>40</td>
<td>524</td>
<td>1,510</td>
<td>2,034</td>
<td>690</td>
<td>464</td>
<td>1.49</td>
</tr>
<tr>
<td>B-5</td>
<td>7,000</td>
<td>564</td>
<td>45</td>
<td>609</td>
<td>1,480</td>
<td>2,089</td>
<td>720</td>
<td>549</td>
<td>1.31</td>
</tr>
<tr>
<td>C-1</td>
<td>5,500</td>
<td>443</td>
<td>40</td>
<td>483</td>
<td>1,620</td>
<td>2,103</td>
<td>580</td>
<td>423</td>
<td>1.37</td>
</tr>
<tr>
<td>C-2</td>
<td>8,000</td>
<td>645</td>
<td>30</td>
<td>675</td>
<td>1,470</td>
<td>2,145</td>
<td>730</td>
<td>615</td>
<td>1.19</td>
</tr>
<tr>
<td>C-3</td>
<td>9,000</td>
<td>725</td>
<td>40</td>
<td>765</td>
<td>1,400</td>
<td>2,165</td>
<td>800</td>
<td>705</td>
<td>1.13</td>
</tr>
<tr>
<td>C-4</td>
<td>11,000</td>
<td>886</td>
<td>50</td>
<td>936</td>
<td>1,340</td>
<td>2,276</td>
<td>860</td>
<td>876</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Does not mean A-2 is the most preferred alternative
Incremental B/C Ratio

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Annual Highway Cost</th>
<th>Annual Road User Cost</th>
<th>Comparison</th>
<th>Incremental Benefit</th>
<th>Incremental Cost</th>
<th>Incremental B/C</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>60</td>
<td>2,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-2</td>
<td>156</td>
<td>1,920</td>
<td>A-1</td>
<td>280</td>
<td>96</td>
<td>2.92</td>
<td>A-2</td>
</tr>
<tr>
<td>A-3</td>
<td>191</td>
<td>1,860</td>
<td>A-2</td>
<td>60</td>
<td>35</td>
<td>1.70</td>
<td>A-3</td>
</tr>
<tr>
<td>A-4</td>
<td>322</td>
<td>1,810</td>
<td>A-3</td>
<td>50</td>
<td>131</td>
<td>0.38</td>
<td>A-3</td>
</tr>
<tr>
<td>B-1</td>
<td>272</td>
<td>1,790</td>
<td>A-3</td>
<td>70</td>
<td>81</td>
<td>0.87</td>
<td>A-3</td>
</tr>
<tr>
<td>B-2</td>
<td>342</td>
<td>1,690</td>
<td>A-3</td>
<td>170</td>
<td>151</td>
<td>1.12</td>
<td>B-2</td>
</tr>
<tr>
<td>B-3</td>
<td>433</td>
<td>1,580</td>
<td>B-2</td>
<td>110</td>
<td>91</td>
<td>1.21</td>
<td>B-3</td>
</tr>
<tr>
<td>B-4</td>
<td>524</td>
<td>1,510</td>
<td>B-3</td>
<td>70</td>
<td>91</td>
<td>0.77</td>
<td>B-3</td>
</tr>
<tr>
<td>B-5</td>
<td>609</td>
<td>1,480</td>
<td>B-3</td>
<td>100</td>
<td>176</td>
<td>0.57</td>
<td>B-3</td>
</tr>
<tr>
<td>C-1</td>
<td>483</td>
<td>1,620</td>
<td>B-3</td>
<td>(40)</td>
<td>50</td>
<td>-0.80</td>
<td>B-3</td>
</tr>
<tr>
<td>C-2</td>
<td>675</td>
<td>1,470</td>
<td>B-3</td>
<td>110</td>
<td>242</td>
<td>0.45</td>
<td>B-3</td>
</tr>
<tr>
<td>C-3</td>
<td>765</td>
<td>1,400</td>
<td>B-3</td>
<td>180</td>
<td>332</td>
<td>0.54</td>
<td>B-3</td>
</tr>
<tr>
<td>C-4</td>
<td>936</td>
<td>1,340</td>
<td>B-3</td>
<td>240</td>
<td>504</td>
<td>0.48</td>
<td>B-3</td>
</tr>
</tbody>
</table>
Transportation Demand

- The demand for goods and services in general depends largely on consumer’s income and price of a particular good relative to other prices.
- Example-1: Demand for travel depends on income of the traveler
- Example-2: Choice of travel mode depends on several factors such as
 - Trip purpose
 - Distance travelled
 - Income of the traveller
Transportation Demand

- A demand function for a particular product represents the willingness of consumers to purchase the product at alternative price.
- Example: A number of passengers willing to use a commuter train at different price levels between O-D pair during a given time period.
- Willingness to pay depends on
 - Out of pocket cost
 - Waiting time
 - In-vehicle time
 - Comfort, convenience
 - Safety
 - Reliability
 - In combination the total price is called as “generalized cost”
A linear transportation demand can be represented as

\[q = \alpha - \beta p \]
A linear demand curve represents volume of trips demanded at different prices by a group of travellers.

\[q = \alpha - \beta p \]

Where,
\[q \rightarrow \text{quantity of trips demanded} \]
\[p \rightarrow \text{price} \]
\[\alpha, \beta \rightarrow \text{demand parameters} \]

The demand curve take a negative slope representing decrease in perceived price will result in increased travel.

(may not be always true for transportation!)
A scenario represents increase in demand because of variables other than perceived price.
Typical and Shifted Demand Curve

- It is crucial to distinguish short-run changes in the quantity of travel because of price changes
 - Relationship represented by a single demand curve
- Long-run changes are because of activity and behavioral changes
 - Relationship represented in a shifted demand curve
Equilibrium is said to be attained when factors that affect the quantity demanded and those that determine the quantity supplied are equal (or converging towards equilibrium).

If the demand and supply functions for a transportation facility are known, then it is possible to deal with the concept of equilibrium.
An airline company has determined the price of a ticket on a particular route to be $p = 200 + 0.02n$. The demand for this route by air has been found to be $n = 5000 - 20p$. Where,

- p -> price in dollars
- n -> number of tickets sold per day

Determine the equilibrium price charged and the number of seats sold per day
Example-1

- Solving two equations:
- \(p=200+0.02n \) and \(p = \frac{(5000-n)}{20} \);
- \(p = 214.28; \) and \(n = 714 \) tickets
- The logic of two equations appears reasonable. If the price of airline ticket goes up, then demand would fall.
Example-1

- Price Line-1
- Price Line-2
Sensitivity of Travel Demand

- A useful descriptor to explain degree of sensitivity to the change in price is the elasticity of demand (e_p)
- e_p is the percentage in quantity of trips demanded that accompanies a 1% change in price

$$q = \alpha - \beta p$$

$$e_p = \frac{\delta q / q}{\delta p / p} = \frac{\delta q}{\delta p} \times \frac{p}{q}$$

- Where δq is the change in number of trips that accompanies change in price δp
Price Elasticity

\[e_p = \frac{\delta q}{\delta p} \frac{p}{q} \]

\[= \frac{Q_1 - Q_0}{P_1 - P_0} \frac{(P_1 + P_0)/2}{(Q_1 + Q_0)/2} \]

Where, \(Q_1, Q_0 \) represent the quantity of travel demanded corresponding to \(P_1, P_0 \) prices respectively.

After derivation elasticity may take the following forms

\[e_p = -\beta p \frac{1}{q} = 1 - \frac{\alpha}{q} \]
Example: Elasticity

- An aggregate demand is represented by the equation
- $q = 200 - 10p$ where q is the number of trips made and p is the price per trip
- Find the price elasticity of demand for the following conditions

<table>
<thead>
<tr>
<th>Demand (q)</th>
<th>Price (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>150</td>
<td>5</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
</tr>
</tbody>
</table>
Demand Function and Elasticities

\[q = 300 - 15p \]
Elasticity: Discussion

- When elasticity is less than -1: demand is described as elastic
 - i.e. the resulting percentage change in quantity of trip making is larger than price
 - In this case demand is relatively sensitive to price change
- When the elasticity is between -1 and 0, demand is described to be inelastic or relatively insensitive.
Elasticity: General Case

Perfectly Inelastic $e = 0$

Demand Curve $q = \alpha - \beta p$

Perfectly Elastic $e = -\infty$

Unit Elastic Point

Elastic Region

Inelastic Region

α / β

$\alpha / 2$

α
Elasticity Observations

- The linear demand curve has several interesting properties
 - As one moves down the demand curve, the price elasticity becomes smaller (i.e. more inelastic)
- Slope of the line is constant
- Elasticity changes from ∞ to 0
Example-2

A bus company’s linear demand curve is $P = 10 - 0.05Q$. Where P is the price of one way ticket, and Q is number of tickets sold per hour. Determine the maximum revenue?
Example-2: Demonstration

- \(P = 10 - 0.05Q \)
- \(R = Q(10 - 0.05Q) = 10Q - 0.05Q^2 \)
- Maximum revenue will occur when \(\frac{dR}{dQ} = 0 \)
- i.e. \(Q = 100, R = 500 \)
We occasionally come across a demand function where the elasticity of demand of travel with respect to price is constant. The demand function is represented as

\[q = \alpha(p)^\beta \]

\[e_p = \frac{\delta q}{\delta p} \frac{p}{q} \]

\[= \alpha \beta p^{\beta - 1} \frac{p}{q} \]

\[= \alpha \beta p^{\beta - 1} \frac{p}{\alpha(p)^\beta} \]

\[= \beta \]
The elasticity of transit demand with respect to price has been found to be -2.75. A transit line on this system carries 12,500 passengers per day with a flat fare of 50 cents/ride. The management would like to raise the fare to 70 cents/ride. Will this be a prudent decision?

\[q = \alpha(p)^\beta \]

\[12,500 = \alpha(50)^{-2.75} \]

\[\alpha = 5.876 \times 10^8 \]

Hence \[q = 5.876 \times 10^8 (50)^{-2.75} \]

Fare 70 cents would result in demand = \[5.876 \times 10^8 (70)^{-2.75} = 4995 \text{ passengers} \]

Revenue @ 50 cents/ride = 50 * 12,500 = $6,250

Revenue @ 70 cents/ride = 70 * 4,995 = $3,486.50

It would not be prudent to increase the fare.
Example

- The demand function from suburbs to university of Memphis is given by

\[Q = T^{-0.3} C^{-0.2} A^{-0.1} I^{-0.25} \]

Where
\- Q -> number of transit trips
\- T -> travel time on transit (hours)
\- C -> Fare on transit (dollars)
\- A -> Average cost of automobile trip (dollars)
\- I -> Average income (dollars)

- There are currently 10,000 persons per hour riding the transit system, at a flat fare of $1 per ride. What would be the change in ridership with a 90 cent fare?
- By auto the trip costs $3 (including parking). If the parking fees are raised by 30 cents, how would it affect the transit ridership?
Solution

- This is essentially a modified kraft demand model. The price elasticity of demand for transit trips is $\frac{\delta Q/Q}{\delta C/C} = 0.2$
- This means 1% reduction in fare would lead to a 0.2% increase in transit ridership.
- Because the fare reduction is $(100-90)/100 = 10\%$, one would expect 2% increase in ridership.
- New ridership will be $10,000 \times 1.02 = 10,200$
- Revenue @$1/\text{ride} = 10,000 \times 1 = $10,000$
- Revenue @$0.9/\text{ride} = 10,200 \times 0.9 = $9,180$
- The company will lose $820
The automobile elasticity of demand is 0.1, i.e. \(\frac{\delta Q}{Q} \) \(\frac{\delta C}{C} \) = 0.1,

- 1% rise in auto costs will lead to a 0.1% rise in transit trips,
- 10% rise in auto cost (0.3 is 10% of $3) would result in 1% increase in transit ridership, i.e. \(1.1 \times 10,000 = 10,100 \)
Direct and Cross Elasticity

- **Direct elasticity**
 - The effect of change in the price of a good on the demand for the same good is referred as direct elasticity

- **Cross elasticity**
 - The measure of responsiveness of the demand for a good to the price of another good is referred as cross elasticity