REASSESSMENT OF SITE COEFFICIENTS AND NEAR-FAULT FACTORS FOR BUILDING CODE PROVISIONS

Program Element: II

98-HQ-GR-1010

Walt Silva Robert Darragh Nicholas Gregor

Pacific Engineering and Analysis 311 Pomona Avenue El Cerrito, CA 94530 (510) 528-2821, 2135 (fax) Email: pacific@crl.com

Geoff Martin 22 Crestwind Drive Rancho Palos Verdes, CA 90275 Los Angeles, CA 90089 (310)541-8847,8812 (fax) Email:geomar@mizar.usc.edu

Norm Abrahamson 152 Dracena Avenue Piedmond, CA 94611 (510) 428-9823, 9824 (fax) Email:naa3@earthlink.com

Charles Kircher Charles Kircher & Associates 444 Castro Street, Suite 433 Mountain View, CA 94041 (650) 968-3939, 0960 (fax) Email: cakircher@aol.com.

ABSTRACT

Site amplification factors are developed for the NEHRP site Categories considering ranges in profile depth, uncertainties and variabilities in dynamic material properties, as well as both western and eastern United States (WUS and CEUS) crustal conditions. Equivalent-linear analyses are used and comparisons are made to results using a fully nonlinear analysis procedure. The results suggest that sufficient conservatism exists in the NEHRP soft site Category E amplification factors and that the hard rock factors, NEHRP Category A, reflect appropriate amplification. However, NEHRP Category D amplification may be unconservative for most cases while NEHRP Category D amplification may not have sufficient conservatism, being unconservative for some cases.

Evaluation of the 1997 UBC design spectra with spectra computed from recorded motions showed design spectral levels conservatively above median estimates for Seismic Source Zone 4, Fault Types A, B, and C, and all site conditions. For Seismic Source Zone 3, the 1997 UBC design spectra were generally above the median $+ 1\sigma$ estimates from the recorded motions for all site conditions.

For an evaluation of the 2,000 IBC design spectra, residuals between five frequently used empirical attenuation relations for western United States crustal sources and available recorded motions were computed. In general the relations predict the recorded motions acceptably well. The major exceptions occurring at low-frequency (≤ 2 Hz) and for earthquakes with magnitude greater than 7 and most noticeably in the 10 km to 35 km distance range.

ACKNOWLEDGMENTS

We are indebted to Professor Ellen Rathje of the University of Texas at Austin for the Turkey earthquake data as well as site condition information. Our gratitude and thanks as well to the Seismology Center of the Central Weather Bureau of Taiwan for making the CD ROM of the Chi-Chi ground motion data available in a very timely manner. We also thanks Dr. W.Y. Chien of the Central Weather Bureau of Taiwan for the recording site information and Dr. S.J. Chiou of Geomatrix for Chi-Chi earthquake source-to-site distances. Dr. Ping Qui performed the nonlinear site response calculations. We are grateful for her expertise and proficiency.

Research supported by the U.S. Geological Survey (USGS), Department of the Interior, under USGS award number 98-HQ-GR-1010. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government.

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGMENTS

1.0 INTRODUCTION

2.0 SUMMARY OF CODE PROVISIONS

- 2.1 Site Factors
- 2.2 Near-Source Factors

3.0 DEVELOPMENT OF SITE CATEGORY PROFILES

- 3.1 NEHRP Categories
- 3.2 Surficial Geology based Profiles
- 3.3 Mean Centered NEHRP Category Profiles
 - 3.3.1 WUS
 - 3.3.2 CEUS

4.0 NEHRP AMPLIFICATION FACTORS

- 4.1 Methodology
 - 4.1.1 Equivalent-Linear Computational Scheme
 - 4.1.2 RVT Based Computational Scheme
 - 4.1.3 Nonlinear computational Scheme
- 4.2 Nonlinear Dynamic Properties
 - 4.2.1 G/Gmax and Hysteretic Damping Curves
 - 4.2.2 Nonlinear Soil Models
- 4.3 Point-Source Model Parameters
 - 4.3.1 NEHRP Category A and B Kappa Values 4.3.1.1 WUS Kappa Values
 - 4.3.1.2 CEUS Kappa Values
 - 4.3.2 NEHRP Category C, D and E Kappa Values
 - 4.3.3 Magnitude, Stress Drops, and Q(f) Models
 - 4.3.4 Incorporation of Site Parameter Variability
 - 4.3.5 Control Motion Time Histories
- 4.4 Development of NEHRP Site Amplification Factors
 - 4.4.1 NEHRP Profile Depths for Category C, D, and E
 - 4.4.2 NEHRP Categories A and BC 4.4.2.1 NEHRP Category A
 - 4.4.2.2 NEHRP Category BC
 - 4.4.3 NEHRP Category C
 - 4.4.3.1 WUS Conditions
 - 4.4.3.1.1. Effects of nonlinear Dynamic Material Properties
 - 4.4.3.1.2 Effcts of Profile Depth
 - 4.4.3.1.3 Comparison to Nonlinear Analyses

4.4.3.2 CEUS Conditions

- 4.4.3.2.1 Effects of Nonlinear Dynamic Material Properties
- 4.4.3.2.2 Comparison of WUS and CEUS Category C Amplification Factors
- 4.4.4 NEHRP Category D
 - 4.4.4.1 WUS Conditions
 - 4.4.4.1.1 Effects of Nonlinear Dynamic Material Properties
 - 4.4.4.1.2 Effects of Profile Depth
 - 4.4.4.1.3 Comparison to Nonlinear Analyses
 - 4.4.4.2 CEUS Conditions
 - 4.4.4.2.1 Effects of Nonlinear Dynamic Material Properties
- 4.4.5 NEHRP Category E
 - 4.4.5.1 WUS Conditions
 - 4.4.5.1.1 Comparison to Nonlinear Analyses
 - 4.4.5.2 CEUS Conditions

5.0 SUMMARY AND CONCLUSIONS OF NEHRP AMPLIFICATION FACTORS

- 6.0 ASSESSMENT OF NEAR-SOURCE EFFECTS ON BUILDING CODE DESIGN SPECTRA
 - 6.1 Approach
 - 6.2 1997 UBC
 - 6.2.1 NEHRP Category B
 - 6.2.2 NEHRP Category C
 - 6.2.3 NEHRP Category D
 - 6.3 2000 IBC

7.0 SUMMARY AND CONCLUSIONS ON NEAR-SOURCE MOTIONS

8.0 **REFERENCES**

LIST OF TABLES

- 1 Site Classifications
- 2 Surface Geology Based Profiles, Site Classes, and Dynamic Material Properties
- 3 Fa and Fv Values
- 4 Kappa Values for "Average" Site Conditions in WUS and CEUS
- 5 NEHRP B WUS and CEUS
- 6 Profile Depth Categories
- 7 5% Respone Spectra for Nehrp B Fault Class A (**M** Ge 7)
- 8 5% Respone Spectra for Nehrp B Fault Class B (M 6.5 to 6.99)
- 9 5% Respone Spectra for Nehrp B Fault Class C (M 5.75 to 6.49)
- 10 5% Respone Spectra for Nehrp C Fault Class A (**M** Ge 7)
- 11 5% Respone Spectra for Nehrp C Fault Class B (**M** 6.5 to 6.99)
- 12 5% Respone Spectra for Nehrp C Fault Class C (**M** 5.75 to 6.49)
- 13 5% Respone Spectra for Nehrp D Fault Class A (**M** Ge 7)
- 14 5% Respone Spectra for Nehrp D Fault Class B (**M** 6.5 to 6.99)
- 15 5% Respone Spectra for Nehrp D Fault Class C (**M** 5.75 to 6.49)
- 16 Mean Magnitudes and Distances

APPENDIX A

LIST OF FIGURES

- 1 Surface geology based shear-wave velocity profiles for the San Francisco Bay area. Profiles are median estimates based on borehole measurements. Corresponding NEHRP categories are shown (Table 1).
- 2 Surface geology based shear-wave velocity profiles for the Los Angeles area. Profiles are median estimates based on borehole measurements. Corresponding NEHRP categories are shown (Table 1).
- 3 Comparison of median Tertiary shear-wave velocity profiles for San Francisco (Figure 1) and Los Angeles (Figure 2) areas.
- 4 Comparison of median Alluvium shear-wave velocity profiles for San Francisco (Figure 1) and Los Angeles (Figure 2) areas.
- 6 Generic G/Gmax and hysteretic damping curves for rock site conditions.
- 7 Generic G/Gmax and hysteretic damping curves for North Coast cohesionless soil site conditions (EPRI, 1993).
- 8 Generic G/Gmax and hysteretic damping curves for cohesive soil site conditions (Vucetic and Dobry, 1991).
- 9 Generic G/Gmax and hysteretic damping curves for Peninsular Range cohesionless soil site conditions (Silva et al., 1997).
- 10 Generic G/Gmax and hysteretic damping curves for Peninsular Range cohesionless soil site conditions (Silva et al., 1997).
- 11 Derived Initial Loading Curves for Soil Profiles using EPRI Curves.
- 12 Comparison of Shear Modulus Reduction Curves for Soil Profiles using EPRI Curves.
- 13 Derived Initial Loading Curves for Soil Profiles using Peninsular Range Curves.
- 14 Comparison of Shear Modulus Reduction Curves for Soil Profiles using Peninsular Range Curves.
- 15 Derived Initial Loading Curves for Soil Profiles using Vucetic & Dobry Curves for *PI*=30.
- 16 Comparison of Shear Modulus Reduction Curves for Soil Profiles using Vucetic & Dobry's Curve for *PI*=30.

- 17 Comparison of Damping Curves for Soil Profiles using EPRI Curves.
- 18 Comparison of Damping Curves for Soil Profiles using Peninsular Range Curves.
- 19 Comparison of Damping Curves for Soil Profiles using Vucetic & Dobry's Curve for *PI*=30.
- 20 Comparison of generic compression- and shear-wave velocity profiles for WUS (Silva et al., 1997) and CEUS (EPRI, 1993) crustal conditions.
- 21 Rock site (WNA) kappa Vs average (over 100 ft) velocity.
- 22 Comparison of statistical spectral shapes computed from recordings at rock sites with spectral shapes predicted by the rock site attenuation relationships of Abrahamson and Silva (1997) [A&S 97], Boore and others (1997) [Bao 97], Campbell (1997) [C 97], Idriss (1991) [I 91], and Sadigh and others (1997) [Sao 97].
- 23 Response spectral shapes (Sa/amax, 5% damping) computed for M 6.5 at a distance of 25 km for a suite of kappa values using WUS parameters.
- 24 Response spectra (5% damping) computed for an M 6.5 earthquake at a distance of 25 km for a suite of kappa values using WUS parameters.
- 25 NEHRP B, **M** 6.5.
- 26 NEHRP B, M 6.5, median spectra.
- 27 NEHRP B, **M** 6.5, WUS.
- 28 Base of soil outcrop time history.
- 29 NEHRP amplification Category A, CEUS.
- 30 NEHRP amplification Category B, CEUS.
- 31 NEHRP amplification Category BC, CEUS.
- 32 NEHRP amplification Category C, WUS., Peninsular Range curves.
- 33 NEHRP amplification Category C, WUS.
- 34 NEHRP amplification Category C, WUS. depth bins.
- 35 NEHRP amplification, nonlinear, Category C, WUS, peninsular range curves.

- 36 NEHRP amplification, nonlinear, Category C, WUS.
- 37 NEHRP amplification, Category C, WUS, Peninsular Range Curves.
- 38 NEHRP amplification, Category C, WUS, EPRI Curves.
- 39 NEHRP amplification, Category C, CEUS, Peninsular Range Curves.
- 40 NEHRP amplification, Category C, CEUS.
- 41 NEHRP amplification, Category C, WUS, CEUS.
- 42 NEHRP amplification, Category D, WUS, Peninsular Range Curves.
- 43 NEHRP amplification, Category D, WUS.
- 44 NEHRP amplification, Category D, WUS, depth bins.
- 45 NEHRP amplification, nonlinear Category D, WUS, Peninsular Range Curves.
- 46 NEHRP amplification, Nonlinear, Category D, WUS.
- 47 DESRA-MUSC Results Category D, EPRI Curves, Randomized Soil Profile G005029, WUS.
- 48 DESRA-MUSC Results: Response Spectra at Ground Surface Category D, EPRI Curves, Randomized Soil Profile G005029, WUS.
- 49 NEHRP amplification, Category D, WUS, Peninsular Range Curves.
- 50 NEHRP amplification, nonlinear Category D, WUS, EPRI Curves.
- 51 NEHRP amplification, Category D, CEUS, Peninsular Range Curves.
- 52 NEHRP amplification, Category D, CEUS.
- 53 NEHRP amplification, nonlinear Category D, WUS, CEUS.
- 54 NEHRP amplification, Category E, WUS.
- 55 NEHRP amplification, nonlinear Category E, WUS.
- 56 DESRA-MUSC Results Category E, Mixed Curves, Randomized Soil Profile G005010, WUS.

- 57 DESRA-MUSC Results: Response Spectra at Ground Surface Category E, Mixed Curves, Randomized Soil Profile G005010, WUS.
- 58 DESRA-MUSC Results Category E, Mixed Curves, Randomized Soil Profile G005021, WUS.
- 59 DESRA-MUSC Results: Response Spectra at Ground Surface Category E, Mixed Curves, Randomized Soil Profile G005021, WUS.
- 60 NEHRP amplification, Category E, WUS.
- 61 NEHRP amplification, Category E, CEUS.
- 62 NEHRP amplification, Category E, WUS, CEUS.
- 63a Comparison of expected median amplification factors averaged over a suite of frequency ranges to current NEHRP factors: left column WUS conditions, right column CEUS conditions. Categories BC, C, and D use Peninsular Range curves (63a) or EPRI curves (63b).
- 64 Fault type A: **M** GE 7.0, NEHRP Class B.
- 65 Fault type A: **M** GE 7.0, NEHRP Class B.
- 66 Fault type B: M 6.50 to 6.99, NEHRP Class B.
- 67 Fault type B: **M** 6.50 to 6.99, NEHRP Class B.
- 68 Fault type C: M 5.75 to 6.49, NEHRP Class B.
- 69 Fault type C: **M** 5.75 to 6.49, NEHRP Class B.
- 70 Fault type A: **M** GE 7.0, NEHRP Class C.
- 71 Fault type A: **M** GE 7.0, NEHRP Class C.
- Fault type B: M 6.50 to 6.99, NEHRP Class C.
- Fault type B: M 6.50 to 6.99, NEHRP Class C.
- Fault type C: **M** 5.75 to 6.49, NEHRP Class C.
- 75 Fault type C: **M** 5.75 to 6.49, NEHRP Class C.

- Fault type A: **M** GE 7.0, NEHRP Class D.
- 77 Fault type A: **M** GE 7.0, NEHRP Class D.
- 78 Fault type B: **M** 6.50 to 6.99, NEHRP Class D.
- 79 Fault type B: **M** 6.50 to 6.99, NEHRP Class D.
- 80 Fault type C: **M** 5.75 to 6.49, NEHRP Class D.
- 81 Fault type C: **M** 5.75 to 6.49, NEHRP Class D.
- 82 Residuals (natural log) of 5% damped response spectra between average horizontal component recorded motions and median expected motions for five WUS rock site empirical attenuation relations: AS, Abrahamson and Silva; BAO Boore and others; CAMP, Campbell; IMI, Idriss; SAO, Sadigh and others. Earthquakes with M = 7 or larger, frequencies of 5 Hz and greater.
- 83 Residuals (natural log) of 5% damped response spectra between average horizontal component recorded motions and median expected motions for five WUS rock site empirical attenuation relations: AS, Abrahamson and Silva; BAO Boore and others; CAMP, Campbell; IMI, Idriss; SAO, Sadigh and others. Earthquakes with **M** = 7 or larger, frequencies below 5 Hz.
- 84 Residuals (natural log) of 5% damped response spectra between average horizontal component recorded motions and median expected motions for five WUS rock site empirical attenuation relations: AS, Abrahamson and Silva; BAO Boore and others; CAMP, Campbell; IMI, Idriss; SAO, Sadigh and others. Earthquakes with **M** = 6.75 or larger, frequencies of 5 Hz and greater.
- 85 Residuals (natural log) of 5% damped response spectra between average horizontal component recorded motions and median expected motions for five WUS rock site empirical attenuation relations: AS, Abrahamson and Silva; BAO Boore and others; CAMP, Campbell; IMI, Idriss; SAO, Sadigh and others. Earthquakes with M = 6.75 or larger, frequencies below 5 Hz.
- 86 Residuals (natural log) of 5% damped response spectra between average horizontal component recorded motions and median expected motions for five WUS rock site empirical attenuation relations: AS, Abrahamson and Silva; BAO Boore and others; CAMP, Campbell; IMI, Idriss; SAO, Sadigh and others. Earthquakes with M between 6 and 7, frequencies of 5 Hz and greater.
- 87 Residuals (natural log) of 5% damped response spectra between average horizontal component recorded motions and median expected motions for five WUS rock site empirical attenuation relations: AS, Abrahamson and Silva; BAO Boore and others;

CAMP, Campbell; IMI, Idriss; SAO, Sadigh and others. Earthquakes with **M** between 6 and 7, frequencies below 5 Hz.

- 88 Residuals (natural log) of 5% damped response spectra between average horizontal component recorded motions and median expected motions for five WUS rock site empirical attenuation relations: AS, Abrahamson and Silva; BAO Boore and others; CAMP, Campbell; IMI, Idriss; SAO, Sadigh and others. Earthquakes with M between 5 and 6, frequencies of 5 Hz and greater.
- 89 Residuals (natural log) of 5% damped response spectra between average horizontal component recorded motions and median expected motions for five WUS rock site empirical attenuation relations: AS, Abrahamson and Silva; BAO Boore and others; CAMP, Campbell; IMI, Idriss; SAO, Sadigh and others. Earthquakes with M between 5 and 6, frequencies below 5 Hz.

1.0 INTRODUCTION

NEHRP (1994, 1997) site categories are based on the average shear-wave velocity over the top 30m, an approach suggested by Roger Borcherdt (Martin, 1994). Since site amplification (change in amplitude in passing from deeper and faster materials to shallower and slower materials) in general depends on profile stiffness, site categories based on shear-wave velocity represents a physically based binning scheme which should reflect statistically stable differences in expected levels of ground motions, assuming the same level of input motions at some depth. The adopted depth of 30m is not based on any assumption regarding frequency range (wavelength) of interest but is simply an expedient dictated by average depths of boreholes at soil sites. An assumed limitation of the 30m depth is the frequency range which the top 30m of a site is likely to influence through amplification, effects of a velocity gradient or deamplification due to material damping as well as wave scattering. If one simply uses a depth range of one quarter wavelength, a 30m depth is limited to high frequencies, except for very soft profiles.

However, the issue is not at all this simple. Because these exists a strong vertical correlation in velocity (EPRI, 1993; Silva et al., 1997), the average velocity over the top 30m is representative, on average, of depths far exceeding 30m. In other words, profiles which start out stiff tend to remain stiff and with a steeper gradient than soft profiles. The average velocity over the top 30m captures enough of the profile velocity gradient to provide a binning criterion which results in stable differences in amplification for wavelengths which far exceed 30m. As long as the categories are separated enough such that within category profile variation is sufficiently smaller than mean or average category properties, the categories should provide stable and meaningful differences in expected ground motions.

However, because too few recording sites have been properly characterized to be assigned NEHRP categories, a clear and stable distinction in ground motions between the NEHRP categories has not been unambiguously demonstrated.

For a site categorization scheme based solely on profile stiffness, there are two other potentially significant issues: effects of profile depth as well as material nonlinearities.

Profile depth, or depth to very stiff conditions, can have large effects on strong ground motions (EPRI 1993; Marek et al., 1998; Kimball and Costantino, 1999). Profiles (except very soft soils) with depths in the 100 to 200 ft range are not expected to have significant amplification (5% damped response spectra) at low frequency (< 1 Hz) while very deep profiles (\geq 300 ft) may have large amplification (\geq 2) at low frequency. Additionally, we may expect the degree of nonlinear effects to impact very deep profiles to a larger degree than shallow (\leq 200 ft) profiles (EPRI, 1993; Silva et al., 1999b). To assess the impacts of profile depth on the NEHRP amplification factors, comparisons of amplification factors will be made for NEHRP category profiles assuming average depths to very stiff conditions from about 100 ft to 1,000 ft (section 4).

The other potentially important issue not directly addressed in a stiffness based site binning scheme

is nonlinear material properties. Although one may believe that stiffer materials are "more linear", than soft materials, the converse is actually true. For a given level of cyclic shear-strain, generally exceeding about 10⁻²% (Dobry et al., 1982), the <u>reduction</u> in shear modulus and <u>increase</u> in material damping for rock exceeds that of some clays as well as peat soils. Profile stiffness may then not capture trends in dynamic material nonlinear properties. Higher plasticity clays do not necessarily have a higher initial stiffness and gravels, which tend to be stiffer than sands, are also generally more nonlinear. A recent analysis of strong ground motions in northern and southern California found quantifiable differences in nonlinear soil properties for the two regions. San Francisco Bay area soils tended to be more nonlinear than Los Angeles area soils (Silva et al., 1999b) and the soil sites studied in both regions would have the same NEHRP classification. Surficial geology in terms of age (holocene verses pleistocene) as well as average stiffness may provide a more robust and easier to implement site categorization scheme.

2.0 SUMMARY OF CODE PROVISIONS

2.1 Site Factors

Recent code provisions for the seismic design of buildings (1994 and 1997 NEHRP, 1997 UBC) have adopted new site response coefficients based on acceleration response spectra amplification factors (with respect to rock) for 0.3 and 1.0 second periods, and a new procedure for site classification into six categories. The recommendations leading to these provisions, were developed from a consensus proposal arising from a 1992 Site Response Workshop in Los Angeles, attended by 65 invited geoscientists, geotechnical engineers, and structural engineers. Papers presented at the workshop which led to the consensus proposal are available in the Workshop Proceedings (Martin, 1994). Preliminary reports on the new site categories or related discussion are described by Borcherdt (1994b), Crouse and McGuire (1996), Martin and Dobry (1994), Rinne (1994), Seed et al. (1994a), and Silva and Toro (1998).

The new site classification is primarily based on the representative average shear wave velocity over the top 30 m (100 ft) of soil as shown in Table 1. The methodology for constructing response spectra is based on modified USGS mapped 5% damped acceleration spectral ordinates at 0.3 and 1.0 seconds (A_a and A_v) for rock (assumed Class B) as shown in Figure 6. The anchor spectrum for rock is modified by site coefficients F_a (applicable to short period motion in the range 0.1 – 0.5 seconds) and F_v (applicable to longer period motion in the range 0.4 – 2.0 seconds). The factors F_a and F_v are a function of A_a and A_v , respectively, and of site classification, as shown in Table 3.

The site profile categories, the use of a 30 m characteristic depth and the values of F_a and F_v recommended as a result at the 1992 Workshop, were based on results derived from both empirical studies of recorded motions and numerical site response analyses. The empirical results included studies at the 1989 Loma Prieta Earthquake data and other events as described by Borcherdt (1994a), Borcherdt and Glassmoyer (1992), and Joyner et al. (1994). As these earthquakes were characterized by low rock accelerations (about 0.1 g), values of site coefficients recommended for higher levels of ground motion, were based on numerical one dimensional site response analytical analyses after calibration with the empirical data (Seed et al. 1994b, Dobry et al. 1994). While fractile levels were not quantified, the site factors were intended to reflect a degree of conservatism and are considered to represent amplification more consistent with $+1\sigma$ levels, rather than median estimates. We note that the use of a 30 m characteristic depth was also motivated by the practical need to use depths where geotechnical data could reasonably be expected from geotechnical site investigations.

2.2 Near Source Factors

The 1997 UBC (ICBO, 1997) reflects two significant changes to the design criteria that increase earthquake forces for the design of structures. For sites located near active sources, a set of near-source factors was developed to accommodate recent observations of large near-source motions which exceed the 1994 UBC design spectra. Near-source motions have been a concern of the SEAOC Seismology Committee for some time (Mathieson et al., 1984) and the strong motion data

from the 1994 **M** 6.7 Northridge and 1995 **M** 6.9 Kobe earthquakes provided the motivation for incorporating the near-source factors. Additionally, the spectral shape was changed to reflect a 1/T falloff (constant spectral velocity) rather than the previous $1/T^{\frac{2}{3}}$ and the 1.2 factor was eliminated.

The near-source factors are intended to reflect ground shaking close to active faults and are based on fault distance, defined capable magnitudes, and slip rate. These factors are defined for structures located in Seismic Zone 4 (effective peak acceleration of 0.4g) and within 10 to 15 km of active faults. The factors were developed as the approximate ratio of median empirical response spectra (Boore et al., 1993 and Sadigh et al., 1997 as appears in Joyner and Boore, 1988) to the 1997 UBC design spectra for Seismic Zone 4, for sites beyond 15 km from an active source. To develop the ratios, magnitude 7.5 (fault type A) and 7.0 (fault type B) earthquakes were considered for both strike-slip and reverse mechanisms. Deep soil was taken as the most appropriate site condition for which to compute the ratios used to develop the near-source factors. As with NEHRP site coefficients, the near-source factors are intended to reflect a degree of conservatism, based primarily on considering magnitudes M 7.5 and M 7.0 as reflecting fault types A and B respectively.

The near-source adjustments include both short-period factors (N_A) and long-period factors (N_V). The N_A factors are based on the ratio of 0.3 second empirical response spectral acceleration to 1.0g while the long period factors are based on the ratio of 1.0 second empirical spectral acceleration to 0.6g. The long-period factors also include a 20% increase for the mean ratio of the larger component to the average horizontal component. Table 1 shows the N_A and N_B factors as well as the 1997 UBC Seismic Source types. To evaluate the closest distance from the source to the site, the distance measure is taken as the horizontal distance to the closest surface projection of the fault rupture. For dipping faults with sites located over the expected rupture surface, this distance is zero. For this distance evaluation, the fault depth (vertical extent) is restricted to 10 km.

The new 2,000 IBC (International Code Council, 1998) design spectra are based on a maximum Considered Earthquake (MCE) which is designed to achieve uniforms risk across the United States, even though the seismic hazard is highly nonuniform (Kircher, 1999). In this approach, the design spectra are defined for rock site conditions (NEHRP B, BC in the central and eastern US, Table 1) with 0.2 second and 1.0 second spectral levels set by attenuation relations either indirectly through USGS hazard maps (Frankal et al., 1996) or directly through a deterministic evaluation using maximum magnitudes, closest distances, and median attenuation relations (Kircher, 1999). As a result, the new 2,000 IBC design spectra for the western United States are tied directly to short- and long-period empirical response spectra. An assessment of how well they perform in predicting recorded motions is presented in Section 6.

3.0 DEVELOPMENT OF SITE CATEGORY PROFILES

The development of appropriate NEHRP category profiles for use in this study makes use of the work by Wills and Silva (1998), where generic shear-wave velocity profiles were developed for surficial geologic units in California based on measured velocities. These geologic based categories were then used to develop surficial geology based amplification factors for the San Francisco Bay and Los Angeles areas (Silva et al., 1999b). Comparison of the analytical amplification factors with available empirical factors showed good agreement in overall amplitude levels and frequency ranges (Silva et al., 1999b). These comparisons suggest that the combination of the generic profiles and the methodology employed represent a viable approach to estimating stable effects of site conditions on strong ground motions.

3.1 NEHRP Categories

The NEHRP site categories are based on the average shear-wave velocity over the top 30m (100 ft). Table 1 shows the NEHRP 94/97 and UBC 97 site categories. For reference the more qualitative Geomatrix categories are shown along with the approximate relations among the schemes. In general NEHRP categories A and B are intended to reflect rock conditions with A considered to be typical rock for the central and eastern United States (CEUS) but very hard rock for California or the WUS in general. Category B was intended to reflect typical rock for WUS but is likely somewhat stiffer than typical WUS rock site conditions. Categories C, D, and E generally reflect soil with some soft rock falling within the Category C. To see this more clearly, Table 2 shows results from a compilation of surface geology based measured shear-wave velocity profiles located in California while Figures 1 and 2 show the corresponding median profiles (Silva et al., 1999b). The $\overline{v_s}$ (30m) values listed were computed from the median profiles.

For both the San Francisco Bay and Los Angeles regions, the within region median profiles are generally well separated, except for Q_{oa} and Q_{al} in San Francisco, even though some reflect the same NEHRP category. Between regions, the K_{jf} and M_{xb} rock profiles are very similar as are the Tertiary profiles which are show in Figure 3. For the alluvium between regions, Figure 4 shows the Los Angeles Q_o being significantly stiffer, particularly at depth, than the other profiles. Also the San Francisco Bay muds are much softer as expected but are still classified as NEHRP D (Figure 4 and Table 2) due to an average shear-wave velocity just above the D/E boundary of 180 m/sec (Table 1).

3.2 Surficial Geology Based Profiles

To develop NEHRP profiles, two choices presented themselves: average the surficial geology profiles within each NEHRP category or select the surficial geology based profile closest to the NEHRP category range center (Table 1). The selection of these alternatives is driven by whether desired amplification factors should be appropriate for median velocities determined by sampled profiles (a small sample of the population) or true category means or mid-range $\overline{v_s}$ (30m) values. This is a serious considerations since the median $\overline{v_s}$ (30m) listed in Table 2, in most cases, depart significantly from the mid-range values, suggesting the consideration of some readjustments to the

current boundaries (Wills and Silva, 1998). Not coincidentally these observed median NEHRP-Category $\overline{v_s}$ (30m) values have implications for the empirical evaluation of NEHRP amplification factors since the measured shear-wave velocity profiles are dominated by strong motion sites (Borcherdt, 1994a and 1994b; 1996; 1997). For example, the mid-range category NEHRP B value is 1,130m/sec (3,750 ft/sec, Table 1) while the median Franciscan and Granite profiles show values 741 and 843m/sec respectively (Table 2). Additionally, the Tertiary profiles (except the very stiff Saugus) fall below the NEHRP C mid-range value of 560m/sec (1,850 ft/sec) while the alluvium profiles fall significantly below 560m/sec. The Bay muds show the converse, being slightly too stiff (188m/sec, Table 2) to be classified as NEHRP category E. This is a perplexing problem and the approach taken in this work is to assume the currently defined NEHRP categories reflect a viable binning scheme and appropriate amplification factors should then represent mid-range properties $(\overline{v}, (30m) \text{ values})$. To accomplish this we selected the surficial geology based profiles closed to the NEHRP mid-range values and uniformly adjusted the entire profiles (adding or subtracting a constant value at all depths) to bring its \overline{v} (30m) to the corresponding NEHRP mid-range values. Naturally, smooth models were drawn through the median profiles and extended to depth prior to this adjustment process.

3.3 Mean Centered NEHRP Category Profiles

For NEHRP Category B, we used M_{xb} and scaled it up from 844m/sec (Table 2) to 1,130m/sec (Table 1) for $\overline{v_s}$ (30m). For Category C, QT_s was scaled up from a $\overline{v_s}$ (30m) of 466m/sec to 560m/sec while Categories D and E (Q_y and Q_m) required decreases in velocities. The Q_m (Bay muds) profile was scaled to give a $\overline{v_s}$ (30m) of 152m/sec (500 ft/sec). The adjusted profiles are shown in Figure 5 to a depth of 500 ft. To consider greater depths, the profiles are extended by maintaining the gradients near the 500 ft depths.

For NEHRP Category A, a mid-continent crustal model is used (EPRI, 1993). This model has a surface shear-wave velocity of 2.8 km/sec and is considered appropriate for CEUS hard rock conditions. NEHRP category A then is confined to CEUS crustal conditions but is considered appropriate for very hard rock WUS sites such as exist at some of the Anza array stations in southern California. Some of these site have recorded ground motions which are very similar in spectral composition to CEUS hard rock recordings (Silva and Darragh, 1995). Differences in deep crustal properties between WUS hard rock and CEUS crustal conditions are considered to have a minor effect on expected amplification factors (being a ratio). Provided the overall smooth amplification between source depths and the surface and kappa values are similar between very hard WUS rock and CEUS crustal conditions (Silva and Darragh, 1995), NEHRP amplification factors are expected to be similar as well.

Both WUS and CEUS crustal models are discussed in Section 4.3 (Specification of Control Motions). The shallow profiles (NEHRP B, C, D, and E) are blended in to a generic WUS crustal model (at depths corresponding to a shear-wave velocity of 1 km/sec or 2 km/sec for NEHRP Category B) and are placed on top of the CEUS crustal model. This is done to consider the effects on NEHRP amplification factors (Categories C, D, and E) for sites located in the CEUS over very hard rock (Lin et al., 1996; Kimball and Costantino, 1999).

4.0 NEHRP AMPLIFICATION FACTORS

The current NEHRP site amplifciation factors are computed for 5% damped response spectra and are relative to NEHRP site category B. The factors (Table 3) are separated into high- and lowfrequency sets, both dependent upon expected Category B peak acceleration values. The highfrequency set (Fa) are taken to reflect average amplification (over category B outcropping) throughout the frequency range where 5% damped response spectral acceleration is nearly constant (Figure 6) (taken as 2 to 10 Hz). The low-frequency factors (Fv) are intended to reflect the nearly constant spectral velocity regions (Figure 6) and are generally taken to be the average over the frequency range of 0.5 to 2.5 Hz. While the nearly constant acceleration and velocity portions of median spectra are strongly category dependent (e.g. Category A spectral acceleration peaks above 20 Hz; Toro et al., 1997) as well as dependent on level of loading for the soft categories, the frequency ranges reflect a reasonable compromise and covers the critical ranges for code applications. The factors are however, dependent upon the frequency ranges used in averaging (Lin et al., 1996; Kimball and Costantino, 1999) and their sensitivity to the frequency ranges is investigated in Section 4. The current factors are shown in Table 3 and range from 0.8 Category A to 3.5 for Category E, all relative to Category B outcropping expected peak acceleration values. Nonlinearity is reflected in the dependence on the reference Category (B) expected outcrop peak acceleration values. The degree of nonlinearity is substantial, driven largely by analyses (Martin and Dobry 1994; Dobry et al., 1999) and empirical analyses have suggested that the current factors reflect both appropriate (Dobry et al., 1999) and inappropriate degrees of nonlinearity (Crouse and McGuire, 1996; Silva and Toro, 1998). As a result, for the cohesionless soils (NEHRP Categories C and D) two sets of nonlinear properties are used, both validated using strong motion recordings. These models are discussed in Section 4.2.

4.1 Methodology

The conventional computational approach in developing spectral amplification factors appropriate for specific profiles would involve selection of suitable time histories to serve as control or rock outcrop motions and a suitable nonlinear computational formulation to transmit the motion through the profile. Because of its ease in application and demonstrated success in modeling nonlinear site effects on response spectra (e.g. EPRI, 1993), the equivalent-linear approximation is used to generate the large numbers of amplification factors. To assess any limitations in treating truly nonlinear soil response by equivalent-linear approximations, such as a single level of shear-wave velocity and material damping for all frequencies (and time), comparisons of amplification factors are made between the equivalent-linear analyses and fully nonlinear analyses. Both approaches as implemented in the current analyses are presented in the following sections.

4.1.1 Equivalent-Linear Computational Scheme

The computational scheme which has been most widely employed to evaluate one-dimensional site response assumes vertically-propagating plane shear waves. Departures of soil response from a linear constitutive relation are treated in an approximate manner through the use of the equivalent-linear approach.

The equivalent-linear approach, in its present form, was introduced by Seed and Idriss (1970). This scheme is a particular application of the general equivalent-linear theory introduced by Iwan (1967). Basically, the approach is to approximate a second order nonlinear equation, over a limited range of its variables, by a linear equation. Formally this is done in such a way that an average of the difference between the two systems is minimized. This was done in an ad-hoc manner for ground response modeling by defining an effective strain which is assumed to exist for the duration of the excitation. This value is usually taken as 65% of the peak time-domain strain calculated at the midpoint of each layer, using a linear analysis. Modulus and damping curves are then used to define new parameters for each layer based on the effective strain computations. The linear response calculation is repeated, new effective strains evaluated, and iterations performed until the changes in parameters are below some tolerance level. Generally a few iterations are sufficient to achieve a strain-compatible linear solution.

This stepwise analysis procedure was formalized into a one-dimensional, vertically propagating shear-wave code called SHAKE (Schnabel et al., 1972). Subsequently, this code has easily become the most widely used analysis package for one-dimensional site response calculations.

The advantages of the equivalent-linear approach are that parameterization of complex nonlinear soil models is avoided and the mathematical simplicity of linear analysis is preserved. A truly nonlinear approach requires the specification of the shapes of hysteresis curves and their cyclic dependencies. In the equivalent-linear methodology the soil data are utilized directly and, because at each iteration the problem is linear and the material properties are frequency independent, the damping is rate independent and hysteresis loops close.

While the assumptions of vertically propagating shear waves and equivalent-linear soil response certainly represent approximations to actual conditions, their combination has achieved demonstrated success in modeling observations of site effects (Schnabel et al., 1972; Silva et al., 1988; Schneider et al., 1993; EPRI, 1993).

4.1.2 **RVT Based Computational Scheme**

The computational scheme employed to compute the site response uses the stochastic model to generate the power spectral density and spectral acceleration of the rock or control motion. This motion or power spectrum is then propagated through the one-dimensional soil profile using the plane-wave propagators of Silva (1976). In this formulation only SH waves are considered. Arbitrary angles of incidence may be specified but normal incidence is used throughout the present analyses.

In order to treat possible material nonlinearities, an RVT (Random Vibration Theory) based equivalent-linear formulation is employed. Random process theory is used to predict peak time domain values of shear strain based upon the shear strain power spectrum. In this sense the procedure is analogous to the program SHAKE except that peak shear strains in SHAKE are measured in the time domain. The purely frequency domain approach obviates a time domain control motion and, perhaps just as significant, eliminates the need for a suite of analyses based on different input motions. This arises because each time domain analysis may be viewed as one realization of a random process. In this case, several realizations of the random process must be sampled to have a statistically stable estimate of site response. The realizations are usually performed by employing different control motions with approximately the same level of peak acceleration and response spectrum.

In the case of the frequency domain approach the estimates of peak shear strain as well as oscillator response are, as a result of the random process theory, fundamentally probabilistic in nature. Stable estimates of site response can then be computed by forming the ratio of spectral acceleration predicted at the surface of a soil profile to the spectral acceleration predicted for the control motion.

The procedure of generating the point-source stochastic power spectrum computing the equivalent-linear layered-soil response, and estimating peak time domain values has been incorporated into a single code termed RASCALS (Silva and Lee, 1987).

4.1.3 Nonlinear Computational Scheme

The computational scheme used to compute one-dimensional nonlinear site response assuming vertically-propagating plane shear waves, utilized the computer program DESRA-MUSC (Qiu, 1997). This program is based on the program DESRA (Lee et al., 1978), with modifications incorporated through research conducted at USC. The program was originally developed as a means of performing Dynamic Effective Stress Response Analyses in the time domain, where time histories of excess pore water pressures could be coupled to response analyses. However, in

this application, pore pressure generation was suppressed, and a total stress mode used.

The nonlinear initial loading or backbone curve is modelled using the elasto-plastic Iwan model (Iwan, 1967) which has the versatility of matching any given initial loading curve. The model incorporates an array of elasto-plastic elements (typically 20 elements are used) which allows a failure mode to be initiated. The model automatically provides for hysteretic behavior during cyclic loading following the Masing rules. A similar approach for evaluating nonlinear site response was adopted by Joyner and Chen (1975).

A sub-program was written to develop initial loading curve elements to match any given G/G_{max} versus shear strain amplitude curve. Equivalent viscous damping ratios corresponding to the strain dependent hysteretic damping may also be computed. A small and constant hysteretic damping element was added to simulate damping at very low strains, where the model would predict linear elastic behavior.

A transmitting boundary applied at the base of a soil column under consideration, allows appropriate levels of energy to be radiated back to an underlying elastic half space. The approach used is similar to that suggested by Joyner and Chen (1975) where the input motion at the base of the soil column (the transmitting boundary) is defined by an outcrop motion.

4.2 Nonlinear Dynamic Material Properties

4.2.1 G/Gmax and Hysteretic Damping Curves

Four sets of G/Gmax and hysteretic damping curves are used: generic rock (NEHRP B), cohesionless soils (NEHRP C and D), and cohesive soils (NEHRP E) (Table 2). The rock curves (Figure 7) are based on point-source modeling of the rock site empirical attenuation relation of Abrahamson and Silva (1997) for a range in magnitudes and distances using a generic rock profile (Silva et al., 1997).

For the geologic units which are considered cohesionless soils in the San Francisco Bay area (gravels, sands, and low PI clays) in terms of high-strain dynamic material properties (QTs, Q_{al} ; Table 2), the EPRI (1993) G/Gmax and hysteretic damping curves (Figure 8) have recently been validated at 48 San Francisco Bay area cohesionless soil sites through modeling strong ground motions from the Coyote Lake, Morgan Hill, and Loma Prieta earthquakes (Silva et al., 1997). These curves were developed for generic applications to cohesionless soils in the general range of gravelly sands to low plasticity silts or sandy clays. For application to Quaternary/Tertiary rocks (QT_s; NEHRP Category C, Table 2), the implied assumption is that these sites behave more like a stiff soil (gravely sand) than rock. Not an unreasonable

assumption considering a surface velocity of about 800 ft/sec (Figure 1).

For the Bay Mud (Q_m) categories, generic sections of Fill (15 ft), young Bay Mud (50 ft) and old Bay Clay (30 ft) over Quaternary Alluvium (Q_{al}) are assumed. These generic zones are based on an examination of several CALTRANS boreholes located near highway bridges (Cliff Roblee, personal communication) and are used only to assign G/Gmax and hysteretic damping curves. For the Fill material and the Alluvium, EPRI (1993) curves are used. For the young Bay Muds and Old Bay Clay, the Vucetic and Dobry (1991) cohesive soil curves for a *PI* of 30%, an average value for these cohesive soils, are used (Figure 9).

For the geologic units which are considered cohesionless soils in the Los Angeles area $(QT_s, Q_o, Q_y, Saugus)$, recent strong ground motion analyses for about 80 sites which recorded the 1994 Northridge earthquake found the EPRI G/Gmax and hysteretic damping curves showed too much nonlinearity (Silva et al., 1997). As a result, a revised set of G/Gmax and hysteretic damping curves were developed for Peninsular Range cohesionless soils and are shown in Figure 10. Both sets of cohesionless soil curves are used for NEHRP Categories C and D.

4.2.2. Nonlinear Soil Models

As described in Section 4.1.3, the nonlinear soil model is established by first matching the G/G_{max} versus shear strain curve to a nonlinear shear stress versus shear strain backbone or initial loading curve. (Note for all analyses, the water table was assumed below the soil profile.)

The derived normalized backbone curves for the EPRI G/G_{max} curves used for analyses are shown on Figure 11 to 3% shear strain (the limit of the data). Almost all analyses led to cyclic strains less than 3% for EPRI type materials (cohesionless soils) and hence a strength limit was not defined. For the few cases where at shallow depths and for high accelerations, shear strains exceeded 3%, the initial loading curve slope between 1% and 3% was extended linearly. The back calculated match to the G/G_{max} curves is shown on Figure 12. Agreement is generally very good at shear strain levels greater than 0.05%.

The initial loading curves derived for nonlinear analyses for Peninsular Range cohesionless soils are shown on Figure 13, and the match to the G/G_{max} curves shown on Figure 14.

For the soft cohesive soils incorporated in Category E profiles, the initial loading curve derived from the Vucetic and Dobry (1991) PI of 30% G/G_{max} curve is shown on Figure 15, and the match to the G/G_{max} curve shown on Figure 16. For these soils, large accelerations were expected to generate failure. Based on rapid loading tests to large strains reported by Hsu and Vucetic (1999) and Vucetic et al. (1998), the curve was extended beyond 3% shear strain by

linearly extending the slope between 1% - 3% to 9%, where failure or a maximum shear stress was assumed. Based on this assumption, ratios of undrained shear strength to vertical confining stress were calculated to be about 0.75, corresponding to a slightly overconsolidated clay.

With the nonlinear initial loading or backbone curves defined, the equivalent viscous damping ratios matching the areas of hysteresis loops generated by cyclic loading at various strain amplitudes may by computed, assuming Masing load–unload behavior. Figure 17, 18, and 19 show computed damping ratios for the three sets of curves described above. In all cases, a one percent low strain hysteretic element is utilized to match low strain damping.

In general, comparisons with the damping curves used for equivalent-linear analyses show that the hysteretic damping becomes significantly greater when shear strains exceed 0.1%, which would occur for soft soil profiles and high site accelerations. However, it needs to be recognized that the G/G_{max} and damping ratio curves represent averages of test data and hence are not necessarily cross correlated. Individual test data reported by Hsu and Vucetic (1999) for example, in many cases show much higher damping ratios at larger strains than the average curves. Unfortunately, for nonlinear hysteretic modelling, an exact match for shear modulus and equivalent viscous damping based on average curves is difficult to accomplish. Better matches occur for test data for specific samples.

4.3 **Point-Source Model Parameters**

The stochastic point-source model is used to compute the motions at the surface of the baserock or reference rock as well as the other profiles. Both qualitative assessments and quantative validations of the stochastic point-source model (Hanks and McGuire, 1981; Boore, 1983, 1986; McGuire et al., 1984; Boore and Atkinson, 1987; Silva and Lee, 1987; Toro and McGuire, 1987; Silva et al., 1990;, et al., 19 EPRI, 1993; Schneider et al., 1993; Silva and Darragh, 1995; Silva et al., 1997; Silva et al., 1999b) have demonstrated that it provides accurate ground motion estimates, making it an appropriate choice to produce ground motions representative of the NEHRP category based profiles.

4.3.1 NEHRP Category A and B Kappa Values

For applications to the North American continent, notably the WUS and CEUS tectonic regions, the definition of NEHRP category B is not unambiguous. Ideally, midrange NEHRP category B should reflect the rock site conditions implicit in WUS empirical attenuation relations, since it is considered as the reference site. However, available borehole shear-wave velocity data suggest much softer conditions (Joyner, 1995; Wills and Silva, 1998), leading to the adoption of the NEHRP B/C boundary ($\overline{v_s}(30m) = 760 \text{ m/sec}$) as the reference rock site

condition for the 1996 National Seismic Hazard Maps (Frankel et al., 1996). Amplification factors for NEHRP categories C, D, and E depend upon the overall stiffiness assumed for category B. This dependence may not be strong however, as the amplification factors are computed relative to category B for expected category B peak acceleration values. Changing the stiffness of category B results in a different distance for the same expected peak acceleration value. As long as the category C, D, and E profiles are computed at the revised distances as well, differences in amplification due to relatively minor differences in the reference site stiffness are driven solely by differences in the NEHRP B response spectral shape, which is appropriate. Since differences in the magnitude of the earthquake used for developing amplification factors (scaled to the same reference peak acceleration value) can result in differences in computed amplification of 5% damped response spectra by about 20%, as much as 30% at or near column resonance frequencies (even for smoothed amplifications), differences in reference motion spectral shape due to relatively minor differences in stiffness is not expected to be a controlling influence. Additionally, the process of averaging over frequency to compute the F_A and F_V values (Table 3) will reduce the effects of reference motion spectral shape on the factors.

4.3.1.1 WUS Kappa Values

While the issue of an appropriate shallow gradient is reasonably well defined by data (Figure 5), the selection of appropriate site kappa (κ_o values for WUS and CEUS category B (and BC boundaries) sites is a perplexing issue. The shallow Category B profile is considered nonlinear to a depth of about 60 ft corresponding to a shear-wave velocity of about 5,000 ft/sec (1.5 km/ sec). At that depth it is merged to the WUS crustal model shown in Figure 20. The kappa contributed by the nonlinear zone of the shallow profile is only about 0.002 sec at low strains (Figure 7). Mean kappa values for typical WUS rock sites range from about 0.03 to 0.06 sec (Silva and Darragh, 1995; Boore and Joyner, 1997; Table 4), likely reflecting frequency independent energy loss over the top 1 to 2 km of the crust (Anderson and Hough, 1984). This is the region over which steep velocity gradients exist due to crack closure for soft crustal Kappa values depend upon rock quality, expressed qualitatively by the (active) regions. surficial geologic descriptions shown in Table 4. For WUS, kappa values range from about 0.026 sec for hard rock to about 0.06 sec for sheared (poor) rock site conditions. Evidently these trends in kappa values with rock quality are expressed in the average shear-wave velocity over the top 30m as well, as Figure 21 illustrates. These results are based on kappa values estimated at rock sites which recorded the 1989 M 6.9 Loma Prieta earthquake (also includes the Lucerne site for the 1992 M 7.2 Landers earthquake). These sites have been drilled and shear-wave velocities measured to depths of at least 30m (100 ft). Figure 21 shows a clear trend of decreasing kappa with increasing $\overline{v_s}$ (30m). Based on the fitted equation (Figure 1), site kappa values for midrange NEHRP categories A, B, and BC boundary are 0.008 sec, 0.02 sec, and 0.03 sec respectively (Table 1), assuming Category A has a $\overline{v_s}$ (30m) of 2.8 km/sec (Figure 20). These trends are consistent with the qualitative trends shown in Table 4 as well as with recent results of Boore and Joyner (1997) who found $\overline{v_s}$ (30m) of 620m/sec for WUS rock (NEHRP C) and an associated site kappa of 0.035 sec. Inversions of the Abrahamson and Silva (1997) and Sadigh et al. (1997) rock empirical attenuation relations gave a kappa value of about 0.04 sec (EPRI, 1993; Silva et al., 1997), consistent with Boore and Joyner (1997) and Silva and Darragh (1995) (Table 4). Since the rock site conditions implied by these empirical relations is likely even softer than the $\overline{v_s}$ (30m) value of 620m/sec found by (Boore and Joyner, 1997; Silva et al., 1997), it is likely that the higher range of NEHRP category C is representative of WUS rock strong motion data, provided the current borehole velocity and strong motion data (i.e. recording sites) do not reflect a biased population sample.

Based on these results, a kappa value for the definition of midrange NEHRP B as a reference profile would be about 0.02 sec. However, the value reflected in the WUS rock site strong motion data is closer to 0.04 sec. This kappa value results in WUS rock response spectral shapes which peak near 5 Hz for M 6.5 earthquake at source distances within about 50 km. To demonstrate this feature, Figure 22 shows a statistical shape computed from WUS recordings at rock sites for earthquakes in the M 6 to 7 magnitude range (Silva et al., 1999a). Also shown on Figure 22 are comparisons to WUS spectral shapes computed using a suite of rock site empirical attenuation relations for the bin mean magnitudes and distances. As the Figure shows, the spectra peak near 5 Hz, consistent with the model spectra computed with a kappa value of 0.04 sec. As Figure 23 demonstrates, the frequency of the peak or maximum in response spectral shapes provides a reasonably good estimation of site kappa values (Silva and Darragh, 1995). Very low kappa values, such as 0.005 sec result in a peak near 40 Hz while a kappa near 0.02 sec shows a spectral peak near 10 Hz. Interestingly, a factor of two change in kappa is reflected in about an octave (factor of two) change in the peak frequency (Silva, 1991). Figure 24 shows a corresponding plot of unnormalized (pseudo absolute spectra) illustrating the dramatic decrease (increase) in high frequency spectral levels for factors of two increase (decrease) in kappa.

For consistency with the rock site strong motion data, the WUS NEHRP B base-case kappa value of 0.04 sec is adopted and comparisons of the amplification factors for a NEHRP B kappa of 0.02 sec will be made.

4.3.1.2 CEUS Kappa Values

For the CEUS NEHRP B profile, the shallow profile (Figure 5) is placed on top of the CEUS crustal model (Figure 20). This model has a surface shear-wave velocity of about 9,000 ft/sec (2.830 km/sec) which the shallow category B profile reaches at a depth of about 300 ft.

Extending the low-strain damping (Figure 7) to 300 ft in the shallow Category B profile results in a kappa value of about 0.005 sec, near typical CEUS hard rock values (Table 4). With nominal WUS rock kappa values in the range of 0.03 to 0.06 sec (Table 4) and those for CEUS hard rock in the 0.006 to 0.008 sec range (Table 4), an issue also exists regarding an appropriate kappa value for CEUS NEHRP B (and BC). Simply adding the contribution of the shallow Category B contribution of about 0.005 sec to the nominal hard CEUS rock value of 0.006 sec results in a kappa of about 0.01 sec, the same value adopted (for other reasons) for CEUS NEHRP BC boundary in the National Hazard Maps (Frankel et al., 1996). Based on the previous discussion, the kappa value of 0.01 sec is probably too low to be associated with nominal NEHRP Category B or BC gradients unless they overly very hard CEUS rock ($\overline{v_s} >$ 2.5 km/sec) at very shallow depths (\leq 300 ft).

CEUS NEHRP Category B (and BC) is likely typified of by Gulf Coast sandstones as well as CEUS mudstones, claystones, and silstones such as the Charelston area in South Carolina and parts of the Denver basin in Calorodo. As a result, very hard rock (limestone, schists, etc) is more likely to occur at much greater depths resulting in nominal kappa values larger than 0.01 sec. As a result, a nominal kappa value of 0.02 sec is adopted for CEUS NEHRP Category B as well as BC (midrange gradients, Table 1), based principally on Table 4 (CEUS soft rock) and the association of kappa values with $\overline{v_s}$ (30m) based on WUS data (Figure 21).

For NEHRP category A, a kappa value of 0.006 sec is adopted, based on Table 4 (CEUS hard rock) and to be consistent with the conditions assumed in the Toro et al. (1997) CEUS hard rock attenuation relation (EPRI, 1993). This value (0.006 sec) is also consistent with the values found by Silva and Darragh (1995) from recordings at two very hard rock sites at the Anza array in Southern California. NEHRP A amplification factors, although computed assuming CEUS crustal conditions (computed relative to NEHRP category CEUS B), are considered appropriate for WUS NEHRP A crustal conditions.

4.3.2 NEHRP Category C, D and E Kappa Values

For the soil profiles, NEHRP Category C, D, and E, the small strain damping (Figure 8, 9, and 10) contributes a kappa value of about 0.01 sec. For WUS applications, the profiles are placed at a depth in the generic California crustal model (Figure 20) corresponding to a shear-wave velocity of 1 km/sec. Inversions of the Abrahamson and Silva (1997) Sadigh et al., (1997) soil empirical attenuation relations gave a low-strain kappa value of about 0.04 sec (about the same as rock, Section 4.3.1.1). This implies a rock kappa for the materials beneath the soils of about 0.03 sec, in general agreement with Figure 21 assuming an average shear-wave velocity of about 1 km/sec.

For applications to CEUS NEHRP Categories C, D, and E, these results imply a lower total kappa value for deep soil sites overlying hard rock. With the hard rock CEUS site kappa of 0.006 to 0.008 sec (Section 4.3.1.2), the addition of the deep soil low strain kappa of about 0.01 sec implies a total kappa of about 0.02 sec. This is about half the corresponding WUS deep soil value of 0.04 sec. With these differences, deep soil sites are expected to have different spectral shapes than corresponding deep WUS soil sites, at low loading levels (Silva et al., 1999a).

4.3.3 Magnitude, Stress Drops, and Q(f) Models

To generate the motions, a M 6.5 earthquake is used with the distance (epicentral) varied to produce a suite of distinct peak acceleration values at the surface of the reference rock unit (Table 5). The same source and path parameters are then used for the other unit profiles resulting in a suite of amplification factors as a function of reference rock outcrop peak acceleration values (Toro et al., 1992; EPRI, 1993; Silva, 1999b). For the point-source, a stress drop of 64 bars is used for all the WUS profiles. This value is based on inversions of the Abrahamson and Silva, 1997 empirical attenuation relation (Silva et al., 1997) which showed a magnitude dependency with stress drop decreasing for increasing M (EPRI, 1993; Atkinson and Silva, 1997).

CEUS stress drops are assumed to follow the same magnitude scaling as WUS. The M 5.5 stress drop was set to 160 bars to correspond to Atkinson's (1993) value, which is based on high frequency spectral levels from CEUS earthquakes. In her database of CEUS earthquakes the mean magnitude is about 5.5. The stress drop scaling results in a M 6.5 CEUS stress drop of 110 bars. Interestingly, these stress drop values result in an average difference of about a factor of two between CEUS (110 bars, Table 5) and WUS (64 bars, Table 5), in agreement with Hanks and Johnston's (1992) analyses of intensity data.

The Q(f) model is 275 $f^{0.6}$ for WUS crustal conditions. These values were determined from inversions of Peninsular Range earthquakes Northridge, San Fernando, and Whittier Narrows at 180 sites over the fault distance range of about 10 to 200 km (Silva et al., 1997). The Q(f) model for CEUS is based on inversions of the M 5.8 Saguenay earthquake at sites over the distance range of 40 to 500 km.

To generate motions which cover the range from linear response to very large expected NEHRP Category B horizontal motions, seven distances are run with reference rock outcrop peak accelerations ranging from 0.05g to 0.75g (Table 5). The magnitude and stress drop is fixed at M 6.5 and 64 bars (110 bars for the CEUS) respectively with the assumption that the amplification factors (ratios) are not highly sensitive to either magnitude or stress drop (EPRI,

1993). Since the profiles are randomized in velocity and layer thickness, the median peak acceleration does not exactly correspond to the target peak acceleration (Table 5). In general, the median values are very close, within about 10% of the target, which is considered acceptable since the amplification vary little for a 10% change in input motions.

4.3.4 Incorporation of Site Parameter Variability

The profile randomization scheme, which varies both layer velocity and thickness, is based on a correlation model developed from an analysis of variance on about 500 measured shear-wave velocity profiles (EPRI, 1993; Silva et al., 1997). Figure 25 shows the Franciscan outcrop 5% damped pseudo acceleration spectra (median and $\pm 1 \text{ O}$ for the lowest level of motion, 0.05g. The profile is varied to a depth corresponding to a shear-wave velocity of about 2 km/sec (6,400 ft/sec, Figure 5), a depth of about 250 ft. The parametric variation, reflected in the sigma ($\sigma_{ln} = 0.15$ for PGA), includes profile velocity and layer thickness variation in addition to variability in the G/Gmax and hysteretic damping curves.

To accommodate variability in the modulus reduction and damping curves on a generic basis, the curves are independently randomized about the base case values. A log normal distribution is assumed with a σ_{ln} of 0.35 at a cyclic shear strain of 3 x 10⁻²% with upper and lower bounds of 2 σ . The distribution is based on an analysis of variance of measured G/G_{max} and hysteretic damping curves and is considered appropriate for applications to generic (material type specific) nonlinear properties. The truncation is necessary to prevent modulus reduction or damping models that are not physically possible. The random curves are generated by sampling the transformed normal distribution with a σ_{ln} of 0.35, computing the change in normalized modulus reduction or percent damping at 3 x 10⁻²% shear strain, and applying this factor at all strains. The random perturbation factor is reduced or tapered near the ends of the strain range to preserve the general shape of the median curves (Silva, 1992). The same profile and material randomization procedure is used at the soil sites as well, resulting in median and $\pm 1\sigma$ amplification corresponding to parametric variability in site properties.

The parametric variability shown in Figure 25 then represents the contribution to the uncertainty in strong ground motions due to the top 200 to 300 ft at hard California rock (NEHRP B) sites in WUS, a maximum σ_{in} of about 0.2 to 0.3. Adding the parametric variability of site kappa, assuming a $\sigma_{in\kappa} = 0.3$ (EPRI, 1993), would increase the ground motion variability by an additional σ_{in} of about 0.2, to a total of about 0.3 to 0.4.

In addition, peak acceleration, peak particle velocity, and peak particle displacement were computed for the reference site outcrop. Levels of reference rock outcrop peak acceleration values of 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.75g, are used to accommodate the effects of

material nonlinearity upon site response. Table 5 shows the magnitude (**M**), distance (*D*), peak acceleration, peak particle velocity, and peak particle displacement computed for the NEHRP B WUS and CEUS outcrop motions. Figure 26 shows NEHRP category median spectra for both WUS and CEUS conditions at an expected peak acceleration value of 0.5g. For the CEUS, results are shown using kappa values of 0.02 sec and 0.04 sec.

For the CEUS NEHRP B motions using a kappa value of 0.04 sec, Figure 26 shows motions similar to WUS NEHRP (kappa = 0.04 sec) at high frequency (\geq 2 Hz). At low frequency (\leq 2 Hz) the CEUS motions are lower due to the absence of the shallow crustal amplification (Figure 20). The CEUS NEHRP motions using a (preferred) kappa value of 0.02 sec exceed the kappa = 0.04 sec motions at high frequency (\geq 10 Hz) and are much lower at low frequency (\leq 2 Hz). As a result, NEHRP Category C, D, and E amplification factors may differ from WUS counterparts due to these differences in reference rock spectral shape as well as the CEUS soils overlying much stiffer rock conditions (Kimball and Costantino, 1999).

For all the profiles, since the randomization process is over the profile properties only, the input motions (below some depth) remain unchanged. Including the variation of input motions with randomized source and path parameters ($\Delta \sigma$, source depth, and Q(f)) results in the same median spectral estimates but with increased fractile levels (Silva et al., 1999b). This is an important result, allowing a convenient decoupling in parametric variations between site and source and path parameters.

4.3.5 Control Motion Time Histories

To generate control time histories for the nonlinear soil site response runs, base of soil outcrop motions are generated which correspond to the prescribed distances for the suite of NEHRP category B outcrop peak acceleration values. This provides time histories which are consistent with the motions input to the equivalent-linear soil response analyses. Figure 27 compares response spectra computed from the base of soil outcrop (RVT spectra and spectra computed from the time history) and median NEHRP category B motions for 0.5g. The base of soil outcrop motions are somewhat lower than the surficial rock (NEHRP B) outcrop motions due to the absence of the shallow velocity gradient (Figure 1). These are expected trends as base-of soil and rock outcrop motions reflect different rock velocity gradients than surficial rock conditions (Silva et al., 1999a). The corresponding synthetic time histories were generated using the method of Silva and Lee (1987) and are shown in Figure 28 for the same case. The motions (acceleration, velocity, and displacement) appear realistic as the phase spectrum is taken from a recorded motion (of similar magnitude and distance). The six remaining base-of-soil outcrop time histories were generated using the same procedure.

4.4 Development of NEHRP Site Amplification Factors

Site amplification factors are computed as the ratio of 5% damping response spectral acceleration (Sa) computed at the surface of each site for each randomized profile to the median 5% damping response spectral acceleration (Sa) computed for the reference rock outcrop motion (e.g. Figure 25). In addition, peak acceleration, peak particle velocity, and peak particle displacement were computed for the site and reference outcrop as well. Levels of reference rock outcrop peak acceleration values of 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.75g were used to accommodate the effects of material nonlinearity upon site response. Table 5 shows the magnitude (M), distance (R), peak acceleration, peak particle velocity, and peak particle displacement computed for the outcrop motions.

The amplification factors, 5% damped Sa/Sa (reference NEHRP Category B), are computed at approximately 90 frequencies from approximately 0.10 Hz to 100 Hz.

4.4.1 NEHRP Profile Depths for Category C, D, and E

To accommodate the effects of variable soil depth on the amplification factors and their parametric uncertainties, depth to 1 km/sec (3,280 ft/sec, Figure 5) material is varied between 100 ft and 1,000 ft assuming a uniform distribution. This variation results in a mean profile depth of about 500 ft for NEHRP Categories C and D. For the very soft NEHRP Category E, the depth is limited to 650 ft, based on Bay mud shear-wave velocity profiles in the San Francisco Bay Area as well as profiles from Lotung Taiwan, the Imperial Valley in California, and fill sites near Kobe Japan. Velocity data from these areas suggest that extrapolating the gradient for NEHRP Category E to depths exceeding 600 to 700 ft is probably not realistic, resulting in shear-wave velocities which are too low.

Due to the randomizing over depth, only a minor contribution of the fundamental resonance is present. The variability reflects parametric uncertainty in the profile, and includes profile layer thickness, shear-wave velocity, profile depth and G/G_{max} and hysteretic damping curves. The first layer of the crust (base of the profile) is also randomly varied assuming a lognormal distribution with a σ_{ln} of 0.3 (EPRI, 1993).

The consideration of profile depth randomization points to the issue of appropriate profile depths for the NEHRP Categories. This issue was discussed earlier and comparisons of amplification factors computed for NEHRP Categories C and D considering mean soil depths from 100 ft to 1,000 ft (Category E, 100 ft to 650 ft) are presented in Section 4.4.5. For Categories which do not consider soil depth explicitly, amplification factors should be developed as envelopes of the factors computed for a suite of profile mean depths (Silva et al.,

1999a). The addition of depth bins to the NEHRP site categories could be used to reduce conservation for cases where soil depth is known. Ignorance should be penalized and knowledge rewarded.

4.4.2 NEHRP Categories A and BC

4.4.2.1 NEHRP Category A

Response spectral amplifications (median and $\pm 1\sigma$ values) computed for NEHRP Category A using equivalent-linear analyses are shown in Figure 29. Due to the extreme stiffness of the Category A shear-wave velocity profile (Figure 20), the response is linear and the amplification factors are largely independent of control motion level. The only effects of nonlinearity are in the change in response spectral shapes of the Category B motions as the outcrop peak acceleration levels increase. As Figure 29 shows, the amplification of Category A is very similar for median Category B outcrop peak acceleration values ranging from 0.05 to 0.75g. In the frequency range of about 0.5 Hz to about 10 Hz, the amplification is less than 1 and is properly reflected in the Fa and Fv values of 0.8 shown in Table 3. Median amplifications for a suite of frequency ranges is also shown in Figure 29. For the NEHRP ranges (2 to 10 Hz and 0.5 to 2.5 Hz), the amplification for Category A is less than 1.

4.4.2.2 NEHRP Category BC

This category (Figure 5) provides the reference or soft rock motions for the CEUS USGS shaking hazard maps (Frankel et al., 1996). A low-strain site kappa value of 0.04 sec was assumed to be appropriate for this category (Section 4.3.1) and the amplification relative to CEUS Category B (kappa = 0.02 sec) is shown in Figure 30 using equivalent-linear analyses. The maximum amplification is about 2.0 in the 1 to 2 Hz frequency range and is largely independent of loading level due to the combination of a relatively high low-strain stiffness (Figure 5) and relatively linear G/G_{max} and hysteretic damping curves for depths exceeding 20 ft (Figure 7).

The frequency averaged amplifications shown in Figure 30 (bottom plot) indicate levels near 1.5, except for the 0.2 to 0.7 Hz range. These trends suggest that care should be exercised in supplanting the Category B reference with a BC boundary reference since peak accelerations are affected as well as NEHRP Fa and Fv amplification values.

To illustrate potential differences in the expected median amplification factors for different nonlinear dynamic material properties, Figure 31 shows factors computed for the rock, Peninsular Range, and EPRI G/G_{max} and hysteretic damping curves. For frequencies up to

about 10 Hz and CEUS NEHRP Category B median peak acceleration values up to 0.75g, little difference is seen in the factors. NEHRP BC boundary ($\overline{v_s}(30m) = 750$ m/sec, Table 1; Figure 5) is sufficiently stiff in median properties such that little nonlinear effects are anticipated at frequencies less than about 10 Hz, even at very high loading conditions.

4.4.3 NEHRP Category C

4.4.3.1 WUS Conditions

For WUS NEHRP Category C and Peninsular Range nonlinear properties, Figure 32 shows expected median and $\pm 1\sigma$ amplification factors computed using equivalent-linear analyses for WUS Category B median peak acceleration values ranging from 0.1g to 0.75g. The Category C profile (Figure 5) is randomized in depth from 100 ft to 1,000 ft along with randomized velocities, layer thicknesses, and nonlinear properties (Section 4.3.4). As a result, profile resonances are smoothed over and the amplification factors for 5% damped response spectra The mean profile depth is about 500 ft are smoothly varying functions of frequency. (randomized between 100 ft and 1,000 ft assuming a uniform distribution), resulting in a maximum amplification in the frequency range of about 1 to 2 Hz. Maximum values are near 2 and decrease with increasing frequency up to about 10 Hz. The increase in amplification for frequencies exceeding about 10 Hz is due to the saturation of the soil acceleration response spectra to peak acceleration. The amplification factors simply reflect the change in shape of the rock spectra (Figure 25), shifting the peak in the rock spectra to lower frequencies and increasing the rock peak accelerations by about 20 to 30%, depending on expected rock peak acceleration values.

4.4.3.1.1 Effects of Nonlinear Dynamic Material Properties

To examine the effects of nonlinear dynamic material properties (between northern and southern California, Section 4.2) on the Category C amplification factors, Figure 33 compares results using the Peninsular Range and EPRI G/G_{max} and hysteretic damping curves. For this stiff profile, little difference is seen in the median amplification factors for Category B peak accelerations up to 0.5g. At 0.75g, the Peninsular Range G/G_{max} and hysteretic damping curves show amplifications about 10% to 15% larger than those using the EPRI curves, for frequencies exceeding about 5 Hz.

4.4.3.1.2 Effects of Profile Depth

The base-case depth randomization range is 100 to 1,000 ft giving a mean depth of about 500 ft. To assess the effects of both a narrower depth range as well as a suite of mean profile

depths on the amplification factors, the depth categories listed in Table 6 were used to develop amplification factors. The ranges were chosen to reflect about a factor of 2 in mean profile depths between depth categories (bins), thereby separating the fundamental column resonances by about an octave. This separation is intended to illustrate any significantly different levels of median amplification which may exist between the suite of depth bins or categories (Table 6).

The resulting median amplification factors are shown in Figure 34 compared to the base-case amplification factors (100 to 1,000 ft, Table 6) all using the Peninsular Range G/G_{max} and hysteretic damping curves. Interestingly, for this NEHRP category (C), which is a very stiff soil (Figure 5), the base-case amplification factors accommodate mean profile depths from about 100 ft to 1,000 ft. The base-case factors (mean profile depth of about 500 ft) are a little low for both very deep profiles at very low frequencies (≤ 0.5 Hz) and very shallow profiles for frequencies above about 1 Hz. Increasing the median base-case factors by 10 to 20% would easily accommodate the range in mean profile depths.

4.4.3.1.3 Comparison to Nonlinear Analyses

Amplification factors computed using the fully nonlinear code DESRA-MUSC (Appendix A) and nonlinear properties calibrated with the Peninsular Range G/G_{max} and hysteretic damping curves (Section 4.2.2) are shown in Figure 35. The nonlinear amplification factors are not as smooth as those computed using the RVT based equivalent-linear scheme as only one control motion time history (Figure 28) was used for each loading level. For a more rigorous comparison, multiple time histories should be used, each matched to the control motion response spectra, since we are holding the input motion fixed (no variability). In general, the agreement with the equivalent-linear factors shown in Figure 32 appears good in median and $\pm 1\sigma$ values. Similar sigma values suggest the relative insensitivity to G/G_{max} and hysteretic damping values (within reasonable ranges) since they are not varied in the nonlinear analyses.

Comparisons between the Peninsular Range (Figure 10) and EPRI (Figure 8) G/G_{max} and hysteretic damping curves used in the nonlinear analyses are shown in Figure 36. As with the equivalent-linear comparisons (Figure 33), little difference is seen in the amplification factors, even for expected median input motions of 0.75g. The NEHRP C profile is too stiff to generate high enough strains over a large enough depth range to show large differences in expected motions due to the differences in nonlinear dynamic material properties. For a direct comparison between amplification factors computed using nonlinear and equivalent-linear approaches, Figure 37 shows expected median values for the range in rock motions using the Peninsular Range nonlinear dynamic material properties. In the frequency range of 1 to 10 Hz, the comparison is quite good. At the higher loading levels ($\geq 0.4g$), and for frequencies above about 10 Hz, the nonlinear results exceed the equivalent-linear. At peak acceleration (100 Hz) however, the two approaches compare quite favorably. Interestingly at low frequency, particularly around 0.3 Hz, the equivalent-linear factors exceed the nonlinear factors at all loading levels. This artifact may be a consequence of using only one time history in the nonlinear analyses as there is no compelling physical explanation for this low-frequency discrepancy. A more appropriate nonlinear analyses may have been to use five-to-ten control motion time histories which match a smooth target (RVT spectrum) either individually or on average. For each random profile and time history, amplifications (surface spectrum divided by corresponding Category B surface spectrum) would be computed and the average (log) taken of the entire suite.

For the EPRI curves, Figure 38 shows the corresponding comparison. The results are similar to the comparisons using the Peninsular Range curves.

4.4.3.2 CEUS Conditions

For CEUS NEHRP Category C and Peninsular Range nonlinear properties, Figure 39 shows the expected median and $\pm 1\sigma$ amplification factors for CEUS Category B median peak acceleration values ranging from 0.1 to 0.75g. As with the WUS Category C, the profile is randomized in depth between 100 ft and 1,000 ft, resulting in a mean depth of about 500 ft. The general shape of the CEUS factors is quite similar to the WUS factors (Figure 32), showing a peak near 1 Hz at a value near 2. The CEUS factors show more variability, probably due to the larger impedance contrast at the soil-rock boundary, which results in stronger profile resonances.

4.4.3.2.1 Effects of Nonlinear Dynamic Material Properties

Comparisons of the CEUS NEHRP Category C median amplification factors computed using the Peninsular Range (Figure 10) and EPRI (Figure 8) nonlinear dynamic material properties are show in Figure 40. As with the Category C WUS comparisons, the difference is small for frequencies below about 10 Hz, except at the highest loading level (median CEUS NEHRP B expected value of 0.75g). At the highest loading level, the more nonlinear EPRI curves show somewhat lower amplifications due to higher damping levels. The corresponding increase in low frequency levels due to the corresponding larger frequency shift resulting from the EPRI curves is apparent from 0.1 Hz to about 0.5 Hz, but is much less significant. As with the corresponding WUS Category C comparison (Figure 33), the profile is too stiff (Figure 5) to show large differences in response due to reasonable differences in nonlinear properties.
4.4.3.2.2 Comparison of WUS and CEUS Category C Amplification Factors

A comparison of the WUS and CEUS median factors is shown in Figure 41 using both the Peninsular Range and EPRI nonlinear dynamic material properties. Interestingly, for all loading levels the WUS factors using the Peninsular Range G/G_{max} and hysteretic damping curves provide the largest factors over most of the frequency range. Also, the WUS factors tend to be larger than the CEUS factors, especially for frequencies exceeding about 3 Hz. Nonlinear effects appear to be stronger in the CEUS factors, probably due to the larger impedance contrast across the soil-rock interface and the greater degree of high frequency energy present at the base of the CEUS soil (Figure 26). These differences in amplification factors between WUS and CEUS NEHRP Category C profiles suggest that differences in spectral shapes should also exist between WUS and CEUS deep (\leq 1,000 ft) soil sites (Kimball and Costantino, 1999; Silva et al., 1999a). For bottomless (very deep) profiles, the differences are probably insignificant as the total (soil plus rock) kappa values and overall velocity gradients (over depths corresponding to frequencies above 0.1 to 0.2 Hz) become very similar.

4.4.4 NEHRP Category D

4.4.4.1 WUS Conditions

Figure 42 shows the amplification factors computed for WUS Category D using the Peninsular Range nonlinear dynamic material properties. As with the Category C factors (Section 4.4.3), the profile (Figure 5) is randomized in depth between 100 ft and 1,000 ft (mean depth \approx 500 ft) and layer thicknesses are varied along with shear-wave velocities as well as G/G_{max} and hysteretic damping curves. Compared to Category C factors (Figure 32), the Category D factors show similar shapes but are significantly larger (peak values 3 around 1 Hz) at all frequencies for low loading levels. The effects of nonlinearity are greater for Category D compared to Category C due to the softer profile (Figure 5), showing a decrease in amplification in peak acceleration from a factor of 2 at 0.1g to about 1 at 0.75g (NEHRP B expected peak acceleration). Also, the shift in increased amplification at low frequency (0.3 Hz) is apparent over the same range in loading levels. Along with this change in high-and low-frequency amplification is an accompanying increase in the variability. This is probably due to the higher strain levels, increasing the effects of nonlinear properties and their associated variabilities. A feature not evident in the stiffer Category C results (Figure 32).

4.4.4.1.1 Effects of Nonlinear Dynamic Material Properties

Comparisons of median amplification factors computed using Peninsular Range and EPRI G/G_{max} and hysteretic damping curves are shown in Figure 43. For this profile, which is much

softer than Category C (Figure 5), the differences in amplification between the two sets of nonlinear properties is large, even at the 0.1g loading level. Beginning at about 1 Hz, the Peninsular Range curves show significantly larger amplification, about a 30% maximum, than the EPRI curves. The amplification computed using the EPRI curves is slightly larger at low frequency, due to the slightly shifted mean profile resonance, but the difference is less than about 5%.

4.4.4.1.2 Effects of Profile Depth

As with NEHRP Category C, the effects of a suite of mean category depths of 125 ft, 250 ft, 500 ft, and 1,000 ft (Table 6) are examined. Figure 44 shows the median amplification factors compared to the base-case depth bin (100 to 1,000 ft, mean \approx 500 ft). At low-frequency (below about 1 Hz), the factors show a regular trend, increasing as profile mean depth increases with the base-case profile near the mid-range. At high-frequency, the trend generally reverses as expected and the suite of factors form a tighter band. For frequencies above about 0.4 Hz and for profiles in depth less than about 700 ft, the base-case amplifications are within about 10 to 15% of the largest factors and reflect a reasonable compromise for code applications, except perhaps for shallow profiles (\leq 200 ft). For low frequencies (\leq 0.4 Hz) and deep profiles (\leq 700 ft), the base-case factors may be too low for shallow profiles (\leq 200 ft) being below the 125 ft depth category (Table 6) by up to about 20%.

4.4.4.1.3 Comparison to Nonlinear Analyses

Amplification factors computed using the nonlinear code DESRA-MUSC with Peninsular Range nonlinear properties are shown in Figure 45. As with the Category C nonlinear analyses (Figure 35), the Category D nonlinear analyses result in amplification factors with similar overall shapes and levels to those computed using equivalent-linear analyses.

Comparison between results using the Peninsular Range and EPRI calibrated nonlinear properties (Section 4.2.2) are shown in Figure 46. As with the equivalent-linear comparison (Figure 43), a significant difference exists between the two sets of nonlinear properties with the more linear Peninsular Range curves showing the larger amplifications. For the EPRI G/G_{max} and hysteretic damping curves and at high loading levels, the nonlinear analyses show very low high-frequency (≥ 10 Hz) amplification (large deamplification). This may be partially attributed to the larger high-strain damping shown by the nonlinear model (Figure 17) compared to the damping used for the equivalent-linear analyses. This has traditionally been an important issue in comparing equivalent-linear analyses. Using nonlinear backbone curve models, it is relatively easy to match G/G_{max} curves (e.g. Figure 16) but an eract match to a corresponding damping

curve may not be prossible (Figure 17).

Another aspect of the fully nonlinear analyses contributing to the larger deamplification is the ability of the model to accommodate yielding or soil failure at very high strain levels. Near surface yield will attenuate high frequency surface motions, a condition which can not be simulated by equivalent-linear analyses. This condition occurs for cases where randomized velocities for a particular realization are very low and the loading levels are high. For example, the shear wave velocity is only of the order of 92 m/s for the top two layers (EPRI G/G_{max} and hysteretic damping curves) for the randomized soil profile G005029. As a result, the soil yielded at a depth of 10 ft and developed a large shear strain of 15% corresponding to ground lurch under the shaking level of 0.75g, as shown on Figure 47. The permanent lurch deformation in terms of shear strain is about 5% at the end of shaking. Note the continued low strain cyclic behavior at the tail end of the earthquake. The peak ground acceleration was attenuated to 0.33g. The acceleration response spectra at the ground surface for all shaking levels are shown on Figure 48.

For a direct comparison of amplification factors computed using nonlinear and equivalent-linear analyses, Figure 49 shows median factors using Peninsular range properties. The comparison is similar to Category C (Figure 37) and shows the equivalent-linear analyses with larger amplifications at low frequency (≤ 1 Hz) than the nonlinear analyses and higher amplification at high frequency (≥ 5 Hz). At peak acceleration (100 Hz) the equivalent-linear results exceed the nonlinear results at all loading levels, reflecting the effects of higher damping and soil yield.

For the EPRI curves, Figure 50 shows the corresponding comparison. The results are similar but show a larger difference between the equivalent-linear and nonlienar analyses at peak acceleration.

4.4.4.2 CEUS Conditions

For CEUS conditions, Figure 51 shows median and $\pm 1\sigma$ amplification factors computed using the Peninsular Range G/G_{max} and hysteretic damping curves. The overall shapes and trends are similar to the WUS results (Figure 42) showing somewhat more variability with frequency, similar to the Category C results (Figure 39).

4.4.4.2.1 Effects of Nonlinear Dynamic Material Properties

Figure 52 Compares median amplification factors computed for CEUS conditions using Peninsular Range and EPRI nonlinear curves. As with the WUS Category D comparison (Figure 43), the difference is large for frequencies exceeding about 2 to 3 Hz with the Peninsular Range (more linear) curves showing significantly larger amplifications.

For a more complete comparison, Figure 53 shows NEHRP Category D amplifications computed for both WUS and CEUS conditions using Peninsular Range and EPRI G/G_{max} and hysteretic damping curves. In general, as with the Category C comparison (Figure 41), the WUS Peninsular Range show the highest amplification.

4.4.5 NEHRP Category E

This category corresponds to soft soils (Figure 5) and is based on a generic San Francisco Bay mud profile scaled down to a $\overline{v_s}$ (30m) of 152m/sec (500 ft/sec) (Sections 3 and 4). For this generic Bay mud profile, only the EPRI cohesionless soil and Vucetic and Dobry (1991) clay G/G_{max} and hysteretic damping curves are used (Section 4.2.1).

4.4.5.1 WUS Conditions

For WUS conditions Figure 54 shows the median and $\pm 1\sigma$ sigma WUS amplification factors for NEHRP Category E. The factors are large at low frequency, ranging about 3 from about 0.4 Hz to about 1 Hz at low loading levels. This is somewhat lower than the 3.5 factor in the current NEHRP provision at 0.1g (Table 3) but the NEHRP factor reflects an average over the frequency range of 0.5 Hz to 2.5 Hz. Additionally, the NEHRP F_A and F_V factors are intended to reflect considerable conservatism and may be interpreted as being more consistent with $+ 1\sigma$ levels than median estimates. For low loading levels, NEHRP Category B peak accelerations of 0.2g and below, the development of the NEHRP factors was guided primarily from recording of the 1989 M 6.9 Loma Prieta earthquake at sites along margins of the San Francisco Bay. These sites are located at considerable distances from the source (≈ 50 to 100 km) and likely experienced less high-frequency energy in input motions than sites located much closer to lower magnitude earthquakes (to maintain similar Category B peak acceleration), as response spectral shapes depend on distance (Silva and Green, 1989; Abrahamson and Shedlock 1997). Consequently these large distance soft soil sites likely reflect smaller degrees of nonlinearity than may be expected for closer sites subjected to input motions consistent with comparable Category B peak accelerations.

Because the EPRI nonlinear curves are used for the cohesionless soils in the column and the PI of Bay mud clays is comparatively low (PI = 30%), the effects of nonlinearity are large. At the higher loading levels (≥ 0.3 g), cyclic shear strains are large enough to induce failure in some of the randomized columns (at depths corresponding to cohesionless soils) and will be discussed in the comparison to nonlinear analyses. The deamplification of high frequency motions at high loading levels is extreme and may not be realistic. Application of these nonlinear properties to the soft soils of the Imperial Valley results in too much nonlinearity compared to observed ground motions from the 1979 M 6.5 Imperial Valley earthquake and its M 5.2 aftershock (Silva et al., 1997). Conversely, these nonlinear properties appear to provide reasonable comparison to recordings at the Port Island vertical array for the M 6.9 Kobe earthquake (Silva and Costantino, 1998). Clearly more data including recordings of strong motions, velocity profiles, and reliable laboratory testing of dynamic material properties are needed for soft soil profile related studies.

4.4.5.1.1 Comparison to Nonlinear Analyses

Figure 55 shows the median and $\pm 1\sigma$ amplification factors computed with the DESRA-MUSC program. Similar to the NEHRP Category D nonlinear analyses using the EPRI curves (Figure 46), the nonlinear analyses show strong high frequency deamplification, particularly for frequencies above 10 Hz. The corresponding equivalent-linear factors increase with increasing frequency above 10 Hz, reflecting a change in spectral shape with some reduction in peak acceleration. The nonlinear factors however reflect an overall truncation in high frequency energy or a flat spectrum. This again may be a consequence of the nonlinear damping exceeding the equivalent-linear damping for both the EPRI and Vucetic and Dobry (1991) curves (Figures 17 and 19), and yielding or failure of the soft soils at high strain levels.

As with the nonlinear Category D analyses, yielding at high strains has occurred. In this case yielding occurred for 7 soil profiles out of 30 under the highest shaking level 0.75g.

For the soil profile G005010, yielding started at the shaking level of 0.5g. The shear-wave velocities are below 80 m/s for the top five layers, and as low as 57 m/s for layers 3 and 4. The maximum shear-strain of 25% occurred in Layer 4, at the depth of 12 ft under the shaking level of 0.75g (Figure 56). The permanent lurch deformation in terms of shear strain is about 15% at the end of shaking. The shear strength is only about 150 psf. The peak ground acceleration has been attenuated to 0.14g, as a result of yielding behavior. The acceleration response spectra at the ground surface for all shaking levels are shown in Figure 57.

Soil profile G005021 represents the case with a shear-strain larger than 3% occurred at a depth of 103 ft, under 0.75g shaking. No yielding occurred during the shaking, because the shear-wave velocity is about 130 m/s at shallow depth and 180 m/s for deep soil layers. However, the maximum shear-strain at the depth of 12 ft is about 5%, and acceleration time history shows attenuation of peak ground acceleration as shown on Figure 58. Figure 59 shows the acceleration response spectra at the ground surface for all shaking levels.

Figure 60 compares the equivalent-linear and nonlinear factors and shows reasonable agreement in the 1 Hz to 10 Hz range. At low frequency, as with Categories C and D, the equivalent-linear factors are higher. Peak accelerations remain higher for equivalent-linear analyses (as with Category D EPRI curves, Figure 50).

4.4.5.2 CEUS Conditions

For CEUS conditions, Figure 61 shows the expected median and $\pm 1\sigma$ amplification factors and Figure 62 compares the WUS and CEUS median factors. For CEUS conditions, the effects of nonlinearity are significantly greater with the WUS factors generally larger than the CEUS. These results reflect similar trends as seen for Category D results (Figure 53).

5.0 SUMMARY AND CONCLUSIONS OF NEHRP AMPLIFICATION FACTORS

Median and $\pm 1\sigma$ site amplification factors for 5% damped response spectra have been computed for mean centered NEHRP site Categories (BC), C, D, and E assuming both WUS and CEUS crustal conditions. The variability in the expected amplification factors ($\sigma_{ln} \approx 0.2$ to 0.3) is due to randomization over depth to very stiff conditions as well as randomized shearwave velocities, layer thicknesses, and G/G_{max} and hysteretic damping curves. Material property probability distributions, including layer thicknesses, were based on analyses of variance of measured profile as well as G/G_{max} and hysteretic damping curves. Additionally, comparisons were made for Categories C, D, and E between equivalent-linear and fully nonlinear site response analyses using the computer code DESRA-MUSC. In general, there was good agreement between the two approaches over much of the frequency ranges. Because the nonlinear damping exceeded that of the equivalent-linear at high strains, nonlinear amplification factors were below the equivalent-linear factors for the softer Category profiles at high loading levels.

Results computed in this study for NEHRP Category A showed values less than 1, about 0.8 at high frequency (≥ 1 Hz to 10 Hz) and close to 1 at low frequency (≤ 1 Hz). These results are consistent with the current NEHRP factors of 0.8 for Category A F_A and F_V site factors.

To provide a convenient illustration to both summarize and compare results of this study with existing NEHRP F_A and F_V factors as well as illustrate the effects of frequency range in developing Category C, D, and E factors, Figure 63 shows median estimates averaged over the frequency ranges of 2 Hz to 10 Hz (NEHRP Fa range), 0.7 to 2.0 Hz, 0.5 to 2.5 Hz (NEHRP Fv range), and 0.2 to 0.7 Hz. In the figure, results for both EPRI (Figure 63b) and Peninsular Range curves (Figure 63a) are shown for Categories BC, C, and D (Category E analyses used a single suite of curves and is repeated for convenience). In addition, both WUS and CEUS conditions are shown along with the current NEHRP F_A (open circles) and F_V (x's) values. For Category BC the factors are about 1.4 for frequencies of 0.5 Hz and above and near 1 at low frequency for both WUS and CEUS conditions. Noninearity is apparent in the 2 Hz to 10 Hz range using the EPRI G/G_{max} and hysteretic damping curves (Figure 63b).

For Category C, the factors for 0.7 Hz to 2 Hz and 0.5 Hz to 2.5 Hz (dotted lines in Figure 63) are similar, larger for WUS than CEUS and show little effects of nonlinearity, having a maximum value near 2 and generally remain above 1.5. This is very different than the current NEHRP factors which range from 1.7 to 1.3 (open circles in Figure 63), depending on loading level. Empirical analyses for NEHRP F_A and F_V factors by Crouse and McGuire (1998) and Silva and Toro (1998) showed similar trends. Interestingly, analyses of recorded strong ground motions from the 1994 M 6.7 Northridge earthquake showed general agreement with

the NEHRP F_A factors (Dobry et al., 1999). This more focused study sampled largely San Fernando Valley and Los Angeles Basin sites over the expected Category B peak acceleration ranges of 0.1 to 0.25g. At very low frequency shown in Figure 63a and 63b (0.2 Hz to 0.7 Hz) the factors are largely linear, average around 1.5, and are larger for WUS conditions.

For the high frequency NEHRP range Figure 63 (2 Hz to 10 Hz, solid lines) shows little nonlinearity for Peninsular Range, curves varying from about 1.5 to 1.2 for WUS conditions, under the full range of loading conditions. For the EPRI curves the values decrease to about 1 at 0.75g. The values are generally larger for WUS conditions than CEUS conditions, both of which exceed the current NEHRP factors (x's in Figure 63). These results are also consistent with the observations of Crouse and McGuire (1998), Silva and Toro (1998), and Dobry et al. (1999).

For NEHRP Category D, the 0.7 Hz to 2.0 Hz and 0.5 Hz to 2.5 Hz factors are very similar but now with larger differences between the other factors. The 2 Hz to 10 Hz factors have a maximum near 2 (WUS, Peninsular Range curves) and decrease to less than 1 at 0.75g. There is a large difference in the 2 Hz to 10 Hz factors between analyses using the Peninsular Range and EPRI curves. The Peninsular Range factors are about 0.5 units above those computed using the EPRI curves for loading levels exceeding about 0.2g for both WUS and CEUS conditions. For the WUS and CEUS Peninsular Range amplification (Figure 63a), the agreement is generally good with the current Fa factors while the EPRI amplifications fall below those of the NEHRP, particularly for the CEUS (Figure 63b).

The 0.5 Hz to 2.5 Hz (F_v range) factors are around 2.5 (WUS conditions) at 0.1g and decrease to around 2.0 for Peninsular Range curves and about 1.5 for the EPRI curves. For this frequency range, the Peninsular Range values exceed the current NEHRP F_v factors at low loading levels while the EPRI amplification factors agree very well with the current F_v values.

Additionally, for Category D, analyses using a suite of mean depth bins showed depth to very stiff conditions results in larger high-frequency factors for shallow profiles (≤ 200 ft) and larger low-frequency factors for very deep (≥ 700 ft) profiles than the base-case depth range (100 ft to 1,000 ft). These results suggested that either depth bins be developed or amplification factors should be based on enveloping the results for a suite of mean depth categories.

For NEHRP Category E, Figures 63a and 63b show continued similarity for the 0.7 Hz to 2.0 Hz and 0.5 Hz to 2.5 Hz ranges and an increased separation between the high (2 Hz to 10 Hz) and very low (0.2 Hz to 0.7 Hz) ranges.

For both WUS and CEUS conditions, the current F_A and F_v values exceed the expected median factors by about 1 unit in amplification. These results suggest a substantial degree of conservatism in the NEHRP Category E factors. A large degree of conservatism was intended, considering the sparse data set of strong ground motions recorded at soft soil sites available at the time the factors were developed.

Further studies are clearly needed regarding the response of soft soils to earthquake loading. Recent data (recordings and site properties) from the Kobe, Chi Chi, and Turkey earthquakes should provide additional observational trends in the response of soft soils. More careful laboratory testing of nonlinear dynamic material properties is also needed to help resolve the effects of confining pressure on medium-to-low plasticity clays (PI < 50% to 60%). This is essential to understand over what depth ranges potential nonlinear effects may be significant and included in analyses.

Results of this study also showed that profile category depth is an important issue in developing amplification factors. Randomizing over a broad depth range is appropriate but may result in unconservative factors for shallow (≤ 200 ft) and very deep ($\geq 1,000$ ft) depending on frequency ranges of interest. Either establishing depth bins or using amplification factor which are envelopes of factors computed for a suite of mean profile depths are approaches to resolve the issue.

Median shear-wave velocity profiles, conditional on surficial geology, do not reflect NEHRP mid-range Categories. If these samples reflect profile populations, mid-range amplification factors will be biased for average site conditions. Either the NEHRP Category ranges in shear-wave velocity should be shifted to better reflect measured profile statistics or the amplification factors should be adjusted (increased) accordingly.

While there are a number of limitations in this study; assumptions in material dynamic properties, kappa values, and ground motion model, the general results suggest that the NEHRP amplification factor should be revisited (particularly Categories C and D) both analytically and empirically. Additionally, the shear-wave velocity ranges defining the Categories should be reevaluated. This is a natural consequence of increased strong motion data, additional and more complete site characterizations, and an increase in our site response knowledge base.

6.0 ASSESSMENT OF NEAR-SOURCE EFFECTS ON BUILDING CODE DESIGN SPECTRA

The near-fault factors in the 1997 UBC were developed prior to the 1994 M 6.7 Northridge, California; 1995 M 6.9 Kobe, Japan; 1999 M 7.6 Chi-Chi, Taiwan; 1999 M 7.4 Kocaeli (Izmit), and; M 7.1 Duzce, Turkey earthquakes. Also, several widely used current empirical attenuation relationships (Abrahamson and Silva, 1997; Boore and others, 1997; Campbell, 1997; Idriss, 1991, 1994; Sadigh and others, 1997) were published before the 1999 Chi-Chi, Taiwan and 1999 Kocaeli and Duzce, Turkey earthquakes. These large magnitude earthquakes significantly increase the strong-motion data set for moment magnitude greater than 7 and for closest rupture distances less than about 20 km.

6.1 Approach

The 1997 UBC design spectra and empirical attenuation relationships are reevaluated with the strong motion data in the Pacific Engineering and Analysis (PE&A) database including the data collected from these five recent events. UBC (1997) design spectra for Seismic Zones 3 and 4 are compared to statistical spectra (recorded motions averaged within M and D bins) computed from appropriate recorded motions.

In addition, residuals (In observed motion minus In expected motions) from the five attenuation relationships (listed above) are analyzed as a function of period, distance, and magnitude for an assessment of how well they capture near-fault spectral levels at rock sites. Since the empirical attenuation relationships are for very general rock and soil classification (with the exception of Boore and others, 1997) the residuals are computed using data from Geomatrix site Category A (rock with Vs > 600 m/s or < 5m of soil over rock) and B (shallow stiff soil, up to 20 m of soil over rock) (Table 1).

6.2 1997 UBC

The near-fault terms in the 1997 UBC are fault distance dependent (closest distance $(D) \le 15$ km) and vary in amplitude from 1.0 to 1.5 in the acceleration range (0.3 sec) and from 1.0 to 2.0 in the velocity range (1.0 sec) (Table 1). These factors were developed by the SEAOC Ground Motion Subcommittee which was chaired by Dr. Charles Kircher (1993 to 1996). The factors are based on the empirical attenuation relations of Boore and others (1993) and Sadigh (1993) (see Commentary Section in the 1997 UBC and Kircher (1998)) and do not reflect the near-fault data recorded during the Northridge, Kobe, Chi-Chi, and recent Turkey earthquakes.

To assess the appropriateness of the code design spectra for near-fault ground motions, UBC (1997) design spectra are compared to statistical spectra in the fault distance range of 0 to 50 km. Since the design spectrum varies as a function of distance, six distance groupings are used in the reexamination. These distance groupings are: 0 to 2 km, 2 to 5 km, 5 to 10 km, 10 to 15 km, 15 to 30 km and 30 to 50 km. In the first 5 distance ranges (\leq 30 km), comparisons are made to UBC (1997) design spectra for Seismic Zone 4, calculated at the limiting distances for each bin. In the largest fault distance range (30 to 50 km), the UBC (1997) design spectrum for Seismic Zone 3 is compared to the statistical spectra.

Format of Figures

In each figure the design spectra are shown as solid lines for both the smallest and largest distance range. The spectral data computed from the recorded motions are displayed in one of two manners. First, if the number of components of 5% damped response spectrum in the distance range is 10 or larger then three statistical spectra are shown. These spectra are the median (dotted curve), $+ 1\sigma$ (dashed curve), and -1σ (dashed curve). Spectral statistics are computed assuming a lognormal distribution. Second, if fewer than 10 components are available in the distance range, then all of the 5% damped spectra are plotted without statistical averaging as dashed curves. The six distance groupings are shown in separate frames on each figure to examine trends with distance.

Two representations are shown of the same comparison. The first figure is a log-log plot of spectral acceleration (Sa) versus period from 0.01 (100 Hz) to 10 seconds. The companion figure is a linear-log plot of Sa versus period from 0.1 (10 Hz) to 10 seconds. The second figure highlights the period range of engineering interest. For each distance range, comparisons are made for three fault types and NEHRP site categories as defined in the 1997 UBC (Table 1). The Fault classes are A, B, and C and the NEHRP (1997) site Categories are B, C, and D both of which are defined in Table 1. There are not enough available data for a comparison with NEHRP site Categories A or E (Table 1).

Tables 7 through 15 list the response spectral data used as a function of closest distance for NEHRP site Categories B, C, and D and for the three fault classes (A, B, and C). The tables list earthquake name, moment magnitude, station identification information, closest distance, Geomatrix and USGS site classifications, high-pass and low-pass filter corners, and peak acceleration values. In these tables, USGS site classification A, B, and C correspond to NEHRP Categories B, C and D, respectively. To supplement the data set, Geomatrix site Categories were used when the site did not have an assigned USGS/NEHRP Categories. In this case, Geomatrix site Categories A, B and C were placed in NEHRP Categories B, C, and D, respectively. This association was based on a strong correlation between NEHRP and

Geomatrix site categories, as can be seen in these Tables.

6.2.1 NEHRP Category B

Results of the code design spectra comparisons for NEHRP Category B are shown in Figures 64 to 69 for the UBC (1997) provisions. In several cases the UBC design spectra are above the median or median + 1σ (lognormal) statistical spectra implying some conservatism but the margin is highly variable with period.

Fault class A ($M \ge 7$): statistical spectra are computed only for the distance bins of 0 to 2 km (N=20 components) and 30 to 50 km (N=28) in Figures 64 and 65. In the distance range of 0 to 2 km the UBC design spectra are above the median spectrum for all periods and above the median + 1 σ spectrum for periods greater than 0.3 seconds. The statistical spectra are computed from 18 records recorded during the Chi-Chi, Taiwan earthquake and two records from the Landers earthquake (Table 6). For the three distance ranges of 2 to 5 km (N = 2), 10 to 15 km (N = 4), and 30 to 50 km (N = 28) the UBC design spectra are generally greater than the available data at all periods. Recall that for the distance range 30 to 50 km, the comparison is made with the Seismic Zone 3 UBC spectra. In this case, with 28 components, the comparison shows considerable conservatism in the UBC design spectrum.

In the distance range of 5 to 10 km (N=4) the recorded motions generally exceed the UBC design spectra and the variability is large. For the distance range of 15 to 30 km, only two recorded spectra (one site) are available. Table 7 lists the spectral data used in the analyses.

Fault class B ($6.5 \le M < 7$): statistical spectra are computed only for the two distance bins greater than 15 km. For these distances the UBC design spectra are above the median + 1 σ spectrum for all periods. Sufficient data are available for these distances to suggest that the code spectra reflect considerable conservatism. For the distance ranges of 0 to 2 km (N=6), 2 to 5 km (N = 2), 5 to 10 km (N = 8), and 10 to 15 km (N = 4) some of the recorded spectral data exceed the UBC design spectra, especially for periods less than about 1 second. At longer periods the design spectra are generally greater than the spectra calculated from data. These results are similar to those for Fault class A where too few records are available to estimate fractiles, the variability in the components is large and conclusions regarding the adequacy of the design spectra can not be made unambiguously. The data used are listed in Table 8.

Fault class C (5.75 \leq M < 6.5): no data are in the PE&A strong motion database for distances between 10 to 15 km in Figures 68 and 69. Statistical spectra are computed for the two distance bins greater than 15 km and the 5 to 10 km bin. For these distances the design spectra are above the median + 1 σ spectra for all periods. For the two close-in distance ranges of 0 to

2 km (N=2) and 2 to 5 km (N = 4) several of the recorded motions exceed the design spectra, especially for periods less than about 1 second. At longer periods the design spectra are generally greater than the recorded motions. Table 9 lists the data used.

6.2.2 NEHRP Category C

Results of the comparisons of design spectra and statistical spectra for NEHRP Category C are shown in Figures 70 to 75. In several cases the UBC design spectra are above the median or median $+ 1\sigma$ (lognormal) statistical spectra implying some conservatism, but the margin is highly variable with period.

Fault class A ($M \ge 7$): Unfortunately, no data are in the PE&A strong motion database (Table 9) for distances between 0 to 2 km in Figures 70 and 71. Statistical spectra are computed for the three distance bins greater than 10 km. These data were recorded during the Landers, Cape Mendocino, Tabas, Chi-Chi, and recent Turkey earthquakes. For these distances the UBC design spectra are generally near or above the median + 1 σ spectra for all periods. Recall that for the distance range 30 to 50 km, the comparison is made with the UBC Seismic Zone 3 design spectra. For the remaining distance ranges of 2 to 5 km (N = 3) and 5 to 10 km (N = 6) nearly all of the recorded motions are near or below the UBC design spectra. The exceptions are the data from station CHY028 from the Chi-Chi, Taiwan earthquake (Table 10). In general the 1997 UBC spectra reflect conservative design values.

Fault class B ($6.5 \le M < 7$): Statistical spectra are computed for the distance bins of 0 to 2 km (N=14) and for all bins greater than 10 km in Figures 72 and 73. In these 4 distance ranges the UBC design spectra are near or above the median + 1 σ spectra at all periods. For the remaining two distance ranges of 2 to 5 km (N = 6) and 5 to 10 km (N = 6) most of the observed motions are comparable to or below the UBC design spectra, however, some of the spectra exceed the UBC design levels near 0.2 to 0.4 seconds. Table 11 lists the data used in this comparison.

Fault class C ($5.75 \le M < 6.5$): Statistical spectra are computed for all bins greater than 5 km in Figures 74 and 75. In these 4 distance ranges the UBC design spectra are above the median spectra for all periods. For the remaining two close-in distance ranges of 0 to 2 km (N = 4) and 2 to 5 km (N = 2) most of the observed motions are comparable to or below the design spectra, however, some of the spectra exceed the UBC design spectra near 0.2 to 0.4 seconds. Table 12 lists the data used in this comparison.

6.2.3 NEHRP Category D

Results of the code spectral level comparisons for NEHRP Category D are shown in Figures 76 to 81 for the UBC (1997) provisions.

Fault class A ($M \ge 7$): statistical spectra are computed for all distance bins except the 2 km to 5 km bin, which contains only 4 spectra (Table 13). In all distance ranges the design spectra are above the median spectra for all periods and generally above the median + 1 σ level for most of the period range (Figures 76 and 77). The only exception in the distance range from 0 to 2 km where the median + 1 σ spectra exceeds the UBC spectra for periods less than about 1 second. The data in this distance range were recorded during the Cape Mendocino (2 components), Tabas (2 components), and Chi-Chi (4 components) earthquakes (Table 12). In general the design spectra compare very favorably with the currently available strong motion data.

Fault class B ($6.5 \le M < 7$):Statistical spectra are computed for the all distance bins (Table 14). In all distance ranges the UBC spectra are generally above the median spectra for all periods and near or slightly below the median + 1 σ spectra in Figures 78 and 79. The main exception is in the distance range from 2 to 5 km where the median level exceeds the UBC design spectra at 5 km for periods less than about 0.5 second.

Fault class C (5.75 \leq M < 6.5): Unfortunately, no data are in the PE&A strong motion database for distances between 0 to 2 km (Figures 80 and 81 and Table 15). For distances greater than 2 km, the UBC design spectra are above the median spectra of the recorded motions for all periods and generally above the median + 1 σ spectra as well. The only exception in this case is the distance range from 5 to 10 km where the median + 1 σ spectrum exceeds the design spectrum for a narrow range of periods near 0.4 second.

6.3 2000 IBC

The 2000 IBC design spectra are to be based either on probabilistic shaking hazard maps or deterministic evaluations at close distances to large active sources (Kircher, 1999). Both of these approaches rely on rock site empirical attenuation relations for WUS crustal sources. To assess the potential appropriateness of the 2,000 IBC design spectra, residuals between recorded motions and a suite of empirical WUS crustal attenuation relations is examined. The WUS crustal empirical WUS crustal relations include the following: Abrahamson and Silva (1997) (AS), Boore and others (1997) (BAO); Campbell (1997) (CAMP), Idriss (1991, 1994) (IMI) and Sadigh and others (1997) (SAO). To select rock site data, Geomatrix geotechnical site Categories A and B (Table 1) are assumed and the strong motion recordings binned into magnitude ranges ($M \ge 7$, $6 \le M < 7$, $5 \le M < 6$ and $M \ge 6.75$). These magnitude ranges were

chosen to generally reflect: (1) large earthquakes (M > 7) as well as a significant amount of data which were unavailable at the time the empirical relations were developed; (2) moderate earthquakes (M 6 to 7) and a data set which was used in developing the empirical relations; (3) small earthquakes (M 5 to 6); and (4) large earthquakes (M 6.75). For the Boore and others (1997) relationship a $\overline{v_s}$ (30m) of 760 m/sec was used. The depth to basement was taken a 2 km (Campbell, personal communication, 1999).

In the analyses presented, the residuals are computed as observed average horizontal component spectra minus the expected average horizontal component computed from each empirical relation. The subtraction (rather than division) occurs because logarithms (natural log) are used as strong motion data are generally assumed to be log normally distributed random variables. For each earthquake and site, each empirical relation was used to provide an estimate of the response spectrum. Source mechanisms, site locations for hanging-wall verses foot-wall, as well as source-to-site distance definitions were all considered in computing the expected motions. The residuals are smoothed (over distance) and are plotted versus closest distance or Joyner-Boore distance (as appropriate for each attenuation relationship) from 0 to 50 km at nine frequencies and for peak horizontal ground acceleration. The nine frequencies are 20, 10, 5, 2, 1, 0.5, 0.33, 0.25 and 0.20 Hz. (Note that not all of the attenuation relationships include all of these frequencies. For these cases the residuals are not calculated.) Residuals are also not calculated for frequencies outside of the usable data bandwidth of the processed acceleration time histories (the low-frequency filter corners of the processed strong motion data listed in Tables 7 to 15). Additionally, the residuals within each magnitude bin have been weighted so that each earthquake has an equal contribution to the residual at each oscillator frequency.

For the distance range of 0 to 50 km, the mean magnitudes and mean distances in the database are listed in Table 16 along with the number of available components. For the largest magnitude bin (M > 7), 79 components are available while the other bins range from about 100 to 200 components. With these numbers of data, the residuals do have statistical stability and meaningful conclusions can be drawn from the analyses.

For the M > 6.75 bin, 70 components of the available 139 (Table 16) were recorded during the Gazli, Tabas, Nahanni, Spitak, Loma Prieta, Cape Mendocino, Landers, and Kobe earthquakes, which were included in the development of most of the considered empirical attenuation relationships. For the 79 components in the M > 7 bin, only 10 components were previously recorded during the Tabas, Cape Mendocino, and Landers earthquakes and available for inclusion in the development of the empirical attenuation relationships. The recent data contributed significantly to the larger magnitude comparisons.

Since the residuals clustered as a function of frequency, two plots are shown for each magnitude bin. A plot of the smoothed (over distance) residuals at high frequency (PGA, 20, 10, and 5 Hz) are shown in Figures 82, 84, 86, and 88. The low frequency (2, 1, 0.5, 0.333, 0.25, and 0.20 Hz) plots are shown in Figures 83, 85, 87, and 89. It is important to emphasize that in the residual plots, because natural logs are used, the misfit (departure from zero) must be raised to an exponential. For example, a residual of 0.5 actually implies an average departure of about 50% ($e^{0.5}$) from the data. A positive residual corresponds to an underprediction while a negative residual corresponds to an overprediction. For the M 5 to 6 and M 6 to 7 comparisons it is expected that the residuals be centered around zero as the empirical attenuation relations were developed using a significant portion of these data. For the M > 6.76 and M > 7 bins, which include a significant portion of new data (recorded after the attenuation relations were developed) the residuals may be regarded more as an evaluation of predictions.

For $M \ge 7$ (Figure 82), nearly all of the smoothed residuals are less than 0. Hence most of the attenuation relations are conservative and predict motions that exceed the recorded motions from the recent Taiwan and Turkey earthquakes for PGA, 20, 10 and 5 Hz 5% damped response spectral ordinates. At lower frequencies however (Figure 83) the residuals tend to be closer to 0 with all 5 relationships estimating larger motions than observed for distances greater than about 35 km. At closer distances, from about 10 km to 35 km, the empirical attenuation relations tend to underestimate the data, particularly for the AS, BAO, SAO, and IMI relations. The relation of CAMP shows some frequencies with motions that are a little low. At very close distances there is a strong tendency for the AS, BAO, IMI, and SAO relations to predict motions that are below the data for frequencies lower than about 2 Hz. Interestingly this tendency does not occur for CAMP, which tends to produce motions that are larger than observed.

For $M \ge 6.75$ (Figures 84 and 85), the residuals tend to be closer to 0 than in the $M \ge 7$ case. Also, the over-prediction for distances greater than about 35 km is smaller. This result is consistent with the fact that a greater proportion of the data for this magnitude range was used in developing the attenuation relations.

For $6 \le M < 7.0$ (Figures 86 and 87), the residuals generally oscillate about 0 as a function of distance. This is expected since all of these data were available when the attenuation relations were developed. However, residuals for the Boore and others (BAO) relation tend to be positive, implying that the relation has a tendency to predict motions that are lower than observed for this magnitude and distance range.

For $5 \le M < 6.0$ (Figures 88 and 89), the residuals again oscillate about 0 as a function of distance. This is expected since all of these data were available when the attenuation relations were developed. However, all 5 relationships predict lower motions than observed for distances

greater than about 35 km particularly at high frequency (\geq 5 Hz). Interestingly, at low frequency, the CAMP relation shows a distance trend in bias going from negative to positive as distance increases.

Since the largest and most stable biases were encountered for the M > 7 bin which is dominated by the recent Taiwan and Turkey earthquakes, these results suggest that the crustal empirical relations should be updated.

•

7.0 SUMMARY AND CONCLUSIONS ON NEAR-SOURCE MOTIONS

Existing recordings of strong ground motions that include the recent Taiwan and Turkey earthquakes have been used to evaluate the 1997 UBC design spectra as well as five WUS crustal empirical attenuation relations. Since the 2,000 IBC makes use of empirical rock attenuation relations either implicitly in probabilistic ground shaking maps or directly in deterministic shaking hazard evaluations at close distances to large active earthquake sources, evaluation of frequently used empirical relations is intended to provide some insights into the 2,000 IBC code design levels for the WUS.

For the comparisons to the 1997 UBC, design spectra for Seismic Source Types A, B, and C as well as Seismic Zones 4 and 3 and NEHRP site Categories B, C, D, and E were compared to statistical spectra computed from recorded motions. In general, for cases where more than 10 components of data were available (most cases) permitting reliable estimates of fractiles, the UBC 1997 design spectra exceeded the median statistical spectra, in many cases being near or exceeding $+ 1\sigma$ estimates. In general, for the currently available data, 1997 UBC code design spectra reflect conservative design levels.

This is particularly true for Seismic Zone 3 where the UBC 1997 design spectra significantly exceed median + 1 σ estimates. For Fault type A ($M \ge 7$) and the closest distance range (0 km to 2 km) the design spectra exceed median estimates and are close to + 1 σ values for most of the period range. For NEHRP site Category D, the most populated site Category, Fault type A design spectra exceed + 1 σ estimates suggesting conservative design values for the range in earthquake magnitudes currently available. For cases where fewer than ten components were available and the individual components displayed, the wide range typically encountered in recordings of strong ground motion was observed.

In an analysis of residuals using five of the frequently employed WUS rock site empirical attenuation relations several interesting features were observed. For large magnitude earthquakes (M > 7), which is dominated by data not available when the relations considered were developed, the relations tended to predict larger motions than observed at high (≥ 5 Hz) frequencies. Conversely the relations tended to underpredict at low frequency (≤ 2 Hz). This was most apparent in the 10 km to 35 km distance range with three relations (Abrahamson and Silva, Idriss, and Sadigh and others) showing the trend within 10 km. For the $M \geq 6.75$ and M 6 to 7 bins, the relations produced much smaller residuals in general with a tendency to be more accurate at high frequency (≥ 5 Hz) than at low frequency (≤ 2 Hz) and biased a little high over most of the oscillator frequency range. The exception was Boore and others which was biased a little low from about 5 km to about 35 and at most frequencies.

Over the low magnitude range (M 5 to 6), four of the relations showed little bias overall within about 35 km at high frequency (\geq 5 Hz) but all showed a large positive bias (under prediction) beginning around 35 km. The Boore and others relation showed a positive bias over most of the distance range. At low frequency, the relations generally showed little or no bias, except for Campbell, which showed a large negative bias (over prediction) at the closed distance but with the bias decreasing as distance increased.

These results suggest that the relations perform reasonably well except at low frequency (≤ 2 Hz) for the recent large magnitude Taiwan and Turkey earthquakes. As is often the case when large magnitude earthquakes occur and which produce significant amounts of strong motion data, empirical attenuation relations require updating, along with other design tools. Clearly these earthquakes have presented the case for doing so.

8.0 **REFERENCES**

Abrahamson, N.A. and W.J. Silva (1997). "Empirical response spectral attenuation relations for shallow crustal earthquakes." Seism. Res. Lett., 68(1), 94-127.

Abrahamson, N.A and K.M. Shedlock (1997). "Overview." Seis. Research Lett., 68(1), 9-23.

- Anderson, J. G. and S. E. Hough (1984). "A Model for the Shape of the Fourier Amplitude Spectrum of Acceleration at High Frequencies." Bull. of Seism. Soc. Am., 74(5), 1969-1993.
- Atkinson, G.M and W.J. Silva (1997). "An empirical study of earthquake source spectra for California earthquakes." Bull. Seism. Soc. Am. 87(1), 97-113.
- Atkinson, G.M. (1993). "Source spectra for earthquakes in eastern North America." Bull. Seism. Soc. Am., 83(6), 1778-1798.
- Boore, D.M, and W.B. Joyner (1997). "Site amplifications for generic rock sites." Bull. Seism. Soc. Am., 87(2), 327-341.
- Boore, D. M., W. B. Joyner, and T. E. Fumal (1997). "Equations for estimating horizontal response spectra and peak acceleration from Western North American earthquakes: A summary of recent work." *Seism. Res. Lett.* 68(1), 24-40.
- Boore, D.M., W.B. Joyner, and T.E. Fumal (1993). "Estimation of response spectra and peak acceleration from western North American earthquakes: An interim report." USGS Open-File Rept. 93-509.
- Boore, D.M., and Atkinson, G.M. (1987). "Stochastic prediction of ground motion and spectral response parameters at hard-rock sites in eastern North America." *Bull. Seism. Soc. Am.*, 77(2), 440-467.
- Boore, D.M. (1986). "Short-period P- and S-wave radiation from large earthquakes: implications for spectral scaling relations." *Bull. Seism. Soc. Am.*, 76(1) 43-64.
- Boore, D.M. (1983). "Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra." Bull. Seism. Soc. Am., 73, 1865-1894.
- Borcherdt, R. D. (1997). "Estimates of site-dependent response spectra for new and existing highway facilities (methodology and justification)." Proc. Of the NCEER Workshop on the Nat'l Representation of Seismic Ground Motion for New and Existing Highway Facilities, edited by M.S. Power and R.L. Mayes.

Borcherdt, R. D. (1996). "Preliminary amplification estimates inferred from strong ground-

motion recordings of the Northridge earthquake of January 17, 1994." Proceedings of the International Workshop on Site Response Subjected to Strong Earthquake Motions, edited by Iai, (2), 21-46.

- Borcherdt, R. D. (1994a). "Simplified site classes and empirical amplification factors for sitedependent code provisions." Proc. Of the NCEER/SEAOC/BSSC Workshop on Site Response During Earthquakes and Seismic Code Provisions, University of Southern Calif., Los Angeles, 1992, edited by G.R. Martin.
- Borcherdt, R. D. (1994b). "Estimates of site-dependent response spectra for design (methodology and justification)." *Earthquake Spectra*, 10(4), 617-653.
- Borcherdt, R. G. and G. Glassmoyer (1992). "On the Characteristics of Local Geology and Their Influence on Ground Motions Generated by the Loma Prieta Earthquake in the San Francisco Bay region, California." *Bull. Seism. Soc. Am.*, 82(2), 603-641.
- Crouse, C. B. and J.W. McGuire (1996). "Site response studies for purpose of revising NEHRP seismic provisions." *Earthquake Spectra*, 12(3), 407-439.
- Dobry, R., R. Ramos, and M.S. Power (1999). "Site factors and site categories in seismic codes." MCEER-99-0010.
- Dobry, R., G. R. Martin, E. Parra, and A. Bhattacharyya (1994). "Development of site-dependent ratios of elastic response spectra (RRS) and site categories for building seismic codes." *Proc. of the NCEER/SEAOC/BSSC Workshop on Site Response During Earthquakes and Seismic code Provisions*, edited by G.R. Martin, University of Southern Calififornia.
- Dobry, R., R. S. Ladd, F. Y. Yokel, R. M. Chung and D. Powell (1982). "Prediction of Pore Water Pressure Build-Up and Liquefaction of Sands During Earthquakes by th Cyclic Strain Method." *NBS Building Science Series 138*, National Bureau of Standards.

Electric Power Research Institute (1993). "Guidelines for determining design basis ground motions." Palo Alto, Calif: Electric Power Research Institute, vol. 1-5, EPRI TR-102293.

vol. 1: Methodology and guidelines for estimating earthquake ground motion in eastern North America.

- vol. 2: Appendices for ground motion estimation.
- vol. 3: Appendices for field investigations.
- vol. 4: Appendices for laboratory investigations.
- vol. 5: Quantification of seismic source effects.
- Frankel, A., C. Mueller, T. Barnhard, D. Perkins, E.V. Leyendecker, N. Dickman, S. Hanson, and M. Hopper (1996). "National Seismic Hazard Maps: Documentation, June 1996." U.S. Geological Survey Open-File Report 96-532.

- Hanks, T.C. and A.C. Johnston (1992). "Common features of the excitation and propagation of strong ground motion for north American earthquakes." *Bull. Seism. Soc. Am.*, 82(1), 1-23.
- Hanks, T.C., and McGuire, R.K. (1981). "The character of high-frequency strong ground motion." Bull. Seism. Soc. Am., 71, 2071-2095.
- Hsu, C-C. And M. Vucetic (1999). "Results of cyclic and dynamic simple shear tests on soils from Tazana and Rinaldi sites conducted for Rosrine Project and other research purposes." UCLA Research Report No. ENG-99-205.
- Idriss, I. M. (1991). "Earthquake ground motions at soft soil sites." Proceedings: 2nd Int'l Confer. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Saint Louis, Missouri, Invited Paper LP01, 2265-2272.
- Iwan, W.D. (1967). "On a class of models for the yielding behavior of continuous and composite systems." J. Appl. Mech., 34, 612-617.
- Joyner, W.B.(1995). "Advocacy Paper #4, Soil is the most appropriate reference site condition, in ATC 35-2, Preprints: National Earthquake Ground Motion Mapping Workshop, ATC.
- Joyner, W.B., T.E. Fumal, and G. Glassmoyer (1994) "Empirical spectral response ratios for strong motion data from the 1989 Loma Prieta, California, Earthquake." Proc. of The NCEER/SEAOC/BSSC Workshop on Site Response During Earthquakes and Seismic Code Provisions, edited by G.R. Martin, University of Southern California.
- Joyner, H.B. and D.M. Boore (1988) "Measurement, characteristics and prediction of strong ground motion." State-of-the-Art Report, Proc., Specialty Conf. on Earthquake Engineering and Soil Dynamics II--Recent Adv. in Ground Motion Evaluation, ASCE, Partk City, Utah, 43-102.
- Joyner, W.B., and A.T.F.Chen (1975). "Calculation of nonlinear ground response in earthquake." Bull. Seism. Soc. Am., 65(5), 1315-1336.
- Campbell, K. W. (1997). "Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity and pseudo-absolute acceleration response spectra." Seism. Res. Lett. 68(1), 154-179
- Kimball, J., and C. Costantino (1999). "Site response factors for the eastern United States as compared to NEHRP 97 recommendations." *Proc. of the BNL*, *NEA/CSNI/R(2000)2*.
- Kircher, C.A. (1999). "United States building code approach to variations in regional seismicity." Invited Paper - 1999 Annual Meeting of the New Zealand Society of Earthquake Engineering, Rotorua, New Zealand.

- Kircher, C.A. (1998). "New ground shaking design criteria." SEWC Structural Engineers World Congress, San Francisco, California.
- Lee, M.K.W., W.D.L. Finn and W.D. Liam (1978). "DESRA-2" Dynamic effective stress response analysis of soil deposit with energy transmitting boundary including assessment of liquefaction potential."Department of Civil Engineering, University of British Columbia.
- Lin, H., Hwang, H. H-M., and Huo, J-R. (1996). "A study on site coefficients for new site categories specified in the NEHRP provisions." Center for Earthquake Research and Information, The University of Memphis. Memphis, Tennessee.
- McGuire, R.K., A.M. Becker, and N.C. Donovan (1984). "Spectral estimates of seismic shear waves." Bull. Seism. Soc. Am., 74(4), 1427-1440.
- Marek, A.R., J.D. Bray and N. Abrahamson (1998). "Task 3: Characterization of site response general site categories." Research supported by the Pacific Engineering Earthquake Center, PG&E and the David and Lucile Packard Foundation.
- Martin, G.R., editor, (1994). "Proc. Of the NCEER/SEAOC/BSSC Workshop on Site Response During Earthquakes and Seismic Code Provisions, University of S. Calif., Los Angeles.
- Martin, G.R., and Dobry, R. (1994). "Earthquake site response and seismic code provisions." *NCEER* Bulletin, 8(4).
- Mathieson, R.B. et al., (1984). "Recommendations concerning seismic design and zonation." Critical Aspects of Earthquake Ground Motion and Bld. Damage Potential. ATC-10-1.
- NEHRP97, 1998, NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, *FEMA* 302 303, 1997 Edition.
- Qiu, P. (1997). "Earthquake induced nonlinear ground deformation analyses." Ph D. Dissertation, Department of Civil Engineering, UCLA.
- Rinne, E.E. (1994). "Development of new site coefficients for building codes." Proc. Fifth U.S. Nat. Conf. On Earthquake Engineering, Chicago, 3, 69-78.
- Sadigh, C.-Y. Chang, J.A. Egan, F. Makdisi, and R.R. Youngs (1997). "Attenuation relationships for shallow crustal earthquakes based on California strong motion data." Seism. Soc. Am., 68(1), 180-189.
- Sadigh, K., Chang, C.-Y, Abrahamson, N.A., Chiou, S.J. and Power, M.S. (1993). "Specification of Long period ground motions: Updated attenuation relationships for rock site conditions and adjustment factors for near-fault effects." in Proc. ATC-17-1, Seminar on Seismic

Isolation, Passive Energy Dissipation, and Active Control, March 11-12, San Francisco, California, 59-70.

- Schnabel, P.B., Lysmer, J., and Seed, H.B. (1972). SHAKE: a Computer Program for Earthquake Response Analysis of Horizontally Layered Sites. Earthq. Engin. Res. Center, Univ. of Calif. at Berkeley, EERC 72-12.
- Schneider, J.F., W.J. Silva, and C.L. Stark (1993). Ground motion model for the 1989
 M 6.9 Loma Prieta earthquake including effects of source, path and site. *Earthquake Spectra*, 9(2), 251-287.
- Seed, R.B, S.E. Dickenson, and C.M. Mok (1994a). "Site effects on strong shaking and seismic risk; recent developments for seismic design codes and practice." Am. Soc. Of Civil Engineering Str. Congress, 12(1), 573-578.
- Seed, R.B, S.E. Dickenson, G.A. Rau, R.K. White, and C.M. Mok (1994b). "Observations regarding seismic response analyses for soft and deep clay sites." Proc. of The NCEER/SEAOC/BSSC Workshop on Site Response During Earthquakes and Seismic Code Provisions, edited by G.R. Martin, UCLA.
- Seed, H.B. and I.M. Idriss (1970). "Soil moduli and damping factors for dynamic response analyses." Earthq. Eng. Res. Center, Univ. of Calif. at Berkeley, Report No. UCB/EERC-70/10.
- Seismology Committee of the Structural Engineers Association of California. 1996. Recommended Lateral Force Requirements and Commentary. (Sacramento, CA: SEAOC).
- Silva, W. J. R. McGuire, and C. Costantino. (1999a). "Comparison of Site Specific Soil UHS to Soil Motions Computed with Rock UHS." *Proc. of the BNL, NEA/CSNI/R(2000)2.*
- Silva, W. J., S. Li, B. Darragh, and N. Gregor (1999b). "Surface Geology Based Strong Motion Amplification Factors for the San Francisco Bay and Los Angeles Areas." *A PEARL report to PG&E/CEC/Caltrans,* Award No. SA2120-59652.
- Silva, W.J. and G. Toro (1998) "Verification of response spectral shapes and anchor points for different site categories for building design codes." California Department of Conservation, Division of Mines and Geology, Report CSMIP/97-08
- Silva, W.J., N. Abrahamson, G. Toro and C. Costantino. (1997). "Description and validation of the stochastic ground motion model." Report Submitted to Brookhaven National Laboratory, Associated Universities, Inc. Upton, New York 11973, Contract No. 770573.

- Silva, W.J. and R. Darragh (1995). "Engineering characterization of earthquake strong ground motion recorded at rock sites." Palo Alto, Calif:Electric Power Research Institute, TR-102261.
- Silva, W.J. (1992). "Factors controlling strong ground motions and their associated uncertainties." Dynamic Analysis and Design Considerations for High Level Nuclear Waste Repositories, ASCE 132-161.
- Silva, W.J. (1991). "Global characteristics and site geometry." Chapter 6 in Proceedings: NSF/EPRI Workshop on Dynamic Soil Properties and Site Characterization. Palo Alto, Calif.: Electric Power Research Institute, NP-7337.
- Silva, W.J., R.B. Darragh, and I.G. Wong (1990). "Engineering characterization of earthquake strong ground motions with applications to the Pacific Northwest." in Hays, W.W., ed., Proceedings of the Third NEHRP Workshop on earthquake Hazards in the Puget sound/Portland region, U.S. geological Survey Open-File report.
- Silva, W.J., and Green, R.K. (1989). "Magnitude and distance scaling of response spectral shapes for rock sites with applications to North American tectonic environment." *Earthquake Spectra*, 5(3), 591-624.
- Silva, W. J.; Turcotte, T.; Moriwaki, Y. (1988). "Soil Response to Earthquake Ground Motion," Electric Power Research Institute, Walnut Creek, California, Report No. NP-5747.
- Silva, W.J., Lee, K. (1987) "WES RASCAL code for synthesizing earthquake ground motions" State-of-the-Art for Assessing Earthquake Hazards in the United States, Report 24, U.S. Army Engineers Waterways Experiment Station, Misc. Paper S-73-1.
- Silva, W.J. (1976). "Body Waves in a Layered Anelastic soilid." Bull. Seis. Soc. Am., vol. 66(5), 1539-1554.
- Toro, G.R., N.A. Abrahamson, and J.F. Schneider (1997). "Model of strong ground motions from earthquakes in Central and Eastern North America: Best estimates and uncertainties." Seism. Res. Lett., 68(1), 41-57.
- Toro, G.R., Silva, W.J., McGuire, R.K., and Herrmann, R.B. (1992). "Probabilistic seismic hazard mapping of the Mississippi embayment." Seism. Res. Letters, 63(3), 449-500.
- Toro, G.R., and McGuire, R.K. (1987). "An investigation into earthquake ground motion characteristics in eastern North America." Bull. Seism. Soc. Am., 77, 468-489.
- Uniform Building Code (1997) Uniform Building Code. "Published by International Conference of Building Officials, Whittier, California.

- Wills, C.J. and W.J. Silva (1998). "Shear-wave velocity characteristics of geologic units in California." *Earthquake Spectra*, 14(3), 533-556.
- Vucetic, M., C-C Hsu, and M. Doroudian (1998). "Results of cyclic and dynamic simple shear tests on soils from La Ciengca site conducted for Rosrine Project and other research purposes." UCLA Research Report, No. ENG-98-200
- Vucetic, M. and R. Dobry (1991). "Effects of Soil Plasticity on Cyclic Response," Journal of Geotechnical Engineering, ASCE, 117(1), 89-107.

Table 1

SITE CLASSIFICATIONS

Average shear-wave velocity to a depth of 30m (\approx 100 ft) is:

NEHRP 1994	UBC 1997
A = > 1,500 m/s	5,000 ft/sec
$B = 760 - 1,500 (1,130)^*$	2,500 - 5,000 (3,750)*
$C = 360 - 760 (560)^*$	1,200 - 2,500 (1,850)*
$D = 180 - 360 (270)^*$	600 - 1,200 (900) [*]
E = < 180	600 ft/sec

Soil	
Profile Type	Description
٨	Hard real with many red share ways velocity $\overline{y} > 5,000$ ft/sec (1,500 m/sec)
A	Hard rock with measured snear-wave velocity, $v_s > 5,000$ firsec (1,500 firsec)
В	Rock with 2,500 fi/sec $\langle v_s \leq 5,000$ fi/sec $\langle 100$ m/sec $\langle v_s \leq 1,500$ m/sec)
С	Very dense soil and soft rock with 1,200 ft/sec $\langle v_s \leq 2,500 \text{ ft/sec} (360 \text{ m/sec} < \overline{v_s} \leq 760 \text{ m/sec})$ or with either $\overline{N} > 50$ or $\overline{S_u} \geq 2,000 \text{ psf}(100 \text{ kPa})$
D	Stiff soil with 600 ft/sec $< \overline{v_s} \le 1,200$ ft/sec (180 m/sec $< \overline{v_s} \le 360$ m/sec) or with either $15 \le \overline{N} \le 50$ or $1,000$ psf $\le \overline{S_u} \le 2,000$ psf (50 kPa $\le \overline{S_u} \le 100$ kPa)
E	A soil profile with $\overline{v_s} < 600$ ft/sec (180 m/sec) or any profile with more than 10 ft (3m) of soft clay defined as soil with $PI > 20$, $\omega \ge 40\%$, and $\overline{S_u} < 500$ psf (25 kPa)
F	Soil requiring site-specific evaluations:
	i. Soil vulnerable to potential failure or collapse under seismic loading such as liquefiable soils, quick and highly sensitive clayss, collapsible weakly cemented soils.
	2. Peats and/or highly organic clays $(H > 10 \text{ ft } (3m) \text{ of peat and/or highly} organic clay where H = \text{thickness of soil})$
	3. Very high plasticity clays ($H > 25$ ft (8m) with $PI > 75$)
	4. Very thick soft/medium stiff clays ($H > 120$ ft (36m))
	Exception: When the soil properties are not shown in sufficient detail to determine the Soil Profile Type, Type D shall be used. Soil Profile Types E or F need not be assumed unless the regulatory agency determines that Types E or F may be present at the site or in the event that Types E or F are established by the geotechnical data.

^{*}Mid-range values adopted for amplification factors

Table 1 (Cont.)

SITE CLASSIFICATIONS

GEOMATRIX Site Classification

Geotechnical subsurface characteristics (Robert Youngs, personal communications)

- A = Rock. Instrument on rock ($V_s > 600$ mps or < 5m of soil over rock.
- B = Shallow (stiff) soil. Instrument on/in soil profile up to 20m thick overlying rock.
- C = Deep narrow soil. Instrument on/in soil profile at least 20m thick overlying rock, in a narrow canyon or valley no more than several km wide.
- D = Deep broad soil. Instrument on/in a soil profile at least 20m thick overlying rock, in a broad valley.
- E = Soft deep soil. Instrument on/in deep soil profile with average $V_s < 150$ mps.

Relations To Building Code Classifications

<u>UBC</u>	<u>NEHRP</u>	<u>GEOMATRIX</u>
S 1	B+C	A + B
S2	C + D	C + D
S 3	Ε	Ε
S4		

1997 UBC NEAR-SOURCE FACTOR, N _A									
Seismic Source	Closest Distance to Active Source								
	≤ 2 km	5 km	10 km						
Туре А	1.5	1.2	1.0						
Type B	1.2	1.0	1.0						
Type C	1.0	1.0	1.0						

	Table 1 (Cont.)									
1997 UBC NEAR-SOURCE FACTOR, N _v										
Seismic Source	Close	est Distance to Active So	ource							
	≤ 2 km	5 km	10 km							
Type A	2.0	1.6	1.2							
Type B	1.6	1.2	1.0							
Туре С	1.0	1.0	1.0							
	1997 UBC Seismic Source Types									
Seismic Source	Seismic Source	Source Properties								
	Description	Maximum Moment Magnitude, M	Slip Rate, SR (mm/year)							
Type A	Capable of Producing Large Magnitude Events <u>and</u> High Rate of Seismic Activity	M ≥7.0	SR ≥ 5							
Туре В	Not Type A or Type C Seismic Source									
Type C	Not Capable of Producing Large Magnitude Events <u>and</u> Low Rate of Seismic Activity	M < 6.5	SR ≤ 2							

.

.

Table 2 SURFACE GEOLOGY BASED PROFILES, SITE CLASSES, AND DYNAMIC MATERIAL PROPERTIES										
SAN FRANCISCO BAY AREA										
Geology	Average Velocity over	Site (Classes	Number of Profiles	G/Gmax and Hysteretic					
	30m	USGS	NEHRP	Tiomes	Damping					
K _{jf} (Franciscan)	771.44 m/s	Α	В	30	Generic rock					
TM _{zs} (Tertiary Bedrock)	506.13 m/s	В	С	18	Generic rock					
QT _s (Quaternary/Tertiary)	466.12 m/s	В	С	9	EPRI					
Q _{oa} (older alluvium)	353.44 m/s	C	D	16	EPRI					
Q _{al} (Quaternary alluvium)	296.49 m/s	C	D	37	EPRI					
$Q_{oa} + Q_{al}$	312.15 m/s	C	D	53	EPRI					
Q _m (Bay mud)	187.87 m/s	C	D	60	Vucetic/Doby, EPRI					
170										
	LOS ANG	ELES A	REA							
Geology	Average	Site Classes		Number of	G/Gmax and					
	Velocity over 30m	USGS	NEHRP	Profiles	Hysteretic Damping					
M _{xb} (Granite)	843.78 m/s	A	В	8	Generic rock					
T _s (Saugus)	576.81 m/s	В	C	4	Peninsular Range					
T _s (Tertiary)	436.39 m/s	В	C	43	Generic rock					
Q _o (Older alluvium)	391.24 m/s	В	C	124	Peninsular Range					
$QT_{s}(Q_{o}+T_{s})$	508.61 m/s	В	C	171	Peninsular Range					
Q _y (Quaternary alluvium)	317.68 m/s	C	D	219	Peninsular Range					
				398						

Table 3 F _A and F _V VALUES									
Soil Profile		F _A For Sha	king Intensity L	evels					
Туре	$A_a \le 0.1$	$A_{a} = 0.2$	$A_{a} = 0.3$	$A_{a} = 0.4$	$A_a \ge 0.50^a$				
А	0.8	0.8	0.8	0.8	0.8				
В	1.0	1.0	1.0	1.0	1.0				
С	1.2	1.2	1.1	1.0	1.0				
D	1.6	1.4	1.2	1.1	1.0				
E	2.5	1.7	1.2	0.9	b				
F	b	b	b	b	b				
Soil Profile	F _v For Shaking Intensity Levels								
Туре	$A_{\rm V} \le 0.1$	$A_{v} = 0.2$	$A_{\rm v} = 0.3$	$A_{\rm v} = 0.4$	$A_{v} \ge 0.50^{a}$				
<u> </u>	0.8	0.8	0.8	0.8	0.8				
В	1.0	1.0	1.0	1.0	1.0				
С	1.7	1.6	1.5	1.4	1.3				
D	2.4	2.0	1.8	1.6	1.5				
Е	3.5	3.2	2.8	2.4	b				
F	b	b	b	b	b				

Fa: Evaluated over the frequency range of 2 to 10 Hz.

Fv: Evaluated over the frequency range of 0.5 to 2.5 Hz.

Note: Use straight line interpolation for intermediate values of A_a and A_v

^a Values for A_a , $A_V > 0.4$ are applicable to the provisions for seismically isolated and certain other structure

^b Site specific geotechnical investigation and dynamic site response analyses shall be performed.

	Table 4											
KAPPA VALUES FOR "AVERAGE" SITE CONDITIONS IN WUS AND CEUS												
Tectonic	"Average" Site Condition	N⁺	Median Kappa (sec)	σ_{ln}	Range of Kappa for This Site Condition (sec)							
WUS	Hard rock	11	0.026	0.58	0.010 - 0.060							
	Weathered hard rock	9	0.035	0.52	0.015 - 0.100							
	Soft rock	15	0.045	0.51	0.015 - 0.080							
	Sheared rock	4	0.062	0.41	0.040 - 0.120							
	Combined	39	0.037	0.59	0.010 - 0.120							
CEUS	Hard rock	16	0.007	0.42	0.004 - 0.016							
	Soft rock	3	0.017	0.09	0.015 - 0.018							
	Sheared rock	1	0.025		0.025							
	Combined	20	0.008	0.55	0.004 - 0.025							

*Based on template fits using spectral shapes (Silva and Darragh, 1995) *Number of records

"Average" Site Condition is defined as:

Hard Rock: WNA as granite, schist, carbonate, slate ENA as granitic pluton, carbonate, sites in Canadian Shield region (Saguenay, New Hampshire).

Weathered

- hard rock: WNA as weathered granitic rock and tonalite
- Soft rock: WNA as sandstone and breccias ENA as sandstone and claystone
- Sheared rock: WNA as site near fault zone (Gilroy #6) or greenstone site in Franciscan (Redwood City, Hayward). ENA as site near fault zone (Nahanni River Site #1)

			N	Table 5 EHRP B WU κ = 0.04 sec	S				
Target Outcrop PGA(g)	Median Outcrop PGA(g)	Median Outcrop PGV(cm/sec)	Median Outcrop PGD(cm)	Median Outcrop V/A (cm/sec/g)	Median Outcrop AD/V ² (gcm/cm/sec ²)	Dist. (km)	Depth (km)	М	Δσ (bars)
0.05	0.05	5.72	2.58	113.06	3.91	40.00	8.00	6.5	64
0.10	0.10	10.72	4.74	106.96	4.06	21.50	8.00	6.5	64
0.20	0.19	19.80	8.67	103.54	4.15	10.00	8.00	6.5	64
0.30	0.31	31.91	13.89	101.94	4.19	1.00	8.00	6.5	64
0.40	0.39	39.98	17.80	103.71	4.21	3.00	6.00	6.5	64
0.50	0.51	52.88	23.49	103.09	4.23	1.00	5.00	6.5	64
0.75	0.74	76.98	34.78	104.38	4.25	1.00	3.50	6.5	64

O(1) = 2/51 (LOS Allégies, Dascu on regional inversions, Silva et al., 177	O(f) =	=	275 f ^{0.6}	(Los Angeles:	based on r	regional	inversions,	Silva et al.,	199
--	--------	---	----------------------	---------------	------------	----------	-------------	---------------	-----

Kappa = 0.04 sec

	NEHRP B CEUS $\kappa = 0.04 \text{ sec}$											
Target Outcrop PGA(g)	Median Outcrop PGA(g)	Median Outcrop PGV(cm/sec)	Median Outcrop PGD(cm)	Median Outcrop V/A (cm/sec/g)	Median Outcrop AD/V ² (gcm/cm/sec ²)	Dist. (km)	Depth (km)	М	Δσ (bars)			
0.05	0.05	3.99	1.50	8 1.40	4.53	70.00	8.00	6.5	110			
0.10	0.10	8.17	2.99	78.90	4.56	35.00	8.00	6.5	110			
0.20	0.20	15.50	5.64	77.90	4.58	18.00	8.00	6.5	110			
0.30	0.31	24.27	8.80	77.45	4.59	10.00	8.00	6.5	110			
0.40	0.41	31.31	11.34	77.24	4.60	6.00	8.00	6.5	110			
0.50	0.51	39.03	14.12	77.09	4.60	1.00	8.00	6.5	110			
0.75	0.78	59.92	21.63	76.78	4.61	1.00	5.20	6.5	110			

 $Q(f) = 351 f^{0.84}$ (based on Saguenay inversions, Silva et al., 1997)

Kappa = 0.040 sec

	Table 5 (continue)												
	NEHRP B CEUS $\kappa = 0.02 \text{ sec}$												
Target Outcrop PGA(g)	Median Outcrop PGA(g)	Median Outcrop PGV(cm/sec)	Median Outcrop PGD(cm)	Median Outcrop V/A (cm/sec/g)	Median Outcrop AD/V ² (gcm/cm/sec ²)	Dist. (km)	Depth (km)	Μ	Δσ (bars)				
0.05	0.05	3.03	1.09	58.14	6.07	105.00	8.00	6.5	110				
0.10	0.10	5.68	1.91	54.67	6.04	55.00	8.00	6.5	110				
0.20	0.20	10.83	3.60	53.49	6.10	30.00	8.00	6.5	110				
0.30	0.30	16.00	5.30	53.10	6.12	20.00	8.00	6.5	110				
0.40	0.41	21.68	7.16	52.90	6.12	14.00	8.00	6.5	110				
0.50	0.52	27.54	9.08	52.82	6.12	10.00	8.00	6.5	110				
0.75	0.76	40.14	13.20	52.83	6.11	7.20	5.20	6.5	110				

 $Q(f) = 351 f^{0.84}$ (based on Saguenay inversions, Silva et al., 1997)

Kappa = 0.020 sec

Tab	le 6
PROFILE DEPT	H CATEGORIES
Category (ft)	Depth Range (ft)
125	80 - 180
250	180 - 400
500	400 - 750
1,000	750 - 1,500
Base Cases	
Categories C and D	100 - 1,000
Category E	100 - 650

	Table 7: 5	& RESPOI	VE SPECTRA FOI	R NEHRP B FAULT CLAS	SS A (M GE	(-			
	Date & Time			C	Closest Si	te	Filter (Corner	ŝ
No. Earthquake	YEAR MODY HRMN	Mag	Own No.	Station	Dist Co	des	НР І	d.	PGA
					(km) Geom	nsgs	(hz) (ł	(zı	(g)
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU052	0.	A	.00.	00.	.448
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU052	0.	A	.00	00.	.356
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU078	0.	A	.00	00.	.307
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU078	0.	A	.00	00.	.449
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU079	0.	A	.00	00.	.425
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU079	0.	A	00.	00.	.592
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU084	0.	A	.00	00.	.431
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU084	0.	A	00.	.00	1.009
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU089	0.	A	00.	00.	.229
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU089	0.	A	00.	.00	.355
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU072	.2	A	00.	.00	.378
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU072	.2	A	00.	.00	.474
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU067	.3	A	00.	.00	.319
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU067	.3	A	.00	.00	.499
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU065	6.	A	00.	.00	.574
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU065	6.	A	.00	00.	.789
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU071	1.0	A	.00	.00	.651
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU071	1.0	A	.00	00.	.528
0129 Landers	1992 0628 1158	7.3	CDMG 24	Lucerne #	1.1 A-A	A	.00 60	00.	.727
0129 Landers	1992 0628 1158	7.3	CDMG 24	Lucerne #	1.1 A-A	A	,00 60	.00	.789
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU087	3.1	A	.00	00.	.114
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU087	3.1	A	00.	00.	.121
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	CHY080	6.7	A	.00	.00	.859
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	CHY080	6.7	A	.00	00.	.808
0127 Cape Mendocino	1992 0425 1806	7.1	CDMG 89005	Cape Mendocino #	8.5 IFA	A	.07 23	.00	1.497
0127 Cape Mendocino	1992 0425 1806	7.1	CDMG 89005	Cape Mendocino #	8.5 IFA	A	.07 23	.00	1.039
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	ALS	12.2	A	.00	.00	.149
	Table 7: 5% RE	SPONE SP	ECTRA FOR NE	HRP B FAULT CLASS A	(M GE 7)	(Cont	.		
----------------------	----------------	----------	--------------	---------------------	-------------	--------	--------------	--------	------
	Date & Time				Closest Sit	e L	Filter	Corner	ŝ
No. Earthquake	YEAR MODY HRMN	Mag	Own No.	Station	Dist Coo	des	ЧH	LP	PGA
					(km) Geom	USGS	(pz)	(pz)	(d)
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	ALS	12.2	A	.00	.00	.217
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	CHY074	12.2	A	.00	.00	.160
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	CHY074	12.2	A	.00	.00	.234
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU045	24.0	A	00.	.00	.522
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU045	24.0	A	.00	.00	.472
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU034	32.9	A	00.	00.	.105
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU034	32.9	A	.00	00.	.253
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU047	33.0	A	.00	.00	.407
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU047	33.0	A	.00	.00	.298
0143 Duzce, Turkey	1999 1112	7.1	ERD 99999	Mudurnu	34.6A	I	.08	.00	.123
0143 Duzce, Turkey	1999 1112	7.1	ERD 99999	Mudurnu	34.6A	I	.08	.00	.059
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	CHY042	34.9	A	.00	.00	.066
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	CHY042	34.9	A	.00	.00	.100
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	CHY086	35.4	A	.00	.00	.206
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	CHY086	35.4	A	.00	00.	.102
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	NST	36.9	A	.00	.00	.398
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	NST	36.9	A	.00	.00	.311
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	HWA024	39.5	A	00.	.00	.025
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	HWA024	39.5	A	00.	.00	.022
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	KAU054	39.6	A	00.	.00	.080
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	KAU054	39.6	A	00.	.00	.086
0129 Landers	1992 0628 1158	7.3	CDMG 22161	Twentynine Palms #	41.9 AGA	A	.12 2	3.00	.080
0129 Landers	1992 0628 1158	7.3	CDMG 22161	Twentynine Palms #	41.9 AGA	A	.12 2	3.00	.060
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	HWA056	44.4	A	00.	.00	.108
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	HWA056	44.4	A	00.	.00	.104
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	CHY052	45.0	A	.00	.00	.154

		Table 7: 5% RES	PONE SPEC	TRA FO	DR NEH	RP B FAULT CLASS A	(M GE	7) (Cont	<u>.</u>		
		Date & Time					Closest	Site	Filter	Corner	ŝ
No. Earthquake	a	YEAR MODY HRMN	Mag C	[UM(No.	Station	Dist	Codes	НР	LP	PGA
1							(Ikm)	eom USGS	(hz)	(yz)	(g)
0142 Chi-Chi, T	laiwan	1999 0920	7.6	CWB 9	6666	СНҮ052	45.0 -	A	00.	.00	.086
0142 Chi-Chi, 1	ľaiwan	1999 0920	7.6	CWB 9	6666	CHY102	45.9 -	A	00.	.00	.050
0142 Chi-Chi, 1	ľaiwan	1999 0920	7.6	CWB 9	6666	CHY102	45.9 -	A	00.	.00	.042
0142 Chi-Chi, 1	Taiwan	1999 0920	7.6	CWB 9	6666	СНУО81	47.7 -	A	00.	.00	.045
0142 Chi-Chi, 1	Taiwan	1999 0920	7.6	CWB 9	6666	СНУО81	47.7 -	A	00.	.00	.054
0142 Chi-Chi, 1	Taiwan	1999 0920	7.6	CWB 9	6666	CHY050	50.0 -	A	00.	.00	.067
0142 Chi-Chi, ¹	Taiwan	1999 0920	7.6	CWB 9	6666	CHY050	50.0 -	A	00.	00.	.107

•

Table 8	: 5%	RESPONE	SPECTRA	FOR	NEHRP	B	FAULT	CLASS	В	(M 6.	5 70	0 6.	(66		
c Time												CI	sest Si	te	н. Н

	Date & Time				Closest Site	Filter	Corner	ŝ
No. Earthquake	YEAR MODY HRMN	Mag	OWN No.	Station	Dist Codes	НР	СР	PGA
					(km) Geom US	(Z() (3) (3) (3) (3)	(zu	(đ)
0030 San Fernando	1971 0209 1400	6.6	279	Pacoima Dam	.0 AMB /	1.10.35	00.	1.226
0030 San Fernando	1971 0209 1400	6.6	279	Pacoima Dam	.0 AMB /	1.50 35	00.	1.160
0131 Northridge	1994 0117 1231	6.7	CDMG 24207	Pacoima Dam (downstr) #	.0 AGA 1	1.16 23	.00	.415
0131 Northridge	1994 0117 1231	6.7	CDMG 24207	Pacoima Dam (downstr) #	.0 AGA 1	1.16 23	.00	.434
0133 Kobe	1995 0116 2046	6.9	CEOR 99999	Kobe University	.2A I	1 .10 30	.00	.290
0133 Kobe	1995 0116 2046	6.9	CEOR 99999	Kobe University	.2A I	1 .10 30	.00	.310
0041 Gazli, USSR	1976 0517	6.8	9201	Karakyr	3.0 AAA -	50 38	.00	.608
0041 Gazli, USSR	1976 0517	6.8	9201	Karakyr	3.0 AAA -	50 38	.00	.718
0099 Nahanni, Canada	1985 1223	6.8	6097	Site 1	6.0 IZA -	05 62	.00	.978
0099 Nahanni, Canada	1985 1223	6.8	6097	Site 1	6.0 IZA -	05 62	00.	1.096
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 16	LGPC	6.1A -	10	.00	.563
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 16	LGPC	6.1A -	. 10	.00	.605
0099 Nahanni, Canada	1985 1223	6.8	6098	Site 2	8.0 IZA	10 62	.00	.489
0099 Nahanni, Canada	1985 1223	6.8	6098	Site 2	8.0 IZA	05 62	.00	.323
0131 Northridge	1994 0117 1231	6.7	CDMG 24207	Pacoima Dam (upper left) #	8.1 IGA 1	A .16 23	00.	1.585
0131 Northridge	1994 0117 1231	6.7	CDMG 24207	Pacoima Dam (upper left) #	8.1 IGA 1	A .16 23	.00	1.285
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 13	BRAN	10.3A	10	.00	.453
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 13	BRAN	10.3A	10	.00	.501
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 47379	Gilroy Array #1	10.5 IFA 1	A .20 50	.00	.411
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 47379	Gilroy Array #1	10.5 IFA 1	A .20 50	.00	.473
0099 Nahanni, Canada	1985 1223	6.8	6609	Site 3	16.0 IZA	10 62	.00	.148
0099 Nahanni, Canada	1985 1223	6.8	6609	Site 3	16.0 IZA	05 62	.00	.139
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 57217	Coyote Lake Dam (SW Abut)	21.8 IFA	10 31	.00	.151
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 57217	Coyote Lake Dam (SW Abut)	21.8 IFA	10 33	.00	.484
0030 San Fernando	1971 0209 1400	6.6	266	Pasadena - Old Seismo Lab	21.9 CGA	A .50 35	.00	.089
0030 San Fernando	1971 0209 1400	6.6	266	Pasadena - Old Seismo Lab	21.9 CGA	A .50 35	.00	.202

	Table 8: 5% I	RESPONE	SPECTRA FOR	NEHRP B FAULT CLASS B (M 6.5 TO 6.	99) (CONT.)		
	Date & Time				Closest Site	Filter Co.	rners
No. Earthquake	YEAR MODY HRMN	Mag	OWN No.	Station	Dist Codes	НР LP	PGA
					(km) Geom US	GS (hz) (hz	(g) (
0131 Northridge	1994 0117 1231	6.7	CDMG 90017	LA - Wonderland Ave	22.7A H	13 30.0	0 .112
0131 Northridge	1994 0117 1231	6.7	CDMG 90017	LA - Wonderland Ave	22.7A H	1.10 30.0	0 .172
0030 San Fernando	1971 0209 1400	6.6	104	Santa Anita Dam	27.0 IGA -	20 35.0	0 .151
0030 San Fernando	1971 0209 1400	6.6	104	Santa Anita Dam	27.0 IGA -	20 35.0	0 .212
0030 San Fernando	1971 0209 1400	6.6	285	Santa Felita Dam (Outlet)	27.5 ABA	10 20.0	0 .148
0030 San Fernando	1971 0209 1400	6.6	285	Santa Felita Dam (Outlet)	27.5 ABA	10 13.0	0 .152
0030 San Fernando	1971 0209 1400	6.6	121	Fairmont Dam	29.1 AGA -	50 35.0	0 .071
0030 San Fernando	1971 0209 1400	6.6	121	Fairmont Dam	29.1 AGA	50 35.0	0 .109
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 1032	Hollister - SAGO Vault	29.9 FGA 1	A .10 32.0	0 .036
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 1032	Hollister - SAGO Vault	29.9 FGA 1	A .10 31.0	090.060
0121 Spitak, Armenia	1988 1207	6.8	12	Gukasian	30.0 A-A	50 25.0	0 .199
0121 Spitak, Armenia	1988 1207	6.8	12	Gukasian	30.0 A-A	50 25.0	0 .175
0131 Northridge	1994 0117 1231	6.7	CDMG 24592	LA - City Terrace #	35.4 IMA	20 46.0	0 .263
0131 Northridge	1994 0117 1231	6.7	CDMG 24592	LA - City Terrace #	35.4 IMA	20 46.0	0 .316
0131 Northridge	1994 0117 1231	6.7	CDMG 24305	Leona Valley #1 #	37.7 IGA	20 23.0	0.089
0131 Northridge	1994 0117 1231	6.7	CDMG 24305	Leona Valley #1 #	37.7 IGA	20 23.0	0 .073
0131 Northridge	1994 0117 1231	6.7	CDMG 24307	Leona Valley #3 #	37.8 IGA	A .20 23.0	0 .084
0131 Northridge	1994 0117 1231	6.7	CDMG 24307	Leona Valley #3 #	37.8 IGA	A .20 23.0	0 .106
0131 Northridge	1994 0117 1231	6.7	CDMG 24399	Mt Wilson - CIT Seis Sta #	37.8 IGA	A .08 .0	0 .234
0131 Northridge	1994 0117 1231	6.7	CDMG 24399	Mt Wilson - CIT Seis Sta #	37.8 IGA	A .08 .0	0 .134
0131 Northridge	1994 0117 1231	6.7	CDMG 90019	San Gabriel - E Grand Ave	39.5A	A .13 30.0	0 .141
0131 Northridge	1994 0117 1231	6.7	CDMG 90019	San Gabriel - E Grand Ave	39.5A	A .10 30.0	0 .256
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 47377	Monterey City Hall	42.7 CGA	A .20 28.0	0 .073
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 47377	Monterey City Hall	42.7 CGA	A .20 22.0	0 .063
0131 Northridge	1994 0117 1231	6.7	CDMG 24644	Sandberg - Bald Mtn #	43.4 IGB	A .12 46.0	0.091
0131 Northridge	1994 0117 1231	6.7	CDMG 24644	Sandberg - Bald Mtn #	43.4 IGB	A .12 46.0	0.098

Table 8: 5% RESPONE SPECTRA FOR NEHRP B FAULT CLASS B (M 6.5 TO 6.99) (Cont.)

.

	Date & Time				Closest	Site	Filter Con	ners
No. Earthquake	YEAR MODY HRMN	Mag	OWN NO	. Station	Dist	Codes	нр цр	PGA
					(Jkm) (seom USG	(zq) (hz)	(g)
0131 Northridge	1994 0117 1231	6.7	CDMG 243	10 Antelope Buttes #	48.4]	IGA A	.12 23.00	.046
0131 Northridge	1994 0117 1231	6.7	CDMG 243	10 Antelope Buttes #	48.4]	IGA A	.12 23.00	.068
0133 Kobe	1995 0116 2046	6.9	CEOR 999	99 Chihaya	48.7 -	A A	.05 40.00	.093
0133 Kobe	1995 0116 2046	6.9	CEOR 999	99 Chihaya	48.7 -	A A	.08 40.00	.108
0131 Northridge	1994 0117 1231	6.7	CDMG 235	95 Littlerock - Brainard Can #	49.7	IGA A	.20 46.00	.072
0131 Northridge	1994 0117 1231	6.7	CDMG 235	95 Littlerock - Brainard Can #	49.7	IGA A	.20 46.00	.060

•

Table 9: 5% RESPONE SPECTRA FOR NEHRP B FAULT CLASS C (M 5.75 TO 6.49)

	Date & Time					Closest Site	ыц (1)	ilter Corne	rs
No. Earthquake	YEAR MODY HRMN	Mag	0wn N	lo.	Station	Dist Cod	S	НР ЦР	PGA
						(km) Geom l	usgs	(yz) (yz)	(ð)
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 57	1217	Coyote Lake Dam (SW Abut)	.1 IFA	I	.10 39.00	.711
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 51	1217	Coyote Lake Dam (SW Abut)	.1 IFA	I	.10 45.00	1.298
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90	019	San Gabriel - E Grand Ave #	4.1A	A	.35 25.00	.304
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 9(019	San Gabriel - E Grand Ave #	4.1A	A	.35 25.00	.199
0080 Coalinga	1983 0722 0239	5.8	USGS 1	l 651	Transmitter Hill	4.5 APA	i	.10 30.00	.840
0080 Coalinga	1983 0722 0239	5.8	USGS	1651	Transmitter Hill	4.5 APA	ł	.08 40.00	1.083
0080 Coalinga	1983 0722 0239	5.8	USGS	1703	Sulphur Baths (temp)	5.5 APA	i	.30 25.00	.141
0080 Coalinga	1983 0722 0239	5.8	USGS	1703	Sulphur Baths (temp)	5.5 APA	ı	.30 25.00	.127
0103 N. Palm Springs	1986 0708 0920	6.0	USGS	5072	Whitewater Trout Farm	7.3 AHC	A	.10 40.00	.492
0103 N. Palm Springs	1986 0708 0920	6.0	USGS	5072	Whitewater Trout Farm	7.3 AHC	A	.15 45.00	.612
0080 Coalinga	1983 0722 0239	5.8	nsgs	1608	Oil Fields Fire Station - FF	7.4 IPA	ı	.20 30.00	.219
0080 Coalinga	1983 0722 0239	5.8	USGS	1608	Oil Fields Fire Station - FF	7.4 IPA	I	.10 30.00	.187
0080 Coalinga	1983 0722 0239	5.8	nsgs	1608	Oil Fields Fire Station Pad	7.4 APA	ı	.05 30.00	.217
0080 Coalinga	1983 0722 0239	5.8	USGS	1608	Oil Fields Fire Station Pad	7.4 APA	ı	.08 25.00	.210
0001 Helena, Montana	1935 1031 1838	6.2		2022	Carroll College	8.0 EZA	ł	.20 15.00	.150
0001 Helena, Montana	1935 1031 1838	6.2		2022	Carroll College	8.0 EZA	ı	.20 15.00	.173
0036 Oroville	1975 0801 2020	6.0	CDWR	1051	Oroville Seismograph Station	8.0 AJA	1	1.00 10.00	.092
0036 Oroville	1975 0801 2020	6.0	CDWR	1051	Oroville Seismograph Station	8.0 AJA	1	1.00 10.00	.072
0080 Coalinga	1983 0722 0239	5.8	USGS	1605	Skunk Hollow	9.2 APA	ı	.07 30.00	.375
0080 Coalinga	1983 0722 0239	5.8	USGS	1605	Skunk Hollow	9.2 APA	I	.10 30.00	.233
0056 Mammoth Lakes	1980 0525 1634	6.3	CDMG 5	4214	Long Valley Dam (Upr L Abut)	15.5 IVA	ı	.10 57.00	.430
0056 Mammoth Lakes	1980 0525 1634	6.3	CDMG 5	4214	Long Valley Dam (Upr L Abut)	15.5 IVA	ı	.10 50.00	.271
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 4	7379	Gilroy Array #1	16.2 IFA	A	.10 29.00	.069
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 4	7379	Gilroy Array #1	16.2 IFA	A	.10 40.00	.098
0060 Mammoth Lakes	1980 0526 1858	6.1	CDMG 5	4214	Long Valley Dam (Upr L Abut)	17.5 IVA	ī	.50 31.00	.110
0060 Mammoth Lakes	1980 0526 1858	6.1	CDMG 5	4214	Long Valley Dam (Upr L Abut)	17.5 IVA	I	.50 23.00	.071

	Table 9: 5% R	ESPONE 3	SPECTRA FOR N	IEHRP B FAULT CLASS C (M 5.75 TO 6.	19) (Cont.)			
	Date & Time				Closest Site	E i	lter Corner	S
No. Earthquake	YEAR MODY HRMN	Mag	Own No.	Station	Dist Code	S	нр цр	PGA
					(km) Geom U	ISGS ((z4) (z4	(g)
0104 Chalfant Valley	1986 0720 1429	5.9	CDMG 54424	Bishop - Paradise Lodge	18.4 AVA	•	11 30.00	.046
0104 Chalfant Valley	1986 0720 1429	5.9	CDMG 54424	Bishop - Paradise Lodge	18.4 AVA	1	13 30.00	.095
0058 Mammoth Lakes	1980 0525 1944	6.0	CDMG 54214	Long Valley Dam (Downst)	19.7 IVA		15 40.00	.107
0058 Mammoth Lakes	1980 0525 1944	6.0	CDMG 54214	Long Valley Dam (Downst)	19.7 IVA	•	20 35.00	.070
0058 Mammoth Lakes	1980 0525 1944	6.0	CDMG 54214	Long Valley Dam (L Abut)	19.7 IVA		35 50.00	.104
0058 Mammoth Lakes	1980 0525 1944	6.0	CDMG 54214	Long Valley Dam (L Abut)	19.7 IVA	•	20 50.00	.077
0058 Mammoth Lakes	1980 0525 1944	6.0	CDMG 54214	Long Valley Dam (Upr L Abut)	19.7 IVA	•	20 40.00	.484
0058 Mammoth Lakes	1980 0525 1944	6.0	CDMG 54214	Long Valley Dam (Upr L Abut)	19.7 IVA	•	10 40.00	.188
0061 Mammoth Lakes	1980 0527 1451	6.0	CDMG 54214	Long Valley Dam (Upr L Abut)	20.0 IVA	•	50 40.00	.921
0061 Mammoth Lakes	1980 0527 1451	6.0	CDMG 54214	Long Valley Dam (Upr L Abut)	20.0 IVA	•	20 51.00	.408
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 24399	Mt Wilson - CIT Seis Sta	21.2 IGA	A.	60 40.00	.123
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 24399	Mt Wilson - CIT Seis Sta	21.2 IGA	Ъ.	70 40.00	.186
0105 Chalfant Valley	1986 0721 1442	6.2	CDMG 54424	Bishop - Paradise Lodge	23.0 AVA		20 30.00	.165
0105 Chalfant Valley	1986 0721 1442	6.2	CDMG 54424	Bishop - Paradise Lodge	23.0 AVA		10 40.00	.161
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90017	LA - Wonderland Ave #	24.6A	۲. ۲	53 25.00	.039
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90017	LA - Wonderland Ave #	24.6A	A A	70 25.00	.047
0076 Coalinga	1983 0502 2342	6.4	CDMG 36177	Parkfield – Vineyard Cany 2E	24.6 IFA		20 30.00	.161
0103 N. Palm Springs	1986 0708 0920	6.0	USGS 12206	Silent Valley - Poppet Flat	25.8 IGA	۲. ح	50 47.00	.139
0103 N. Palm Springs	1986 0708 0920	6.0	USGS 12206	Silent Valley - Poppet Flat	25.8 IGA	A A	50 49.00	.113
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 108	Carbon Canyon Dam (L Abut)	26.8 AMA		80 40.00	.200
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 108	Carbon Canyon Dam (L Abut)	26.8 AMA		50 40.00	.221
0076 Coalinga	1983 0502 2342	6.4	CDMG 46175	Slack Canyon	27.7 IGA	1	20 21.00	.166
0076 Coalinga	1983 0502 2342	6.4	CDMG 46175	Slack Canyon	27.7 IGA		20 21.00	.153
0076 Coalinga	1983 0502 2342	6.4	CDMG 36438	Parkfield - Stone Corral 4E	29.6 IMA	1	20 21.00	.063
0076 Coalinga	1983 0502 2342	6.4	CDMG 36438	Parkfield - Stone Corral 4E	29.6 IMA	1	20 22.00	.072
0076 Coalinga	1983 0502 2342	6.4	CDMG 36437	Parkfield - Stone Corral 3E	31.8 IMA	ı	20 23.00	.151

Table 9: 5% RESPONE SPECTRA FOR NEHRP B FAULT CLASS C (M 5.75 TO 6.49) (Cont.)

.

	Date & Time					Closest Site	ίμ Α	ilter Corner	S
No. Earthquake	YEAR MODY HRMN	Mag	Own N		Station	Dist Code	S	НР LP	PGA
•						(km) Geom U	ISGS	(pz) (hz)	(g)
0076 Coalinga	1983 0502 2342	6.4	CDMG 36	437 I	Parkfield - Stone Corral 3E	31.8 IMA	ı	.20 30.00	.106
0076 Coalinga	1983 0502 2342	6.4	CDMG 36	176 1	Parkfield - Vineyard Cany 3W	32.3 IPA	I	.20 30.00	.098
0076 Coalinga	1983 0502 2342	6.4	CDMG 36	176 1	Parkfield - Vineyard Cany 3W	32.3 IPA	I	.20 30.00	.137
0105 Chalfant Valley	1986 0721 1442	6.2	CDMG 54	214]	Long Valley Dam (Downst)	33.4 IVA	I	.10 40.00	.095
0105 Chalfant Valley	1986 0721 1442	6.2	CDMG 54	214]	Long Valley Dam (Downst)	33.4 IVA	ı	.10 40.00	.056
0105 Chalfant Valley	1986 0721 1442	6.2	CDMG 54	214	Long Valley Dam (L Abut)	33.4 IVA	ı	.10 50.00	.082
0105 Chalfant Valley	1986 0721 1442	6.2	CDMG 54	214	Long Valley Dam (L Abut)	33.4 IVA	ı	.10 50.00	.074
0076 Coalinga	1983 0502 2342	6.4	CDMG 36	422	Parkfield - Stone Corral 2E	34.4 IMA	I	.20 25.00	.061
0076 Coalinga	1983 0502 2342	6.4	CDMG 36	422	Parkfield - Stone Corral 2E	34.4 IMA	I	.20 30.00	.095
0043 Friuli, Italy	1976 0915 0315	6.1	ω	022	San Rocco	36.1 ABA	I	.10 32.00	.060
0043 Friuli, Italy	1976 0915 0315	6.1	ω	022	San Rocco	36.1 ABA	ı	.10 33.00	.134
0045 Santa Barbara	1978 0813	6.0	USGS	106	Cachuma Dam Toe	36.6 AAA	I	.10 36.00	.072
0045 Santa Barbara	1978 0813	6.0	nsgs	106	Cachuma Dam Toe	36.6 AAA	I	.20 30.00	.034
0076 Coalinga	1983 0502 2342	6.4	CDMG 36	6450	Parkfield - Cholame 3E	38.4 IMA	I	.20 23.00	.044
0076 Coalinga	1983 0502 2342	6.4	CDMG 36	6450	Parkfield – Cholame 3E	38.4 IMA	I	.20 22.00	.056
0105 Chalfant Valley	1986 0721 1442	6.2	CDMG 54	101	Tinemaha Res. Free Field	40.6 AVA	ı	.50 30.00	.037
0105 Chalfant Valley	1986 0721 1442	6.2	CDMG 54	101	Tinemaha Res. Free Field	40.6 AVA	ı	.50 30.00	.037
0061 Mammoth Lakes	1980 0527 1451	6.0	CDMG 54	1424	Bishop - Paradise Lodge	43.7 AVA	I	.20 40.00	.091
0061 Mammoth Lakes	1980 0527 1451	6.0	CDMG 54	1424	Bishop - Paradise Lodge	43.7 AVA	ı	.20 40.00	.114
0103 N. Palm Springs	1986 0708 0920	6.0	nsgs 3	5230	Santa Rosa Mountain	43.8 AGA		.50 60.00	.102
0103 N. Palm Springs	1986 0708 0920	6.0	nsgs (5230	Santa Rosa Mountain	43.8 AGA	-	50 60.00	.103
0103 N. Palm Springs	1986 0708 0920	6.0	nsgs (5224	Anza - Red Mountain	45.6 AGA	A	.30 35.00	.104
0103 N. Palm Springs	1986 0708 0920	6.0	USGS	5224	Anza - Red Mountain	45.6 AGA	A	.60 40.00	.129
0103 N. Palm Springs	1986 0708 0920	6.0	nsgs	5160	Anza Fire Station	46.7 AHC	A	.50 40.00	660.
0103 N. Palm Springs	1986 0708 0920	6.0	nsgs	5160	Anza Fire Station	46.7 AHC	A	.60 30.00	.067

.

Т	ADIE 10: 35 KESFO	NE SFECT	KA FUK NEHKF	C FAULT CLASS A (M GE /)				
	Date & Time				Closest Site	E J.	lter Corn	ers
No. Earthquake	YEAR MODY HRMN	Mag	Own No.	Station	Dist Code	SS	HP LP	PGA
					(km) Geom () SSSC	hz) (hz)	(đ)
0141 Kocaeli, Turkey	1999 0817	7.4	ERD 99999	Sakarya	3.3B	- - -	20 40.00	.415
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU103	4.0	В	00.00	.152
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU103	4.0	В	00.00	.130
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	СНY028	7.3	В	00.00	.765
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	СНУ028	7.3	В	00.00	.636
0141 Kocaeli, Turkey	1999 0817	7.4	ERD 99999	Izmit	7.7B	- 1.	50 30.00	.174
0141 Kocaeli, Turkey	1999 0817	7.4	ERD 99999	Izmit	7.7B	- 2.	40 30.00	.229
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU120	8.1	в.	00.00	.198
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU120	8.1	в.	00.00	.227
0129 Landers	1992 0628 1158	7.3	CDMG 22170	Joshua Tree #	11.3 AGC	в.	07 23.00	.274
0129 Landers	1992 0628 1158	7.3	CDMG 22170	Joshua Tree #	11.3 AGC	в.	07 23.00	.284
0127 Cape Mendocino	1992 0425 1806	7.1	CDMG 89324	Rio Dell Overpass - FF #	12.3 APC	в.	07 23.00	.385
0127 Cape Mendocino	1992 0425 1806	7.1	CDMG 89324	Rio Dell Overpass - FF #	12.3 APC	в.	07 23.00	.549
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU109	13.0	в.	00.00	.162
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU109	13.0	в.	00.00	.152
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU104	13.6	в.	00.00	.089
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU104	13.6	в.	00.00	.103
0127 Cape Mendocino	1992 0425 1806	7.1	CDMG 89486	Fortuna - Fortuna Blvd #	13.7 IQD	В	07 23.00	.116
0127 Cape Mendocino	1992 0425 1806	7.1	CDMG 89486	Fortuna - Fortuna Blvd #	13.7 IQD	в.	07 23.00	.114
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU048	14.3	в.	00.00	.179
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU048	14.3	в.	00.00	.119
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	СНҮ029	15.2	в.	00.00	.238
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	СНҮ029	15.2	д	00.00	.289
0143 Duzce, Turkey	1999 1112	7.1	ERD 99999	Bolu	16.0B	1	05 .00	.754
0143 Duzce, Turkey	1999 1112	7.1	ERD 99999	Bolu	16.0B	1	05 .00	.822
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU039	16.7	В	00. 00	.139

Table 10: 5% RESPONE SPECTRA FOR NEHRP C FAULT CLASS A (M GE 7)

.

	Tabl	Le IU: 5% KESP	ONE SPEC	LKA FUK NEHKI	C FAULT CLASS A (M GE /)	(cont.)				
		Date & Time			-	Closest Sit	е	filter Co	rners	
Jo. Earthquake	~	EAR MODY HRMN	Mag	Own No.	Station	Dist Cod	es	нр цр	PG1	~
						(km) Geom	usgs	(hz) (hz	(g) (g)	_
)142 Chi-Chi, Taiw	an	1999 0920	7.6	CWB 99999	TCU039	16.7	в	. 00.	0 .19	76
)046 Tabas, Iran		1978 0916	7.4	9102	Dayhook	17.0 ABB	ł	.10 .0	0 .32	8
)046 Tabas, Iran		1978 0916	7.4	9102	Dayhook	17.0 ABB	ł	.10 .0	0 .40	96
)141 Kocaeli, Turk	iey.	1999 0817	7.4	ERD 99999	Arcelik	17.0B	ı	.80 70.0	0 .2	11
)141 Kocaeli, Turk	еу	1999 0817	7.4	ERD 99999	Arcelik	17.0B	ı	.90 70.0	0 .13	34
)141 Kocaeli, Turk	iey.	1999 0817	7.4	ERD 99999	Gebze	17.0B	I	.80 25.0	0 .2	70
0141 Kocaeli, Turk	cey.	1999 0817	7.4	ERD 99999	Gebze	17.0B	-	1.00 30.0	0 .1,	44
0129 Landers		1992 0628 1158	7.3	CDMG 5071	Morongo Valley	17.7 AHC	В	.00.	0 .18	38
0129 Landers		1992 0628 1158	7.3	CDMG 5071	Morongo Valley	17.7 AHC	В	.00	0 .1.	40
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB 99999	TCU059	17.8	В	.00.	0 .10	65
0142 Chi-Chi, Taiv	van	1999 0920	7.6	CWB 99999	TCU059	17.8	В	.00.00.	0 .10	60
0142 Chi-Chi, Taiv	van	1999 0920	7.6	CWB 99999	CHY035	18.1	B	.00.	0.2	49
0142 Chi-Chi, Taiv	van	1999 0920	7.6	CWB 99999	СНУ035	18.1	В	.00.	.2.	51
0142 Chi-Chi, Taiv	van	1999 0920	7.6	CWB 99999	TCU105	18.1	В	.00.		26
0142 Chi-Chi, Taiv	van	1999 0920	7.6	CWB 99999	TCU105	18.1	В	.00		13
0142 Chi-Chi, Taiv	van	1999 0920	7.6	CWB 99999	TCU070	19.1	В	. 00	. 10	60
0142 Chi-Chi, Taiv	van	1999 0920	7.6	CWB 99999	TCU070	19.1	В	. 00.	00.2	54
0142 Chi-Chi, Taiv	van	1999 0920	7.6	CWB 99999	TCU107	20.3	В	. 00.	. 1	47
0142 Chi-Chi, Taiv	van	1999 0920	7.6	CWB 99999	TCU107	20.3	В	. 00.	.1.	31
0129 Landers		1992 0628 1158	7.3	CDMG 12149	Desert Hot Springs #	22.5 AQD	В	.07 23.0	.1.	71
0129 Landers		1992 0628 1158	7.3	CDMG 12149	Desert Hot Springs #	22.5 AQD	ю	.07 23.0	. 1	54
0129 Landers		1992 0628 1158	7.3	CDMG 23	Coolwater	22.8D	В	.10 30.0	00 .2	83
0129 Landers		1992 0628 1158	7.3	CDMG 23	Coolwater	22.8D	В	.10 30.0	. 4	17
0142 Chi-Chi, Taiv	van	1999 0920	7.6	CWB 99999	TCU031	26.7	В	. 00.		25
0142 Chi-Chi, Taiv	van	1999 0920	7.6	CWB 99999	TCU031	26.7	В	. 00.	1	15
0129 Landers		1992 0628 1158	7.3	CDMG 5070	North Palm Springs	27.7 AHD	മ	.00.	. 1	36

(Cont.)
5
GΕ
<u>y</u>
A
CLASS
FAULT
U
NEHRP
FOR
SPECTRA
RESPONE
5%
10:
Table

	Date & Time					Closest Sit	ы ө	ilter Corne	rs
No. Earthquake	YEAR MODY HRMN	Mag	Own	No.	Station	Dist Cod	es	нр цр	PGA
•						(km) Geom	USGS	(pz) (hz)	(g)
0129 Landers	1992 0628 1158	7.3	CDMG	5070	North Palm Springs	27.7 AHD	В	.00 .00	.134
0129 Landers	1992 0628 1158	7.3	CDMG	100	Mission Creek Fault	27.8	Б	.00 .00	.126
0129 Landers	1992 0628 1158	7.3	CDMG	100	Mission Creek Fault	27.8	В	.05 .00	.125
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 9	6666	CHY046	29.4	В	.00 .00	.190
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 9	6666	CHY046	29.4	В	.00 .00	.146
0141 Kocaeli, Turkey	1999 0817	7.4	ERD 9	6666	Iznik	29.7B	I	.20 25.00	.094
0141 Kocaeli, Turkey	1999 0817	7.4	ERD 9	6666	Iznik	29.7B	ı	.20 25.00	.125
0127 Cape Mendocino	1992 0425 1806	7.1	CDMG 8	9530	Shelter Cove Airport #	32.6 IFB	В	.50 23.00	.229
0127 Cape Mendocino	1992 0425 1806	7.1	CDMG 8	9530	Shelter Cove Airport #	32.6 IFB	В	.50 23.00	.189
0141 Kocaeli, Turkey	1999 0817	7.4	ERD 9	6666	Goynuk	35.5B	ı	.20 30.00	.140
0141 Kocaeli, Turkey	1999 0817	7.4	ERD 9	6666	Goynuk	35.5B	ı	.15 25.00	.120
0127 Cape Mendocino	1992 0425 1806	7.1	CDMG 8	9509	Eureka - Myrtle & West #	35.8 IHD	В	.16 23.00	.154
0127 Cape Mendocino	1992 0425 1806	7.1	CDMG 8	9509	Eureka – Myrtle & West #	35.8 IHD	В	.16 23.00	.178
0129 Landers	1992 0628 1158	7.3	CDMG 2	3559	Barstow #	37.7 IQD	в	.07 23.00	.132
0129 Landers	1992 0628 1158	7.3	CDMG 2	3559	Barstow #	37.7 IQD	В	.07 23.00	.135
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 9	6666	HWA038	37.9	В	.00 00.	.058
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 9	6666	HWA038	37.9	B	.00 .00	.037
0012 Kern County	1952 0721 1153	7.4	NSGS	1095	Taft Lincoln School	42.0 FQD	B	.05 13.00	.156
0012 Kern County	1952 0721 1153	7.4	NSGS	1095	Taft Lincoln School	42.0 FQD	B	.05 13.00	.178
0143 Duzce, Turkey	1999 1112	7.1	ERD 9	6666	Sakarya	42.7B	ı	.05 40.00	.018
0143 Duzce, Turkey	1999 1112	7.1	ERD 9	66666	Sakarya	42.7B	I	.05 40.00	.025

		Table	11: 5% RESPO	NE SPECTRA FOR NEHRP C FAULT CLASS	B (M 6.5 TO	6.99		
	Date & Time				Closest Site	Гы O	ilter Corner	S
No. Earthqual	ke YEAR MODY HRMN	Mag	Own No.	Station	Dist Codé	sa	нр цр	PGA
					(km) Geom (USGS	(pz) (hz)	(ɓ)
0122 Loma Prie	eta 1989 1018 0005	6.9	CDMG 57007	Corralitos	. 0 APB	B	.20 40.00	.644
0122 Loma Priv	eta 1989 1018 0005	6.9	CDMG 57007	Corralitos	.0 APB	ß	.20 40.00	.479
0131 Northrid	ge 1994 0117 1231	6.7	CDMG 0655	Jensen Filter Plant #	.0D	В	.08 .00	.424
0131 Northrid	ge 1994 0117 1231	6.7	CDMG 0655	Jensen Filter Plant #	.0D	В	.20 .00	.593
0131 Northrid	ge 1994 0117 1231	6.7	CDMG 00000	LA Dam	0.	В	.10 .00	.511
0131 Northrid	ge 1994 0117 1231	6.7	CDMG 00000	LA Dam	0.	В	.12 .00	.349
0131 Northrid	ge 1994 0117 1231	6.7	CDMG 75	Sylmar - Converter Sta East #	.0D	В	.00 00.	.828
0131 Northrid	ge 1994 0117 1231	6.7	CDMG 75	Sylmar - Converter Sta East #	.0D	ß	.00 00.	.493
0131 Northrid	ge 1994 0117 1231	6.7	CDMG 0637	Sepulveda VA #	.4D	В	.10 .00	.753
0131 Northrid	ge 1994 0117 1231	6.7	CDMG 0637	Sepulveda VA #	.4D	ß	.00 00.	.939
0133 Kobe	1995 0116 2046	6.9	CEOR 99999	KJMA	.6B	ß	.05 .00	.821
0133 Kobe	1995 0116 2046	6.9	CEOR 99999	KJMA	.6B	ß	.05 .00	.599
0120 Supersti	tn Hills(B)1987 1124 1316	6.7	USGS 5051	Parachute Test Site	.7 AQD	В	.06 20.00	.455
0120 Supersti	tn Hills(B)1987 1124 1316	6.7	USGS 5051	Parachute Test Site	.7 AQD	В	.12 23.00	.377
0131 Northrid	ge 1994 0117 1231	6.7	CDMG 24514	Sylmar - Olive View Med FF #	3.6 AQD	В	.12 23.00	.604
0131 Northrid	ge 1994 0117 1231	6.7	CDMG 24514	Sylmar - Olive View Med FF #	3.6 AQD	В	.12 23.00	.843
0131 Northrid	ge 1994 0117 1231	6.7	CDMG 5108	Santa Susana Ground #	3.7	B	.20 .00	.279
0131 Northrid	ge 1994 0117 1231	6.7	CDMG 5108	Santa Susana Ground #	3.7	В	.00 .00	.290
0120 Supersti	tn Hills(B)1987 1124 1316	6.7	USGS 286	Superstition Mtn.	4.3 AGA	Ð	.30 20.00	.682
0120 Supersti	tn Hills(B)1987 1124 1316	6.7	USGS 286	Superstition Mtn.	4.3 AGA	В	.30 25.00	.894
0131 Northrid	ge 1994 0117 1231	6.7	CDMG 90056	Newhall - W Pico Canyon Rd.	7.1C	в	.05 30.00	.455
0131 Northrid	lge 1994 0117 1231	6.7	CDMG 90056	Newhall - W Pico Canyon Rd.	7.1C	B	.10 30.00	.325
0131 Northrid	lge 1994 0117 1231	6.7	CDMG 24088	Pacoima Kagel Canyon #	8.1 AMB	В	.14 23.00	.301
0131 Northrid	lge 1994 0117 1231	6.7	CDMG 24088	Pacoima Kagel Canyon #	8.1 AMB	В	.14 23.00	.433
0131 Northrid	lge 1994 0117 1231	6.7	CDMG 90009	N Hollywood - Coldwater Can	8.3C	B	.10 30.00	.298
0131 Northrid	lge 1994 0117 1231	6.7	CDMG 90009	N Hollywood - Coldwater Can	8.3C	B	.10 30.00	.271

Ľ

Ĥ	able 11: 5% RESP(ONE SPE	CTRA FOR NEHI	RP C FAULT CLASS B (M 6.5 TO 6.99)	(Cont.)			
	Date & Time				Closest Sit	е н	ilter Corner	ŝ
No. Earthquake	YEAR MODY HRMN	Mag	Own No.	Station	Dist Cod	es	нр цр	PGA
					(km) Geom	usgs	(rz) (rz)	(g)
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 4700	5 Gilroy - Gavilan Coll.	10.9 AFB	В	.20 45.00	.357
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 4700	6 Gilroy - Gavilan Coll.	10.9 AFB	В	.20 35.00	.325
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 5806	5 Saratoga - Aloha Ave	11.7 AQD	В	.10 38.00	.512
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 5806	5 Saratoga - Aloha Ave	11.7 AQD	В	.10 50.00	.324
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 5823	5 Saratoga - W Valley Coll.	12.0 AQD	В	.10 38.00	.255
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 5823	5 Saratoga - W Valley Coll.	12.0 AQD	B	.10 49.00	.332
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 5813	5 UCSC Lick Observatory	12.5 AKA	В	.20 40.00	.450
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 5813	5 UCSC Lick Observatory	12.5 AKA	В	.20 40.00	.395
0131 Northridge	1994 0117 1231	6.7	CDMG 508	l Topanga - Fire Sta #	12.6	В	.20 .00	.364
0131 Northridge	1994 0117 1231	6.7	CDMG 508	l Topanga - Fire Sta #	12.6	В	.30 .00	.266
0050 Imperial Valley	1979 1015 2316	6.51	JNAMUCSD 505	l Parachute Test Site	14.0 AQD	B	.10 40.00	.111
0050 Imperial Valley	1979 1015 2316	6.51	JNAMUCSD 505	l Parachute Test Site	14.0 AQD	В	.10 40.00	.204
0131 Northridge	1994 0117 1231	6.7	CDMG 9005	8 Sunland - Mt Gleason Ave	14.7C	æ	.05 30.00	.127
0131 Northridge	1994 0117 1231	6.7	CDMG 9005	8 Sunland - Mt Gleason Ave	14.7C	В	.05 30.00	.157
0131 Northridge	1994 0117 1231	6.7	CDMG 63	<pre>8 Brentwood V.A. Hospital</pre>	16.3D	В	.00 .00	.187
0131 Northridge	1994 0117 1231	6.7	CDMG 63	8 Brentwood V.A. Hospital	16.3D	B	.00 .00	.165
0131 Northridge	1994 0117 1231	6.7	CDMG 9005	9 Burbank - Howard Rd.	16.6B	В	.10 30.00	.120
0131 Northridge	1994 0117 1231	6.7	CDMG 9005	9 Burbank - Howard Rd.	16.6B	ф	.10 30.00	.163
0131 Northridge	1994 0117 1231	6.7	CDMG 2468	8 LA - UCLA Grounds	16.8 IQ-	В	.08 25.00	.278
0131 Northridge	1994 0117 1231	6.7	CDMG 2468	8 LA - UCLA Grounds	16.8 IQ-	B	.08 25.00	.474
0030 San Fernando	1971 0209 1400	6.6	12	8 Lake Hughes #12	17.0 AEB	В	.50 35.00	.366
0030 San Fernando	1971 0209 1400	6.6	12	8 Lake Hughes #12	17.0 AEB	ß	.50 35.00	.283
0131 Northridge	1994 0117 1231	6.7	CDMG 9004	9 Pacific Palisades - Sunset	17.1B	В	.05 30.00	.469
0131 Northridge	1994 0117 1231	6.7	CDMG 9004	9 Pacific Palisades - Sunset	17.1B	В	.05 30.00	.197
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 1	5 UCSC	18.1B	ı	.10 .00	.309
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 1	5 UCSC	18.1B	ı	.10 .00	.396
0030 San Fernando	1971 0209 1400	6.6	12	6 Lake Hughes #4	19.6 IGA	В	.50 35.00	.192

e 11: 5% RESPONE SPECTRA FOR NEHRP C FAULT CLASS B (M 6.5 TO 6.99) (Co

73

-

	T	able 11:	5%	RESPO	NE SPE(CTRA FOR	NEHRP	C FAULT CLASS B (M 6.5 TO 6.99) (Cont.)			
		Date	ε Ti	ше					Closest Si	te	Filter Cornei	S
No.	Earthquake	YEAR N	10DY	HRMN	Mag	Own	No.	Station	Dist Co	des	нр цр	PGA
									(km) Geom	USGS	(pz) (pz)	(ɓ)
0030	San Fernando	1971 C	1209	1400	6.6		24278	Castaic - Old Ridge Route	24.2 A-B	В	.50 35.00	.324
0030	San Fernando	1971 C	1209	1400	6.6		24278	Castaic - Old Ridge Route	24.2 A-B	Ю	.50 35.00	.268
0131	Vorthridge	1994 C	1117	1231	6.7	CDMG	24607	Lake Hughes #12A #	24.8 IHC	Ю	.12 46.00	.174
0131	Northridge	1994 C	1117	1231	6.7	CDMG 2	24607	Lake Hughes #12A #	24.8 IHC	В	.12 46.00	.257
0131	Northridge	1994 C	1117	1231	6.7	CDMG 2	24278	Castaic - Old Ridge Route #	25.4 AMB	В	.12 23.00	.568
0131	Vorthridge	1994 C	117	1231	6.7	CDMG 2	24278	Castaic - Old Ridge Route #	25.4 AMB	В	.12 23.00	.514
0030	San Fernando	1971 C	1209	1400	6.6	J	30053	Pasadena - CIT Athenaeum	25.7 CQD	В	.50 35.00	.088
0030	San Fernando	1971 C	1209	1400	6.6	ω	30053	Pasadena - CIT Athenaeum	25.7 CQD	В	.20 35.00	.110
0131	Northridge	1994 C	1117	1231	6.7	CDMG	90018	Hollywood - Willoughby Ave	25.7D	В	.10 30.00	.136
0131	Northridge	1994 C	1117	1231	6.7	CDMG	90018	Hollywood - Willoughby Ave	25.7D	В	.13 30.00	.245
0050	Imperial Valley	1979 1	1015	2316	6.5 UI	NAMUCSD	286	Superstition Mtn Camera	26.0 AGA	В	.10 40.00	.109
0050	Imperial Valley	1979 1	1015	2316	6.5 UI	NAMUCSD	286	Superstition Mtn Camera	26.0 AGA	В	.10 40.00	.195
0131	Northridge	1994 (1117	1231	6.7	CDMG	24157	LA - Baldwin Hills #	26.2 IPB	В	.16 23.00	.239
0131	Northridge	1994 (1117	1231	6.7	CDMG	24157	LA - Baldwin Hills #	26.2 IPB	B	.16 23.00	.168
0131	Northridge	1994 C	1117	1231	6.7	CDMG	24396	Malibu - Point Dume Sch #	27.4 AMB	B	.30 23.00	.130
0131	Northridge	1994 (1117	1231	6.7	CDMG 2	24396	Malibu - Point Dume Sch #	27.4 AMB	В	.30 23.00	.084
0131	Northridge	1994 C	1117	1231	6.7	CDMG	90047	Playa Del Rey - Saran	27.9D	B	.10 30.00	.136
0131	Northridge	1994 C	1117	1231	6.7	CDMG	90047	Playa Del Rey - Saran	27.9D	В	.10 30.00	.076
0030	San Fernando	1971 C	1209	1400	6.6		262	Palmdale Fire Station	28.6 AQD	Ð	.50 35.00	.121
0030	San Fernando	1971 C	1209	1400	6.6		262	Palmdale Fire Station	28.6 AQD	В	.50 35.00	.151
0131	Northridge	1994 C	1117	1231	6.7	CDMG	127	Lake Hughes #9 #	28.9 AGA	B	.08 .00	.165
0131	Northridge	1994 (1117	1231	6.7	CDMG	127	Lake Hughes #9 #	28.9 AGA	Ð	.08 .00	.217
0131	Northridge	1994 C	1117	1231	6.7	CDMG	90021	LA - N Westmoreland	29.0D	В	.20 30.00	.401
0131	Northridge	1994 (1117	1231	6.7	CDMG 5	90021	LA - N Westmoreland	29.0D	В	.20 30.00	.361
0131	Northridge	1994 (1117	1231	6.7	CDMG 2	24611	LA - Temple & Hope #	29.5 IMA	B	.20 46.00	.126
0131	Northridge	1994 (1117	1231	6.7	CDMG 2	24611	LA - Temple & Hope #	29.5 IMA	B	.20 46.00	.184
0131	Northridge	1994 C	1117	1231	6.7	CDMG 5	90065	Glendora - N Oakbank	30.9D	В	.50 30.00	.040

	Table 11: 5% RESPON	E SPECT	A FUK NEHKE	I TO THAT THE TANK THE TANK THE TANK THE TANK			
	Date & Time				Closest Site	Filter Corne	rs
No. Farthquake	YEAR MODY HRMN	Mag	OWN No.	Station	Dist Codes	НР LP	PGA
		1			(km) Geom US	(zy) (zy) SS	(â)
0131 Northridge	1994 0117 1231	6.7	CDMG 90065	Glendora - N Oakbank	30.9D B	.10 30.00	.092
0131 Northridge	1994 0117 1231	6.7	CDMG 90020	LA - W 15th St	32.4C B	.13 30.00	.104
0131 Northridge	1994 0117 1231	6.7	CDMG 90020	LA - W 15th St	32.4C B	.13 30.00	.159
0131 Northridge	1994 0117 1231	6.7	CDMG 90033	LA - Cypress Ave	32.8C B	.20 30.00	.210
0131 Northridge	1994 0117 1231	6.7	CDMG 90033	LA - Cypress Ave	32.8C B	.13 30.00	.149
0131 Northridge	1994 0117 1231	6.7	CDMG 24605	LA - Univ. Hospital #	32.8 IMA B	.20 46.00	.493
0131 Northridge	1994 0117 1231	6.7	CDMG 24605	LA - Univ. Hospital #	32.8 IMA B	.20 46.00	.214
0131 Northridge	1994 0117 1231	6.7	CDMG 24469	Lake Hughes #4 - Camp Mend #	33.2 IGA B	.12 23.00	.057
0131 Northridge	1994 0117 1231	6.7	CDMG 24469	Lake Hughes #4 - Camp Mend #	33.2 IGA B	.12 23.00	.084
0131 Northridge	1994 0117 1231	6.7	CDMG 90032	LA - N Figueroa St	33.4C B	.30 30.00	.128
0131 Northridge	1994 0117 1231	6.7	CDMG 90032	LA - N Figueroa St	33.4C B	.30 30.00	.174
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 47189	SAGO South - Surface	34.1 IGB B	.10 25.00	.073
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 47189	SAGO South - Surface	34.1 IGB B	.10 30.00	.067
0131 Northridge	1994 0117 1231	6.7	CDMG 24523	Lake Hughes #4B - Camp Mend #	34.1 IGA E	.12 23.00	.036
0131 Northridge	1994 0117 1231	6.7	CDMG 24523	Lake Hughes #4B - Camp Mend #	34.1 IGA E	.12 23.00	.063
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 1601	Palo Alto - SLAC Lab	35.0 AMA E	.20 33.00	.194
0122 Loma Frieta	1989 1018 0005	6.9	CDMG 1601	Palo Alto - SLAC Lab	35.0 AMA E	.20 28.00	.278
0131 Northridge	1994 0117 1231	6.7	CDMG 24401	San Marino - SW Academy #	35.2 AQD E	.30 23.00	.116
0131 Northridge	1994 0117 1231	6.7	CDMG 24401	San Marino - SW Academy #	35.2 AQD E	.60 23.00	.150
0131 Northridge	1994 0117 1231	6.7	CDMG 24400	LA - Obregon Park #	35.9 AQD F	60 23.00	.355
0131 Northridge	1994 0117 1231	6.7	CDMG 24400	LA - Obregon Park #	35.9 AQD E	90 23.00	.563
0131 Northridge	1994 0117 1231	6.7	CDMG 24461	Alhambra - Fremont School	36.1 AMD H	1.12 25.00	.101
0131 Northridge	1994 0117 1231	6.7	CDMG 24461	Alhambra - Fremont School	36.1 AMD H	3 .12 25.00	.079
0030 San Fernando	1971 0209 1400	6.6	269	Pearblossom Pump	37.4 AGB I	3 .20 35.00	.102
0030 San Fernando	1971 0209 1400	6.6	269	Pearblossom Pump	37.4 AGB 1	3 .20 35.00	.136
0131 Northridge	1994 0117 1231	6.7	CDMG 24271	Lake Hughes #1 #	37.7 APC	3 .12 23.00	.087
0131 Northridge	1994 0117 1231	6.7	CDMG 24271	Lake Hughes #1 #	37.7 APC	3 .12 23.00	.077

FOR NEHRP C FAULT CLASS B (M 6.5 TO 6.99) (Cont.) ¢

Table 11: 5% RESPONE SPECTRA FOR NEHRP C FAULT CLASS B (M 6.5 TO 6.99) (Cont.)

.

	Date & Time					Closest Sit	e	filter Corner	S
lo. Earthquake	YEAR MODY HRMN	Mag	0wn 1	No.	Station	Dist Coo	les	нр цр	PGA
						(km) Geom	USGS	(pz) (hz)	(đ)
)040 Friuli, Italy	1976 0506 2000	6.5	~	3012	Tolmezzo	37.7 ABB	I	.10 30.00	.351
)040 Friuli, Italy	1976 0506 2000	6.5	-	3012	Tolmezzo	37.7 ABB	ı	.10 30.00	.315
)122 Loma Prieta	1989 1018 0005	6.9	CDMG 51	3127	Woodside	38.7 APB	В	.10 25.00	.080
)122 Loma Prieta	1989 1018 0005	6.9	CDMG 51	8127	Woodside	38.7 APB	В	.10 25.00	.082
)131 Northridge	1994 0117 1231	6.7	CDMG 1	4403	LA - 116th St School #	38.9 AQD	В	.16 23.00	.208
)131 Northridge	1994 0117 1231	6.7	CDMG 1	4403	LA - 116th St School #	38.9 AQD	В	.16 23.00	.133
)131 Northridge	1994 0117 1231	6.7	CDMG 1	4196	Inglewood - Union Oil #	40.0 IQD	B	.16 23.00	.091
<pre>)131 Northridge</pre>	1994 0117 1231	6.7	CDMG 1	4196	Inglewood - Union Oil #	40.0 IQD	B	.16 23.00	.101
)122 Loma Prieta	1989 1018 0005	6.9	CDMG 5.	7064	Fremont - Mission San Jose	42.0 AMB	В	.20 24.00	.124
)122 Loma Prieta	1989 1018 0005	6.9	CDMG 5.	7064	Fremont - Mission San Jose	42.0 AMB	B	.20 28.00	.106
)122 Loma Prieta	1989 1018 0005	6.9	CDMG	1161	APEEL 9 - Crystal Springs Res	46.4 IQA	B	.20 40.00	.113
)122 Loma Prieta	1989 1018 0005	6.9	CDMG	1161	APEEL 9 - Crystal Springs Res	46.4 IQA	В	.20 40.00	.104
J122 Loma Prieta	1989 1018 0005	6.9	CDMG 5	8378	APEEL 7 - Pulgas	46.5 IEA	B	.10 30.00	.156
)122 Loma Prieta	1989 1018 0005	6.9	CDMG 5	8378	APEEL 7 - Pulgas	46.5 IEA	в	.10 22.00	.088
)122 Loma Prieta	1989 1018 0005	6.9	CDMG 5	8373	APEEL 10 - Skyline	46.6 I-A	В	.10 25.00	.103
)122 Loma Prieta	1989 1018 0005	6.9	CDMG 5	8373	APEEL 10 - Skyline	46.6 I-A	в	.10 20.00	.088
<pre>)131 Northridge</pre>	1994 0117 1231	6.7	CDMG 1	4405	Rolling Hills Est-Rancho Vista	48.4 AP-	В	.15 25.00	.116
<pre>)131 Northridge</pre>	1994 0117 1231	6.7	CDMG 1	4405	Rolling Hills Est-Rancho Vista	48.4 AP-	В	.15 25.00	.106
)122 Loma Prieta	1989 1018 0005	6.9	CDMG 5	8262	Belmont - Envirotech	48.7 BFA	B	.20 22.00	.108
J122 Loma Prieta	1989 1018 0005	6.9	CDMG 5	8262	Belmont - Envirotech	48.7 BFA	в	.20 30.00	.110
0040 Friuli, Italy	1976 0506 2000	6.5		8002	Barcis	49.7 ABB	I	.20 30.00	.029
0040 Friuli, Italy	1976 0506 2000	6.5		8002	Barcis	49.7 ABB	ı	.20 30.00	.030

.

	Iante	TC . 71							
	Date & Time					Closest Site	لتا م	ilter Corner	S
No. Earthquake	YEAR MODY HRMN	Mag	Own N	чо.	Station	Dist Code	s	НР LP	PGA
						(km) Geom (usgs	(pz) (hz)	(đ)
0045 Santa Barbara	1978 0813	6.0	USGS	283	Santa Barbara Courthouse	.0 CQD	В	.10 26.00	.102
0045 Santa Barbara	1978 0813	6.0	NSGS	283	Santa Barbara Courthouse	.0 CQD	B	.10 30.00	.203
0080 Coalinga	1983 0722 0239	5.8	USGS 1	1604	oil City	1.8 APB	I	.15 30.00	.866
0080 Coalinga	1983 0722 0239	5.8	USGS 1	1604	oil City	1.8 APB	I	.80 30.00	.447
0090 Morgan Hill	1984 0424 2115	6.2	CDMG	1652	Anderson Dam (Downstream)	2.6 AFD	В	.10 30.00	.423
0090 Morgan Hill	1984 0424 2115	6.2	CDMG	1652	Anderson Dam (Downstream)	2.6 AFD	£	.10 38.00	.289
0103 N. Palm Springs	1986 0708 0920	6.0	USGS 12	2149	Desert Hot Springs	8.0 AQD	ы	.50 46.00	.331
0103 N. Palm Springs	1986 0708 0920	6.0	USGS 12	2149	Desert Hot Springs	8.0 AQD	В	.50 40.00	.271
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90	0033	LA - Cypress Ave #	8.1C	£	.33 25.00	.156
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90	0033	LA - Cypress Ave #	8.1C	В	.28 25.00	.137
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 9(0032	LA - N Figueroa St #	8.1C	В	.30 25.00	.151
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 9(0032	LA - N Figueroa St #	8.1C	В	.20 25.00	.166
0103 N. Palm Springs	1986 0708 0920	6.0	USGS	5070	North Palm Springs	8.2 AHD	В	.15 20.00	.594
0103 N. Palm Springs	1986 0708 0920	6.0	USGS	5070	North Palm Springs	8.2 AHD	В	.23 30.00	.694
0080 Coalinga	1983 0722 0239	5.8	USGS	1609	Palmer Ave	9.2 APB	ı	.06 20.00	.272
0080 Coalinga	1983 0722 0239	5.8	USGS	1609	Palmer Ave	9.2 APB	ı	.09 20.00	.290
0103 N. Palm Springs	1986 0708 0920	6.0	NSGS	5071	Morongo Valley	10.1 AHC	В	.08 50.00	.218
0103 N. Palm Springs	1986 0708 0920	6.0	NSGS	5071	Morongo Valley	10.1 AHC	в	.08 50.00	.205
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 2	4461	Alhambra - Fremont School	10.5 AMD	В	.50 35.00	.333
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 2	4461	Alhambra - Fremont School	10.5 AMD	ß	.30 40.00	.414
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 2	4400	LA - Obregon Park	11.4 AQD	B	.40 35.00	.450
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 2	4400	LA - Obregon Park	11.4 AQD	B	.40 35.00	.400
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 5	7383	Gilroy Array #6	11.8 IKB	ß	.10 35.00	.222
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 5	7383	Gilroy Array #6	11.8 IKB	ß	.10 27.00	.292
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG	709	Garvey Res Control Bldg	12.1 APB	I	.15 40.00	.384
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG	709	Garvey Res Control Bldg	12.1 APB	ı	.20 40.00	.457
0053 Livermore	1980 0124 1900	5.8	CDMG	1265	Del Valle Dam (Toe)	12.9 ABB	ı	.10 25.00	.125

Table 12: 5% RESPONE SPECTRA FOR NEHRP C FAULT CLASS C (M 5.75 TO 6.49)

	Table 12: 5%	RESPONE	SPECTRA	FOR 1	VEHRP C FAULT CLASS C (M 5.75 TO 6.	49) (Cont.)			
	Date & Time					Closest Sit	e e	ilter Corner	S
No. Earthquake	YEAR MODY HRMN	Mag	ОМП	No.	Station	Dist Cod	es	нр цр	PGA
						(km) Geom	usgs	(yz) (yz)	(g)
0053 Livermore	1980 0124 1900	5.8	CDMG	1265	Del Valle Dam (Toe)	12.9 ABB	ı	.15 20.00	.229
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 2	4401	San Marino - SW Academy	14.7 AQD	В	.40 40.00	.128
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 2	4401	San Marino - SW Academy	14.7 AQD	В	.40 40.00	.204
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 8	0053	Pasadena - CIT Athenaeum	15.4 CQD	В	.30 40.00	.174
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 8	0053	Pasadena - CIT Athenaeum	15.4 CQD	В	.30 35.00	.101
0103 N. Palm Springs	1986 0708 0920	6.0	nsgs	5069	Fun Valley	15.8 AHC	В	.21 35.00	.129
0103 N. Palm Springs	1986 0708 0920	6.0	USGS	5069	Fun Valley	15.8 AHC	В	.25 40.00	.119
0025 Parkfield	1966 0628 0426	6.1	CDMG	1438	Temblor pre-1969	16.1 IJA	В	.20 14.00	.357
0025 Parkfield	1966 0628 0426	6.1	CDMG	1438	Temblor pre-1969	16.1 IJA	В	.20 15.00	.272
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 4	7006	Gilroy - Gavilan Coll.	16.2 AFB	В	.10 30.00	.114
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 4	7006	Gilroy - Gavilan Coll.	16.2 AFB	В	.10 30.00	.095
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 9	0021	LA - N Westmoreland #	16.6D	в	.30 25.00	.214
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 9	0021	LA - N Westmoreland #	16.6D	в	.30 25.00	.199
0025 Parkfield	1966 0628 0426	6.1	CDMG	1016	Cholame #12	17.3 IBB	В	.20 20.00	.059
0025 Parkfield	1966 0628 0426	6.1	CDMG	1016	Cholame #12	17.3 IBB	В	.20 20.00	.063
0053 Livermore	1980 0124 1900	5.8	CDMG 6	7070	Antioch - 510 G St	20.8 ACD	В	.20 13.00	.051
0053 Livermore	1980 0124 1900	5.8	CDMG 6	7070	Antioch - 510 G St	20.8 ACD	B	.20 13.00	.023
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG	14403	LA - 116th St School	22.5 AQD	В	.20 30.00	.294
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 1	4403	LA - 116th St School	22.5 AQD	B	.20 30.00	.396
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 5	7007	Corralitos	22.7 APB	B	.20 24.00	.081
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 5	7007	Corralitos	22.7 APB	Ð	.20 26.00	.109
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG	697	Orange Co. Reservoir	23.0 APB	ı	.40 30.00	.185
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG	697	Orange Co. Reservoir	23.0 APB	I	.30 30.00	.198
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG	951	Brea Dam (L Abut)	23.3 IPB	I	.50 40.00	.118
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG	951	Brea Dam (L Abut)	23.3 IPB	ı	.50 30.00	.149

		Table 12: 5% 1	RESPONE	SPECTRA	FOR N	EHRP C FAULT CLASS C (M 5.75 TO 6.	49) (Cont.)			
		Date & Time					Closest Sit	ليا م	ilter Corner:	ß
40.	Earthquake	YEAR MODY HRMN	Mag	ОWD	No.	Station	Dist Cod	ຮ	HP LP	PGA
							(km) Geom	JSGS	(pz) (hz)	(g)
073	Westmorland	1981 0426 1209	5.8	USGS	5051	Parachute Test Site	24.1 AQD	В	.10 30.00	.242
0073	Westmorland	1981 0426 1209	5.8	USGS	5051	Parachute Test Site	24.1 AQD	В	.10 33.00	.155
1117	Whittier Narrows	1987 1001 1442	6.0	CDMG	14196	Inglewood - Union Oil	25.2 IQD	В	.60 40.00	.299
117	Whittier Narrows	1987 1001 1442	6.0	CDMG 1	4196	Inglewood - Union Oil	25.2 IQD	B	.25 40.00	.247
0117	Whittier Narrows	1987 1001 1442	6.0	CDMG	90061	Big Tujunga, Angeles Nat F #	25.5C	В	.40 25.00	.126
0117	Whittier Narrows	1987 1001 1442	6.0	CDMG	90061	Big Tujunga, Angeles Nat F #	25.5C	В	.90 25.00	.178
0104	Chalfant Valley	1986 0720 1429	5.9	CDMG 5	4T03	Lake Crowley - Shehorn Res.	26.0 AAB	ł	.16 30.00	.051
0104	Chalfant Valley	1986 0720 1429	5.9	CDMG 5	4T03	Lake Crowley - Shehorn Res.	26.0 AAB	ı	.16 25.00	.031
0073	Westmorland	1981 0426 1209	5.8	USGS	286	Superstition Mtn Camera	26.5 AGA	В	.70 30.00	.071
0073	Westmorland	1981 0426 1209	5.8	nsgs	286	Superstition Mtn Camera	26.5 AGA	Ð	.70 30.00	.116
0117	Whittier Narrows	1987 1001 1442	6.0	CDMG	90014	Beverly Hills - 12520 Mulhol #	27.2C	Б	.35 25.00	.089
0117	Whittier Narrows	1987 1001 1442	6.0	CDMG 5	90014	Beverly Hills - 12520 Mulhol #	27.2C	В	.33 22.00	.138
0117	Whittier Narrows	1987 1001 1442	6.0	CDMG	90058	Sunland - Mt Gleason Ave #	27.5C	B	.28 25.00	.089
0117	Whittier Narrows	1987 1001 1442	6.0	CDMG	90058	Sunland - Mt Gleason Ave #	27.5C	ß	.28 25.00	.072
0076	Coalinga	1983 0502 2342	6.4	CDMG 3	6453	Parkfield - Fault Zone 11	28.4 IMB	ī	.20 21.00	.097
0076	Coalinga	1983 0502 2342	6.4	CDMG 3	36453	Parkfield - Fault Zone 11	28.4 IMB	I	.20 28.00	.087
0117	Whittier Narrows	1987 1001 1442	6.0	CDMG	80006	Sun Valley - Sunland #	29.3B	B	.30 25.00	.075
0117	Whittier Narrows	1987 1001 1442	6.0	CDMG	80006	Sun Valley - Sunland #	29.3B	В	.38 25.00	.074
0076	Coalinga	1983 0502 2342	6.4	CDMG	36449	Parkfield - Fault Zone 8	29.6 IMB	ı	.20 21.00	.131
0076	Coalinga	1983 0502 2342	6.4	CDMG 3	36449	Parkfield - Fault Zone 8	29.6 IMB	ı	.20 27.00	.116
0103	N. Palm Springs	1986 0708 0920	6.0	USGS	22170	Joshua Tree	29.8 AGC	£	.50 30.00	.052
0103	N. Palm Springs	1986 0708 0920	6.0	USGS	22170	Joshua Tree	29.8 AGC	В	.50 24.00	.065
0076	Coalinga	1983 0502 2342	6.4	CDMG	36445	Parkfield - Fault Zone 15	29.9 IQB	I	.20 20.00	.168
0076	Coalinga	1983 0502 2342	6.4	CDMG	36445	Parkfield - Fault Zone 15	29.9 IQB	ł	.20 22.00	.117
0117	Whittier Narrows	1987 1001 1442	6.0	CDMG	06006	Villa Park - Serrano Ave #	30.1B	ß	.70 25.00	.046
0117	Whittier Narrows	1987 1001 1442	6.0	CDMG	06006	Villa Park - Serrano Ave #	30.1B	ß	.55 25.00	.072

	Table 12: 5%	RESPONE	SPECTRA	FOR N	EHRP C FAULT CLASS C (M 5.75 TO 6.	49) (Cont.)			
	Date & Time					Closest Sit	ы a	ilter Corner	ŝ
No. Earthquake	YEAR MODY HRMN	Mag	Own	No.	Station	Dist Cod	es	нр LP	PGA
						(km) Geom	usgs	(pz) (hz)	(g)
0090 Morgan Hill	1984 0424 2115	6.2	CDMG	1377	San Juan Bautista, 24 Polk St	30.3 AQD	В	.10 21.00	.044
0090 Morgan Hill	1984 0424 2115	6.2	CDMG	1377	San Juan Bautista, 24 Polk St	30.3 AQD	В	.10 21.00	.036
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 9	6000	N Hollywood - Coldwater Can #	30.8C	ß	.20 25.00	.116
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 9	6000	N Hollywood - Coldwater Can #	30.8C	В	.30 25.00	.250
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 5	7064	Fremont - Mission San Jose	31.4 AMB	B	.50 21.00	.025
0090 Morgan Hill	1984 0424 2115	6.2	CDMG	1064	Fremont - Mission San Jose	31.4 AMB	ß	.20 18.00	.021
0076 Coalinga	1983 0502 2342	6.4	CDMG 3	6443	Parkfield - Fault Zone 9	31.9 IPB	I	.20 23.00	.057
0076 Coalinga	1983 0502 2342	6.4	CDMG 3	6443	Parkfield - Fault Zone 9	31.9 IPB	I	.20 28.00	.050
0103 N. Palm Springs	1986 0708 0920	6.0	USGS 1	2204	San Jacinto - Soboba	32.0 AGC	В	.50 48.00	.250
0103 N. Palm Springs	1986 0708 0920	6.0	USGS 1	2204	San Jacinto - Soboba	32.0 AGC	в	.50 49.00	.239
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 5	0015	LA - Chalon Rd #	32.6B	В	.38 25.00	.036
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 9	0015	LA - Chalon Rd #	32.6B	В	.75 25.00	.020
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 9	0048	Santa Monica - Second St #	32.6B	В	.53 25.00	.033
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 5	0048	Santa Monica - Second St #	32.6B	В	.28 25.00	.034
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 5	90006	Sun Valley - Roscoe Blvd #	32.6D	ß	.25 25.00	.202
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 5	90006	Sun Valley - Roscoe Blvd #	32.6D	В	.28 25.00	.223
0076 Coalinga	1983 0502 2342	6.4	CDMG 3	6454	Parkfield - Fault Zone 6	32.8 IPB	I	.20 24.60	.055
0076 Coalinga	1983 0502 2342	6.4	CDMG 3	6454	Parkfield - Fault Zone 6	32.8 IPB	ı	.20 24.00	.056
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 9	0007	Panorama City - Roscoe #	33.0D	В	.25 23.00	.105
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 9	0007	Panorama City - Roscoe #	33.0D	В	.20 25.00	.108
0053 Livermore	1980 0124 1900	5.8	CDMG 5	7064	Fremont - Mission San Jose	33.1 AMB	В	.30 13.00	.044
0053 Livermore	1980 0124 1900	5.8	CDMG 5	7064	Fremont - Mission San Jose	33.1 AMB	В	.30 20.00	.055
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 9	0005	Pacoima Kagel Canyon USC #	34.0D	в	.30 25.00	.119
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 9	0005	Pacoima Kagel Canyon USC #	34.0D	В	.23 25.00	.133
0076 Coalinga	1983 0502 2342	6.4	CDMG 3	6414	Parkfield - Fault Zone 4	34.3 IPB	ı	.20 22.00	.067
0076 Coalinga	1983 0502 2342	6.4	CDMG 3	6414	Parkfield - Fault Zone 4	34.3 IPB	ı	.20 28.00	.120
0076 Coalinga	1983 0502 2342	6.4	CDMG 3	6446	Parkfield - Vineyard Cany 4W	34.6 IMB	ł	.20 30.00	.064

	Table 12: 5%	RESPON	IE SPECTR	A FOR N	EHRP C FAULT CLASS C (M 5.75 TO 6.	49) (Cont.)			
	Date & Time					Closest Sit	e	filter Corner	S
No. Earthquake	YEAR MODY HRMN	Mag	ОМП	No.	Station,	Dist Coo	les	HP LP	PGA
						(km) Geom	USGS	(pz) (pz)	(g)
0076 Coalinga	1983 0502 2342	6.4	CDMG	36446	Parkfield - Vineyard Cany 4W	34.6 IMB	ı	.20 27.00	.046
0064 Victoria, Mexico	1980 0609 0328	6.1 L	JNAMUCSD	6604	Cerro Prieto	34.8 AVA	B	.20 62.00	.621
0064 Victoria, Mexico	1980 0609 0328	6.1 t	JNAMUCSD	6604	Cerro Prieto	34.8 AVA	В	.20 62.00	.587
0103 N. Palm Springs	1986 0708 0920	6.0	NSGS	5043	Hurkey Creek Park	34.9 AQB	В	.60 50.00	.240
0103 N. Palm Springs	1986 0708 0920	6.0	NSGS	5043	Hurkey Creek Park	34.9 AQB	B	.50 50.00	.187
0103 N. Palm Springs	1986 0708 0920	6.0	NSGS	5157	Cranston Forest Station	35.3 AQB	ß	.60 45.00	.153
0103 N. Palm Springs	1986 0708 0920	6.0	USGS	5157	Cranston Forest Station	35.3 AQB	В	.60 45.00	.169
0105 Chalfant Valley	1986 0721 1442	6.2	CDMG	54T03	Lake Crowley - Shehorn Res.	36.0 AAB	I	.50 30.00	.163
0105 Chalfant Valley	1986 0721 1442	6.2	CDMG	54T03	Lake Crowley - Shehorn Res.	36.0 AAB	ı	.50 30.00	.091
0043 Friuli, Italy	1976 0915 0315	6.1		8014	Forgaria Cornino	36.1 ABB	В	.50 40.00	.260
0043 Friuli, Italy	1976 0915 0315	6.1		8014	Forgaria Cornino	36.1 ABB	В	.20 42.00	.212
0076 Coalinga	1983 0502 2342	6.4	CDMG	36416	Parkfield - Gold Hill 2W	36.6 IPB	ı	.20 21.00	.083
0076 Coalinga	1983 0502 2342	6.4	CDMG	36416	Parkfield - Gold Hill 2W	36.6 IPB	I	.20 20.00	.074
0076 Coalinga	1983 0502 2342	6.4	CDMG	36440	Parkfield – Vineyard Cany 5W	37.1 IHB	1	.20 21.00	.062
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG	90044	Rancho Palos Verdes - Luconia #	37.7C	ю	.45 21.00	.021
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG	90044	Rancho Palos Verdes - Luconia #	37.7C	щ	.53 25.00	.021
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG	24088	Pacoima Kagel Canyon	37.9 AMB	щ	.35 20.00	.166
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG	24088	Pacoima Kagel Canyon	37.9 AMB	В	.45 20.00	.164
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG	13122	Featherly Park - Maint	38.6 AMC	в	.80 25.00	.071
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG	13122	Featherly Park - Maint	38.6 AMC	В	.90 25.00	.087
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG	90001	Sylmar - Sayre St #	38.6D	В	.25 25.00	.051
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG	90001	Sylmar - Sayre St #	38.6D	В	.28 25.00	.046
0076 Coalinga	1983 0502 2342	6.4	CDMG	36420	Parkfield - Gold Hill 3W	38.8 IPB	ī	.20 30.00	.137
0076 Coalinga	1983 0502 2342	6.4	CDMG	36420	Parkfield – Gold Hill 3W	38.8 IPB	ı	.20 30.00	.122
0053 Livermore	1980 0124 1900	5.8	CDMG	58219	APEEL 3E Hayward CSUH	40.3 AVA	B	.20 25.00	.072
0053 Livermore	1980 0124 1900	5.8	CDMG	58219	APEEL 3E Hayward CSUH	40.3 AVA	B	.20 25.00	.057
0076 Coalinga	1983 0502 2342	6.4	CDMG	36230	Parkfield - Cholame 2E	40.5 IJB	I	.50 23.00	.026

Table 12: 5% RESPONE SPECTRA FOR NEHRP C FAULT CLASS C (M 5.75 TO 6.49) (Cont.)

	Date & Time				Closest Site	Εi	lter Corner	S
No. Earthquake	YEAR MODY HRMN	Mag	Own No.	Station	Dist Code	S	HP LP	PGA
					(km) Geom U) SSSI	(z4) (z4	(g)
0076 Coalinga	1983 0502 2342	6.4	CDMG 36230	Parkfield - Cholame 2E	40.5 IJB	•	20 22.00	.037
0076 Coalinga	1983 0502 2342	6.4	CDMG 36433	Parkfield - Gold Hill 4W	41.0 IPB	•	20 31.00	.056
0076 Coalinga	1983 0502 2342	6.4	CDMG 36433	Parkfield - Gold Hill 4W	41.0 IPB	•	20 30.00	.097
0076 Coalinga	1983 0502 2342	6.4	CDMG 36434	Parkfield - Gold Hill 5W	43.7 IPB	•	20 26.00	.073
0076 Coalinga	1983 0502 2342	6.4	CDMG 36434	Parkfield - Gold Hill 5W	43.7 IPB	•	20 30.00	.054
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 58135	UCSC Lick Observatory	44.1 AKA	в.	50 21.00	.039
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 58135	UCSC Lick Observatory	44.1 AKA	в.	50 22.00	.076
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 23497	Rancho Cucamonga - Law & J	44.3 IHD	в.	60 50.00	.060
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 23497	Rancho Cucamonga - Law & J	44.3 IHD	в.	60 50.00	.050
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90050	Malibu - Las Flores Canyon #	46.3B	в.	65 25.00	.065
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90050	Malibu - Las Flores Canyon #	46.3B	в.	65 25.00	.055
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 24514	Sylmar - Olive View Med FF	47.7 AQD	щ	35 20.00	.065
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 24514	Sylmar - Olive View Med FF	47.7 AQD	в.	40 20.00	.055

	Dato 6 Timo		•		Closest Site	ы Ш	lter Co	rners	
No. Earthquake	YEAR MODY HRMN	Maq	Own No.	Station	Dist Cod	s	нр цр	PGA	
		N			(km) Geom	USGS	hz) (hz	(g) (
0127 Cape Mendocino	1992 0425 1806	7.1	CDMG 89156	Petrolia #	. OMI 0.	د	07 23.0	0 .59	0
0127 Cape Mendocino	1992 0425 1806	7.1	CDMG 89156	Petrolia #	.0 IMD	ں	07 23.0	0 .66	2
0046 Tabas, Iran	1978 0916	7.4	9101	Tabas	.0 ABC	,	05 .0	0 .83	9
0046 Tabas, Iran	1978 0916	7.4	9101	Tabas	.0 ABC	1	05 .0	0 .85	2
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU074	.3	υ	00 .0	0 .37.	S
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU074	.3	י. ט	00 .0	0 .59	8
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU068	.5	U U	00 .00	0 .36	6
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU068	.5	υ.	00 .0	0 .51	2
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU129	1.1	υ	00 .0	0 .62	e
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU129	1.1	υ	00 .0	0 1.00	e
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	WNT	1.1	υ	00 .00	0 .61	4
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	WNT	1.1	υ	00 .0	. 93	6
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU075	1.4	υ	00 .0	0.26	2
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU075	1.4	υ	00 .0	. 33	Ц
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU102	1.7	υ	00 .0	. 17	2
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU102	1.7	υ	00 .0	00.30	4
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU076	1.9	υ	. 00	0 .42	8
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU076	1.9	υ	. 00	00 .34	5
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU101	2.9	υ	. 00	00 .25	6
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU101	2.9	υ	. 00	00 .21	2
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU049	4.4	υ	. 00	00 .24	5
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU049	4.4	υ	. 00	00 .27	8
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU082	5.7	υ	. 00	00 .18	5
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU082	5.7	υ	. 00	00 .22	5
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU	5.7	υ	. 00.	00 .19	91
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU	5.7	υ	. 00	00 .20	5
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU054	5.9	υ	. 00	00 .19	94

Table 13: 5% RESPONE SPECTRA FOR NEHRP D FAULT CLASS A (M GE 7)

			Table L	3: 5*	KESPON	SPECTRA FOR NEHRP D FAUL	LT CLASS /		<u>ר</u>	cont.)	
		Date & Time					Closest S	ite	Filter	Corner	S
Vo. Earthquake		YEAR MODY HRMN	Mag	ОШЛ	No.	Station	Dist C	odes	НР	LP	PGA
							(km) Geo	m USG	(hz)	(rz)	(g)
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	TCU054	6.3	υ	.00	00.	.146
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	TCU053	e.6	U	.00	00.	.134
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	TCU053	e.6	U	.00	00.	.226
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	TCU055	6.8	υ	.00	00.	.212
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	TCU055	6.8	υ	.00	.00	.262
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	TCU051	8.2	υ	.00	00.	.236
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	TCU051	8.2	υ	00.	00.	.160
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	TCU136	6.8	U	00.	00.	.174
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	TCU136	6.8	U	00.	00.	.170
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	CHY024	0.6	υ	.00	.00	.165
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	CHY024	0.6	υ	.00	.00	.281
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	TCU122	0.6	U	.00	.00	.261
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	TCU122	9.0	υ	00.	.00	.211
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	TCU060	9.4	υ	00.	.00	.103
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	TCU060	9.4	υ	.00	.00	.201
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	NSY	7.6	U	.00	00.	.118
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	NSY	9.7	U	00.	.00	.121
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	TCU128	1.6	U	.00	00.	.166
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	TCU128	9.7	U	00.	.00	.144
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	TCU138	10.1	υ	00.	.00	.211
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	TCU138	10.1	U	00.	.00	.206
0142 Chi-Chi, Taiw	мап	1999 0920	7.6	CWB	66666	TCU050	10.3	U	00.	.00	.131
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	TCU050	10.3	U	00.	.00	.146
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	TCU063	10.3	U	.00	.00	.133
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	TCU063	10.3	U	00.	.00	.183
0142 Chi-Chi, Taiw	van	1999 0920	7.6	CWB	66666	СНҮ101	11.1	U	00.	.00	.398
0142 Chi-Chi, Taiw	мап	1999 0920	7.6	CWB	66666	CHY101	11.1	U	00.	.00	.340

		Table	13: 2% RESPOR	LE SPECIKA FOR NEARF D FI	N W COMMO ITON		1.0001	
	Date & Time				Closest Site	Eil	ter Corne	rs
No. Earthquake	YEAR MODY HRMN	Mag	Own No.	Station	Dist Code	es I	IP LP	PGA
					(km) Geom (JSGS (}	1Z) (hz)	(g)
0142 Chi-Chi. Taiwan	1999 0920	7.6	CWB 99999	TCU056	11.1	ັ. ບ	00.00	.143
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU056	11.1	υ. υ	00.00	.157
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	WGK	11.1	ັ. ບ	00.00	.455
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	WGK	11.1	υ. υ	00.00	.345
0006 Imperial Valley	1940 0519 0437	7.0	USGS 117	El Centro Array #9	12.0 EQD	ີ: ບ	20 15.00	.313
0006 Imperial Valley	1940 0519 0437	7.0	USGS 117	El Centro Array #9	12.0 EQD	ີ: ບ	20 15.00	.215
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU100	12.1	с.	00.00	.113
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU100	12.1	 υ	00.00	.110
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU057	12.5	 υ	00.00	.102
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU057	12.5	 υ	00. 00	.113
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU046	14.3	с	00.00	.118
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU046	14.3	υ	00. 00	.143
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	СНУ006	14.9	د	00.00	.358
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	СНУ006	14.9	ں	00.00	.355
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU064	15.0	י ט	00.00	.116
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU064	15.0	ں	00.00	.111
0142 Chi-Chi. Taiwan	1999 0920	7.6	CWB 99999	TCU123	15.1	ں	00.00	.135
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU123	15.1	υ	00.00	.152
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU106	15.2	v	00.00	.124
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU106	15.2	υ	00.00	.160
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU036	16.6	ບ	00.00	.124
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU036	16.6	υ	00.00	.137
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU061	17.7	υ	00.00	.157
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU061	17.7	υ	00.00	.136
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	CHY034	20.2	υ	00.00	.300
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	CHY034	20.2	ບ	00.00	.248
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	CHY036	20.3	v	00.00	.204

10 13: 5% RESPONE SPECTRA FOR NEHRP D FAULT CLASS A (M GE 7) (Cont.)

		Table	13: 5% RESPON	VE SPECTRA FOR NEHRP D FAU	ILT CLASS A (M GE	7) (Con	t.)	
	Date & Time				Closest Sit	ы ы	ilter Co	orners	
No. Earthquake	YEAR MODY HRMN	Mag	Own No.	Station	Dist Cod	es	НР ЦІ	ш а.	GA
					(km) Geom	USGS	(h:) (h:	(2	(g)
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	СНУ036	20.3	υ	. 00.	. 00	.029
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU038	22.4	υ	. 00.		.146
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU038	22.4	υ	. 00.		.145
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU042	23.3	υ	. 00.	. 00	212
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU042	23.3	υ	. 00.	. 00	.253
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU029	24.7	υ	. 00.	. 00	.198
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU029	24.7	υ	. 00.	. 00	.158
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	СНУ010	25.3	υ	. 00.		174
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	СНУ010	25.3	υ	. 00.	. 00	.225
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	CHY041	25.9	υ	. 00.	00	.642
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	CHY041	25.9	υ	. 00.	. 00	303
0046 Tabas, Iran	1978 0916	7.4	70	Boshrooyeh	26.1C	I	.04 20.0	00	.107
0046 Tabas, Iran	1978 0916	7.4	70	Boshrooyeh	26.1C	i	.04 20.0	00	.089
0129 Landers	1992 0628 1158	7.3	CDMG 22074	Yermo Fire Station #	26.3 AQD	υ	.07 23.0	. 00	245
0129 Landers	1992 0628 1158	7.3	CDMG 22074	Yermo Fire Station #	26.3 AQD	υ	.07 23.0	00	.152
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	CHY047	29.3	υ	. 00.	00	.181
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	CHY047	29.3	υ	. 00.	00	.168
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	СНУ087	34.4	υ	. 00.	00	.127
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	СНУ087	34.4	υ	. 00.	00	.135
0129 Landers	1992 0628 1158	7.3	CDMG 12025	Palm Springs Airport #	36.7 IQD	υ	.07 23.0	00	.076
0129 Landers	1992 0628 1158	7.3	CDMG 12025	Palm Springs Airport #	36.7 IQD	υ	.07 23.0	00	.089
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	HWA034	36.8	υ	. 00.	00	.142
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	HWA034	36.8	υ	. 00.	00	.137
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	HWA053	37.4	υ	. 00.	00	.028
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU033	38.1	υ	. 00.	00	.185
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	TCU033	38.1	υ	. 00.	00	.158
0142 Chi-Chi, Taiwan	1999 0920	7.6	CWB 99999	HWA032	38.2	υ	.00.	00	.110

			r arger	US DE NEGLON			;			
		Date & Time				Closest Site	e Fi	lter (Corners	
No. Earthquak	Ð	YEAR MODY HRMN	Mag	Own No.	Station	Dist Code	ŝ	НΡ	а,	PGA
						(km) Geom (usgs ((hz) (h	(ZI	(g)
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	HWA032	38.2	υ	00	00.	.153
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	HWA036	38.7	د	00	00.	.060
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	HWA036	38.7	ט	00	.00	.073
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	HWA054	38.7	ບ	00	00.	.051
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	HWA054	38.7	υ.	00	.00	.016
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	HWA005	39.0	υ.	00	00.	.135
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	HWA005	39.0	υ.	00	00.	.147
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	HWA006	39.1	υ	00	.00	.088
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	HWA006	39.1	υ	00.	.00	.093
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	ESL	40.2	υ	00.	.00	.074
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	ESL	40.2	υ	.00	.00	.068
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	HWA020	40.2	υ	00.	00.	.068
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	HWA020	40.2	υ	.00	.00	.058
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	HWA035	41.2	υ	.00	.00	.073
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	HWA035	41.2	υ	.00	.00	.079
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	CHY014	41.4	υ	.00	.00	.260
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	CHY014	41.4	υ	.00	.00	.228
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	HWA030	41.8	υ	.00	.00	.082
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	HWA030	41.8	υ	00.	.00	.071
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	HWA037	42.1	υ	00.	00.	.126
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	HWA037	42.1	υ	00.	00.	.110
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	HWA039	42.2	υ	00.	.00	.075
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	HWA039	42.2	U	00.	.00	.083
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	CHY088	42.8	U	00.	.00	.211
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	CHY088	42.8	υ	00.	00.	.151
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	TCU095	43.4	υ	.00	00.	.699
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99999	TCU095	43.4	υ	00.	00	.374

Table 13: 5% RESPONE SPECTRA FOR NEHRP D FAULT CLASS A (M GE 7) (Cont.)

			T of an I							(., III))	
		Date & Time					Closest	Site	Filte	r Corne:	S
No. Earthqual	ke	YEAR MODY HRMN	Mag	N UMO	0	Station	Dist	Codes	ΗР	LP	PGA
							(km) G	som US	SS (hz)	(yz)	(g)
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99	666	CHY015	43.5	0 	.00	00.	.152
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99	666	СНҮ015	43.5	0	00.	00.	.144
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99	I 666	HWA055	44.3	0	.00	00.	.087
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99	1 666	HWA055	44.3	0 	00.	00.	.089
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99	I 666	HWA033	44.7	0	00.	00.	.167
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99	1 666	1WA033	44.7	0 	00.	.00	.165
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99	666	rcu098	45.0	0	.00	00.	.100
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99	666	rcu098	45.0	0	00.	00.	.106
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99	1 666	4WA041	45.8	0 	00.	00.	.086
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99	I 666	1MA041	45.8	0	00.	00.	.081
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99	1 666	HWA031	46.2	0	00.	.00	.100
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99	I 666	HWA031	46.2	0	00.	00.	.093
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99	1 666	łwa.002	49.9	0	.00	00.	.091
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99	I 666	1WA002	49.9	0 	00.	00.	.051
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99	I 666	HWA017	50.0	0 	00.	.00	.085
0142 Chi-Chi,	Taiwan	1999 0920	7.6	CWB 99	I 666	HWA017	50.0	0 	00.	.00	.083

Table 13: 5% RESPONE SPECTRA FOR NEHRP D FAULT CLASS A (M GE 7) (Cont.)

.

		arnet	тер :нт	REOFON	CONTA LOW LOW NEILVE D LIVER AND AND A				
	Date & Time					Closest Site	<u>(</u>	ilter Cornei	s
No. Earthquake	YEAR MODY HRMN	Mag	Оwn	No.	Station	Dist Code	S	нр цр	PGA
						(km) Geom U	JSGS	(zq) (zq)	(g)
0131 Northridge	1994 0117 1231	6.7	CDMG 2	5282	Camarillo	-HA-	υ	.10 25.00	.125
0131 Northridge	1994 0117 1231	6.7	CDMG 2	5282	Camarillo	-HA 0.	υ	.10 25.00	.121
0131 Northridge	1994 0117 1231	6.7	CDMG	ΓL	Rinaldi Receiving Sta #	.0C	υ	.00 .00	.838
0131 Northridge	1994 0117 1231	6.7	CDMG	ΓL	Rinaldi Receiving Sta #	.0C	υ	.00 .00	.472
0131 Northridge	1994 0117 1231	6.7	CDMG 9	0055	Simi Valley – Katherine Rd	.0B	υ	.50 30.00	.877
0131 Northridge	1994 0117 1231	6.7	CDMG 9	0055	Simi Valley – Katherine Rd	.0B	υ	.40 30.00	.640
0131 Northridge	1994 0117 1231	6.7	CDMG 9	0003	Northridge - 17645 Saticoy St	.1D	υ	.10 30.00	.368
0131 Northridge	1994 0117 1231	6.7	CDMG 9	0003	Northridge - 17645 Saticoy St	.1D	υ	.10 30.00	.477
0131 Northridge	1994 0117 1231	6.7	CDMG	74	Sylmar - Converter Sta #	.2D	υ	.00 .00	.612
0131 Northridge	1994 0117 1231	6.7	CDMG	74	Sylmar - Converter Sta #	.2D	υ	.00 00	.897
0050 Imperial Valley	1979 1015 2316	6.5 UN	IAMUCSD	5155	EC Meloland Overpass FF	.5 IDD	υ	.10 40.00	.314
0050 Imperial Valley	1979 1015 2316	6.5 UN	IAMUCSD	5155	EC Meloland Overpass FF	.5 IDD	υ	.10 50.00	.296
0050 Imperial Valley	1979 1015 2316	6.5 UN	IAMUCSD	5028	El Centro Array #7	.6 AQD	υ	.10 40.00	.338
0050 Imperial Valley	1979 1015 2316	6.5 UN	IAMUCSD	5028	El Centro Array #7	.6 AQD	υ	.10 40.00	.463
0050 Imperial Valley	1979 1015 2316	6.5 UN	IAMUCSD	942	El Centro Array #6	1.3 IQD	υ	.10 40.00	.410
0050 Imperial Valley	1979 1015 2316	6.5 UN	IAMUCSD	942	El Centro Array #6	1.3 IQD	υ	.10 40.00	.439
0050 Imperial Valley	1979 1015 2316	6.5 UN	IAMUCSD	6616	Aeropuerto Mexicali	1.4 I-D	υ	.05 .00	.327
0050 Imperial Valley	1979 1015 2316	6.5 UN	IAMUCSD	6616	Aeropuerto Mexicali	1.4 I-D	υ	.05 .00	.260
0050 Imperial Valley	1979 1015 2316	6.5 UN	IAMUCSD	5054	Bonds Corner	2.6 AQD	υ	.10 40.00	.588
0050 Imperial Valley	1979 1015 2316	6.5 UN	NAMUCSD	5054	Bonds Corner	2.6 AQD	υ	.10 40.00	.775
0050 Imperial Valley	1979 1015 2316	6.5 UN	NAMUCSD	958	El Centro Array #8	3.8 AQD	υ	.10 40.00	.602
0050 Imperial Valley	1979 1015 2316	6.5 UN	NAMUCSD	958	El Centro Array #8	3.8 AQD	υ	.10 40.00	.454
0131 Northridge	1994 0117 1231	6.7	CDMG 2	24087	Arleta - Nordhoff Fire Sta #	3.9 AQD	υ	.12 23.00	.344
0131 Northridge	1994 0117 1231	6.7	CDMG 2	24087	Arleta - Nordhoff Fire Sta #	3.9 AQD	υ	.12 23.00	.308
0050 Imperial Valley	1979 1015 2316	6.5 UN	NAMUCSD	952	El Centro Array #5	4.0 IQD	υ	.10 40.00	.519
0050 Imperial Valley	1979 1015 2316	6.5 UN	NAMUCSD	952	El Centro Array #5	4.0 IQD	υ	.10 40.00	.379
0131 Northridge	1994 0117 1231	6.7	CDMG 2	24436	Tarzana - Cedar Hill #	4.1 APB	U	.10 23.00	1.779

Table 14: 5% RESPONE SPECTRA FOR NEHRP D FAULT CLASS B (M 6.5 TO 6.99)

	Ta	ble 14	: 5% RESPC	ONE SP	ECTRA FOR NEHRP D FAULT CLASS B (M	6.5 TO 6.9)) (66	Cont.)	
	Date & Time					Closest Si	e	Filter Corner	S
No. Earthquake	YEAR MODY HRMN	Mag	Own N	. ov	Station	Dist Coo	des	нр цр	PGA
						(km) Geom	USGS	(pz) (pz)	(g)
0131 Northridge	1994 0117 1231	6.7	CDMG 24	4436	Tarzana - Cedar Hill #	4.1 APB	υ	.10 23.00	.990
0131 Northridge	1994 0117 1231	6.7	CDMG 24	1279	Newhall - Fire Sta #	4.5 AQD	υ	.12 23.00	.583
0131 Northridge	1994 0117 1231	6.7	CDMG 24	4279	Newhall - Fire Sta #	4.5 AQD	υ	.12 23.00	.590
0050 Imperial Valley	1979 1015 2316	6.5 U	NAMUCSD	5165	El Centro Differential Array	5.1 IQD	υ	.10 40.00	.352
0050 Imperial Valley	1979 1015 2316	6.5 U	NAMUCSD	5165	El Centro Differential Array	5.1 IQD	υ	.10 40.00	.480
0131 Northridge	1994 0117 1231	6.7	CDMG 90	0006	Sun Valley - Roscoe Blvd	6.1D	υ	.10 30.00	.303
0131 Northridge	1994 0117 1231	6.7	CDMG 9(0006	Sun Valley - Roscoe Blvd	6.1D	υ	.10 30.00	.443
0050 Imperial Valley	1979 1015 2316	6.5 U	NAMUCSD	955	El Centro Array #4	6.8 IQD	υ	.10 40.00	.485
0050 Imperial Valley	1979 1015 2316	6.5 U	NAMUCSD	955	El Centro Array #4	6.8 IQD	υ	.10 40.00	.360
0050 Imperial Valley	1979 1015 2316	6.5 U	NAMUCSD	5055	Holtville Post Office	7.5 AQD	υ	.10 40.00	.253
0050 Imperial Valley	1979 1015 2316	6.5 U	NAMUCSD	5055	Holtville Post Office	7.5 AQD	υ	.10 40.00	.221
0050 Imperial Valley	1979 1015 2316	6.5 U	NAMUCSD	5154	EC County Center FF	7.6 IDD	υ	.10 40.00	.213
0050 Imperial Valley	1979 1015 2316	6.5 U	NAMUCSD	5154	EC County Center FF	7.6 IDD	υ	.10 35.00	.235
0050 Imperial Valley	1979 1015 2316	6.5 U	NAMUCSD (6619	SAHOP Casa Flores	8.4 I-C	υ	.20 .00	.287
0050 Imperial Valley	1979 1015 2316	6.5 U	NAMUCSD (6619	SAHOP Casa Flores	8.4 I-C	υ	.20 .00	.506
0050 Imperial Valley	1979 1015 2316	6.5 U	NAMUCSD	5060	Brawley Airport	8.5 AQD	υ	.10 40.00	.160
0050 Imperial Valley	1979 1015 2316	6.5 U	NAMUCSD	5060	Brawley Airport	8.5 AQD	υ	.10 40.00	.220
0050 Imperial Valley	1979 1015 2316	6.5 U	NAMUCSD	412	El Centro Array #10	8.5 AQD	υ	.10 40.00	.171
0050 Imperial Valley	1979 1015 2316	6.5 U	NAMUCSD	412	El Centro Array #10	8.5 AQD	υ	.10 40.00	.224
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 4	7125	Capitola	8.6 AQC	υ	.20 48.00	.529
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 4	7125	Capitola	8.6 AQC	υ	.20 40.00	.443
0050 Imperial Valley	1979 1015 2316	6.5 U	NAMUCSD	5053	Calexico Fire Station	10.6 AQD	υ	.10 40.00	.275
0050 Imperial Valley	1979 1015 2316	6.5 U	NAMUCSD	5053	Calexico Fire Station	10.6 AQD	υ	.20 40.00	.202
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 4	7380	Gilroy Array #2	12.1 IQD	υ	.20 40.00	.367
0122 Loma Prieta	1989 1018 0005	6.9	CDMG 4	7380	Gilroy Array #2	12.1 IQD	υ	.20 31.00	.322
0131 Northridge	1994 0117 1231	6.7	CDMG 9(0057	Canyon Country - W Lost Cany	12.2D	υ	.05 30.00	.410
0131 Northridge	1994 0117 1231	6.7	CDMG 9(0057	Canyon Country - W Lost Cany	12.2D	υ	.10 30.00	.482

				Tabl	e 14: 5% RES	SPONE SI	PECTRA FOR NEHRP D FAULT CLASS B (1	1 6.5 TO 6.99	9) (C	ont.)	
		Date &	& Time					Closest Site	ы e	ilter Corner	ŝ
No. E	larthquake	YEAR M	ору нг	A NM	lag Own	No.	Station	Dist Code	es	НР LP	PGA
								(km) Geom (USGS	(pz) (pz)	(đ)
0050 I	mperial Valley	1979 1(015 23	16 (5.5 UNAMUCSD	5058	El Centro Array #11	12.6 AQD	υ	.20 40.00	.364
0050 1	mperial Valley	1979 1(015 23	16 (5.5 UNAMUCSD	5058	El Centro Array #11	12.6 AQD	υ	.10 40.00	.380
0050 1	mperial Valley.	1979 1(015 23	116 (5.5 UNAMUCSD	6617	Cucapah	12.9 IQD	υ	.05 .00	.309
0120 5	Superstitn Hills(B	1987 1	124 13	16 (5.7 USGS	11369	Westmorland Fire Sta	13.3 ADD	υ	.10 35.00	.172
0120 5	Superstitn Hills(B	1 1987 1	124 13	116 (5.7 USGS	11369	Westmorland Fire Sta	13.3 ADD	υ	.10 40.00	.211
0120 5	Superstitn Hills(B	1 1987 1	124 13	316 (5.7 USGS	01335	El Centro Imp. Co. Cent	13.9 AQD	υ	.10 40.00	.358
0120 5	Superstitn Hills(B	1 1987 1	124 13	316 (6.7 USGS	01335	El Centró Imp. Co. Cent	13.9 AQD	υ	.10 38.00	.258
0122 1	.oma Prieta	1989 10	018 00	05 (6.9 CDMG	47381	Gilroy Array #3	14.0 IHD	υ	.10 33.00	.555
0122 1	Joma Prieta	1989 10	018 00)05 (6.9 CDMG	47381	Gilroy Array #3	14.0 IHD	υ	.10 40.00	.367
0050	Imperial Valley	1979 10	015 23	316	6.5 UNAMUCSD	5169	Westmorland Fire Sta	15.0 ADD	υ	.10 40.00	.074
0050	Imperial Valley	1979 10	015 23	316	6.5 UNAMUCSD	5169	Westmorland Fire Sta	15.0 ADD	υ	.10 40.00	.110
0122 1	Joma Prieta	1989 1	018 00)05	6.9 CDMG	57382	Gilroy Array #4	15.8 AHD	υ	.20 28.00	.417
0122 1	loma Prieta	1989 1	018 00	05	6.9 CDMG	57382	Gilroy Array #4	15.8 AHD	υ	.20 30.00	.212
0131	Vorthridge	1994 0	117 12	231	6.7 CDMG	90053	Canoga Park - Topanga Can	15.8D	υ	.05 30.00	.356
0131	Vorthridge	1994 0	117 12	231 4	6.7 CDMG	90053	Canoga Park - Topanga Can	15.8D	υ	.05 30.00	.420
0050	Imperial Valley	1979 1	015 23	316 (6.5 UNAMUCSD	5115	El Centro Array #2	16.0 IQD	υ	.10 40.00	.315
0125 1	Irzican, Turkey	1992 0	313	-	6.9	95	Erzincan	16.9D	υ	.10 .00	.515
0125 1	Erzican, Turkey	1992 0	313	-	6.9	95	Erzincan	16.9D	υ	.10 .00	.496
0050	Imperial Valley	1979 1	015 23	316	6.5 UNAMUCSD	6621	Chihuahua	17.7 IQD	υ	.05 .00	.270
0050	Imperial Valley	1979 1	015 23	316	6.5 UNAMUCSD	6621	Chihuahua	17.7 IQD	υ	.05 .00	.254
0020	Imperial Valley	1979 1	015 23	316	6.5 UNAMUCSD	931	El Centro Array #12	18.0 IQD	υ	.10 40.00	.143
0050	Imperial Valley	1979 1	015 23	316	6.5 UNAMUCSD	931	El Centro Array #12	18.0 IQD	υ	.10 40.00	.116
0120	Superstitn Hills(F	3)1987 1	124 13	316	6.7 USGS	5060	Brawley Airport	18.2 AQD	υ	.10 23.00	.156
0120	Superstitn Hills(F	3)1987 1	124 1	316	6.7 USGS	5060	Brawley Airport	18.2 AQD	υ	.13 20.00	.116
0131	Northridge	1994 0	117 12	231	6.7 CDMG	24389	LA - Century City CC North #	18.3 IQD	υ	.14 23.00	.256
0131 1	Northridge	1994 0	117 12	231	6.7 CDMG	24389	LA - Century City CC North #	18.3 IQD	υ	.14 23.00	.222
0131 1	Northridge	1994 0	117 12	231	6.7 CDMG	90060	La Crescenta – New York	19.7C	υ	.30 30.00	.178

		Table	14: 5% KESFONE S	SPECTRA FOR NEHRP D FAULT CLASS B	(M 6.5 TO 6.99)	(Cont.)	
	Date & Time				Closest Site	Filter Corne	SIS
No. Earthquake	YEAR MODY HRM	IN Mag	g Own No.	Station	Dist Codes	нр цр	PGA
					(km) Geom US	GS (hz) (hz)	(ɓ)
0131 Northridge	1994 0117 123	31 6.	7 CDMG 90060	La Crescenta – New York	19.7C C	.10 30.00	.159
0131 Northridge	1994 0117 123	31 6.	7 CDMG 24303	LA - Hollywood Stor FF #	20.8 IPD C	.20 23.00	.231
0131 Northridge	1994 0117 123	31 6.	7 CDMG 24303	LA - Hollywood Stor FF #	20.8 IPD C	.20 23.00	.358
0120 Superstitn Hills(B)1987 1124 131	.99	7 USGS 5052	Plaster City	21.0 AQD C	.30 20.00	.121
0120 Superstitn Hills()	B)1987 1124 131	.99	7 USGS 5052	Plaster City	21.0 AQD C	.20 18.00	.186
0131 Northridge	1994 0117 123	31 6.	7 CDMG 24538	Santa Monica City Hall #	21.1 IQD C	.14 23.00	.883
0131 Northridge	1994 0117 123	31 6.	7 CDMG 24538	Santa Monica City Hall #	21.1 IQD C	.14 23.00	.370
0050 Imperial Valley	1979 1015 231	Te e :	5 UNAMUCSD 5056	El Centro Array #1	22.0 AQD C	.10 40.00	.139
0050 Imperial Valley	1979 1015 231	re e.:	5 UNAMUCSD 5056	El Centro Array #1	22.0 AQD C	.10 40.00	.134
0050 Imperial Valley	1979 1015 231	19 91	5 UNAMUCSD 5059	El Centro Array #13	22.0 AQD C	.20 40.00	.117
0050 Imperial Valley	1979 1015 231	[e e.	5 UNAMUCSD 5059	El Centro Array #13	22.0 AQD C	.20 40.00	.139
0131 Northridge	1994 0117 123	31 6.	7 CDMG 90063	Glendale - Las Palmas	22.9C C	.13 30.00	.357
0131 Northridge	1994 0117 123	31 6.	7 CDMG 90063	Glendale - Las Palmas	22.9C C	.10 30.00	.206
0050 Imperial Valley	1979 1015 231	[e e.]	5 UNAMUCSD 5061	Calipatria Fire Station	23.0 BQD C	.10 40.00	.128
0050 Imperial Valley	1979 1015 231	[e e.	5 UNAMUCSD 5061	Calipatria Fire Station	23.0 BQD C	.10 40.00	.078
0050 Imperial Valley	1979 1015 231	re e.:	5 UNAMUCSD 6622	Compuertas	23.2 IQD C	.20 .00	.186
0050 Imperial Valley	1979 1015 231	6 6.	5 UNAMUCSD 6622	Compuertas	23.2 IQD C	.20 .00	.147
0131 Northridge	1994 0117 123	31 6.	7 CDMG 90091	LA - Saturn St	23.2D C	.10 30.00	474
0131 Northridge	1994 0117 123	31 6.	7 CDMG 90091	LA - Saturn St	23.2D C	.10 30.00	.439
0133 Kobe	1995 0116 204	16 6.9	9 CEOR 99999	Abeno	23.8D C	.05 40.00	.222
0133 Kobe	1995 0116 204	16 6.9	9 CEOR 99999	Abeno	23.8D C	.05 40.00	.235
0131 Northridge	1994 0117 123	31 6.	7 CDMG 90016	LA - N Faring Rd	23.9B C	.13 30.00	.273
0131 Northridge	1994 0117 123	31 6.	7 CDMG 90016	LA - N Faring Rd	23.9B C	.13 30.00	.242
0122 Loma Prieta	1989 1018 000	5 6.9	9 CDMG 57425	Gilroy Array #7	24.3 AHB C	.20 40.00	.226
0122 Loma Prieta	1989 1018 000	5 6.9	9 CDMG 57425	Gilroy Array #7	24.3 AHB C	.20 35.00	.323
0030 San Fernando	1971 0209 140	0 6.4	5 135	LA - Hollywood Stor FF	24.6 IPD C	.20 35.00	.210
0030 San Fernando	1971 0209 140	0 6.4	5 135	LA - Hollywood Stor FF	24.6 IPD C	.20 35.00	.174

		Т	able 14:	58 RES	PONE SP	ECTRA FOR NEHRP D FAULT CLASS B (N	6.5 TO 6.99	0) (C	ont.)	
		Date & Time					Closest Site	لتا م	ilter Corner	S
No. Eart	hquake	YEAR MODY HRMN	Mag	ОМП	No.	Station	Dist Code	s S	нр цр	PGA
							(km) Geom I	USGS	(pz) (hz)	(g)
0122 Loma	u Prieta	1989 1018 0005	6.9	CDMG	1656	Hollister Diff. Array	25.8 IQD	υ	.10 40.00	.269
0122 Loma	ı Prieta	1989 1018 0005	6.9	CDMG	1656	Hollister Diff. Array	25.8 IQD	υ	.10 33.00	.279
0122 Loma	ı Prieta	1989 1018 0005	6.9	CDMG	57066	Agnews State Hospital	27.0 AQD	υ	.20 30.00	.172
0122 Loma	ı Prieta	1989 1018 0005	6.9	CDMG	57066	Agnews State Hospital	27.0 AQD	υ	.20 30.00	.159
0122 Loma	ı Prieta	1989 1018 0005	6.9	CDMG	1695	Sunnyvale - Colton Ave.	27.5 AHD	υ	.10 40.00	.207
0122 Loma	ı Prieta	1989 1018 0005	6.9	CDMG	1695	Sunnyvale - Colton Ave.	27.5 AHD	υ	.10 32.00	.209
0122 Loma	1 Prieta	1989 1018 0005	6.9	CDMG	1028	Hollister City Hall	28.2 CHD	υ	.10 29.00	.247
0122 Lomá	1 Prieta	1989 1018 0005	6.9	CDMG	1028	Hollister City Hall	28.2 CHD	υ	.10 30.00	.215
0120 Supe	srstitn Hills(B)	1987 1124 1316	6.7	USGS	5061	Calipatria Fire Station	28.3 BQD	υ	.23 20.00	.180
0120 Supe	erstitn Hills(B)	1987 1124 1316	6.7	USGS	5061	Calipatria Fire Station	28.3 BQD	υ	.23 18.00	.247
0131 Nort	chridge	1994 0117 1231	6.7	CDMG	24612	LA - Pico & Sentous #	29.0 IHD	υ	.20 46.00	.103
0131 Nort	thridge	1994 0117 1231	6.7	CDMG	24612	LA - Pico & Sentous #	29.0 IHD	υ	.20 46.00	.186
0122 Lomé	a Prieta	1989 1018 0005	6.9	CDMG	57191	Halls Valley	29.3 IFC	U	.20 22.00	.134
0122 Lomé	a Prieta	1989 1018 0005	6.9	CDMG	57191	Halls Valley	29.3 IFC	υ	.20 22.00	.103
0131 Nort	thridge	1994 0117 1231	6.7	CDMG	90034	LA - Fletcher Dr	29.5D	υ	.13 30.00	.162
0131 Nort	thridge	1994 0117 1231	6.7	CDMG	90034	LA - Fletcher Dr	29.5D	υ	.15 30.00	.240
0133 Kobe	n)	1995 0116 2046	6.9	CEOR	66666	Tadoka	30.5D	υ	.05 40.00	.294
0133 Kobe	n	1995 0116 2046	5 6.9	CEOR	66666	Tadoka	30.5D	υ	.05 40.00	.195
0131 Nort	thridge	1994 0117 1231	6.7	CDMG	90054	LA - Centinela St	30.9D	υ	.13 30.00	.465
0131 Nort	thridge	1994 0117 1231	6.7	CDMG	90054	LA - Centinela St	30.9D	υ	.20 30.00	.322
0122 Lomi	a Prieta	1989 1018 000	6.9	CDMG	47179	Salinas - John & Work	31.4 AHD	υ	.10 30.00	.091
0122 Lom	a Prieta	1989 1018 000	6.9	CDMG	47179	Salinas - John & Work	31.4 AHD	υ	.10 28.00	.112
0017 Nor	thern Calif	1954 1221 1956	6.5	USGS	1023	Ferndale City Hall	31.5 BQD	υ	.20 20.00	.159
0017 Nor	thern Calif	1954 1221 1950	5 6.5	USGS	1023	Ferndale City Hall	31.5 BQD	υ	.50 13.00	.189
0050 Imp•	erial Valley	1979 1015 2310	5 6.5 U	NAMUCSD	5052	Plaster City	32.0 AQD	υ	.10 40.00	.042
0050 Imp•	erial Valley	1979 1015 2310	5 6.5 U	NAMUCSD	5052	Plaster City	32.0 AQD	υ	.10 40.00	.057
0050 Imp•	erial Valley	1979 1015 2310	5 6.5 U	NAMUCSD	6605	Delta	32.7 IQD	υ	.05 .00	.238

		Tal	ble 14: 5%	RESPONE S	PECTRA FOR NEHRP D FAULT CLASS B ()	1 6.5 TO 6.99	0) (C	ont.)	
		Date & Time				Closest Site	ы e	ilter Corner	S
No. E	irthquake	YEAR MODY HRMN	Mag Ow	n No.	Station	Dist Cod	es	нр цр	PGA
						(km) Geom 1	usgs	(pz) (pz)	(g)
0050 II	nperial Valley	1979 1015 2316	6.5 UNAMUC	SD 6605	Delta	32.7 IQD	υ	.05 .00	.351
0131 N	orthridge	1994 0117 1231	6.7 CD	MG 90096	LA - S. Vermont Ave	34.7D	U	.30 30.00	.164
0131 N	orthridge	1994 0117 1231	6.7 CD	MG 90096	LA - S. Vermont Ave	34.7D	υ	.30 30.00	.071
0122 La	oma Prieta	1989 1018 0005	6.9 CD	MG 58264	Palo Alto - 1900 Embarc.	34.8 BQD	υ	.20 32.00	.204
0122 L	oma Prieta	1989 1018 0005	6.9 CD	MG 58264	Palo Alto - 1900 Embarc.	34.8 BQD	υ	.20 30.00	.213
0050 II	nperial Valley	1979 1015 2316	6.5 UNAMUC	SD 724	Niland Fire Station	36.0 AQD	υ	.10 30.00	.109
0050 II	nperial Valley	1979 1015 2316	6.5 UNAMUC	SD 724	Niland Fire Station	36.0 AQD	υ	.10 40.00	.069
0131 N	orthridge	1994 0117 1231	6.7 CD	MG 90022	LA - S Grand Ave	36.9D	υ	.30 30.00	.290
0131 N	orthridge	1994 0117 1231	6.7 CD	MG 90022	LA - S Grand Ave	36.9D	υ	.30 30.00	.264
0131 N	orthridge	1994 0117 1231	6.7 CD	MG 90046	Manhattan Beach - Manhattan	36.9C	υ	.23 30.00	.201
0131 N	orthridge	1994 0117 1231	6.7 CE	MG 90046	Manhattan Beach - Manhattan	36.9C	U	.05 30.00	.128
0131 N	orthridge	1994 0117 1231	6.7 CE	MG 90095	Pasadena - N Sierra Madre	37.4C	υ	.30 30.00	.245
0131 N	orthridge	1994 0117 1231	6.7 CI	MG 90095	Pasadena – N Sierra Madre	37.4C	υ	.20 30.00	.174
0131 N	orthridge	1994 0117 1231	6.7 CI	MG 24575	Elizabeth Lake #	37.6 IHD	υ	.16 46.00	.155
0131 N	orthridge	1994 0117 1231	6.7 CI	MG 24575	Elizabeth Lake #	37.6 IHD	υ	.16 46.00	.109
0131 N	orthridge	1994 0117 1231	6.7 CI	MG 24306	Leona Valley #2 #	37.7 IH-	υ	.20 23.00	.091
0131 N	orthridge	1994 0117 1231	6.7 CI	MG 24306	Leona Valley #2 #	37.7 IH-	υ	.20 23.00	.063
0131 N	orthridge	1994 0117 1231	6.7 CI	MG 24308	Leona Valley #4 #	38.1 IQ-	υ	.20 23.00	.079
0131 N	orthridge	1994 0117 1231	6.7 CI	MG 24308	Leona Valley #4 #	38.1 IQ-	υ	.20 23.00	.057
0131 N	orthridge	1994 0117 1231	6.7 CI	MG 24055	Leona Valley #5 - Ritter #	38.3 IQC	υ	.20 23.00	.146
0131 N	orthridge	1994 0117 1231	6.7 CI	MG 24055	Leona Valley #5 - Ritter #	38.3 IQC	υ	.20 23.00	.092
0131 N	orthridge	1994 0117 1231	6.7 CI	MG 24309	Leona Valley #6 #	38.5 IHD	υ	.20 23.00	.178
0131 N	orthridge	1994 0117 1231	6.7 CI	MG 24309	Leona Valley #6 #	38.5 IHD	υ	.20 23.00	.131
0131 N	orthridge	1994 0117 1231	6.7 CI	MG 25148	Point Mugu - Laguna Peak #	38.9 AMA	υ	.30 23.00	.134
0131 N	orthridge	1994 0117 1231	6.7 CI	MG 25148	Point Mugu - Laguna Peak #	38.9 AMA	υ	.30 23.00	.223
N 1610	orthridge	1994 0117 1231	6.7 CI	MG 24576	Anaverde Valley - City R #	39.1 IHD	υ	.20 46.00	.044
0131 N	orthridge	1994 0117 1231	6.7 CI	MG 24576	Anaverde Valley - City R #	39.1 IHD	υ	.20 46.00	.060

,

Table 14: 5% RESPONE SPECTRA FOR NEHRP D FAULT CLASS B (M 6.5 TO 6.99) (Cont.)

		Date & Time					Closest Site	Filter	Corners	
No. Eai	sthquake	YEAR MODY HRMN	Mag	Own	No.	Station	Dist Codes	ΗР	LP	PGA
	1						(km) Geom US	GS (hz)	(zų	(g)
0131 No1	rthridge	1994 0117 1231	6.7	CDMG 9	0025	LA - E Vernon Ave	39.3D C	.20 30	.00	.120
0131 No1	cthridge	1994 0117 1231	6.7	CDMG 9	0025	LA - E Vernon Ave	39.3D C	.10 30	00.00	.153
0131 No	rthridge	1994 0117 1231	6.7	CDMG 9	6600	Arcadia - Arcadia Av	40.6D C	.25 3(00.00	.104
0131 No	rthridge	1994 0117 1231	6.7	CDMG 9	6600	Arcadia - Arcadia Av	40.6D C	.30 30	00.00	.083
0131 No	rthridge	1994 0117 1231	6.7	CDMG 9	0079	Downey - Birchdale	40.7D C	.30 3(00.00	.165
0131 No:	rthridge	1994 0117 1231	6.7	CDMG 9	0079	Downey - Birchdale	40.7D C	.30 3(00.00	.171
0122 Loi	na Prieta	1989 1018 0005	6.9	CDMG	1686	Fremont - Emerson Court	42.4 AQB C	.10 3	.00	.192
0122 Loi	na Prieta	1989 1018 0005	6.9	CDMG	1686	Fremont - Emerson Court	42.4 AQB C	.10 3	00.3	.141
0131 No	rthridge	1994 0117 1231	6.7	CDMG 9	0093	Arcadia - Campus Dr	42.4D C	.30 30	00.00	.089
0131 No	rthridge	1994 0117 1231	6.7	CDMG 9	0093	Arcadia - Campus Dr	42.4D C	.23 3(00.00	.110
0131 No	rthridge	1994 0117 1231	6.7	CDMG 9	0045	Lawndale - Osage Ave	42.4D C	.13 3(00.00	.084
0131 No	rthridge	1994 0117 1231	6.7	CDMG 9	0045	Lawndale - Osage Ave	42.4D C	.13 3	00.00	.152
0131 No	rthridge	1994 0117 1231	6.7	CDMG 9	0004	Bell Gardens - Jaboneria	42.5D C	.13 3	00.00	.098
0131 No	rthridge	1994 0117 1231	6.7	CDMG 9	0094	Bell Gardens - Jaboneria	42.5D C	.13 3	00.00	.068
0131 No	rthridge	1994 0117 1231	6.7	CDMG 2	4521	Palmdale - Hwy 14 & Palmdale #	43.3 IQC C	.20 4	5.00	.061
0131 No	rthridge	1994 0117 1231	6.7	CDMG 2	4521	Palmdale - Hwy 14 & Palmdale #	43.3 IQC C	.20 4	6.00	.067
0050 Im	perial Valley	1979 1015 2316	6.5 UN	AMUCSD	6610	Victoria	43.5 IQD C	.05	.00	.122
0050 Im	perial Valley	1979 1015 2316	6.5 UN	AMUCSD	6610	Victoria	43.5 IQD C	.20	.00	.167
0028 Bo	rrego Mtn	1968 0409 0230	6.8	USGS	117	El Centro Array #9	45.0 EQD C	20 1	2.00	.130
0028 Bo	rrego Mtn	1968 0409 0230	6.8	USGS	117	El Centro Array #9	45.0 EQD (20 1	2.00	.057
0131 No	rthridge	1994 0117 1231	6.7	CDMG 1	4368	Downey - Co Maint Bldg #	45.1 AQD (20 2	3.00	.158
0131 No	rthridge	1994 0117 1231	6.7	CDMG 1	14368	Downey - Co Maint Bldg #	45.1 AQD (20 2	3.00	.230
0131 No	rthridge	1994 0117 1231	6.7	CDMG	90078	Compton - Castlegate St	45.2D (10 3	0.00	.088
0131 No	rthridge	1994 0117 1231	6.7	CDMG	90078	Compton - Castlegate St	45.2D (.20 3	0.00	.136
0131 Nc	rthridge	1994 0117 1231	6.7	CDMG	90066	El Monte - Fairview Av	45.5D (15 3	0.00	.122
0131 Nc	rthridge	1994 0117 1231	6.7	CDMG	90066	El Monte - Fairview Av	45.5D (30 3	0.00	.163
0030 Sa	n Fernando	1971 0209 1400	6.6		964	Gormon - Oso Pump Plant	46.7 EBC (: .10 2	3.00	.084

Table 14: 5% RESPONE SPECTRA FOR NEHRP D FAULT CLASS B (M 6.5 TO 6.99) (Cont.)

		Date & Time					Closest S	ite	Filter Co	rners	
No.	Earthquake	YEAR MODY HRMN	Mag	UMD	No.	Station	Dist C	odes	нр ці	bG <i>P</i>	~
							(km) Geo	m USGS	(hz) (hz	(g) (g)	_
0030	San Fernando	1971 0209 1400	6.6		994	Gormon - Oso Pump Plant	46.7 EBC	U	.10 30.0	. 10	05
0131	Northridge	1994 0117 1231	6.7	CDMG 9	0077	Santa Fe Springs - E.Joslin	48.9D	U	.30 30.0	. 13	35
0131	Northridge	1994 0117 1231	6.7	CDMG 9	0077	Santa Fe Springs - E.Joslin	48.9D	U	.30 30.0	. 12	53
6000	Borrego	1942 1021 1622	6.5	USGS	117	El Centro Array #9	49.0 EQD	U	.10 15.0	. 06	89
6000	Borrego	1942 1021 1622	6.5	USGS	117	El Centro Array #9	49.0 EQD	U	.10 15.0	. 04	14
0050	Imperial Valley	1979 1015 2316	6.5 UNA	MUCSD	5066	Coachella Canal #4	49.0 AQD	U	.20 40.0		L5
0050	Imperial Valley	1979 1015 2316	6.5 UNA	MUCSD	5066	Coachella Canal #4	49.0 AQD	U	.20 40.0	. 12	8
0131	Northridge	1994 0117 1231	6.7	CDMG 9	0069	Baldwin Fark - N Holly	49.0D	U D	.20 30.0	50.0	90
0131	Northridge	1994 0117 1231	6.7	CDMG 9	0069	Baldwin Fark - N Holly	49.0D	U	.23 30.0	. 12	33
0131	Northridge	1994 0117 1231	6.7	CDMG 9	0040	Carson - Catskill Ave	49.2D	U -	.20 30.0	. 08	37
0131	Northridge	1994 0117 1231	6.7	CDMG 9	0040	Carson - Catskill Ave	49.2D	U	.30 30.0	. 08	33
0131	Northridge	1994 0117 1231	6.7	CDMG 2	5281	Port Hueneme - Naval Lab. #	50.0 AHD	U	.14 23.0	0 .10	03
0131	Northridge	1994 0117 1231	6.7	CDMG 2	5281	Port Hueneme - Naval Lab. #	50.0 AHD	U	.14 23.0	90.00	36
	OTANT	•			•						
-----------------------	----------------	-----	------------	-------------------------------	---------------	--------------	------				
	Date & Time				Closest Site	Filter Corne	rs				
No. Earthquake	YEAR MODY HRMN	Mag	OWD No.	Station	Dist Codes	нр цр	PGA				
					(km) Geom USG	(zq) (zq) S	(ɓ)				
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 57191	Halls Valley	'3.4 IFC C	.20 26.00	.156				
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 57191	Halls Valley	3.4 IFC C	.20 30.00	.312				
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90094	Bell Gardens - Jaboneria #	5.7D C	.25 25.00	.219				
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90094	Bell Gardens - Jaboneria #	5.7D C	.10 25.00	.212				
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90066	El Monte - Fairview Av #	5.7D C	.33 25.00	.120				
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90066	El Monte - Fairview Av #	5.7D C	.13 25.00	.228				
0025 Parkfield	1966 0628 0426	6.1	CDMG 1013	Cholame #2	6.6 IHD C	.20 10.00	.476				
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90073	Hacienda Heights - Colima #	6.8C C	.23 25.00	.195				
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90073	Hacienda Heights - Colima #	6.8C C	.45 25.00	.201				
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90071	West Covina - S Orange #	6.8B C	.23 25.00	.137				
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90071	West Covina - S Orange #	6.8B C	.23 25.00	.179				
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90025	LA - E Vernon Ave #	7.3D C	.18 25.00	.146				
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90025	LA - E Vernon Ave #	7.3D C	.16 25.00	.175				
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90077	Santa Fe Springs - E Joslin #	7.3D C	.35 25.00	.426				
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90077	Santa Fe Springs - E Joslin #	7.3D C	.35 25.00	.443				
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90069	Baldwin Park - N Holly #	8.8D C	.13 25.00	.127				
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90069	Baldwin Park - N Holly #	8.8D C	.50.25.00	.061				
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90072	La Puente - Rimgrove Av #	8.8D C	.18 25.00	.143				
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90072	La Puente - Rimgrove Av #	8.8D C	.50 21.00	.118				
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90093	Arcadia - Campus Dr #	9.2D C	.15 25.00	.300				
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90093	Arcadia - Campus Dr #	9.2D C	.38 25.00	.163				
0025 Parkfield	1966 0628 0426	6.1	CDMG 1014	Cholame #5	9.3 IHC C	.20 17.00	.442				
0025 Parkfield	1966 0628 0426	6.1	CDMG 1014	Cholame #5	9.3 IHC C	.20 20.00	.367				
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90074	La Habra - Briarcliff #	10.9C C	.25 25.00	.183				
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90074	La Habra - Briarcliff #	10.9C C	.25 25.00	.131				
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 57382	Gilroy Array #4	12.8 AHD C	.10 25.00	.224				
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 57382	Gilroy Array #4	12.8 AHD C	.10 27.00	.348				

Table 15: 5% RESPONE SPECTRA FOR NEHRP D FAULT CLASS C (M 5.75 TO 6.49)

		Table 15:	58 RESI	PONE SPE	CTRA F	OR NEHRP D FAULT CLASS C (M 5.75 1	0 6.49) (Cont	.		
		Date & Time					Closest Site	Filt	er Corner	10
No.	Earthquake	YEAR MODY HRMN	Mag	ОМП	No.	Station	Dist Codes	HE S	, LP	PGA
							(km) Geom US	sGS (hz	() (hz)	(g)
0025	Parkfield	1966 0628 0426	6.1	CDMG	1015	Cholame #8	13.0 ABB C	20	00.00	.246
0025	Parkfield	1966 0628 0426	6.1	CDMG	1015	Cholame #8	13.0 ABB C	20	00.00	.273
0073	Westmorland	1981 0426 1209	5.8	USGS	5169	Westmorland Fire Sta	13.3 ADD C	.08	40.00	.368
0073	Westmorland	1981 0426 1209	5.8	nsgs	5169	Westmorland Fire Sta	13.3 ADD C	· 00	40.00	.496
0600	Morgan Hill	1984 0424 2115	6.2	CDMG	57425	Gilroy Array #7	14.0 AHB C	10	31.00	.190
0600	Morgan Hill	1984 0424 2115	6.2	CDMG	57425	Gilroy Array #7	14.0 AHB C	10	30.00	.113
0117	Whittier Narrows	1987 1001 1442	6.0	CDMG	90070	Covina - W Badillo #	14.2D C	28	1 25.00	.134
0117	Whittier Narrows	1987 1001 1442	6.0	CDMG	90070	Covina - W Badillo #	14.2D C	. 38	1 25.00	.081
0117	Whittier Narrows	1987 1001 1442	6.0	CDMG	90034	LA - Fletcher Dr #	14.4D C	28	1 25.00	.171
0117	Whittier Narrows	1987 1001 1442	6.0	CDMG	90034	LA - Fletcher Dr #	14.4D C	30	25.00	.213
0117	Whittier Narrows	1987 1001 1442	6.0	CDMG	90022	LA - S Grand Ave #	14.5D C	. 35	25.00	.191
0117	Whittier Narrows	1987 1001 1442	6.0	CDMG	90022	LA - S Grand Ave #	14.5D C	28	1 25.00	.149
0117	Whittier Narrows	1987 1001 1442	6.0	CDMG	90095	Pasadena - Old House Rd #	14.5C C	28	1 25.00	.231
0117	Whittier Narrows	1987 1001 1442	6.0	CDMG	90095	Pasadena - Old House Rd #	14.5C C	23	\$ 25.00	.258
0600	Morgan Hill	1984 0424 2115	6.2	CDMG	47381	Gilroy Array #3	14.6 IHD C	10	37.00	.194
0600	Morgan Hill	1984 0424 2115	6.2	CDMG	47381	Gilroy Array #3	14.6 IHD C	10	32.00	.200
0600	Morgan Hill	1984 0424 2115	6.2	CDMG	47380	Gilroy Array #2	15.1 IQD C	20	31.00	.162
0600	Morgan Hill	1984 0424 2115	6.2	CDMG	47380	Gilroy Array #2	15.1 IQD C	10	37.00	.212
0053	Livermore	1980 0124 1900	5.8	CDMG	57187	San Ramon - Eastman Kodak	15.7 ABB C	. 08	1 20.00	.154
0053	Livermore	1980 0124 1900	5.8	CDMG	57187	San Ramon - Eastman Kodak	15.7 ABB C	20	0.20.00	.076
0033	Point Mugu	1973 0221 1445	5.8	CDMG	272	Port Hueneme	16.0 BBD C	20	00.25.00	.112
0033	Point Mugu	1973 0221 1445	5.8	CDMG	272	Port Hueneme	16.0 BBD C	20	30.00	.083
0117	Whittier Narrows	1987 1001 1442	6.0	CDMG	90023	LA - W 70th St #	16.3D (30	25.00	.198
0117	Whittier Narrows	1987 1001 1442	6.0	CDMG	90023	LA - W 70th St #	16.3D (20	25.00	.151
0103	N. Palm Springs	1986 0708 0920	6.0	NSGS	12025	Palm Springs Airport	16.6 IQD (20	00.00	.158
0103	N. Palm Springs	1986 0708 0920	6.0	NSGS	12025	Palm Springs Airport	16.6 IQD (20	00.00	.187
0053	Livermore	1980 0124 1900	5.8	CDMG	57134	San Ramon Fire Station	16.7 ABB (. 19	15.00	.058

	Table 15:	5% RESPO	NE SPECTRA F	OR NEHRP D FAULT CLASS C (M 5.75 T	0 6.49) (Cont.)		
	Date & Time				Closest Site	Filter Cornei	S
No. Earthquake	YEAR MODY HRMN	Mag	Own No.	Station	Dist Codes	нр цр	PGA
					(km) Geom USG	S (hz) (hz)	(ɓ)
0053 Livermore	1980 0124 1900	5.8	CDMG 57134	San Ramon Fire Station	16.7 ABB C	.20 15.00	.040
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90078	Compton - Castlegate St #	16.9D C	.09 25.00	.332
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90078	Compton - Castlegate St #	16.9D C	.28 25.00	.333
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90068	Covina - S Grand Ave #	17.1C C	.45 25.00	.076
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90068	Covina - S Grand Ave #	17.1C C	.40 25.00	.068
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90087	Brea - S Flower Av #	17.9D C	.16 25.00	.115
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 14368	Downey - Co Maint Bldg	18.3 AQD C	.20 30.00	.221
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 14368	Downey - Co Maint Bldg	18.3 AQD C	.25 30.00	.141
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90080	LB - Orange Ave #	18.3D C	.12 25.00	.255
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90080	LB - Orange Ave #	18.3D C	.28 25.00	.149
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90063	Glendale - Las Palmas #	19.0C C	.28 25.00	.296
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90063	Glendale - Las Palmas #	19.0C C	.45 25.00	.166
0095 Bishop (Rnd Val)	1984 1123 1912	5.8	USGS 1661	McGee Creek - Surface	19.0 IQC -	1.50 40.00	.088
0095 Bishop (Rnd Val)	1984 1123 1912	5.8	USGS 1661	McGee Creek - Surface	19.0 IQC -	1.00 40.00	.128
0073 Westmorland	1981 0426 1209	5.8	USGS 724	Niland Fire Station	19.4 AQD C	.30 33.00	.105
0073 Westmorland	1981 0426 1209	5.8	USGS 724	Niland Fire Station	19.4 AQD C	.30 33.00	.176
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90091	LA - Saturn St #	20.8D C	.25 25.00	660.
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90091	LA - Saturn St #	20.8D C	.23 25.00	.141
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90084	Lakewood - Del Amo Blvd #	20.9D C	.30 25.00	.277
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90084	Lakewood - Del Amo Blvd #	20.9D C	.30 25.00	.178
0073 Westmorland	1981 0426 1209	5.8	USGS 5060	Brawley Airport	22.0 AOD C	.15 40.00	.169
0073 Westmorland	1981 0426 1209	5.8	USGS 5060	Brawley Airport	22.0 AQD C	.70 33.00	.171
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90060	La Crescenta - New York #	22.7C C	.40 25.00	.134
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90060	La Crescenta - New York #	22.7C C	.30 25.00	.141
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90012	Burbank - N Buena Vista #	23.7D C	.25 25.00	.233
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90012	Burbank - N Buena Vista #	23.7D C	.30 25.00	.190
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90088	Anaheim - W Ball Rd #	24.4D C	.25 25.00	.060

	Table 15:	58 RESE	ONE SPECTRA I	FOR NEHRP D FAULT CLASS C (M 5.75 1	0 6.49) (Cont	.	
	Date & Time				Closest Site	Filter C	orners
No. Earthquake	YEAR MODY HRMN	Mag	Own No.	Station	Dist Code:	S HP L	P PGA
					(km) Geom U	SGS (hz) (h	(g) (z
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90088	Anaheim - W Ball Rd #	24.4D (c .50 25.	00 .055
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90045	Lawndale - Osage Ave #	25.1D 0	c .35 25.	00 .066
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90045	Lawndale - Osage Ave #	25.1D	c .38 25.	00 .053
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 24303	LA - Hollywood Stor FF	25.2 IPD	c .40 25.	00 .221
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 24303	LA - Hollywood Stor FF	25.2 IPD	c .40 25.	00 .124
0076 Coalinga	1983 0502 2342	6.4	CDMG 36455	Parkfield - Vineyard Cany 1E	26.7 IQC	20 24.	00 .167
0076 Coalinga	1983 0502 2342	6.4	CDMG 36455	Parkfield - Vineyard Cany 1E	26.7 IQC	20 23.	00 .230
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 24157	LA - Baldwin Hills	27.0 IPB	c .30 35.	00 .142
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 24157	LA - Baldwin Hills	27.0 IPB	c .40 30.	00 .159
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90054	LA - Centinela St #	27.7D	c .30 25.	00 .059
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90054	LA - Centinela St #	27.7D	c .25 25.	00 .044
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90040	Carson - Catskill Ave #	28.1D	c .18 25.	00 .042
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90040	Carson - Catskill Ave #	28.1D	с .55 25.	00 .059
0076 Coalinga	1983 0502 2342	6.4	CDMG 36457	Parkfield - Fault Zone 16	28.1 IQC	20 26.	00 .195
0076 Coalinga	1983 0502 2342	6.4	CDMG 36457	Parkfield - Fault Zone 16	28.1 IQC	20 27.	00 .122
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 1656	Hollister Diff. Array	28.3 IQD	c .20 29.	00 089
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 1656	Hollister Diff. Array	28.3 IQD	c .20 23.	00 .088
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 1656	Hollister Diff Array #1	28.3 IQD	с .20 33.	00 .095
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 1656	Hollister Diff Array #1	28.3 IQD	c .20 30.	00 .088
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 1656	Hollister Diff Array #3	28.3 IQD	c .10 30.	00 .078
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 1656	Hollister Diff Array #3	28.3 IQD	c .20 30.	00 .081
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 1656	Hollister Diff Array #4	28.3 IQD	c .10 30.	00 . 098
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 1656	Hollister Diff Array #4	28.3 IQD	c .20 30.	00 .092
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 1656	Hollister Diff Array #5	28.3 IQD	c .20 30.	860. 00
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 1656	Hollister Diff Array #5	28.3 IQD	c .20 30.	00 .101
0053 Livermore	1980 0124 1900	5.8	CDMG 57063	Tracy - Sewage Treatm Plant	28.5 BQC	c .15 20.	00 .050
0053 Livermore	1980 0124 1900	5.8	CDMG 57063	Tracy - Sewage Treatm Plant	28.5 BQC	C .08 15.	00 .073

	Table 15:	5% RESPC	NE SPECTRA F	OR NEHRP D FAULT CLASS C (M 5.75 T) 6.49) (Con	t.)		
	Date & Time				Closest Site	F.i.	lter Corner	S
No. Earthquake	YEAR MODY HRMN	Mag	Own No.	Station	Dist Code	S	HP LP	PGA
					(km) Geom [) SDSI	(z4) (z4	(g)
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90016	LA - N Faring Rd #	28.5B	د	55 25.00	.048
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90016	LA - N Faring Rd #	28.5B	ں	40 25.00	.053
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90010	Studio City - Coldwater Can #	28.7D	ں	28 25.00	.177
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90010	Studio City - Coldwater Can #	28.7D	ں	30 25.00	.231
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 23525	Pomona - 4th & Locust FF	28.8 IQD	ں	50 30.00	.067
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 23525	Pomona - 4th & Locust FF	28.8 IQD	ں	55 30.00	.056
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90046	Manhattan Beach - Manhattan #	28.9C	ں	40 25.00	.054
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 57066	Agnews State Hospital	29.4 AQD	د	20 14.00	.032
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 57066	Agnews State Hospital	29.4 AQD	ن	20 13.00	.032
0076 Coalinga	1983 0502 2342	6.4	CDMG 36138	Parkfield - Fault Zone 12	29.5 IHC	•	20 20.00	.110
0076 Coalinga	1983 0502 2342	6.4	CDMG 36138	Parkfield - Fault Zone 12	29.5 IHC	•	20 20.00	.112
0076 Coalinga	1983 0502 2342	6.4	CDMG 36448	Parkfield - Vineyard Cany 1W	29.5 IQC	1	50 26.00	.081
0076 Coalinga	1983 0502 2342	6.4	CDMG 36448	Parkfield - Vineyard Cany 1W	29.5 IQC		50 23.00	.087
0076 Coalinga	1983 0502 2342	6.4	CDMG 36456	Parkfield - Fault Zone 14	29.9 IHC	•	20 23.00	.282
0076 Coalinga	1983 0502 2342	6.4	CDMG 36456	Parkfield - Fault Zone 14	29.9 IHC	1	10 23.00	.274
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90013	Beverly Hills - 14145 Mulhol #	30.3C	ن	33 25.00	.104
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90013	Beverly Hills - 14145 Mulhol #	30.3C	ن	35 25.00	.126
0076 Coalinga	1983 0502 2342	6.4	CDMG 36447	Parkfield - Vineyard Cany 2W	30.7 IHC	•	20 30.00	.073
0076 Coalinga	1983 0502 2342	6.4	CDMG 36447	Parkfield - Vineyard Cany 2W	30.7 IHC	1	20 30.00	.083
0076 Coalinga	1983 0502 2342	6.4	CDMG 36431	Parkfield - Fault Zone 7	31.0 IQC		20 30.00	.122
0076 Coalinga	1983 0502 2342	6.4	CDMG 36431	Parkfield - Fault Zone 7	31.0 IQC	•	20 30.00	.119
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 24390	LA - Century City CC South	31.3 IQD	د	20 25.00	.051
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 24390	LA - Century City CC South	31.3 IQD	v	30 25.00	.063
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 24389	LA - Century City CC North	31.4 IQD	υ	60 30.00	.078
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 24389	LA - Century City CC North	31.4 IQD	υ	35 30.00	.111
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 1028	Hollister City Hall	32.5 CHD	د	20 19.00	.071
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 1028	Hollister City Hall	32.5 CHD	ں	20 24.00	.071

	Table 15:	5% RES	SPONE SPECT	RA FOI	R NEHRP D FAULT CLASS C (M 5.75 TC	6.49) (Cor	lt.)		
	Date & Time					Closest Sit	ei Tri	ilter Corner	ş
No. Earthquake	YEAR MODY HRMN	Mag	Own Nc	 	Station	Dist Cod	les	нр цр	PGA
						(km) Geom	usgs	(yz) (yz)	(đ)
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 900	062 N	dill Creek, Angeles Nat For #	34.5B	υ	.40 25.00	.089
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90(062 N	<pre>4ill Creek, Angeles Nat For #</pre>	34.5B	υ	.63 25.00	.071
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90(002 I	Fountain Valley - Euclid #	35.0D	υ	.30 25.00	.071
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90(002 H	Fountain Valley - Euclid #	35.0D	υ	.30 25.00	.062
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 900	082 1	Terminal Island - S Seaside #	35.7D	υ	.20 25.00	.042
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90(082 7	Terminal Island - S Seaside #	35.7D	υ	.28 25.00	.041
0105 Chalfant Valley	1986 0721 1442	6.2	CDMG 10	661 N	McGee Creek Surface	36.3 IQC	ı	.10 50.00	.078
0105 Chalfant Valley	1986 0721 1442	6.2	CDMG 10	661 N	McGee Creek Surface	36.3 IQC	ı	.10 35.00	.083
0064 Victoria, Mexico	1980 0609 0328	6.1 U	NAMUCSD 60	621 (Chihuahua	36.6 IQD	υ	.20 22.00	.150
0064 Victoria, Mexico	1980 0609 0328	6.1 U	NAMUCSD 60	621 (Chihuahua	36.6 IQD	υ	.20 27.00	.092
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 47	125 (Capitola	38.1 AQC	υ	.20 30.00	660.
0090 Morgan Hill	1984 0424 2115	6.2	CDMG 47	125 (Capitola	38.1 AQC	υ	.20 28.00	.142
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90(049 I	Pacific Palisades - Sunset #	38.6B	υ	.45 25.00	.063
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90(1 640	Pacific Palisades - Sunset #	38.6B	υ	.50 25.00	.038
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 24(1 180	Arleta - Nordhoff Fire Sta	38.9 AQD	υ	.40 30.00	.093
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 24(1 180	Arleta - Nordhoff Fire Sta	38.9 AQD	υ	.50 30.00	.091
0103 N. Palm Springs	1986 0708 0920	6.0	USGS 123	202	San Jacinto Vall. Cem	39.6 AQD	υ	.20 38.00	.069
0103 N. Palm Springs	1986 0708 0920	6.0	USGS 123	202	San Jacinto Vall. Cem	39.6 AQD	υ	.20 31.00	.063
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 900	003 1	Northridge - 17645 Saticoy St #	39.8D	υ	.23 25.00	.161
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 90(003	Northridge - 17645 Saticoy St #	39.8D	υ	.20 25.00	.118
0076 Coalinga	1983 0502 2342	6.4	CDMG 36	441 I	Parkfield - Vineyard Cany 6W	41.0 IPC	ı	.20 25.00	.054
0076 Coalinga	1983 0502 2342	6.4	CDMG 36	441 I	Parkfield - Vineyard Cany 6W	41.0 IPC	ı	.20 27.00	.076
0064 Victoria, Mexico	1980 0609 0328	6.1 U	NAMUCSD 6	617 (Cucapah	41.9 IQD	υ	.20 44.00	.092
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 13	197 F	Huntington Beach - Lake St	42.8 AQD	υ	.25 25.00	.045
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 13	197 F	Huntington Beach - Lake St	42.8 AQD	υ	.17 25.00	.044
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 24	436 7	Tarzana - Cedar Hill	43.0 APB	υ	.60 40.00	.449
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 24	436 7	Tarzana - Cedar Hill	43.0 APB	υ	.60 40.00	.644

	Table 15:	5% RESPC	ONE SPEC	TRA FC	DR NEHRP D FAULT CLASS C (M 5.75 T) 6.49) (Con	t.)		
	Date & Time					Closest Site	[т. 0)	ilter Cornei	S
No. Earthquake	YEAR MODY HRMN	Mag	Own	No.	Station	Dist Code	ŝ	нр цр	PGA
ſ						(km) Geom (USGS	(zq) (zq)	(g)
0103 N. Palm Springs	1986 0708 0920	6.0	USGS 1	2331	Hemet Fire Station	43.3 AQD	υ	.50 35.00	.144
0103 N. Palm Springs	1986 0708 0920	6.0	USGS 1	2331	Hemet Fire Station	43.3 AQD	υ	.50 31.00	.132
0076 Coalinga	1983 0502 2342	6.4	CDMG 3	6410	Parkfield - Cholame 3W	43.9 IHC	I	.20 21.00	.098
0076 Coalinga	1983 0502 2342	6.4	CDMG 3	6410	Parkfield - Cholame 3W	43.9 IHC	ı	.20 24.00	.084
0076 Coalinga	1983 0502 2342	6.4	CDMG 3	6411	Parkfield - Cholame 4W	44.7 IHC	ı	.20 21.00	.136
0076 Coalinga	1983 0502 2342	6.4	CDMG 3	6411	Parkfield - Cholame 4W	44.7 IHC	I	.20 23.00	.136
0103 N. Palm Springs	1986 0708 0920	6.0	USGS 1	2026	Indio - Coachella Canal	45.7 IQD	υ	.50 30.00	.053
0103 N. Palm Springs	1986 0708 0920	6.0	USGS 1	2026	Indio - Coachella Canal	45.7 IQD	υ	.50 33.00	.050
0076 Coalinga	1983 0502 2342	6.4	CDMG 3	6412	Parkfield - Cholame 4AW	46.0 IHC	ł	.20 21.00	.047
0076 Coalinga	1983 0502 2342	6.4	CDMG 3	6412	Parkfield - Cholame 4AW	46.0 IHC	ł	.20 20.00	.078
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 9	0057	Canyon Country - W Lost Cany #	46.4D	υ	.38 25.00	.109
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 9	0057	Canyon Country - W Lost Cany #	46.4D	υ	.23 22.00	.103
0076 Coalinga	1983 0502 2342	6.4	CDMG 3	6227	Parkfield - Cholame 5W	47.3 IHC	υ	.20 22.00	.147
0076 Coalinga	1983 0502 2342	6.4	CDMG 3	6227	Parkfield - Cholame 5W	47.3 IHC	υ	.20 22.00	.131
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 9	0053	Canoga Park - Topanga Can #	47.4D	υ	.25 25.00	.139
0117 Whittier Narrows	1987 1001 1442	6.0	CDMG 9	0053	Canoga Park - Topanga Can #	47.4D	υ	.28 25.00	.116
0076 Coalinga	1983 0502 2342	6.4	CDMG 3	6432	Parkfield - Gold Hill 6W	48.0 IPC	ı	.20 30.00	.059
0076 Coalinga	1983 0502 2342	6.4	CDMG 3	6432	Parkfield - Gold Hill 6W	48.0 IPC	ı	.20 30.00	.069
0076 Coalinga	1983 0502 2342	6.4	CDMG 3	6451	Parkfield - Cholame 6W	49.0 IHC	ł	.50 21.00	.126
0076 Coalinga	1983 0502 2342	6.4	CDMG 3	6451	Parkfield - Cholame 6W	49.0 IHC	I	.20 28.00	.102
0008 Northern Calif	1941 1003 1614	6.4	USGS	1023	Ferndale City Hall	49.6 BOD	U	.20 13.00	.114
0008 Northern Calif	1941 1003 1614	6.4	USGS	1023	Ferndale City Hall	49.6 BQD	υ	.50 13.00	.122

		Table 16			
	MEAN MAGNI	TUDES AND DISTAN	CES		
M Range	\overline{M}	\overline{D}	Number of Components		
5 - 6	5 - 6 5 - 57 19.8 210 6 - 7 6 - 58 26.8 228				
6 - 7	6 - 58	26.8	228		
> 6.75	7 - 23	23.7	139		
> 7.0	7 - 48	22.9	79		

•