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The Estimation of Minimum-Misfit Stochastic Models from Empirical

Ground-Motion Prediction Equations

by Frank Scherbaum, Fabrice Cotton, and Helmut Staedtke

Abstract In areas of moderate to low seismic activity there is commonly a lack
of recorded strong ground motion. As a consequence, the prediction of ground motion
expected for hypothetical future earthquakes is often performed by employing em-
pirical models from other regions. In this context, Campbell’s hybrid empirical ap-
proach (Campbell, 2003, 2004) provides a methodological framework to adapt
ground-motion prediction equations to arbitrary target regions by using response
spectral host-to-target-region-conversion filters. For this purpose, the empirical
ground-motion prediction equation has to be quantified in terms of a stochastic
model. The problem we address here is how to do this in a systematic way and how
to assess the corresponding uncertainties. For the determination of the model param-
eters we use a genetic algorithm search. The stochastic model spectra were calculated
by using a speed-optimized version of SMSIM (Boore, 2000). For most of the em-
pirical ground-motion models, we obtain sets of stochastic models that match the
empirical models within the full magnitude and distance ranges of their generating
data sets fairly well. The overall quality of fit and the resulting model parameter sets
strongly depend on the particular choice of the distance metric used for the stochastic
model. We suggest the use of the hypocentral distance metric for the stochastic
simulation of strong ground motion because it provides the lowest-misfit stochastic
models for most empirical equations. This is in agreement with the results of two
recent studies of hypocenter locations in finite-source models which indicate that
hypocenters are often located close to regions of large slip (Mai et al., 2005; Mani-
ghetti et al., 2005). Because essentially all empirical ground-motion prediction equa-
tions contain data from different geographical regions, the model parameters corre-
sponding to the lowest-misfit stochastic models cannot necessarily be expected to
represent single, physically realizable host regions but to model the generating data
sets in an average way. In addition, the differences between the lowest-misfit sto-
chastic models and the empirical ground-motion prediction equation are strongly
distance, magnitude, and frequency dependent, which, according to the laws of un-
certainty propagation, will increase the variance of the corresponding hybrid empir-
ical model predictions (Scherbaum et al., 2005). As a consequence, the selection of
empirical ground-motion models for host-to-target-region conversions requires con-
siderable judgment of the ground-motion analyst.

Introduction

The site-dependent assessment of expected ground mo-
tions and their variabilities for hypothetical future earth-
quakes is a key element of any seismic hazard analysis. In
areas of moderate to low seismic activity, such as in the
central and eastern United States or in many regions of Eu-
rope, indigenous strong ground motion models rarely exist.
As a consequence, strong ground motion prediction has to
be performed by either calculating synthetic seismograms
based on physical models or by employing empirical models

from other areas. Because of the large number of existing
empirical ground-motion equations from high-seismicity re-
gions (Douglas, 2003), the latter approach has become in-
creasingly popular, in particular, in conjunction with a logic
tree approach (Kulkarni et al., 1984; Bommer et al., 2005).
However, the selection of appropriate models for a given
study area is not straightforward and is often subject to per-
sonal preferences of the hazard analyst rather than to physi-
cal criteria. Some recent studies have started to address this
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problem and, as attempts toward transparent and consistent
selection strategies, discuss the relevance and sensitivity of
particular criteria to consistently compare and judge ground-
motion models and to define branch weights based on mea-
surable quantities rather than on vaguely defineable personal
choices (Cotton et al., 2006; Scherbaum et al., 2004a; Bom-
mer et al., 2005). In this context, rather than trying to find
ideally matching empirical relations, which in practice will
always lead to imperfect results, Campbell (2003, 2004) pro-
poses a methodological framework to transfer ground-
motion models from their data host region to any arbitrary
target region. A key element in this so-called hybrid empir-
ical approach is the calculation of response-spectral transfer
functions based on stochastic ground-motion models (Boore,
2003) for both the host and the target region. The purpose
of this transfer function is the removal of the effects of the
host region characteristics in terms of attenuation, geomet-
rical spreading, average stress drop, etc., and their replace-
ment by the equivalent effects for the target region. This can
improve the overall usefulness of a particular empirical
model for a target region of interest. Although Campbell
(2003) quantitatively addresses both epistemic and aleatory
uncertainty, both theoretically and practically in the devel-
opment of a CEUS ground-motion relation, and although
stochastic models have been developed for several regions
(Boore, 1983; Boore and Atkinson, 1987; Ou and Herrmann,
1990; Boore et al., 1992; Margaris and Boore, 1998; Mal-
agnini et al., 1999; Raoof et al., 1999; Atkinson and Silva,
2000; Malagnini et al., 2000; Bay et al., 2003), model
parameter uncertainties in these models are almost never
quantified. As a consequence, the increased variability in the
corresponding resulting ground-motion estimates after host-
to-target-region conversion (due to the laws of uncertainty
propagation) cannot be assessed either. Therefore, in the
present study, we attempt to quantify optimum stochastic
models and model parameter uncertainties for the host re-
gions of a number of conventionally used empirical ground-
motion prediction equations for shallow crustal earthquakes.
This is seen as a first step toward achieving complete quan-
titative error tracking in host-to-target-region conversions.
The corresponding problem for target-region characteriza-
tions using microearthquake records is discussed in Riet-
brock et al. (unpublished manuscript, 2005). In a related
article (Scherbaum et al., 2005), we demonstrate that the
contribution of model parameter uncertainties in host-to-
target-region conversions to the overall variability in the re-
sulting ground motion in composite models is considerable
and can become a major portion of the overall epistemic
uncertainty of ground-motion estimates. Note that the pres-
ent article is not trying to evaluate or validate the hybrid
empirical model of Campbell (2003). We simply treat this
method here as a published, viable tool for which we attempt
to determine model parameters for generating data sets of
existing empirical ground-motion models in a systematic
way. In addition to their use in the context of the hybrid
empirical method, the models derived in this study might

also be of use in the context of quantifying the upper bounds
on earthquake ground motion for seismic hazard analysis
(for a discussion of this issue, see Bommer et al., 2004).
Extrapolating stochastic models into the limits of physically
still plausible ranges of model parameters may be considered
a viable alternative to the practice of truncating ground mo-
tion in terms of standard deviation of the model, which is
theoretically unjustified. Futhermore, the parameter sets
might also be useful for the simulation of time histories con-
sistent with the ground-motion models used in seismic haz-
ard studies. Such time histories are needed, for example, to
analyze nonlinear dynamic behavior of structures.

Method

The hybrid empirical method proposed by Campbell
(2003) assumes that both the host region of the data set from
which an empirical ground-motion prediction relation is de-
rived as well as the target region in which the modified em-
pirical models are going to be applied can be modeled by
single point-source stochastic models (Boore, 1983, 2003).
In the present study we determine sets of stochastic model
parameters for the host regions of several popular ground-
motion prediction relations (Ambraseys et al., 1996; Sabetta
and Pugliese, 1996; Abrahamson and Silva, 1997; Boore et
al., 1997; Spudich et al., 1999; Berge-Thierry et al., 2003;
Lussou et al., 2001; Ambraseys and Douglas, 2003; Camp-
bell and Bozorgnia, 2003a, 2003b, 2003c, 2004). This par-
ticular set of models was selected to capture a wide range
of shallow crustal host-region environments (Cotton et al.,
2006), initially for application of the hybrid empirical
method to central Europe within the PEGASOS project
(Abrahamson et al., 2002). However, because the target-
region models have to be specified separately, the models
obtained here are believed to be useful for the application of
the hybrid method to arbitrary target regions.

Because empirical ground-motion models are only
rarely derived based on data sets from single geographical
regions, the host region of an empirical ground-motion
model has to be considered an apparent one, defined by re-
gions of similar generalized tectonics. It will contain char-
acteristics of different geographical regions. Therefore, we
approach the determination of apparent host-region models
as an inversion problem in which we use synthetic response
spectra generated from each empirical ground-motion rela-
tion for various magnitudes and distances as “data” for
which we determine optimum models. For the model param-
eter optimization we used a genetic algorithm search strategy
(Goldberg, 1989).

Stochastic Host Region Model

The simulation of strong ground motion using the sto-
chastic method goes back more than two decades. Based on
the work of Hanks and McGuire (Hanks, 1979; McGuire
and Hanks, 1980; Hanks and McGuire, 1981), Boore (1983),
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in his ground-breaking article proposed a simple, but pow-
erful technique to simulate high-frequency ground-motion
time series and response spectra for use in engineering seis-
mology. Over the years, the method has seen numerous ap-
plications and public domain versions of Boore’s SMSIM
code (Boore, 2000) have been widely used. Although the
method has been extended and modified in many details,
the basic framework has remained essentially unchanged
(Boore, 2003). According to Boore (2003), the total Fourier
spectrum of ground motion as a function of seismic moment
M0, distance R, and frequency f can be described as:

Y(M , R, f ) � E(M , f ) • P(R, f ) • G( f ) • I( f ), (1)0 0

where E(M0, f) is the source, P(R, f) is the path, and G(f) is
the site contribution, respectively. The instrument or type of
motion is described by I(f). Following Campbell (2003), for
the purpose of host-region characterization we restrict our-
selves to a single-corner frequency, x-square source spec-
trum for which the corner frequency is given by

6 1/3f � 4.9 • 10 b (Dr/M ) (2)0 S 0

(Brune, 1970, 1971). In equation (2), the corner frequency
f0 is given in hertz, the shear-wave velocity bS in the source
region is given in kilometers per second, stress parameter
Dr is in bars, and seismic moment M0 in dyne cm. The
complete source spectrum E(M0, f) for this source type can
be written as

�R � • V • F MHU 0E(M , f ) � • . (3)0 3 24p • q • R • b fS 0 S
1 � � �f0

Here, �RHU� is the average radiation pattern, V represents the
energy partitioning into the two horizontal components
( ), F is the effect of the free surface (2 for SH waves),1/ 2�
qS and bS are density and shear-wave velocity in the source
regions, and R0 is the reference distance for geometrical
spreading (usually set to 1). The path effect P(R, f) is mod-
eled as the product of a damping function A(R, f) and a
geometrical spreading function Z(R) as

P(r, f ) � A(R, f ) • Z(R), (4)

where

pfR
�

Q( f ) •cQA(R, f ) � e (5)

with shear-wave phase velocity cQ. Q(f) is the frequency-
dependent quality factor modeled as Q(f) � Q0 • f �. In the
present study, the geometrical spreading function Z(R) is
modeled as:

a1R0 for R � R1� �R
a2R1Z(R) � Z(R ) for R � R � R . (6)1 1 2� �R
a3� R2Z(R ) for R � R2 2� �R

The site spectrum G(f) is modeled as

�pj f0G( f ) � T(vs , f ) • e , (7)30

where T(vs30, f) is a generic rock site frequency-response
function with vs30 (the shallow shear-wave velocity down to
depths of 30 m) as controlling parameter. The corresponding
velocity depth models are constructed such that for vs30 �
620 and 2800 m/sec they converge to the western and eastern
U.S. generic rock profiles of Boore and Joyner (1997), re-
spectively. Their derivation is discussed in detail in Cotton
et al. (2006). The empirical models were used for site con-
ditions as close as possible to National Earthquake Hazards
Reduction Program (NEHRP) site class B. The second term
in equation (7) ( ) describes the distance-independent�pj f0e
kappa-filter discussed by Anderson and Hough (1984). Since
we are interested in response spectral amplitudes, the instru-
ment frequency-response function I(f) is modeled as a
SDOF-oscillator response (compare, equation 22 in Boore
[2003]). Based on the Fourier spectral representation given
by equation (1), response spectral values are calculated by
using random vibration theory (Boore and Joyner, 1984). In
this context, the path duration is modeled as

T � r • R , (8)p

where r is a free model parameter.

Model Parameter Optimization

Finding an acceptable set of model parameters for a
particular stochastic host-region model can be thought of as
an optimization problem in which a particular misfit function
is minimized. For each empirical ground-motion prediction
equation we first generate a set of synthetic response spectra
that sample the complete magnitude, distance, and frequency
range for which the authors claim the equation is valid. The
goal of the inversion is to identify all models that give an
acceptable misfit between predicted and observed data.
However, geophysical inverse problems may have numerous
distinct, acceptable solutions. The corresponding optimiza-
tion problems may be characterized by a complicated surface
for the misfit function in the solution parameter space. For
exploring such a surface, direct inversion and simple random
search methods are often inadequate. However, directed
search methods such as the genetic algorithm (GA) (Gold-
berg, 1989) can be configured to balance convergent and
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random processes to find large sets of solutions that span the
acceptable regions of complicated misfit surfaces.

The GA is a guided search technique that requires nei-
ther a linearized forward method nor a single starting model
and which can be applied to very large model spaces. Con-
sequently, fewer assumptions and physical approximations
are required and a greater range of possible solutions is ex-
amined than with many other inversion methods. This tech-
nique has been used by many authors in geophysics (e.g.,
Stoffa and Sen, 1991; Hernandez et al., 1999; Gentile et al.,
2004).

The GA method operates with successive generations of
trial models. Beginning with a random initial population of
models, succeeding generations are created by three sto-
chastic processes: (1) selection (saving models with smaller
misfits), (2) crossover (combining part of two models to
form new trial models), and (3) mutation (making changes
to models).

The GA used in this study was originally developed by
Lomax and Snieder (1994, 1995). The code was interfaced
with a speed-optimized version of the SMSIM code (Boore,
2000). The misfit is calculated as the L2-norm for the log-
arithmic spectra generated for the particular stochastic host-
region model. We employ the GA to produce a large set of
acceptable solutions and associated misfit values, in contrast
to inversion for a single, “optimum” solution. The probabil-
ities of crossover and mutation (compare, Goldberg, 1989)
were chosen as 0.6 and 0.04, respectively. This tended to
produce a diverse set of acceptable models, the scatter of
which gives an estimate of uncertainty, resolution, and pa-
rameter trade-offs in the nonlinear inversion.

Because the inversion problem would not be well con-
strained if we used the complete set of stochastic model pa-
rameters as free parameters, during the optimization we used
fixed values for the density and the shear-wave velocity (See
Table 6). Following Campbell (2003), for the source model,
a x-square source model was used in all cases with the
source duration fixed to 1/f0. The average radiation pattern
was taken as 0.55.

To validate the inversion strategy, we tried to recover
the model parameters of the WNA-model given by Campbell
(2003) from synthetic response spectra calculated for the
magnitude, distance, and frequency range for which the
model of Abrahamson and Silva (1997) is valid. As can be
seen in Table 1, the model parameters for the optimum
model (model with the lowest misfit value) come very close
to the model parameters that we used to generate the syn-
thetic spectra. This demonstrates that with the chosen sam-
pling of the magnitude, distance, and frequency space we
obtain sufficient constraints on the parameters which we
want to recover. To demonstrate how well the good models
predict the input data in the whole frequency band, WNA-
model spectra for selected magnitudes and distances, super-
imposed by the 25 best-fitting stochastic models obtained in
the inversion are displayed in Figure 1.

Distance Metrics for Stochastic Simulation

Ground-motion prediction equations in engineering
seismology attempt to provide ground-motion models for
earthquakes in magnitude ranges for which the extension of
the sources cannot be ignored. For extended sources, the part
of the rupture plane being the source of the dominant strong
ground motion is usually not known. Therefore, reduction
of ground motion (both geometrical and anelastic) as a func-
tion of distance from the extended source becomes compli-
cated, especially at short distances. As a consequence, dif-
ferent distance metrics have been suggested for use within
the context of empirical ground-motion prediction equations
(Reiter, 1990; Kramer, 1996; Abrahamson and Shedlock,
1997). Types and ranges of validity of the distance measures
employed in the ground-motion models used in the present
study are given in Table 2. Combining two or more ground-
motion models within a seismic hazard study, for example,
within a logic tree framework (Kulkarni et al., 1984), will
require a correction for differences in distance metrics
(Bommer et al., 2005). For this purpose, explicit distance
conversion relations have been developed based on regres-
sion analysis on simulated data (Scherbaum et al., 2004b).
Regarding the distance measures employed for stochastic
modelling of ground motion, an even larger diversity exists
than for empirical ground-motion prediction equations.
Among those metrics in use are the hypocentral distance Rhyp

(Boore, 1986; Chen and Atkinson, 2002), the distance to the
closest point on the rupture plane Rrup (Boore, 2003; Camp-
bell, 2003), or Rrup combined with a pseudodepth chosen to
be either magnitude dependent (Atkinson and Silva, 2000)
or frequency dependent (Atkinson and Silva, 1997). Fur-
thermore, Joyner-Boore distance combined with several
types of pseudodepths have been used as well (Boore et al.,
1992, 1997; Margaris and Boore, 1998). In the test case dis-
cussed previously, this is not an issue because the forward
and the inverse problem was solved with the same approach.
For the determination of stochastic host-region models in

Table 1
Model Parameter Search Range, True Model Values, and
Minimum Misfit Values Obtained from the Inversion of

Synthetic Response Spectra Calculated for the Parameters
of the WNA Model of Campbell (2003)

Parameter
Search
Range

True Model
Value

Minimum
Misfit Value

Dr (bar) 0.1 to 500 100 91.1
j0 (sec) 0 to 0.1 0.04 0.037
Q0 50 to 1000 180 168.1
� 0 to 1.0 0.45 0.5
R1 (km) 10 to 50 40 41.5
a1 �0.8 to �1.2 �1 �0.98
r 0.02 to 0.08 0.05 0.058
vs30 (m/sec) 450 to 1000 620 620

All parameters not shown here were fixed at the values given in Camp-
bell (2003).
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Figure 1. Acceleration-response spectra for the WNA model of Campbell (2003)
for selected magnitudes and distances (heavy black lines) superimposed by the model
spectra for the optimum stochastic obtained in the inversion (thin gray lines).
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ric ATSCA (compare Table 3) which was used by Atkinson
and Silva (2000) for stochastic modeling of California
ground motions. It is already visually apparent that the latter
distance metric allows for a much better fit of the stochastic
model. A fit visually similar to the one obtained for the dis-
tance metric of Atkinson and Silva (2000) was achieved by
using the hypocentral distances (Fig. 4) that were calculated
via the conversion relations of Scherbaum et al. (2004b).

At second glance, however, it is not too surprising that
the distance metric used for the generation of an empirical
ground-motion model does not perform as well when
plugged into a stochastic model. The physical assumptions
about how ground motion decays as a function of distance
and magnitude are often very different, which will affect the
choice of the optimum distance metric. In Figure 2 one can
see, for example, that the use of rupture distance as distance
metric for the stochastic model leads to a strong overpred-
iction of the spectral values for large magnitudes and close
Joyner-Boore (reference) distances. A distance metric that
gives larger values for close Joyner-Boore distances will re-
duce this effect and result in a better overall fit. Conse-
quently, we have tested the performance of seven different
distance metrics in the context of stochastic modeling. The
definitions of the individual metrics are given in Table 3.
All distance conversions were performed by using the con-
version relations of Scherbaum et al. (2004b). For RRMS
and RRMSSEIS (Table 3), the distance metrics based on the
rms distance of Kanamori (1993), which was proposed for
use in strong motion modeling by Boatwright et al. (2003),
the corresponding conversion relations were additionally de-
veloped according to the same procedure as described in
Scherbaum et al. (2004b). Table 4 shows the resulting model
parameters and the corresponding misfit values (bottom row)
for all different distance metrics. Overall, the lowest misfit
value was obtained based on the distance metric used by
Atkinson and Silva (2000), followed by Rhyp and Rrms. From

arbitrary cases, however, what distance metric to use is a
nontrivial issue. For the present study, the distance conver-
sion issue was addressed in the following way. First, we
determined the distance range covered by each ground-
motion prediction equation in terms of each instrinsic dis-
tance metric (e.g., rupture distance for Abrahamson and
Silva, 1997). These validity ranges were subsequently ex-
pressed in terms of Joyner-Boore distances which we used
as reference distance metric. The corresponding conversions
were performed using the relations of Scherbaum et al.
(2004b). The distance values for which synthetic spectra
were subsequently calculated were defined in terms of the
reference distance metric. Subsequently, for each of these
reference distance values, all other distance metrics of inter-
est were calculated, again using the conversion relations of
Scherbaum et al. (2004b).

One could possibly expect that the distance metric that
was used for the generation of an empirical prediction equa-
tion—in other words, for the regression analysis—would
also provide the best-fitting stochastic models. This, how-
ever, turned out not to be the case. The heavy solid lines in
Figure 2, for example, show spectra for selected magnitudes
and Joyner-Boore distances calculated from the ground-
motion prediction equation of Abrahamson and Silva
(1997). Because the ground-motion prediction equation of
Abrahamson and Silva (1997) is based on rupture distance,
prior to the calculation of the model spectra, each of the
selected reference distance values was converted into rupture
distance using the conversion relations of Scherbaum et al.
(2004b). The thin lines in Figure 2 show the corresponding
model spectra for the minimum misfit stochastic model ob-
tained by using rupture distances also for the stochastic
model. For the lower bound of the magnitude validity range
(Mw 4.4) the fit seems good while for the upper bound
(Mw 7.4) the fit leaves much to be desired. For comparison,
Figure 3 shows the corresponding plot for the distance met-

Table 2
Types and Ranges of Validity of Distance Metric, Magnitude, and Frequency for the

Ground-Motion Models Used in This Study

Model Name Distance Type*
Distance Range

(km)
Magnitude

Type
Magnitude

Range
Frequency Range

(Hz)

Abrahamson and Silva (1997) Rrup 3–150 MW 4.4–7.4 0.2–100
Ambraseys and Douglas (2003) RJB � 15 MS 4.8–7.8 0.5–10
Ambraseys et al. (1996) Repi (MS �6)/

RJB (MS �6)
� 200 MS 4.0–7.9 0.5–10

Berge-Thierry et al. (2003) Rhyp 5–100 MS �6/
MW �6

4.0–7.3 0.1–34

Boore et al. (1997) RJB � 80 MW 5.5–7.5 0.5–10
Campbell and Bozorgnia (2003a) Rseis 3–100 MW 4.7–7.7 0.25–20
Lussou et al. (2001) Rhyp 10–200 M-JMA 3.5–6.3 0.1–50
Sabetta and Pugliese (1996) RJB and Repi � 100 ML �5.5/

MS �5.5
4.6–6.8 0.25–25

Spudich et al. (1999) RJB � 100 MW 5.0–7.0 0.5–10

For the definitions of the distance types see Table 3.
*Repi is the epicentral distance.
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Figure 2. Model spectra for the optimum stochastic model (thin lines) and spectra
calculated from the ground-motion prediction equation of Abrahamson and Silva
(1997) (heavy lines) for selected magnitudes and Joyner-Boore distances (reference
distance). For the stochastic model, the rupture distance was used as distance metric.
The distance conversions from the Joyner-Boore reference distance to rupture distance
was performed using the conversion relations of Scherbaum et al. (2004b).
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Figure 3. Model spectra for the optimum stochastic model (thin lines) and spectra
calculated from the ground-motion prediction equation of Abrahamson and Silva
(1997) (heavy lines) for selected magnitudes and Joyner-Boore distances (reference
distance). For the stochastic model, the metric ATSCA (compare Table 3) was used.
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and Silva (1997) model is not purely Californian and our
approach models data sets, not necessarily geographical
regions.

Results

For all ground-motion models under study, optimum
stochastic models were calculated for all distance metrics
described in Table 3. Table 5 shows the corresponding min-
imum residual values for all combinations of ground-motion
model and distance metric. The minimum misfit values ob-
tained for each ground motion model are in boldface.
Table 5 illustrates that the distance metrics yielding the best-
fitting models differ from model to model. However, the
hypocentral distance performs well for most investigated
models, followed by the two types of rms-distance which

Table 4 and Figures 3 and 4 it is apparent that a similar
quality of fit can be reached with rather different model pa-
rameters. As a consequence, the latter cannot be interpreted
separately from the distance metric with which the model
was generated. Another reason for the necessity to interpret
the stochastic parameters only as a whole set are the known
tradeoffs between individual model parameters, for example,
between stress drop, kappa, and attenuation (Scherbaum,
1990; Boore et al., 1992). Table 4 also shows that in terms
of overall fit (independent of the particular distance metric
used) optimized stochastic host region models provide a
much better representation for the Abrahamson and Silva
(1997) model than the one obtained by using the WNA model
of Campbell (2003) (last column in Table 4). This would
probably be true for any other Western U.S. model as well,
simply because the generating data set of the Abrahamson

Table 3
Different Distance Metrics Used for Stochastic Ground-Motion Modeling in the Present Study

Label Metric Comment

RHYP Rhyp Hypocentral distance
RRUP Rrup Distance to the closest point on the rupture plane
RSEIS Rseis Distance to the closest point on the seismogenic part of the rupture plane

ATSCA 2 2R � h(M)� rup Rrup is the distance to the closest point on the rupture plane, h(fM) is a magnitude-dependent pseudodepth
(Atkinson and Silva, 2000).

ABRCA 2 2R � 8� JB RJB is the Joyner-Boore distance, the horizontal distance to the closest surface projection of the rupture plane.
This distance metric has been used for Californian data (Abrahamson, personal comm., 2003).

RRMS Rrms Root-mean-square distance defined as , where the integral is taken over the entire1R �rms

1 1
• dS� 2�S Rfault surface S (Kanamori et al., 1993).

RRMSSEIS RRMSSEIS Defined as , where the integral is taken over the seismogenic part of the fault1R �rms

1 1
• dS� 2�S Rseis

surface Sseis.

Table 4
Minimum Misfit Model Parameters Obtained for the Abrahamson and Silva (1997) Models for Different Distance Metrics

Parameter Search Range ABRCA ATSCA RHYP RRMS RRMSSEIS RRUP RSEIS WNA

Dr (bar) 0.1 to 500 54 79 163 216 267 30 32 100
j0 (sec) 0 to 0.1 0.033 0.039 0.047 0.050 0.044 0.032 0.031 0.04
Q0 50 to 1000 325 196 269 235 270 445 442 180
� 0 to 1.0 0.37 0.46 0.38 0.41 0.31 0.26 0.27 0.45
R1 (km) 10 to 50 23.5 44.5 42.5 45.9 48.3 34.4 27.6 40
a1 �0.8 to �1.2 �1.0 �1.0 �1.1 �1.0 �1.1 �0.87 �0.87 �1.0
R2 (km) max. 110 83.1 73.8 65.3 78.2 71.7 57.7 72.0 �
a2 �1 to 0.3 �0.75 �0.25 �0.78 �0.94 �0.58 �0.88 �0.91 �0.5
R3 (km) � (fixed)
a3 �0.5 (fixed)
r 0.02 to 0.08 0.038 0.037 0.037 0.057 0.056 0.051 0.021 0.05
vs30 (m/sec) 450 to 1000 650 500 500 650 620 700 700 620
Misfit value 0.096 0.074 0.084 0.086 0.094 0.120 0.113 0.232

The bottom row gives the corresponding minimum residual values for the data set used for the inversion. The rightmost column corresponds to the
WNA model of Campbell (2003) in conjunction with rupture distance.
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Figure 4. Model spectra for the optimum stochastic model (thin lines) and spectra
calculated from the ground-motion prediction equation of Abrahamson and Silva (1997)
(heavy lines) for selected magnitudes and Joyner-Boore distances (reference distance).
The distance conversions from the reference distance to rupture distance, which is used
by Abrahamson and Silva (1997), and the hypocentral distance (for the stochastic model)
was performed using the conversion relations of Scherbaum et al. (2004b).
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metric for the stochastic models. These sets of models are
believed to represent the generating data sets of the inves-
tigated empirical ground-motion models rather than specific
geographical regions.

Model Bias, Parameter Variability,
and Parameter Correlation

The accuracy of ground-motion prediction using the hy-
brid empirical method is determined to a large degree by the
quality of the best-fitting equivalent stochastic model. Even
the best-fitting stochastic host-region models will show sys-
tematic differences between the ground-motion predictions
from the empirical prediction equation and the correspond-
ing equivalent stochastic model. These systematic differ-
ences are magnitude and frequency dependent and differ
considerably between different ground-motion models
(Figs. 5, 6, 7). In some cases we were able to find very well-
fitting stochastic models for the whole range of magnitudes,
distances, and frequencies for which the models are sup-
posed to be valid (Abrahamson and Silva, 1997; Lussou et
al., 2001; Berge-Thierry et al., 2003). For some ground-
motion prediction relations, however, (e.g., Spudich et al.,

(Text continues on page 442.)

were used. The good performance of the rms-distance was
not totally unexpected because this distance measure was
specifically defined to model spatial energy decay from ex-
tended sources (Kanamori et al., 1993). The good perfor-
mance of the hypocentral distance measure was more of a
surprise at first. However, it could be explained by the results
of two recent studies of hypocenter locations in finite-source
models (Mai et al., 2005; Manighetti et al., 2005). Mani-
ghetti et al. (2005) suggest that there is a critical distance
from a major asperity beyond which an earthquake does not
nucleate. The maximum distance at which an earthquake can
nucleate from the major asperity it eventually breaks is
�50% of its total length and width. Most earthquakes, how-
ever, seem to nucleate closer, with an hypocenter-asperity
distance (HA) on the order of 20–30% of their total length
or width. This average value is similar to the mean normal-
ized size of major asperities within earthquake fault planes
as determined from smaller data sets by Somerville et al.
(1999) and Beresnev and Atkinson (2002). This suggests
that earthquakes may actually nucleate at the edges of the
major asperities that they eventually break. These results are
in agreement with those of Mai et al. (2005) which indicate
that hypocenters are often located either within or close to
regions of large slip. Table 6 shows the minimum residual
model parameters for the hypocentral distance as distance

Table 5
Minimum Residual Values Obtained for Different Distance Metrics and Different Ground-Motion Prediction Equations

Model Name ABRCA ATSCA RHYP RRMS RRMSSEIS RRUP RSEIS

Abrahamson and Silva (1997) 0.096 0.074 0.084 0.086 0.094 0.120 0.113
Ambraseys and Douglas (2003) 0.1689 0.0826 0.0199 0.0209 0.0201 0.2127 0.1894
Ambraseys et al. (1996) 0.080 0.088 0.103 0.108 0.104 0.057 0.054
Berge-Thierry et al. (2003) 0.0670 0.0491 0.0452 0.0529 0.0531 0.0950 0.0904
Boore et al. (1997) 0.0654 0.0678 0.0303 0.0398 0.0348 0.0727 0.0646
Campbell and Bozorgnia (2003a) 0.145 0.114 0.049 0.038 0.045 0.168 0.161
Lussou et al. (2001) 0.022 0.020 0.019 0.021 0.021 0.039 0.036
Sabetta and Pugliese (1996) 0.258 0.251 0.238 0.219 0.203 0.226 0.209
Spudich et al. (1999) 0.1434 0.1390 0.1286 0.1256 0.1257 0.1441 0.1433

The minimum misfit values for each ground-motion model are in boldface.

Table 6
Minimum Misfit Stochastic Model Parameters for the Ground-Motion Models under Study

Model Name
Dr

(bar)
j0

(sec) Q0 �

R1

(km) a1

R2

(km) a2 r
vs30

(m/sec)

Abrahamson and Silva (1997) 163 0.047 269 0.38 42.5 �1.1 65.3 �0.78 0.037 500
Ambraseys and Douglas (2003) 132 0.038 52 0.785 44.6 �0.846 NA NA 0.021 650
Ambraseys et al. (1996) 83 0.066 164 0.905 25.8 �0.8 85.8 �1.0 0.038 500
Berge-Thierry et al. (2003) 46 0.047 256 0.958 30.9 �0.979 68.9 �0.883 0.0377 450
Boore et al. (1997) 77 0.061 83 0.846 48.9 �0.8 82.2 �0.299 0.0623 450
Campbell and Bozorgnia (2003a) 63 0.042 130 0.534 24.4 �0.817 28.9 �0.505 0.0554 500
Lussou et al. (2001) 44 0.032 167 0.77 13.5 �1.02 73.3 �0.86 0.0266 550
Sabetta and Pugliese (1996) 68 0.042 87 0.856 42.3 �0.837 47.13 �0.836 0.0677 500
Spudich et al. (1999) 12 0.287 84 1.0 43.3 �0.807 63.1 �0.97 0.0442 450

The hypocentral distance was used as distance metric for the stochastic model. The geometrical spreading exponent a3 up to infinity was set to 0.5,
�RHU� � 0.55, V � 1/ , F � 2. The density and velocity were set to qS � 2700 kg/m3 and bS � 3500 m/sec.2�
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Figure 5. Systematic differences of the optimum stochastic models (for RHYP as
distance metric) for an Mw 5.5 earthquake as function of frequency and Joyner-Boore
distance. Displayed are the absolute values of differences between the log10 values of
the response spectra generated from the optimum stochastic models and the log10 values
of the spectra calculated from the different ground-motion prediction equations. The
contour line spacing is 0.05. The distance conversions from the reference distance to
the distance measures used by the empirical ground-motion models and to the hypo-
central distance (for the stochastic model) was performed using the conversion relations
of Scherbaum et al. (2004b).
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Figure 6. Systematic differences of the optimum stochastic models (for RHYP as
distance metric) for an Mw 6.5 earthquake as function of frequency and Joyner-Boore
distance. Displayed are the absolute values of differences between the log10 values of
the response spectra generated from the optimum stochastic models and the log10 values
of the spectra calculated from the different ground-motion prediction equations. The
contour line spacing is 0.05. The distance conversions from the reference distance to
the distance measures used by the empirical ground-motion models and to the hypo-
central distance (for the stochastic model) was performed using the conversion relations
of Scherbaum et al. (2004b).
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Figure 7. Systematic differences of the optimum stochastic models (for RHYP as
distance metric) for an Mw 7.5 earthquake as function of frequency and Joyner-Boore
distance. Displayed are the absolute values of differences between the log10 values of
the response spectra generated from the optimum stochastic models and the log10 values
of the spectra calculated from the different ground-motion prediction equations. The
contour line spacing is 0.05. The distance conversions from the reference distance to
the distance measures used by the empirical ground-motion models and to the hypo-
central distance (for the stochastic model) was performed using the conversion relations
of Scherbaum et al. (2004b).



The Estimation of Minimum-Misfit Stochastic Models from Empirical Ground-Motion Prediction Equations 441

Figure 8. The thin gray lines show the 25 best-fitting stochastic model misfit spectra
with respect to the Abrahamson and Silva prediction equation (1997), obtained from
the genetic algorithm search for selected magnitudes and Joyner-Boore distances. The
distance conversions from the reference distance to rupture distance, which is used by
Abrahamson and Silva (1997), and the hypocentral distance (for the stochastic model)
was performed using the conversion relations of Scherbaum et al. (2004b).
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Conclusion

Campbell’s hybrid empirical approach (Campbell,
2003, 2004) provides a methodological framework to adapt
ground-motion prediction equations to arbitrary target re-
gions. As a key element in the necessary host-to-target-
region conversions, we have calculated equivalent stochastic
host-region models for several popular empirical ground-
motion prediction equations for shallow crustal earthquakes.
Because a variety of different distance measures have been
proposed for this purpose, we have compared their perfor-
mance in terms of overall quality of fit. As a result, for each
empirical ground-motion model we obtain a whole set of
stochastic models together with their misfit values. For most
of the empirical ground-motion models, we obtain equiva-
lent stochastic models that match the empirical models
within the full magnitude and distance ranges of their gen-
erating data sets fairly well. However, the overall quality of
fit and the resulting model parameter sets strongly depend
on the particular choice of the distance metric used for the
stochastic model. Although there is no single distance metric
providing the lowest misfit stochastic models for all empir-
ical equations, the hypocentral distance performs best in
most cases. This is compatible with the results of a recent
study of hypocenter locations in finite-source models which
indicates that hypocenters are often located either within or
close to regions of large slip (Mai et al., 2005; Manighetti
et al., 2005). It must be emphasized that minimum-misfit
stochastic models match data sets but not necessarily geo-
graphical regions. This is because, for good reasons, essen-
tially all empirical ground-motion prediction equations con-
tain data from different geographical regions. Even the
best-fitting stochastic models will result in a magnitude- and
frequency-dependent systematic bias which, according to the
laws of uncertainty propagation, will increase the variance
of the corresponding hybrid empirical model predictions
(Scherbaum et al., 2005). As a consequence, the selection
of empirical ground-motion models for host-to-target-region
conversions requires considerable judgment of the ground-
motion analyst. The model parameters of the set of “good
fitting stochastic models” are highly correlated, which
should be accounted for as well if the corresponding effects
on hybrid empirical model predictions using any of these
equations are to be evaluated. For this purpose, the set of
model parameters and misfit values for the 100 best-fitting
stochastic models for each ground-motion model under
study (Table 2), as well as the conversion coefficients for
the rms-distances (RRMS and RRMSSEIS) are available on
request from the first author (fs@geo.uni-potsdam.de).
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1999) even the best-fitting stochastic model spectra can
show a rather large systematic deviation for certain magni-
tudes and/or distances. For the model of Spudich et al.
(1999) this could be caused by the fact that the correspond-
ing generating data set was selected based on stress regimes
rather than geographic regions. For the majority of models
under study, however, we would subjectively judge the fit
as fair. These differences will map as additional variance
onto the corresponding hybrid empirical ground-motion pre-
dictions (Scherbaum et al., 2005).

In addition to the systematic bias, additional uncertain-
ies in the final hybrid empirical model predictions will be
produced by the variability of model parameters correspond-
ing to those models that provide a similar fit. As an illustra-
tion of this effect, Figure 8 shows the 25 best-fitting sto-
chastic model misfit spectra with respect to the Abrahamson
and Silva prediction equation (1997), obtained from the ge-
netic algorithm search, for selected magnitudes and Joyner-
Boore distances. Based on the visual judgment of the size
of the misfit as well as on the fact that the misfit between
the best model and the 25th best model increases by only
7%, the whole set of models would be acceptable models.
The corresponding model parameters show a noticeable
spread as is displayed in Table 7. In the final predictions of
a corresponding hybrid empirical model spectrum, this
spread will cause additional uncertainty. However, because
of trade-offs in the model parameters, it is important that
these correlations are taken into account. Otherwise, the un-
certainties in the model predictions of the hybrid model
might be considerably overestimated as illustrated in Fig-
ure 9. One way of achieving this is the calculation of host-
to-target conversion filters in which the host-region models
are drawn by weighted Monte-Carlo sampling from a larger
set of acceptable models with the weights being a function
of the model misifit (Scherbaum et al., 2005). A compre-
hensive discussion of source of uncertainties in a hybrid em-
pirical model for central Europe is given by Scherbaum et
al. (2005).

Table 7
Model Parameter Spread for the 25 Best-Fitting Models for the

Abrahamson and Silva (1997) Ground-Motion Prediction
Equation (Compare Fig. 8)

Parameter
Best

Model
Mean for

25 Best Models
Standard Deviation
for 25 Best Models

Dr (bar) 163 188 27.7
j0 (sec) 0.047 0.042 0.007
Q0 269 286 115.5
� 0.38 0.34 0.17
R1 (km) 42.5 38.2 10.3
a1 �1.1 �1.04 0.03
R2 (km) 65.3 66.7 16.2
a2 �0.78 �0.73 0.26
r 0.037 0.053 0.015
vs30 (m/sec) 500 673 127

The hypocentral distance is used as distance metric. The misfit increase
between the best model and the 25th best model is approximately 7%.
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Figure 9. The effect of wrongly assuming that the individual model parameters are
independent. The thin gray lines show 25 stochastic model misfit spectra with respect to
the Abrahamson and Silva prediction equation (1997), obtained by randomly drawing
the individual model parameters from the set of the 25 best-fitting models shown in
Figure 8. The distance conversions from the reference distance to rupture distance, which
is used by Abrahamson and Silva (1997), and the hypocentral distance (for the stochastic
model) was performed using the conversion relations of Scherbaum et al. (2004b).



444 F. Scherbaum, F. Cotton, and H. Staedtke

Boore, D. M., and G. M. Atkinson (1987). Stochastic prediction of ground
motion and spectral response parameters at hard-rock sites in eastern
North America, Bull. Seism. Soc. Am. 77, no. 2, 440–467.

Boore, D. M., and W. B. Joyner (1984). A note on the use of random
vibration theory to predict peak amplitudes of transient signals, Bull.
Seism. Soc. Am. 74, no. 5, 2035–2039.

Boore, D. M., and W. B. Joyner (1997). Site amplifications for generic rock
sites, Bull. Seism. Soc. Am. 87, no. 2, 327–341.

Boore, D. M., W. B. Joyner, and T. E. Fumal (1997). Equations for esti-
mating horizontal response spectra and peak acceleration from west-
ern North American earthquakes: a summary of recent work, Seism.
Res. Lett. 68, no. 1, 128–153.

Boore, D. M., W. B. Joyner, and L. G. Wennerberg (1992). Fitting the
stochastic omega�2 source model to observed response spectra in
western North America: trade-offs between Delta sigma and kappa,
Bull. Seism. Soc. Am. 82, no. 4, 1956–1963.

Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves
from earthquakes, J. Geophys. Res. 76, no. 26, 4997–5009.

Brune, J. N. (1971). Tectonic stress and the spectra of seismic shear waves
from earthquakes, Correction, J. Geophys. Res. 76, no. 20, 5002.

Campbell, K. W. (2003). Prediction of strong ground motion using the
hybrid empirical method and its use in the development of ground-
motion (attenuation) relations in Eastern North America, Bull. Seism.
Soc. Am. 93, no. 3, 1012–1033.

Campbell, K. W. (2004). Erratum to Prediction of strong ground motion
using the hybrid empirical method and its use in the development of
ground-motion (attenuation) relations in Eastern North America, Bull.
Seism. Soc. Am. 94, no. 6, 2418.

Campbell, K. W., and Y. Bozorgnia (2003a). Updated near-source ground-
motion attenuation relations for the horizontal and vertical compo-
nents of peak ground acceleration and acceleration response spectra,
Bull. Seism. Soc. Am. 93, no. 1, 314–331.

Campbell, K. W., and Y. Bozorgnia (2003b). Erratum to Updated near-
source ground-motion attenuation relations for the horizontal and ver-
tical components of peak ground acceleration and acceleration re-
sponse spectra, Bull. Seism. Soc. Am. 93, no. 3, 1413.

Campbell, K. W., and Y. Bozorgnia (2003c). Erratum to Updated near-
source ground-motion attenuation relations for the horizontal and ver-
tical components of peak ground acceleration and acceleration re-
sponse spectra, Bull. Seism. Soc. Am. 93, no. 4, 1872.

Campbell, K. W., and Y. Bozorgnia (2004). Erratum to Updated near-
source ground-motion attenuation relations for the horizontal and ver-
tical components of peak ground acceleration and acceleration re-
sponse spectra, Bull. Seism. Soc. Am. 94, no. 6, 2417.

Chen, S.-Z., and G. M. Atkinson (2002). Global comparisons of earthquake
source spectra, Bull. Seism. Soc. Am. 92, no. 3, 885–895.

Cotton, F., F. Scherbaum, J. J. Bommer, and H. Bungum (2006). Criteria
for selecting and adjusting ground-motion models for specific target
regions: application to Central Europe and rock sites, J. Seism. (in
press).

Douglas, J. (2003). Earthquake ground motion estimation using strong-
motion records: a review of equations for the estimation of peak
ground acceleration and spectral ordinates, Earth Sci. Rev. 61, 43–
104.

Gentile, F., F. Pettenati, and L. Sirovich (2004). Validation of the automatic
nonlinear source inversion of the U.S. Geological Survey intensities
of the Whittier Narrows 1987 earthquake, Bull. Seism. Soc. Am. 94,
1737–1747.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, Reading, Massachusetts.

Hanks, T. C. (1979). b-values and x�c seismic source models: implications
for tectonic stress variations along active crustal fault zones and the
estimations of high-frequency strong ground motions, J. Geophys.
Res. 84, no. B5, 2235–2242.

Hanks, T. C., and R. K. McGuire (1981). The character of high-frequency
strong ground motion, Bull. Seism. Soc. Am. 71, no. 6, 2071–2095.

Hernandez, B., F. Cotton, and M. Campillo (1999). Contribution of radar

Christian Sprecher. Frank Scherbaum and Fabrice Cotton are especially
thankful for the numerous discussions with Julian Bommer, Hilmar Bun-
gum, Fabio Sabetta, and Norm Abrahamson. We also thank John Douglas,
Dave Boore, Stefano Parolai, Ken Campbell, and Gail Atkinson for their
comments on the manuscript and Anthony Lomax for generously providing
us with his code.

References

Abrahamson, N. A., and K. M. Shedlock (1997). Overview, Seism. Res.
Lett. 68, no. 1, 9–23.

Abrahamson, N. A., and W. J. Silva (1997). Empirical response spectral
attenuation relations for shallow crustal earthquakes, Seism. Res. Lett.,
68, no. 1, 94–127.

Abrahamson, N. A., P. Birkhauser, M. Koller, D. Mayer-Rosa, P. M. Smit,
C. Sprecher, S. Tinic, and R. Graf (2002). PEGASOS—A compre-
hensive probabilistic seismic hazard assessment for nuclear power
plants in Switzerland, Paper presented at the 12 European Conference
on Earthquake Engineering, London.

Ambraseys, N. N., and J. Douglas (2003). Near-field horizontal and vertical
ground motions, Soil Dyn. Earthquake Eng. 23, 1–18.

Ambraseys, N. N., K. A. Simpson, and J. J. Bommer (1996). Prediction of
horizontal response spectra in Europe, Earthquake Eng. Struct. Dyn.
25, 371–400.

Anderson, J. G., and S. E. Hough (1984). A model for the shape of the
Fourier amplitude spectrum of acceleration at high frequencies, Bull.
Seism. Soc. Am. 74, 1969–1993.

Atkinson, G. M., and W. Silva (1997). An empirical study of earthquake
source spectra for California earthquakes, Bull. Seism. Soc. Am. 87,
97–113.

Atkinson, G. M., and W. Silva (2000). Stochastic modeling of California
ground motions, Bull. Seism. Soc. Am. 90, no. 2, 255–274.

Bay, F., D. Fäh, L. Malagnini, and D. Giardini (2003). Spectral shear-wave
ground-motion scaling in Switzerland, Bull. Seism. Soc. Am. 93, no. 1,
414–429.

Beresnev, I. A., and G. M. Atkinson (2002). Source parameters of earth-
quakes in eastern and western North America, Bull. Seism. Soc. Am.
92, no. 2, 695–710.

Berge-Thierry, C., F. Cotton, O. Scotti, D. A. Griot-Pommera, and Y. Fu-
kushima (2003). New empirical response spectral attenuation laws for
moderate European earthquakes, J. Earthquake Eng. 7, no. 2, 193–
222.

Boatwright, J., H. Bundock, J. Luetgert, L. C. Seekins, L. Gee, and P.
Lombard (2003). The dependence of PGA and PGV on distance and
magnitude inferred from Northern California ShakeMap data, Bull.
Seism. Soc. Am. 93, 2043–2055.

Bommer, J. J., N. A. Abrahamson, F. O. Strasser, A. Pecker, P. Y. Bard,
H. Bungum, F. Cotton, D. Fäh, F. Sabetta, F. Scherbaum, and J. Studer
(2004). The challenge of defining upper bounds on earthquake ground
motions, Seism. Res. Lett. 75, no. 1, 82–95.

Bommer, J. J., F. Scherbaum, H. Bungum, F. Cotton, F. Sabetta, and N. A.
Abrahamson (2005). On the use of logic trees for ground-motion pre-
diction equations in seismic hazard analysis, Bull. Seism. Soc. Am.
95, no. 2, 377–389.

Boore, D. (2000). SMSIM-Fortran programs for simulating ground motions
from earthquakes, Version 2.0, A revision of OFR 96-80-A (No. A
revision of USGS OFR00-509), http://geopubs.wr.usgs.gov/open-file/
of00-509/ (last accessed January 2006).

Boore, D. M. (1983). Stochastic simulation of high-frequency ground mo-
tions based on seismological models of the radiated spectra, Bull.
Seism. Soc. Am. 73, no. 6, 1865–1894.

Boore, D. M. (1986). Short-period P- and S-wave radiation from large
earthquakes: implications for spectral scaling relations, Bull. Seism.
Soc. Am. 76, no. 1, 43–64.

Boore, D. M. (2003). Simulation of ground motion using the stochastic
method, Pageoph 160, 635–676.



The Estimation of Minimum-Misfit Stochastic Models from Empirical Ground-Motion Prediction Equations 445

interferometry to a two-step inversion of the kinematic process of the
1992 Landers earthquake, J. Geophys. Res. 104, 13,083–13,099.

Kanamori, H., J. Mori, E. Hauksson, T. Heaton, L. K. Hutton, and L. M.
Jones (1993). Determination of earthquake energy release and Ml
using Terrascope, Bull. Seism. Soc. Am. 83, no. 2, 330–346.

Kramer, S. L. (1996). Geotechnical Earthquake Engineering, Prentice-Hall,
Upper Saddle River, New Jersey.

Kulkarni, R. B., R. R. Youngs, and K. J. Coppersmith (1984). Assessment
of confidence intervals for results of seismic hazard analysis, Paper
presented at the 8th World Conference on Earthquake Engineering,
San Francisco.

Lomax, A., and R. Snieder (1994). Finding sets of acceptable solutions
with a genetic algorithm with application to surface wave group dis-
persion in Europe, Geophys. Res. Lett. 21, no. 24, 2617–2620.

Lomax, A., and R. Snieder (1995). Identifying sets of accetable solutions
to non-linear geophysical inverse problems which have complicated
misfit functions, Nonlinear Proc. Geophys. 2, 222–227.

Lussou, P., P. Y. Bard, F. Cotton, and Y. S. Fukushima (2001). Seismic
design regulation codes: contribution of K-Net data to site effect eval-
uation, J. Earthquake Eng. 5, no. 1, 13–33.

Mai, P. M., P. Spudich, and J. Boatwright (2005). Hypocenter locations in
finite-source rupture models, Bull. Seism. Soc. Am. 95, no. 3, 965–
980.

Malagnini, L., R. B. Herrmann, B. M. Di, and K. Koch (1999). Ground
motion attenuation at regional distance in Italy and Germany, Seism.
Res. Lett. 70, no. 2, 214.

Malagnini, L., R. B. Herrmann, and K. Koch (2000). Regional ground-
motion scaling in central Europe, Bull. Seism. Soc. Am. 90, no. 4,
1052–1061.

Manighetti, I., M. Campillo, C. Sammis, P. M. Mai, and G. King (2005).
Evidence for self-similar, triangular slip distributions on earthquakes:
implications for earthquake and fault mechanics, J. Geophys. Res.
110, doi 10.1029/2004JB003174.

Margaris, B. N., and D. M. Boore (1998). Determination of Dr and j0 from
response spectra of large earthquakes in Greece, Bull. Seism. Soc. Am.
88, no. 1, 170–182.

McGuire, R. K., and T. C. Hanks (1980). RMS accelerations and spectral
amplitudes of strong ground motion during the San Fernando, Cali-
fornia earthquake, Bull. Seism. Soc. Am. 70, no. 5, 1907–1919.

Ou, G.-B., and R. B. Herrmann (1990). A statistical model for ground
motion produced by earthquakes at local and regional distances, Bull.
Seism. Soc. Am. 80, no. 6, 1397–1417.

Raoof, M., R. B. Herrmann, and L. Malagnini (1999). Attenuation and
excitation of three-component ground motion in Southern California,
Bull. Seism. Soc. Am. 89, no. 4, 888–902.

Reiter, L. (1990). Earthquake Hazard Analysis: Issues and Insights, Co-
lumbia University Press, New York.

Sabetta, F., and A. Pugliese (1996). Estimation of response spectra and
simulation of nonstationary earthquake ground motion, Bull. Seism.
Soc. Am. 86, no. 2, 337–352.

Scherbaum, F. (1990). Combined inversion for the three-dimensional Q
structure and source parameters using microearthquake spectra, J.
Geophys. Res. 95, no. B8, 12,423–12,438.

Scherbaum, F., J. J. Bommer, H. Bungum, F. Cotton, and N. A. Abraham-
son (2005). Composite ground-motion models and logic trees: meth-
odology, sensitivities, and uncertainties, Bull. Seism. Soc. Am. 95,
no. 5, 1575–1593.

Scherbaum, F., F. Cotton, and P. Smit (2004a). On the use of response
spectral-reference data for the selection of ground-motion models for
seismic hazard analysis: the case of rock motion, Bull. Seism. Soc.
Am. 94, no. 6, 2164–2185.

Scherbaum, F., J. Schmedes, and F. Cotton (2004b). On the conversion of
source-to-site distance measures for extended earthquake source
models, Bull. Seism. Soc. Am. 94, no. 3, 1053–1069.

Somerville, P., K. Irikura, R. Graves, S. Sawada, D. Wald, N. Abrahamson,
Y. Iwasaki, T. Kagawa, N. Smith, and A. Kowada (1999). Charac-
terizing crustal earthquake slip models for the prediction of strong
ground motion, Seism. Res. Lett. 70, no. 1, 59–80.

Spudich, P., W. B. Joyner, A. G. Lindh, D. M. Boore, B. M. Margaris, and
J. B. Fletcher (1999). SEA99: A revised ground motion prediction
relation for use in extensional tectonic regimes, Bull. Seism. Soc. Am.
89, no. 5, 1156–1170.

Stoffa, P. L., and M. K. Sen (1991). Nonlinear multiparameter optimization
using genetic algorithms: Inversion of plane wave seismograms, Geo-
physics 56, no. 11, 1794–1810.

Institut für Geowissenschaften
Universität Potsdam
P.O. Box 601553
D-14415, Potsdam, Germany
fs@geo.uni-potsdam.de

(F.S., H.S.)
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