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Risk and Uncertainty 

• Risk and uncertainty are very different looking 
animals but they are of the same species 

– The line of demarcation is often blurred 

• A distinction is critical 

• A story on sky diving 



Difference example 

• Example 
– Suppose you play a coin toss game 
– If heads come up you win $1, otherwise you loose 

everything 
– The uncertainty is that tails may appear; the risk is 

that you may loose everything 
– Uncertainty is the possibility of occurrence of an 

event; and risk is the ramification of loosing 
everything 

– Types 
• Unknown 
• Unknowable 

 



Risk is the outcome of uncertainty 

• The concept of risk and uncertainty are 
related but different.  

• Uncertainty involves variables that are known 
and changing, but its uncertainty will become 
known and resolved through passage of time, 
events and action. 

• Risk is something one bears and is the 
outcome of uncertainty 



Why Risk is Important  

• Example: safety alternatives 

Project Name Cost Returns Risk 

X 50 50 25 

Y 250  200 200 

Z 100 100 10 



Why Risk is Important (2) 

• With a $1,00 budget 



Certainty, Risk, and Uncertainty 

•  Certainty – Everything know for sure; not present in 
the real world of estimation, but can be ‘assumed’ 

•  Risk – a decision making situation where all of the 
outcomes are know and the associated probabilities 
are defined 

•  Uncertainty – One has two or more observable 
values but the probabilities associated with the 
values are unknown 

– Observable values – states of nature 

 



Types of Decision Making 

•  Decision Making under Certainty 
– Process of making a decision where all of the input 

parameters are known or assumed to be known 
– Outcomes – known 
– Termed a deterministic analysis 
– Parameters are estimated with certainty 

•  Decision Making under Risk 
– Inputs are viewed as uncertain, and element of 

chance is considered 
– Variation is present and must be accounted for 
– Probabilities are assigned or estimated 
– Involves the notion of random variables 

 



Analyzing Risk 

• Risks have 

–  a time horizon 

– Exists in the future and will evolve over time 

– Changing scenario’s effect on the system can be 
measured 

– Measurement has to be set against a benchmark 



Measuring Risk 

• Since in risk variables can have ranges, we 
deal with probability distributions. 
– Measuring center of distribution- The first 

moment 

– Measuring spread of distribution – The second 
moment 

– Measuring skew of the distribution- The third 
moment 

– Measuring catastrophic tail events of the 
distribution – The fourth moment 

 

 

 



 
Two Ways to Consider Risk 

Expected Value (EV) analysis 
– Applies the notion of expected value  

– Calculation of EV of a given outcome 

– Selection of the outcome with the most 
advantageous outcome 

Simulation Analysis 
– Form of generating artificial data from 

assumed probability distributions 

– Relies on the use of random variables and the 
laws associated with the algebra of random 
variables 



Quantifying Risk 

• Probability of occurrence 
• Standard deviation and variance 
• Semi-standard deviation 
• Volatility 
• Beta 
• Coefficient of Variation 
• Value at Risk 
• Worst case scenario and Regret 
• Risk adjusted return on capital 



Elements Important to Decision Making Under 
Risk 

•  The concept of a random variable 

– A decision rule that assigns an outcome to a 
sample space 

– Discrete variable or Continuous variable 

•  Discrete variable – finite number of outcomes possible 

•  Continuous variable – infinite number of outcomes 

•  Probability 

– Number between 0 and 1 

– Expresses the “chance” in decimal form that a 
random variable will take on any specific value 



Types of Random Variables 

•  Continuous 

 

 

 

 

 

•  Discrete 



Distributions - Continuous Variables 

•  Probability Distribution (pdf) 
–  A function that describes how 

probability is distributed over 
the different values of a 
variable 

– P(Xi) = probability that X = Xi 
 
 
 

•  Cumulative Distribution (cdf) 
– Accumulation of probability 

over all values of a variable up 
to and including a specified 
value 

– F(Xi) = sum of all probabilities 
through the value Xi 

        = P(X  Xi) 
 



Three Common Random Variables 

•  Uniform – equally likely 
outcomes 

 

 

 

•  Triangular 

 

 

 

 

•  Normal 



Discrete Density and Cumulative Example 

           pdf          cdf 



Random Samples 

•  Random Sample  
– A random sample of size n is the selection in a 

random fashion with an assumed or known 
probability distribution such that the values of 
the variable have the same chance of occurring 
in the sample as they appear in the population 

– Basis for Monte Carlo Simulation  

•  Can sample from: 
– Discrete distributions …  or 
– Continuous distributions 



Sampling from a Continuous Distribution 

 Form the cumulative 

 distribution in closed 

 form from the pdf 

 Generate a uniform random 

 number on the interval   

 {0 – 1}, called U(0,1) 

 Locate U(0,1) point on y-axis 

 Map across to intersect the cdf 

 function 

 Map down to read the outcome 

 (variable value) on x-axis 



Expected Value and Standard Deviation 

•  Two important parameters of a given 
random variable: 
– Mean -  

•  Measure of central tendency 

– Standard Deviation -  
•  Measure of variability or spread 

•  Two Concepts to work within 
– Population 

– Sample from a population 



      Sample 

   

Population vs Sample 

     Population 

•   - population mean 

•  2 - population 
 variance 

•   - population 
 standard deviation 

•  Often sample from a 
population in order to 
make estimates 

X

2s

s

Sample mean 

Sample variance 

Sample standard 

deviation 
These values, properly sampled, 

attempt to estimate their population 

counterparts 



Important Relationships 

• Population Mean   
•  Distribution 

– E(x) = 

•  Sample 
 

•   
• Measure of the central tendency of the population 
•  If one samples from a population the hope is that 

sample mean is an unbiased estimator of the true, 
but unknown, population mean 
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Variance and Standard Deviation 

Notes relating to 

variance and standard 

deviation properties 

Illustration of variances 

for discrete and 

continuous distributions 



Population vs. Sample 

• Variance of a population 

 

 

• Standard deviation of a 
population: 
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 Standard deviation of a 
sample 
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Combining the Average and Standard Deviation 

•  Determine the percentage or fraction of the 
sample that is within ±1, ±2, ±3 standard 
deviations of the sample mean    .  .  .  

 

•  In terms of probability… 

 

•  Virtually all of the sample values will fall 
within the ±3s range of the sample mean 

 

, t = 1,2,3X ts

P( )X ts X X ts   



Example 

• Project-A has following returns  
– 40,66,75,92, 107,159, 275 

• Project B has following returns 
– 84, 90, 104, 187, 190 

 

• What are the ranges of returns of the 
following two projects 



Continuous Random Variables 

•  Expected value: 

 

• Variance: 

 

•  For uniform pdf 
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Monte Carlo Sampling and Simulation Analysis 

•  Simulation involves the generation of artificial 
data from a modeled system 

•  Monte Carlo Sampling 

– The generation of samples of size n for selected 
parameters of formulated alternatives 

– The sampled parameters are expected to vary 
according to a stated probability distribution 
(assumed) 



Key Assumption - Independence 

•  For a given problem: 

– All parameters are assumed to be independent 

– One variable’s distribution in no way impacts 
any other variable’s distribution 

– Termed: 

• Property of independent random variables 

 



Steps 

• Formulate alternatives 

• Parameters with variation 

• Determine probability distribution 

• Random sampling 

• Measure of worth calculation 

• Measure of worth description (confidence 
intervals) 

• Conclusion 

 



Sampling Process 

•  Requires: 

– The cdf of the assumed pdf; 

– A uniform random number generator; 

– Application of the inverse transform approach. 
•  Why require the cdf? 

– The y-axis of a cdf is scaled from 0 to 1. 

– That is the same as the range of U(0,1). 

– Facilitates mapping a RN to achieve the outcome 
value on the x-axis. 

– The U(0,1) selects a  X-value from the cdf. 



The Need for the cdf 

x-axis: Outcome values 

Cumulative probability on the y-axis 

Generate a U(0,1) 

random number: 

Locate that value 

on the y-axis: 

Map across to 

the cdf then map 

down to the x-

axis to obtain the 

outcome 



Summary of the Modeling Steps 

•  Formulate the economic analysis: 
– The alternatives – if more than one; 
– Define which parameters are “constants” and 

which are to be viewed as random variables. 
– For the random variables, assign the 

appropriate pdf: 
• Discrete and or continuous. 

– Apply Monte Carlo sampling – a sample size of 
“n” where it is suggested that n = 30. 

– Compute the measure of worth (PW, AW, . . ) 
– Evaluate and draw conclusions. 

 



Notes 

•  To perform decision making under risk implies 
that some parameters of an engineering 
alternative are treated as random variables.  

•  Assumptions about the shape of the variable's 
probability distribution are used to explain how 
the estimates of parameter values may vary.  

•  Additionally, measures such as the expected 
value and standard deviation describe the 
characteristic shape of the distribution.  

 



Notes 

• We discussed several of the simple, but useful, 
discrete and continuous population distributions 
used in engineering economy -uniform and 
triangular - as well as specifying our own 
distribution or assuming the normal distribution. 

•  It is important to note that a sound background 
in applied statistics is vital to the complete 
understanding of the simulation process 



Value at Risk 

• VaR is the maximum loss over a target 

horizon within a confidence interval (or, 

under normal market conditions) 

 

•  In other words, if none of the “extreme 

events” (i.e., low-probability events) 

occurs, what is my maximum loss over a 

given time period? 

 

 



Another Definition of VAR 

• A forecast of a given percentile, usually in the 

lower tail, of the distribution of returns on a 

portfolio over some period; similar in principle to 

an estimate of the expected return on a 

portfolio, which is a forecast of the 50th 

percentile. 

 Ex: 95% one-tail normal distribution is 1.645 

sigma (Pr(x<=X)=0.05, X=-1.645) while 99% 

normal distribution is 2.326 sigma 



Value at Risk (VaR) 

• “We are X percent certain that we will not lose 
more than V dollars in time T.” 

• Function of confidence level X and time T 

 



Brief History 

• Increasing need for risk management after the 1987 

market crash 

• J.P. Morgan employees credited for developing VaR 

• Known as the 4:15pm report 

• RiskMetrics spinoff in 1994 

• CreditMetrics and CorporateMetrics 
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VAR: Example 

 
•  Consider a $100 million return. Suppose 

my confidence interval is 95% (i.e., 95% of 
possible market events is defined as 
“normal”.) Then, what is the maximum 
monthly loss under normal markets over 
any month? 

 

•  To answer this question, let’s look at the 
monthly returns from 1953 to 1995: 

•  Lowest: -6.5% vs. Highest: 12% 

 



History of Returns 



Distribution of Returns 



Calculating VAR at 95% Confidence 

 

• At the 95% confidence interval, the lowest 

monthly return is -1.7%. (I.e., there is a 5% 

chance that the monthly return is lower than -

1.7%)  

 That is, there are 26 months out of the 516 for 

which the monthly returns were lower than -1.7%. 

 

•  VAR = 100 million X 1.7% = $1.7 million 

• (95% of the time, the portfolio’s loss will be no 

more than $1.7 million!) 

 



Another way 

• Take standard deviation of the returns (-
1.03%) 

• 95% of the standard normal distribution is 
1.645 

• VaR = 1.645*1.03 = 1.70 million 

• Under normal market conditions, the project 
can loose at most 1.7 million at 95% level of 
confidence.  
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How to calculate VaR 

 

 

• Historical Simulation  

 

• Variance-Covariance Method 

 

• Monte-Carlo Simulation 



Monte Carlo simulation 

• Monte Carlo simulation randomly generates values for 
uncertain variables over and over to simulate a model. 

• It's used with the variables that have a known range of values 
but an uncertain value for any particular time or event.  

• For each uncertain variable, you define the possible values 
with a probability distribution. 

• Distribution types include: 
 
 
 
 

• A simulation calculates multiple scenarios of a model by 
repeatedly sampling values from the probability distributions 

• Computer software tools can perform as many trials (or 
scenarios) as you want and allow to select the optimal 
strategy 

…  



Issues to Ponder 

• What horizon is appropriate? 

 A day, a month, or a year? 

 the holding period should correspond to the longest 
period needed for an orderly portfolio liquidation.  

•   

• What confidence level to consider? 

 * Are you risk averse? 

 The more risk averse => (1) the higher 
confidence level necessary & (2) the lower VAR 
desired. 

 



VaR Computation-continued 

• Historical simulation 
 going back in time, e.g. over the last 5 years, and 

applying current weights to a time-series of 
historical asset returns. This return does not 
represent an actual portfolio but rather 
reconstructs the history of a hypothetical portfolio 
using the current position 

• (1) for each risk factor, a time-series of actual 
movements, and  

• (2) positions on risk factors. 



VaR Computation-continued 

Monte Carlo Simulation 
 two steps: 
• Specifies a stochastic process for financial variables as well as process 

parameters; the choice of distributions and parameters such as risk 
and correlations can be derived from historical data. 

• Fictitious price paths are simulated for all variables of interest. At 
each horizon considered, one day to many months ahead, the 
portfolio is marked-to-market using full valuation. Each of these 
``pseudo'' realizations is then used to compile a distribution of 
returns, from which a VAR figure can be measured.  
 

 Required:  
• for each risk factor, specification of a stochastic process (i.e., 

distribution and parameters),  
• valuation models for all assets in the portfolio, and  
• positions on various securities.  



VaR in practice 

• J.P.Morgan Riskmetrics 

 allows users to compute a portfolio VAR using the 
Delta-Normal method based on a 95% confidence 
level over a daily or monthly horizon 

• Deutsche Bank, RAROC 2020 system 

 provides VaR estimates at the 99% level of confidence 
over an annual horizon, using the Monte Carlo 
method.  



Weaknesses 

• VaR does not measure "event" (e.g., market 
crash) risk. That is why portfolio stress tests 
are recommended to supplement VaR.  

• VaR does not readily capture liquidity 
differences among instruments. That is why 
limits on both tenors and option greeks are 
still useful.  

• VaR doesn't readily capture model risks, 
which is why model reserves are also 
necessary.  

 


