Table of Contents

Oregon Department of Transportation ... ii

1 Introduction .. 1-1
 1.1 General .. 1-1
 1.1.1 Acknowledgments .. 1-1
 1.2 Manual Review and Comment Process ... 1-2
 1.2.1 Manual Revision Procedure ... 1-2
 1.3 ODOT Geotechnical Organization ... 1-3
 1.4 Location of Existing Project Information .. 1-4
 1.5 Consultant Contracting for Geotechnical Work ... 1-4

2 Project Geotechnical Planning ... 2-1
 2.1 General .. 2-1
 2.1.1 Geotechnical Project Elements ... 2-1
 2.1.2 Geotechnical Project Tasks and Workflow .. 2-2
 2.2 Preliminary Project Planning .. 2-2
 2.2.1 General .. 2-2
 2.2.1.1 Project Scale and Assignment of Resources .. 2-3
 2.2.2 Office Study .. 2-4
 2.2.3 Project Stage 1 ... 2-4
 2.2.4 Project Stage 2 ... 2-4
 2.2.4.1 Existing Information and Previous Site Investigation Data 2-4
 2.2.4.2 Construction Records ... 2-5
 2.2.4.3 Site History ... 2-5
 2.2.4.4 Office Research for Bridge Foundations ... 2-6
 2.2.4.5 Site Geology ... 2-7
 2.2.5 Site Reconnaissance .. 2-14
 2.2.5.1 General .. 2-14
 2.2.5.2 Verification of Office Study and Site Observations 2-14
 2.2.5.3 Preparation for Site Exploration ... 2-15
 2.2.5.4 Reconnaissance Documentation ... 2-17
 2.3 References ... 2-17

APPENDIX 2-A – Geology / Geotechnical QC MATRIX 2-18

3 Field Investigation ... 3-1
 3.1 Introduction .. 3-1
 3.1.1 Established Investigation Criteria .. 3-2
 3.2 General Subsurface Investigation ... 3-2
 3.2.1 Subsurface Investigations – Phases ... 3-3
 3.2.1.1 Phase 1 ... 3-3
 3.2.1.2 Phase 2 ... 3-3
 3.2.1.3 Other Phases ... 3-4
 3.3 Exploration Plan Development .. 3-4
 3.3.1 Exploration Plan Considerations .. 3-5
 3.3.1.1 Minimum Requirements for Subsurface Investigations 3-5
 3.3.1.2 Risk Tolerance ... 3-6
 3.3.1.3 Structure Sensitivity .. 3-6
 3.3.1.4 Subsurface Investigation Strategy ... 3-7
 3.3.1.5 Schedule of Subsurface Investigations .. 3-7
 3.3.1.6 Exploration Sites ... 3-8
8.5 Material Properties for Design ... 8-5
8.6 Bridge Approach Embankments ... 8-5
 8.6.1 Abutment Transitions ... 8-6
 8.6.2 Overall Stability ... 8-6
8.7 Foundation Selection Criteria ... 8-7
8.8 Overview of LRFD for Foundations ... 8-9
8.9 Foundation Design Policies ... 8-10
 8.9.1 Downdrag Loads .. 8-10
 8.9.2 Scour Design .. 8-10
 8.9.3 Seismic Design .. 8-11
8.10 Soil Loads on Buried Structures ... 8-12
8.11 Spread Footing Design .. 8-12
 8.11.1 Nearby Structures ... 8-13
 8.11.2 Service Limit State Design of Footings ... 8-13
8.12 Driven Pile Foundation Design ... 8-13
 8.12.1 Required Pile Tip Elevation ... 8-14
 8.12.2 Pile Drivability Analysis and Wave Equation Usage 8-15
 8.12.3 Driven Pile Types, and Sizes ... 8-15
 8.12.4 Extreme Event Limit State Design .. 8-16
 8.12.4.1 Scour Effects on Pile Design .. 8-16
 8.12.4.2 Seismic Design for Pile Foundations 8-18
8.13 Drilled Shaft Foundation Design ... 8-20
 8.13.1 Nearby Structures ... 8-21
 8.13.2 Scour ... 8-21
 8.13.3 Extreme Event Limit State Design of Drilled Shafts 8-22
8.14 Micropiles .. 8-22
8.15 References ... 8-22
9 Embankments – Analysis and Design ... 9-1
 9.1 General ... 9-1
 9.2 Design Considerations ... 9-2
 9.2.1 Typical Embankment Materials and Compaction 9-2
 9.2.1.1 All-Weather Embankment Materials 9-2
 9.2.1.2 Durable and Non-Durable Rock Materials 9-2
 9.2.1.3 Earth Embankments ... 9-3
 9.2.2 Embankment Stability Assessment ... 9-3
 9.2.2.1 Safety Factors .. 9-3
 9.2.2.2 Strength Parameters ... 9-4
 9.2.3 Embankment Settlement Assessment ... 9-4
 9.2.3.1 Settlement Analysis ... 9-4
 9.2.3.2 Analytical Tools ... 9-5
 9.3 Stability Mitigation .. 9-5
 9.3.1 Staged Construction .. 9-5
 9.3.2 Base Reinforcement ... 9-5
 9.3.3 Ground Improvement .. 9-6
 9.3.4 Lightweight Fills ... 9-6
 9.3.5 Toe Berms and Shear keys ... 9-6
 9.4 Settlement Mitigation .. 9-6
 9.4.1 Acceleration Using Wick Drains .. 9-6
 9.4.2 Acceleration Using Surcharges .. 9-6
 9.4.3 Lightweight Fills ... 9-7
 9.4.4 Subexcavation .. 9-7
List of Figures

Figure 6-1. Shear modulus reduction and damping ratio curves for sand (EPRI, 1993)6-16
Figure 6-2. Variation of G/Gmax vs. cyclic shear strain for fine grained soils (redrafted from Vucetic and Dobry, 1991) ... 6-17
Figure 6-3. Equivalent viscous damping ratio vs. cyclic shear strain for fine grained soils (redrafted from Vucetic and Dobry, 1991) ... 6-17
Figure 6-4. Residual undrained shear strength for liquefied soils as a function of SPT blow counts (Seed and Harder, 1990 and Idriss, 2003). .. 6-18
Figure 6-5. Estimation of residual strength ratio from SPT resistance ..6-18
Figure 6-6. Variation of residual strength ratio with SPT resistance and initial vertical effective stress using Kramer-Wang model (Kramer, 2008). .. 6-19
Figure 6-7. General Geotechnical Seismic Design Procedures ... 6-22
Figure 6-8. Magnitude Scaling Factors Derived by Various Investigators (redrafted from 1996 NCEER Workshop Summary Report) .. 6-33
Figure 6-9. Liquefaction induced settlement estimated using the Tokimatsu & Seed procedure (redrafted from Tokimatsu and Seed, 1987). .. 6-34
Figure 6-10. Liquefaction induced settlement estimated using the Ishihara and Yoshimine procedure. (redrafted from Ishihara and Yoshimine, 1992). .. 6-35
Figure 6-11. The Makdisi-Seed procedure for estimating the range of permanent seismically induced slope deformation as a function of the ratio of yield acceleration over maximum acceleration (redrafted from Makdisi and Seed, 1978). .. 6-40
Figure 6-12. Lateral Extent of Ground Improvement for Liquefaction Mitigation 6-48
Figure 8-1. Example where footing contributes to instability of slope (left figure) vs. example where footing contributes to stability of slope (right figure) ... 8-7
Figure 8-2. Design of pile foundations for scour ... 8-17
Figure 8-3. Design of pile foundations for liquefaction downdrag (WSDOT, 2006) 8-19

List of Tables

Table 2-1. Geology / Geotechnical Matrix Checklist QC Check #1 – Scoping 2-18
Table 2-2. Geology / Geotechnical Matrix Checklist QC Check #2 – Scope of Work 2-19
Table 2-3. Geology / Geotechnical Matrix Checklist QC Check #3 – EIS 2-20
Table 2-4. Geology / Geotechnical Matrix Checklist QC Check #4 – Concept 2-21
Table 2-5. Geology / Geotechnical Matrix Checklist QC Check #5 – Exploration Plan (10% TS&L) .. 2-22
Table 2-6. Geology / Geotechnical Matrix Checklist QC Check #6 – 2/3 TS&L) 2-23
Table 2-7. Geology / Geotechnical Matrix Checklist QC Check #7 – Preliminary Plans 2-29
Table 2-8. Geology / Geotechnical Matrix Checklist QC Check #8 – Advanced Plans 2-32
Table 2-9. Geology / Geotechnical Matrix Checklist QC Check #9 – Final Plans 2-33
Table 3-1. Tunneling and Trenchless Pipe Installation Recommendations......................... 3-19
Table 3-2. Specific field investigation requirements ... 3-23
Table 5-1. Correlation of SPT N values to drained friction angle of granular soils (modified after Bowles, 1977) .. 5-6
Table 6-1. Summary of site characterization needs and testing considerations for seismic design (adapted from Sabatini, et al., 2002) .. 6-13
Table 6-2. Correlations for estimating initial shear modulus (Kavazjian, et al., 1997) 6-15
Table 8-1. Summary of information needs and testing considerations 8-2
1 Introduction

1.1 General

The ODOT Geotechnical Design Manual (GDM) establishes standard policies and procedures regarding geotechnical work performed for ODOT. The manual covers geotechnical investigations, analysis, design and reporting for earthwork and structures for highways. The purpose of the geotechnical investigation and design recommendations is to furnish information for an optimum design which will minimize over-conservatism as well as to minimize under-design and the resulting failures commonly and mistakenly attributed to unforeseen conditions.

It is to be understood that any geotechnical investigation and design will leave certain areas unexplored. Further, it must also be understood that it would be impractical to provide a rigid set of specifications for all possible cases. Therefore, this manual will not address all subsurface problems and leaves many areas where individual engineering judgment must be used. It is intended that the procedures discussed in this manual will establish a reasonable and uniform set of policies and procedures while maintaining sufficient flexibility to permit the application of engineering analysis to the solution of geotechnical problems.

This manual references publications which present specific engineering design and construction procedures or laboratory testing procedures. Each chapter contains a listing of associated references for the subject area of the chapter. Among the commonly referenced materials are the publications of the American Association of State Highway Transportation Officials (AASHTO), the Federal Highway Administration (FHWA), and the American Society for Testing and Materials (ASTM). Relative to testing and design procedures, the methods presented by AASHTO and FHWA are often followed.

Figures presented in the manual have been redrafted from the original published figures. The figures in this GDM are only to be used for illustrative purposes and should not be used for design.

1.1.1 Acknowledgments

This ODOT Geotechnical Design Manual is a completely new manual and is the product of the combined efforts of the personnel in the HQ Engineering and Asset Management Unit. Thanks for their work and appreciation for their contributions are extended here. Continued work is required to edit and update the manual and their help will be appreciated in the future. An additional thanks and acknowledgement is given to Tony Allen of WSDOT for permission to use, en masse, whole sections, paragraphs, and even an entire chapter or two in the development of this manual.
The completion of the *WSDOT Geotechnical Design Manual* in September 2005 provided the spark and impetus for ODOT to finally, after many years of wishing it, produce a Geotechnical Design Manual worthy of the importance of geotechnical design on highway projects.

1.2 Manual Review and Comment Process

The ODOT Engineering and Asset Management Unit of the Geo-Environmental Section is responsible for the publication and modification of this manual. Any comments or questions about the *ODOT Geotechnical Design Manual* should be directed to:

Paul Wirfs, P.E., Unit Manager
Engineering and Asset Management Unit
Geo-Environmental Section
Oregon Department of Transportation
355 Capitol St NE, Rm 301
Salem, OR 97301
503-986-4200

1.2.1 Manual Revision Procedure

It is intended that the GDM will be continually updated as required to clarify geotechnical practice in ODOT and include new information. Revisions and submittals from all users of the GDM, both inside ODOT and Consultants, are encouraged. The following revision procedure should be used:

1. **Define the problem**
 Discuss the suggestion or revision of the GDM with others that have a stake in the outcome. If it is agreed that the item should be proposed, develop a written proposal. Changes to design policy, design practice or procedure can have wide ranging effects and will affect some or all of those involved in the preparation of contract documents for ODOT.

2. **Put it in writing**
 Research and develop a written proposal using the three general subject headings:
 - Problem Statement
 - Analysis/ Research Data
 - Proposal

 Check the finished product by reviewing the following guiding comments:
 - The existing problem is clearly stated
 - Research and analysis of the problem and potential solution are thorough and understandable
 - The proposed solution is well thought out, is supported by facts and solves the problem. Has the impact on other areas been considered? Have the details been coordinated with other units or organizations that may be affected?
 - No questions remain that need to be answered before implementation
3. **Review and Approval**

After reviewing the written proposal for completeness, the Engineering and Asset Management Unit will either:

- Accept, without further review, manual corrections for inclusion in the GDM, or
- Distribute a copy with the due date and a Geotechnical Design Practice Approval Form for review and comments.

After reviewing the returned Geotechnical Design Practice Approval Forms, the Engineering and Asset Management Unit will do one of the following:

- Proposals approved for revision of the GDM will be implemented in a technical bulletin and will be placed into the next upcoming version of the GDM, or
- Proposals needing more research or clarification will be returned to the originator for revision and resubmittal.

Regardless of whether or not a proposal is accepted, the Engineering and Asset Management Unit will reply in writing to the person making the submittal.

4. **Implementation of Approved Revision**

After a proposal has final approval, a revised GDM page will be prepared for inclusion into the manual. A vertical line in the right-hand margin of a revised page indicated that the text has been revised or added. The word “REVISION” and the year are printed in the bottom margin to the right. This system is similar to that used by AASHTO to revise its Standard Specifications.

Proposals will be incorporated electronically into the GDM on the ODOT Geo-Environmental web page as soon as practical.

1.3 **ODOT Geotechnical Organization**

The functions of geotechnical design in ODOT are generally managed and performed within the 5 region offices. Tech Centers within each region are staffed with Geotechnical Engineers, Engineering Geologists, Hydraulics Engineers, and HazMat specialists. The geotechnical design, construction and maintenance support may be performed in-house or contracted out to specialty consultants. The ODOT Headquarters Engineering and Asset Management Unit provides on-call geotechnical design assistance and review, training and software, coordination of section initiatives, and other functions involving development of standards and practices for geotechnical work. Material source and aggregate material program needs are also a function of the headquarters unit. Currently, a significant portion of geotechnical work is being done under the OTIA Bridge Program and is being managed by the Oregon Bridge Delivery Partners (OBDP). OBDP manages and reviews consultant geotechnical work for design-bid-build and design-build OTIA III highway projects.
For reference purposes, the following are the contacts and location of the managers for each of the
groups tasked with geotechnical work in ODOT:

<table>
<thead>
<tr>
<th>Region</th>
<th>Manager</th>
<th>Phone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Portland</td>
<td>Tom Braibish</td>
<td>503-731-8290</td>
<td>503-731-3164</td>
</tr>
<tr>
<td>2 Salem</td>
<td>Bernie Kleutsch</td>
<td>503-986-2646</td>
<td>503-986-2622</td>
</tr>
<tr>
<td>3 Roseburg</td>
<td>Pete Castro</td>
<td>541-957-3603</td>
<td>541-957-3604</td>
</tr>
<tr>
<td>4 Bend</td>
<td>Randy Davis</td>
<td>541-388-6334</td>
<td>541-385-0476</td>
</tr>
<tr>
<td>5 LaGrande</td>
<td>Mark Hanson</td>
<td>541-963-1361</td>
<td>541-963-9079</td>
</tr>
<tr>
<td>HQ Geotech Salem</td>
<td>Paul Wirfs</td>
<td>503-986-3526</td>
<td>541-986-3407</td>
</tr>
<tr>
<td>HQ Bridge Salem</td>
<td>Bruce Johnson</td>
<td>503-986-3344</td>
<td>541-986-3407</td>
</tr>
</tbody>
</table>

1.4 Location of Existing Project Information

In general, the regional offices keep file information on past projects. The first inquiry into project
geotechnical information should be to the appropriate region Geotechnical office. In addition, project
information for past projects involving geotechnical analysis and design has been archived and
stored in the ODOT Salem Airport Road complex. A database listing of the projects archived is
located in the HQ Salem Engineering and Asset Management office in Salem. The Salem Bridge
Engineering Section keeps pile record books for past projects where pile driving was performed. In
addition, bridge archives are available that include Foundation Reports, boring logs, as-constructed
bridge plans and foundation data sheets. Inquiries regarding bridge foundation records and archives
should be directed to the HQ Bridge Section office.

1.5 Consultant Contracting for Geotechnical Work

ODOT has a set of specialty consultants retained to perform geotechnical work as needed. The
current list of geotechnical consultants can be obtained from the ODOT Procurement Office (OPO).
A Scope of Work Template has been developed for use by those needing to have a consultant
perform geotechnical work and is located on the ODOT Geo-Environmental website.
2 Project Geotechnical Planning

2.1 General

General geotechnical planning for projects with significant grading, earthworks, and structure foundations, from the earliest project concept plan through final project design are addressed in this chapter. Detailed geotechnical exploration and testing requirements for individual design are covered in detail in Chapter 3, Chapter 4, and Chapter 5. This chapter also provides direction for geotechnical project definition and creation of the subsurface exploration plan for the project design phases. General guidelines for subsurface investigations are provided in Chapter 3 in addition to specific guidelines regarding the number and types of explorations for project design of specific geotechnical features.

The success of a project is directly related to the early involvement of the geotechnical designers in the design process. For larger projects that involve an Environmental Impact Statement (EIS), the geotechnical designer needs to be involved with the assessment of various options or corridor selections. Ideally, for all projects, the geotechnical designer will be involved during the first scoping efforts. At this point, a study of the project concept is begun by gathering all existing site data and determining the critical features of the project. This information can then be presented at the project kick-off meeting and/or scoping trip. The project scoping trip is a valuable opportunity to introduce the roadway and structural designers, and project leaders to the geologic/geotechnical issues that are expected to impact the project. Continued good communication between the geotechnical designer and the project leader and project team is vital.

2.1.1 Geotechnical Project Elements

All proposed project scopes should be reviewed by an engineering geologist and/or geotechnical engineer for a determination of the project elements (if any) that require a geologic investigation and geotechnical design. This allows the geotechnical designers to begin formulating a prospective scope of work and budget estimate. There are common project elements that are always the subject of a geotechnical investigation and design such as bridge foundations and landslide mitigations, and there are project elements that, depending on the site history and underlying geology, may or may not need investigation and design, or may require different levels of effort. The geotechnical designers will be able to determine the level of effort based on their own or other's knowledge and experience of the site to make these judgments. Because of the underlying site conditions, elements that generally don’t warrant geotechnical design for most sites may require it at others. Conversely, investigation and design efforts may be scaled back or eliminated at other sites due to known
favorable conditions, and the significance of the project feature. It is the responsibility of the geotechnical designers to make these decisions.

The common project elements on transportation projects that are the subject of engineering geologic investigation and geotechnical design for construction are:

- Structure Foundations (bridges, viaducts, pumping stations, sound walls, buildings, etc.)
- Retaining walls over 4’ in height as measured from the base of the wall footing to the top of the wall and any wall with a foreslope or backslope
- Cuts and embankments over 4’ in height
- Tunnels and underground structures
- Poles, masts and towers
- Culverts, pipes and conduits

This last group of elements, culverts, pipes and conduits, exemplify the broad range of design and investigation that may occur on any project. A 24” culvert replacement at a depth of 3 feet below a proposed roadway alignment would normally require the hand-collection of soil samples from the pipe location, submittal of those samples to the laboratory for chemical properties testing, and forwarding the results to the project designer for selection of the appropriate pipe materials for that location. If however, that same culvert was to be installed under a large, existing embankment while under traffic using trenchless methods, then the required investigation and design effort would be close to what is required for a tunnel or underground structure.

2.1.2 Geotechnical Project Tasks and Workflow

The expected milestones for geotechnical input on projects and the review of geotechnical work is outlined in APPENDIX 2-A – Geology / Geotechnical QC MATRIX, and the Project Flowchart.

Certain project checkpoints and tasks may be added or eliminated based on the project scope and/or requirements. Each individual project prospectus should be consulted to determine which tasks and QC checkpoints will apply.

2.2 Preliminary Project Planning

2.2.1 General

The creation of an efficient geologic/geotechnical investigation and identification of fatal flaws or critical issues that could impact design and construction as early in project development as possible is essential. Use the maximum amount of effort to obtain the greatest amount of information as early in each phase of investigation as possible so that each successive phase can capitalize on the information previously gathered. The result is a more thorough and cost-effective geologic and geotechnical investigation program.

Projects with a small number of defined structure locations or limited earthwork typically do not require numerous phases of investigation. Such projects normally proceed through an initial background study, site reconnaissance and ensuing subsurface exploration at the TS&L phase. Larger projects in contrast, will usually benefit from a phased sequence of field exploration. The geologic/geotechnical investigation will occur as a reconnaissance-level examination and preliminary subsurface exploration during the Field Survey phase of the project. More detailed, site-specific exploration is accomplished later as the project develops through the TS&L and Approved Design phases.
Phased subsurface exploration is beneficial because:

- Phased subsurface exploration allows information to be obtained in the early stage of the project that can be used to focus the exploration plan for the more detailed design stages. This is where previously gained information can be used to maximize the efficiency of the final exploration, and to assure that previously identified geotechnical problems and/or geologic hazards are thoroughly investigated and characterized.

- Additionally, the Exploration Plan can be more clearly defined and easier to manage. In this regard, the number of borings, their depths, and laboratory testing programs can be determined in advance of actual mobilization of equipment to a project area.

For most projects, mobilization costs for exploration equipment are high, so efforts should be made to reduce the number of subsurface investigation phases whenever practical. However, the site location, project objectives, and other factors will necessarily influence the investigation phases and mobilizations. Some of the additional factors to consider are site access, availability of specialized equipment, environmental restrictions, safety issues, and traffic control.

To economize field investigations and provide contingencies for ongoing project changes, consider the following:

- A substantial amount of background study should take place prior to mobilization to a project site. The information derived from this research provides a basis for the design of the Exploration Plan and help focus the on-site investigation.

- In addition, all resources used in the development of the background study should be organized and documented in such a manner that another geotechnical designer would be able to continue the project without going back to the beginning to get the same information. Keep a list of all documents used in the background study, such as field notes and sketches from initial site reconnaissance, reports or investigations from previous or nearby site investigations, and other published literature.

- Any critical issues such as geologic hazards, problem materials or conditions, or contamination identified during the initial study should be clearly documented and highlighted throughout the project to avoid any surprises later on in the design or construction phases.

2.2.1.1 Project Scale and Assignment of Resources

Geotechnical designers should use their professional judgment with respect to the scope, scale, and amount of resources to utilize during preliminary project studies. Larger projects obviously necessitate a greater effort in the early examination of background materials such as previous reports for an area, maps, published literature, aerial photographs and other remote sensing.

Even the smallest bridge replacement or grading project, background study is just as important, and although of a smaller scale, should be carried out with the same diligence as a similar study for a major realignment. A thorough and expedient background study is essential for these smaller projects since unforeseen conditions and additional unplanned field investigations are much more difficult to absorb in a smaller project budget. It follows that for a larger project; a more thorough background investigation is warranted since unforeseen conditions can have a compounding effect during design and construction that may impact even the most generously funded projects.

The amount of background research needed for a project is usually unknown until the study begins and the potential site conditions are assessed to some degree. It is up to the geotechnical designer to determine the amount of background study needed and the cost-benefit of such studies with respect to the project design.

Using Remote Sensing and Existing Information
Ordering new remote sensing studies to assess surrounding landforms is probably not necessary for
in-kind bridge replacement projects unless some special conditions are observed during the field or
office study. However, failure to procure and study a set of aerial photographs along a proposed
realignment would probably be somewhat negligent. Project background studies for major
realignment projects and landslide mitigations typically make more use of remote sensing and
published literature while replacement and modernization projects will rely more heavily on previous
site studies and reports.

2.2.2 Office Study
The foremost objectives of initial office study are 1) early identification of critical issues that will affect
the project’s scope, schedule, or budget, and 2) efficiently plan detailed site studies and formulate a
subsurface investigation program.

2.2.3 Project Stage 1
The first stage of any project should begin with a review of the published and available unpublished
literature to gain a thorough understanding of the existing site conditions and composition. Such an
understanding includes knowledge of the geologic processes that have been the genesis of, or have
in some way affected the project site. The site geomorphology should receive the most scrutiny from
the geotechnical designer since characteristic landforms are created by specific geologic processes,
and composed of particular materials. The site geomorphology, coupled with the literature and
results of previous studies, will aid the geotechnical designer in predicting what materials will be
encountered, and how they will be distributed across the site.

2.2.4 Project Stage 2
The second stage of a project involves the detailed examination of the proposed project components
and in particular, the geotechnical elements. This includes an appraisal of the project prospectus as
well as any conceptual or preliminary plans available from the roadway designer or project leader.
The project geotechnical features such as bridge foundations; earth retaining structures, cuts,
embankments and any other earthworks should be identified and located. Once the project
geotechnical features are recognized, they can then be analyzed with respect to the background
information previously collected.

2.2.4.1 Existing Information and Previous Site
Investigation Data
Current transportation projects take place almost exclusively on or near existing routes, for which a
considerable amount of subsurface information already exists, in most cases. Since many
transportation projects take place in urban areas, additional information may also be available from
other nearby public works projects and private developments involving structures and earthworks.
Local agencies may possess subsurface information for their projects as well as data provided by
consultants.

Subsurface information collected for ODOT projects resides in the region geology office in which the
data was collected. Subsurface information is collected for bridge foundations, retaining walls, cut
slopes, embankments, and landslides. Additional subsurface data has also been collected for
incidental structures such as sound walls, sign bridges, poles, masts and towers, and facilities such
as water tanks and maintenance buildings.
The Oregon Water Resources Department maintains a database of boring logs on its website. By law, reports must be filed with this agency for all geotechnical holes and water, thermal, and monitoring wells. Thus, the database is fully populated, and may be queried in many ways geographically or by owner, number, constructor, or purpose. These logs are beneficial in rural or remote areas with a dearth of subsurface information.

Note:
A wealth of information can be contained on the logs especially regarding groundwater and depth to bedrock information. There is an entry for soil and rock descriptions on the reporting forms. However this information should be used with caution since there are no standard reporting formats and thus, the soil and rock descriptions on the Water Resources forms vary in content and accuracy.

The Oregon Department of Water Resources Database (ORWD) can be accessed at the following location:

http://apps2.wrd.state.or.us/apps/gw/well_log/Default.aspx

In addition to the information provided on the OWRD forms, it is important to simply note the presence of wells in the area that may be affected by the project construction. Projects involving large cut slopes or dewatering efforts can affect the yield of nearby wells. Where this occurs, ODOT typically includes replacement or deepening of the well as part of the Right-of-Way acquisition.

2.2.4.2 Construction Records

Since most current ODOT projects are modernization, replacement, or rehabilitations of existing transportation facilities, construction records are commonly available from various sources throughout the agency. Such records may be in the form of as-built plans, construction reports, pile-driving records, and other technical memoranda addressing specific issues and recommendations during project construction. Locate information using:

- **As-built plans:** As-built plans are normally located in the region office where the project was constructed. The Geometronics Unit maintains the engineering documents in Room 29 of the Transportation Building in Salem where mylars of project plans reside in addition to some of the as-built plans.

- **Pile records:** Pile record books are maintained by the headquarters office of the Bridge Section.

Region project engineers and construction project managers that have completed previous projects in the area should be consulted with respect to the geologic/geotechnical conditions as well as the construction issues related to those conditions. In addition, section maintenance personnel with a long history in an area will possess a wealth of information regarding the performance of existing facilities, problems encountered, and repair activities that have taken place at a particular site.

2.2.4.3 Site History

Past use of a site can greatly affect the design and construction of a project and can also make a significant impact to its timeline and budget. Typically, much of a site’s background and past use will be researched and described for a Phase I or II Environmental Site Assessment produced by the environmental specialists or their consultants in the region geology offices. Information concerning the development of Environmental Site Assessments and other site use resources can be found in the HazMat Manual. Environmental Impact Statements (EIS) for previous projects in the area are also an important and concise source of previous and current site use information. Some of the remote sensing methods previously discussed may also help determine previous site use in the absence of historic records.

Hazardous Materials
The presence of hazardous materials in the subsurface not only affects the geotechnical design, and the construction approach to a project, but it also greatly affects how the subsurface investigation program is carried out. For this reason itself, it becomes important for the geotechnical designer to determine if previous use of the site, or surrounding locations could have potentially resulted in subsurface contamination. Such uses include any facility or enterprise engaged in the production, distribution, storage, or use of hazardous substances. Hazardous substances are defined by the Environmental Protection Agency (EPA) in 40CFR§261.31 through 261.33. In addition, the EPA further includes as hazardous wastes, such substances with characteristics of Ignitability, Corrosively, Reactivity, and Toxicity according to 40CFR§261.21 through 261.24. For transportation projects, the most commonly contaminated sites are those that are presently, or have previously been occupied by service stations. However, larger manufacturing and processing sites with substantial amounts of contamination are encountered. When geotechnical investigation must be conducted under such conditions, significant preplanning is required not only to protect the field crew, but also to comply with the numerous environmental regulations that govern everything from required PPE to disposal of contaminated drill cuttings.

Previous Site Use

In addition to contaminated materials, previous site uses have the possibility of leaving behind materials and/or conditions that can be detrimental to the construction or performance of a facility if not properly mitigated. In this regard, deleterious fill materials such as wood waste and ash are commonly associated with timber processing and other operations throughout the state while reclaimed quarries may be filled with deep, unconsolidated debris and spoils. Underground mines and tunnels are present in various locations throughout Oregon. Although uncommon, some instances of such features unexpectedly encountered during construction have occurred. In addition to their obvious geotechnical impacts, such features may be historic locations and thus, be protected by Federal law.

Previous Site Occupation

In addition to previous site use, the geotechnical designer must also consider previous site occupation. A site previously occupied by Native Americans can contain artifacts, or be of significance to contemporaries. Such occupation may require archaeological investigation or preservation activities by qualified personnel. It is also possible that the exploration plan, or even significant project design changes prior to on-site geotechnical investigation will be required. Historic sites, structures, and even trees will also be protected in some instances that will necessitate adjustments to the proposed investigation. Clearly, much of the archaeological and historical issues in connection with a site are outside the purview of engineering geology and geotechnical engineering. However, the geotechnical designer must be aware of these issues to assure that field investigation activities are compliant with the laws and regulations that protect these resources.

2.2.4.4 Office Research for Bridge Foundations

In addition to the sources of information listed above, office research for bridge foundation work generally consists of a review of foundations for the existing structure and any other pertinent foundation information on other nearby structures. The structure owner may have subsurface information such as soil boring logs or "as-constructed" foundation information such as spread footing elevations, pile tip elevations, or pile driving records. The HQ Bridge Section archives contain Foundation Reports and boring logs for many bridges constructed between the mid 1960s to about 2001. Subsurface information on some earlier ODOT bridges may also be available in the Bridge Section construction records. Between about 1999 and 2004, bridge foundation files, reports and records for most bridges were stored in the Salem Geo/Hydro Section archives (now the Geo-Environmental Section archives). Copies of these reports should also exist in the region offices.
Maintenance and construction records for existing bridge(s) should also be reviewed for information relevant to the design and construction of the proposed structure. These records are available in the HQ Bridge Engineering Library or from the Bridge Section Archives. As-Constructed bridge drawings are available online, internally to ODOT through the ODOT Bridge Data System (BDS). Pile driving record books are also available from the HQ Bridge Section.

Office research work for structure foundations typically includes (but is not limited to) gathering the following information for the existing structure(s):

- Location and structure dimensions, number of spans, year constructed
- Superstructure type (e.g. RCDG, composite, steel beam)
- Subsurface data (e.g. foundation reports, boring logs, data sheets, groundwater conditions, etc.)
- Type of Foundation (e.g. spread footings, piles, shafts)

Applicable “as-constructed” foundation information such as:

- Spread footing elevation, dimensions, and design or applied load
- Pile type and size, pile tip elevations or lengths, design or actual driven pile capacity and the method used to determine capacity (resistance) (dynamic formula (ENR, Gates), wave equation, PDA/CAPWAP)
- Drilled shaft diameter, tip elevations
- Construction problems (e.g., groundwater problems, boulders or other obstructions, caving, difficult shoring/cofferdam construction).
- Foundation–related maintenance problems (e.g., approach fill or bridge settlement, scour problems, rip rap placement, corrosion, slope stability or drainage problems)

A review of old roadway design plans, air photos, and soil and geology maps and well logs may also be useful. Particular attention should be given to locating any existing or abandoned foundations or underground utilities in the proposed structure location. Any obstructions or other existing conditions that may influence the bridge design, bent layout or construction should be communicated directly to the structural designer as soon as possible so these conditions can be taken into account in the design of the structure.

This information should be summarized and provided in the Geotechnical Report. All applicable “as-constructed” drawings or boring logs for the existing structure should be included in the Geotechnical Report Appendices.

2.2.4.5 Site Geology

The underlying geology of a project site provides important information concerning the conditions that may be encountered during the investigation and construction phases of a project. Of equal importance is the indication of conditions that either may not be encountered, or will require specific procedures to determine if they do exist. Some particularly deep bedrock horizons, groundwater surfaces, and boulders or other obstructions are examples. Certain conditions can be expected due to the nature of the project site geology.

Oregon has specific geologic terrains, formations and units with distinct constituents, properties, and characteristics that greatly affect the design and investigation of a transportation project. For example:
Many of the volcanic rocks that compose the Coast range, Willamette Valley, and Cascades can exhibit deeply weathered soil horizons with isolated zones of less weathered materials, interbeds of weak tuff and other unconsolidated tephra.

Many of the coastal and inland valleys contain deep, soft sedimentary deposits formed by a rising sea level at the end of the Pleistocene.

The Klamath Terrain in the southwestern portion of the State is a complex mixture of materials that present difficult conditions for the exploration as well as construction.

Numerous published and unpublished documents are available that provide enough information upon which to base a background study. Naturally, many portions of the State have more information than others depending on population densities and previous site uses. However, some basic information is available throughout the state that can be used for most projects. The following sections provide a discussion of the most common publications and how they contribute to a background project study.

Procedures and techniques for the interpretation of maps, aerial photographs, and other remote sensing products can be found in a wide variety of texts and other publications. Several engineering geology textbooks provide a good background in geologic interpretation for engineering projects. However, landform recognition methods are also very well presented in numerous geography texts and other related books devoted entirely to remote sensing and/or GIS. Geologic interpretation with specific emphasis on landslides is treated in Chapter 8 of the 1996 TRB Landslides publication.

Topographic Maps

The U.S. Geological Survey (USGS) prepares and publishes 7.5-minute topographic maps at a scale of 1:24,000 for the entire State, and for most of the rest of the U.S. Topographic maps can be used to extract both physical and cultural information about the landscape and their consultation should be the first step in any site investigation. Contour lines provide information about slopes as well as indications of the underlying geology and geomorphology. The drainage patterns that develop in the contour lines also suggest geologic and human factors that may have influenced site conditions. Transportation and development patterns portrayed on USGS quad sheets are an often-overlooked source of information. Many roads are aligned to avoid existing geologic hazards or areas where construction difficulties are expected such as wetlands, steep slopes, or hard, resistant rock cuts. Quarry and mine site locations are also an important clue with respect to the location and distribution of bedrock materials.

15-minute topographic maps, also produced by the USGS at a scale of 1:62,500 are also commonly available, but since they have been discontinued in favor of the 7.5’ quad sheets, are becoming increasingly rare. The advantage of the 15-minute maps is that they can be very old and may show how land-use has changed in an area since their original survey. Previously existing wetlands that have since been filled or drained, waste areas, quarries, abandoned mines and other problematic areas with respect to transportation projects may be identified. Topographic maps should always be used to identify the arcuate headscarps and hummocky terrain indicative of landslides, wetlands, and general site accessibility with respect to investigation as well as construction.

Sources of Aerial Photos

Aerial photography is the most common, reliable, easy to use, and usually the cheapest source of remote sensing available. Aerial photos are very useful in planning subsurface investigation programs from gaining general knowledge regarding the geology, the extent and distribution of materials, the location of geologic hazards, potential for encountering contaminants, and determining access for exploration equipment.
Aerial photographs are widely available through a variety of sources. The ODOT Geometronics Unit would be the first source for aerial photos as their archives date back to the early 1950s and primarily cover the areas around the State’s highways and the Oregon coastline.

Instructions and forms for ordering aerial photographs from the ODOT Geometronics Unit will be found on the Agency’s website at:

Additional sources of aerial photography are:

ODOT Geometronics Unit –

http://egov.oregon.gov/ODOT/HWY/GEOMETRONICS/AerialPhoto.shtml

The US Geological Survey
http://topozon.com

USGS EROS Data Center
http://edcwww.cr.usgs.gov/

The USDA Aerial Photo Archives
http://www.apfo.usda.gov/

Bureau of Land Management
http://www.blm.gov/nstc/aerial/

University of Oregon’s Aerial Photography Library
http://libweb.uoregon.edu/map/orephoto/mapresearch.html

WAC Corporation
http://www.waccorp.com/

Spencer B. Gross, Photogrammetric Engineering
http://www.sbgmaps.com/

Intermountain Aerial Survey
http://www.ias-map.com/

Bergman Photographic Services
http://www.bergmanphotographic.com/

Many County Surveyor and/or Assessors offices throughout the State are an additional source of aerial photography. There are also a number of internet resources for low-resolution images for site location or other less-detailed applications.
General Use of Aerial Photography

Aerial photographs may be taken on either black and white or color film. Each of them have characteristics that make them superior to one another for different applications although color photographs are generally considered better since many objects are easier to identify when shown in their natural colors. Things to consider include:

- Color photos also allow for the application of color contrasts and tonal variations to interpretations. In some circumstances, black and white photographs allow the geologist or engineer to resolve changes in slope or elevation that may otherwise be lost in the subtle color changes when using natural color aerial photos.

- Another, less commonly available type of aerial photograph are those taken in false color or infrared (IR). Color IR photography responds to a different electromagnetic spectrum than natural photography. Differences in soil moisture, vegetation type and soil and rock exposure are more readily identified on color IR film.

- Ideally, both black and white as well as color photos of a site should be analyzed for a complete analysis of all features unless color IR photos are available in which case it is generally agreed that for engineering geologic interpretation, natural color and color IR transparencies provide the best information.

With a general understanding of the site geology, the lateral extent of certain geologic features and deposits can be estimated from aerial photography. With a stereo-pair of photographs, the vertical extent can also be estimated in some circumstances. The use of stereo-pairs significantly increases the ease and accuracy of geomorphic interpretation. Subtle landforms may be discerned that may otherwise be hidden from view either on-site or on a two-dimensional image.

Geomorphic Identification from Aerial Photography

Landform identification regularly allows the general subsurface conditions to be determined within the boundaries of that particular feature and thus, an opening impression of the materials to be encountered. Recognized landforms result from particular geologic mechanisms that allow such determinations to be made. These landforms are formed by distinct processes such as fluvial, glacial, or Aeolian and so they are composed of particular materials and compositions. Drainage patterns that develop within or as a result of certain landforms and geologic structures can be used as a diagnostic feature when studying aerial photographs. One of the more important landforms to distinguish during a preliminary study of aerial photographs is landslides. Landslides are readily identified by their characteristic arcuate headscars, patterns of disturbed soil and vegetation, standing water on slopes with no apparent source or discharge (sag ponds), abrupt changes in slope, disrupted or truncated drainage patterns, and upslope terraces.

Other Applications of Aerial Photography

Vegetation is another important feature to evaluate on aerial photographs since it frequently reveals certain subsurface conditions. Vegetative cover is related to numerous factors including soil development on certain bedrock units, depth of the soil profile, drainage and natural moisture content, climate, and slope angle. The relationship between clear-cutting of forests and debris flows or adjacent land instability is becoming increasingly important. Consequently, identification of such conditions within or near a project site is essential. In addition to the geologic characteristics, the condition or absence of vegetation may be a sign of soil contamination. Zones of dead or discolored vegetation can indicate the presence of a spill or chemical dump site that field exploration crews may not be prepared to encounter.

It is also important to review a sequence of aerial photographs from different years to determine the history of site use and the natural or human-caused changes that have occurred. Significant changes in the ground contours and shapes can indicate changes due to geologic processes such
as landslides, erosion, and subsidence or changes due to construction on the site such as filling and excavation. Other aspects of the site’s history that can be determined are the activities that occurred on site such as chemical processing, fuel storage, waste treatment, or similar activities which may leave contaminated or other deleterious materials behind.

Geologic Maps

The Oregon Department of Geology and Mineral Industries (DOGAMI), USGS, US Department of Energy, and other agencies publish geologic maps of most of the state at various scales. The USGS has published a map of the entire state at a 1:500,000 scale. These geologic maps generally use the USGS topographic maps as a base layer. Geologic maps portray the distribution of geologic units and provide a general description of each that includes the rock or sediment type, geologic age, origin, and brief summary of its properties and physical characteristics. Additional information concerning geologic hazards, groundwater, and economic geology is typically included.

DOGAMI also publishes special studies on geologic hazards in certain heavily populated or problematic areas of Oregon. Geologic Hazard maps are generally produced to portray specific themes such as slope stability, liquefaction potential, amplification of peak rock accelerations, and potential tsunami inundation zones. Such maps provide a general indication of the extent and magnitude of the hazards they were produced to portray.

Geologic maps for the state are available from DOGAMI and at most of the State Universities libraries. Publications are also available for purchase on line from DOGAMI at http://www.naturenw.org/. In addition, many local agencies and municipalities have contracted for hazard mapping and planning. These publications may be available from the local agency offices. DOGAMI is now in the process of a digital map compilation for the state. This compilation allows for the electronic querying of geologic information published in a selected area. The geologic information contains pertinent engineering characteristics in many areas. Currently, the compilation map for the NE sextant of the state is available on CD.

Soil Surveys

The US Department of Agriculture, Soil Conservation Service has published soil surveys for all of the counties in Oregon. Although these reports are intended for agricultural use, they provide valuable information on the surficial soils in and around a project area. These bound volumes include maps and aerial photographs showing the lateral extent of soil units and a description of the overall physical geography including local relief, drainage, climate, vegetation, and description of each soil unit together with its genesis. Commonly, the soil units are overlain on a topographic and aerial photographic base. The reports contain engineering classifications of the surficial soil units, a discussion of their characteristics such as drainage and susceptibility to erosion suitability for use in some construction applications.

Remote Sensing and Satellite Imagery

Remote sensing, by the largest definition, involves the collection of data about an area without actual contact. By this definition, the previously discussed methods of air photo and map interpretation would be classified as remote sensing. However; for this section, remote sensing is restricted to imagery obtained by systems other than cameras, or images that are enhanced to distinguish different characteristics of the earth’s surface.

Remote sensing as discussed in this section generally utilizes sensors that detect particular electromagnetic energy spectra that is mostly generated from the sun and subsequently reflected or emitted from earth. In addition, active systems that transmit and detect energy from the same platform such as an airplane or satellite are also used to collect imagery. The primary purpose of this distinction is that aerial photographs allow examination of images in the electromagnetic spectrum visible to the human eye. Other imagery allows examination of features with reflectance or energy emission properties that are either outside the spectrum visible to humans or occur with other
features with overlapping spectral reflectance that obscures them to the human eye. Examples of these other remote sensing systems are; Multispectral Scanning Imagery (MSS), Thermal Infrared Imagery (Thermal IR), Microwave Imagery (Radar), and Light Detection and Ranging (LiDAR). Despite their advantages, these remote sensing systems are not a substitute for stereo photographs and their higher detail, interpretive returns, and overall economy. They are merely a tool to allow additional interpretation capability for engineering geologic studies.

Thermal Infrared Imagery

These systems obtain images from the thermal wavelength range, generally from 8µm to 14µm, and contain the energy emitted from the earth that was previously stored as solar energy. The thermal properties such as conductivity, specific heat and density of various materials produce different responses to temperature changes. Such responses can be measured to allow differentiation of various surface materials. In a sense, thermal IR imagery can be described as a photograph of the earth’s albedo.

Obviously, the longer wavelength of thermal IR images will result in a much lower resolution than a corresponding photographic image. For this reason, thermal data is used to enhance images of areas with certain surface conditions that are not generally detected by aerial photography. In this regard, areas composed of materials with similar or overlapping reflectance properties may not show up on an aerial photograph, but their different thermal properties will make them stand out on a thermal IR image.

The primary uses of thermal IR imagery are for mapping changes in soil and rock compositions and anomalous groundwater flow characteristics on an aerial photograph base. Typical engineering geology applications of thermal IR imagery are:

Fault delineation
Locating seepage at soil and rock contacts
Mapping variations in weathered rock profiles
Mapping near-surface drainage

Multispectral Scanning Imagery (MSS)

MSS systems produce imagery from several distinct ranges, throughout the photographic and thermal spectrum. These distinct spectra are typically referred to as a band. Each spectral is concurrently recorded by the scanning instruments along the aircraft or satellite flight line. Much of the data available came from the Landsat satellite program during the 1970s and 1980s. The early Landsat satellites used only four spectral bands and achieved a resolution of about 80 meters. Later satellites used 7-band sensor array with a 30-meter resolution from 6 of those bands. The seventh was a thermal IR sensor. Special aircraft flights with 24-band sensors can also be obtained.

Images from MSS data can be used to examine the spectral signatures and reflectance of surficial materials and objects. Different soil and rock materials, as well as the extent of rock weathering, can be identified by comparing color variations from the different spectral bands. MSS image analysis for engineering geology is typically used to identify major landforms and tectonic features. Also, the length of time over which the images were collected allows observation of changes in vegetation, land use, and the locations of catastrophic events such as fault rupture, flooding, and landslides. As with thermal IR imaging, MSS is generally used as an enhancement of aerial photography rather than a substitute for it.

Microwave Imagery (Radar)

Radar utilizes electromagnetic energy from the microwave spectrum, typically with wavelengths from 1mm to 1m. Radar imaging may come form either an active or a passive system. In this regard, passive systems are a form of thermal IR imaging using the wavelengths that increase to the range...
of microwaves whereas active systems emit pulses of energy that are transmitted to the earth’s surface where they are reflected back to a receiver.

The most common technique for this type of imagery is Side-Looking-Airborne-Radar (SLAR). For this technique, the radar scans a portion of the earth’s surface laterally from an aircraft in a direction perpendicular to the flight line and at a depression angle measured downward from the horizontal. Overlapping images created from this method allow stereo viewing of surface features and objects. Objects that are more perpendicular to the pulse provide a strong energy return to the receiver while smooth or horizontal surfaces reflect the energy away from the receiver resulting in a dark image. It then follows that reflection angles and surface roughness as well as vegetation and moisture content influence the energy returned to the receiver. Objects and features extending above the surface project radar shadows that are related to the angle of incidence of the energy transmitted and received. These shadows accentuate the surface topography and thus, structural trends.

SLAR images are typically used in an engineering geology application to identify the surficial expression of geologic structures, drainage features, structural patterns, and trends. SLAR imagery is complimentary to aerial photography and should not be a substitute for it. However, SLAR images have many advantages that provide additional information that is difficult to extract from an aerial photograph. Their primary advantage is the enhancement of major features that are obscured by the greater detail of an aerial photograph. Another advantage of SLAR is the ability to obtain clear images at night and in heavy cloud cover.

Light Detection and Ranging (LiDAR)

This relatively new technology utilizes an active system that is similar to radar in the manner by which it creates an image. In this regard, energy is emitted from a source and reflected from the earth’s surface back to a receiver. However in this case, a laser is used to measure the distance to specific points and generates a digital elevation model of the earth’s surface similar to standard photogrammetric methods. LiDAR equipment is typically mounted in an aircraft although numerous ground-based applications have been developed that are beneficial to highway engineering geology, and in particular, rock slope design.

The primary advantage of LiDAR is during post-processing of the data that allows vegetation to be stripped from the data to provide a bare-earth terrain model. This is a particularly useful technology in much of Oregon where heavy vegetation obscures much of the ground surface. Landforms that would typically be obscured stand out in sharp resolution on a LiDAR image where the vegetation has been removed. In addition to vegetation, structures and dwellings can also be removed. This is also advantageous where development has occurred over large, ancient structures to the extent where they completely obscure its features. Disturbed areas and earthworks are also plainly visible on bare-earth LiDAR images. This allows clear distinctions to be drawn between fills and embankments, and natural ground surfaces. Bare-earth models also provide a clear resolution of existing stream courses and channels. Other imagery and photogrammetry-derived mapping often contain erroneously-located stream segments due to forest cover and/or ongoing lateral migration. LiDAR images not only provide an unmistakable location of the stream course, but also a clear rendition of the stream banks and terraces.

ODOT currently stores LiDAR bare-earth and reflective imagery files on the GIS server as hillshade images and Digital Elevation Models (DEM) files. This server is accessible on the ODOT system and located at:

\Sn-salemmill-1\GIS\IMAGES\LiDAR.
Raw ASCII and .LAS-format files are available from ODOT’s GIS unit as requested. In order to load the raw or binary datasets, an external hard drive of at least 500 GB capacity must be provided as these files are extremely large. LiDAR imagery and DEMs are normally viewed, manipulated, and analyzed with GIS software and specific GIS software extensions. Specialized software is also available for LiDAR data and imagery analysis. ASCII and .LAS files can be used to produce a .dtm file compatible with later versions of Bentley InRoads.

Numerous contractors are available that can provide LiDAR data products; however, ODOT participates in the Oregon LiDAR Consortium (OLC) for new acquisitions. The Oregon Department of Geology and Mineral Industries (DOGAMI) was given a legislative mandate to extend LiDAR coverage throughout the state. The consortium model was approved for funding, collection, and sharing new LiDAR datasets. DOGAMI, as head of the consortium retains the LiDAR contractor and develops cooperative agreements between consortium members. The consortium benefits all members by provided additional coverage for lower cost. As the aerial extent of each acquisition order increases, the cost per square mile decreases. In addition to lowering the unit cost, more contiguous areas of LiDAR data are acquired providing greater benefit to all members. Members of the OLC include Federal, State, and Local agencies, Tribal governments, private entities, and not-for-profit organizations.

2.2.5 Site Reconnaissance

2.2.5.1 General

The purpose of site reconnaissance in geotechnical project planning is to verify the results of the office study completed in Section 2.2.1 and Section 2.2.2, and to begin formulation of a site-specific exploration program that will address the issues identified, and determine some of the logistics required to complete the next phase of investigation. At this stage, the geotechnical designer should know what to look for at the site, and, with preliminary or conceptual plans in hand, should observe the anticipated conditions with respect to the proposed project features. Surficial expression of features and landforms should be checked on the project plans as well as delineating additional features noted during the site reconnaissance. It is also important to assure that the project maps are accurate with respect to the actual site conditions, and that significant features were not overlooked or misrepresented on the preliminary or conceptual design phase maps. The scope of the site reconnaissance depends greatly on the site conditions, accessibility, and project complexity. The value of the site reconnaissance is realized later on in the project through a more efficient and thorough site exploration and geotechnical design. Therefore; site reconnaissance should be complete and systematic to achieve the final objectives of the office investigation, and may involve a significant level of effort in the field depending on the project site itself.

2.2.5.2 Verification of Office Study and Site Observations

The topography and geomorphology of a site should be reconciled in the field with what was anticipated in the office study and shown on any maps or aerial photographs. Review and assess the following:

- Outcroppings, road cuts, stream beds, and any other subsurface exposures should be noted to verify the anticipated conditions based on the published geologic maps and literature. The presence of artificial fills should be noted and described with respect to its composition, lateral extent, and estimated volume.

- Surface waters, springs, wetlands and other potentially sensitive areas that may impact the project work should also be noted. In addition, an effort should be made to identify the 2-year flood zone for future reference.
• Boulders, blocks, and oversized materials in stream beds, or projecting from embankments should be noted as they may be indicative of obstructions in the subsurface. Such obstructions are one of the most common sources of changing site conditions claims on projects that involve pile driving, shaft/tieback/soil nail drilling, and excavations. Oversized materials observed on the surface may not be encountered during exploratory drilling and thus, the field reconnaissance may be the only record of their occurrence. In addition to boulders and blocks, existing, abandoned structures such as foundations and utility vaults can also be an obstruction to foundation installation and excavation.

• Any landslide features observed in the office study should be examined in addition to any new features discovered during the site reconnaissance. All indicators of unstable slopes such as springs, sag ponds, bent tree trunks, disturbed plant communities, abrupt vegetation changes, and hummocky terrain should also be noted. Measurement and delineation of all features and indications of slope stability should be completed during the reconnaissance. Complete investigation of slope stability affecting a project area necessarily involves areas that may extend a substantial distance away from the proposed alignment.

• The performance of existing and nearby structures should be evaluated during the site reconnaissance. Evidence of settlement, deformation, tilting, or lateral movement can indicate site conditions that possibly will impact the project design and further exacerbate the performance issues during construction.

• At bridge sites, the existing footings should be evaluated with respect to stream scour. Exposed pile caps or footings as well as riprap protection generally indicate that scour has been a concern at the site previously.

2.2.5.3 Preparation for Site Exploration

Potential boring locations should be identified with respect to the preliminary or conceptual plans available at the time of the site reconnaissance. Once the locations are determined, an assessment can be made in connection with how they will be accessed by exploration equipment and personnel. Many projects can be investigated by routine methods with common equipment. However, for some projects, site access can cost almost as much if not more than the actual subsurface exploration itself in many circumstances. Physical site access, traffic control, environmental protection, and many other issues can arise that increase the complexity, and subsequently, the cost of the exploration program. Every site is different, so each must be assessed individually to determine what methods, procedures, equipment, and subcontractors will be needed. Some of the most common issues that need to be addressed are:

• **Traffic Control** – Flagging, lane restrictions, and pilot cars are required when working in or near the travel lanes. In such instances, traffic will need to be controlled for the entire time the exploration crew is on site. In other areas, traffic control may be needed while loading or unloading equipment and supplies. In many areas, lane restrictions are only allowed for nighttime operations. In every case, all efforts will be made to minimize the impact to the traveling public.

• **Equipment Required** – Determining whether the site can be accessed using a standard truck-mounted drill rig or whether a track-mounted drill will be needed. It may also be necessary to consider difficult-access equipment that must be transported by crane, helicopter, or hand-carried.

• **Physical Access** – Considering additional equipment to access a site and analyzing the cost-benefits of their use vs. other drilling equipment and investigative methods. For some sites, bulldozers and excavators may be needed to construct an access road for drilling equipment, barges may be needed for in-water work, and special low-clearance equipment
may be needed for work in and around utilities. Where access roads are problematic due to environmentally sensitive areas that need to be avoided, overall impact, cost, and reclamation requirements; alternative equipment or methods should be looked upon as a potential cost or problem-saving measure where the integrity of the exploration information is not compromised.

For in-stream work, project scheduling becomes a significant issue since restrictions will be imposed on the times of the year when such activities will be allowed. Furthermore, the logistics of carrying out in-water work bring additional requirements such as determining the draft of the barge needed for the depth of the water, how the barge will be anchored, where the barge will be launched from, how the crew will access the barge during a shift change, and determining the effects of tidal or current changes on the drilling operations. A marine surveyor should be engaged for particularly complex over-water operations, and on some waterways, their review of operations is required.

Where bridges are replaced at their present location, and conditions allow, drilling may be conducted through the existing bridge deck although efforts must be made to assure that only the deck and not the superstructure are penetrated.

- **Drilling Conditions** – Where high groundwater levels, deep water, and loose or heaving sands and gravels, and obstructions are anticipated, the appropriate drilling methods and materials should be specified.

- **Materials and Support** – Remote locations may require special considerations for supporting the field crew and the equipment. In this regard, additional logistics may be needed for delivering drilling supplies, fuel, lubricants, etc., and for the timely delivery of samples back to the laboratory and office. All-terrain vehicles may be needed to support the drill crews in such situations, or else preplanning needs to be carried out to schedule or arrange for extra site provision. Locations for drill water should be identified ahead of time, and where an ODOT facility is not available, permits will need to be obtained ahead of time for fire hydrants, private sources, or extraction from streams and lakes.

- **Right-of-Way** – The methods by which permits of entry for exploration on private property are obtained vary from region to region, and frequently, within a region. For all cases, the region Right-of-Way section in which the project is taking place should be consulted prior to exploration, and then notified in advance, when and which private properties will be accessed. The Right-of-Way section manager or their subordinate will recommend either a standard permit of entry form, or they will obtain the permit of entry internally.

 In many instances, private property owners will refuse to grant entry. For these, the right-of-way section will be required to handle the negotiations for site access, and determine the terms and conditions.

- **Utility Conflicts** – During the site visit, the location and type of utilities should be noted. The names and contact information located on the utility risers, stakes, and poles should be recorded. In all cases, the Utility Notification ("One-Call") Center must be contacted at least 2 working days prior to commencement of site operations at 1-800-332-2344. The One-Call Center will recount the utility services that they will notify based on their records. The geotechnical designer or drilling supervisor will be responsible for notifying any other utilities operating in the area based on their observations of facilities during the site reconnaissance. Responsibility for maintaining the utility location markings during site operations belongs to the field exploration crew.
2.2.5.4 Reconnaissance Documentation

During the field reconnaissance, photographs should be taken of all the predominant features previously discussed. Each photograph should be appropriately labeled with the object of the photo, the direction it was taken, where it was taken from, the date, and ideally, the latitude and longitude of the photograph’s origin obtained with GPS equipment.

The observations taken during the site visit should be documented in a memorandum or short reconnaissance report depending on the scope and complexity of the project. The report should provide a list and a description of all the observations made, and the prominent features encountered during the office study and site reconnaissance. Each feature should be located with reference to the project stationing or reference grid. Once again, there is considerable benefit to locating features with GPS equipment for long-term record keeping. Project stationing can change, projects can be postponed for long periods of time, and future projects will occur that will utilize this document see Section 2.2.1.1. Preplanning for geotechnical design is correlative to any other investment; the earlier in the process the work takes place, the longer the benefits can be reaped.

2.3 References

APPENDIX 2-A – Geology / Geotechnical QC MATRIX

Table 2-1. Geology / Geotechnical Matrix Checklist QC Check #1 – Scoping

<table>
<thead>
<tr>
<th>Scope</th>
<th>Geology</th>
<th></th>
<th>Geotech</th>
<th></th>
<th>Rock Slopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
</tr>
</tbody>
</table>

- **Scope**
- **Project Name and Key Number**
- **Existing structures, earthworks and known hazards**
- **Proposed structures and earthworks**
- **Design Narrative, defined project area**
- **Project Geography**
 - Bodies of water
 - Terrain Features
 - Climate
 - Region
- **Project Geology**
 - Province
 - Bedrock and Quaternary Geology
 - Structural Geology
 - Geologic Hazards
 - Geomorphology
- **Geologic Impacts/Performance of existing structures**
- **Performance of existing structures**
- **Previous design efforts in the project area**
- **Cost Estimates for Proposed Work (Design and Construction)**
- **Monitoring period**
- **Summary of findings and project implications**
Table 2-2. Geology / Geotechnical Matrix Checklist QC Check #2 – Scope of Work

<table>
<thead>
<tr>
<th></th>
<th>Geology</th>
<th>Geotech</th>
<th>Rock Slopes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
</tr>
<tr>
<td>Project Scope</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schedule of work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geology Scope of Work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geotechnical Scope of Work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock Slope Scope of Work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exploration Scope of Work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geology project budget</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geotechnical project budget</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock slopes project budget</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring period schedule and budget</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2-3. Geology / Geotechnical Matrix Checklist QC Check # 3 – EIS

<table>
<thead>
<tr>
<th>Survey of proposed alignments and alternatives</th>
<th>Geology</th>
<th>Geotech</th>
<th>Rock Slopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedrock units to be encountered</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Surficial units to be encountered</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Physical geography – effects on proposed</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>alignments and/or slope geometries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topography</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geologic Province</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Character of expected geologic units and their</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>performance history</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geologic hazard potential</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summary of known geologic hazards</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summary of known geologic impacts to existing features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance of structures and earthworks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>along proposed corridors or alignments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Known geotechnical-related problems in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>existing structures and earthworks in the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>proposed project area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitigation methods and costs for potential</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>geotechnical issues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geotechnical characterization/estimated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>properties of geologic units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discussion of the performance of project area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>materials and geologic units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correlation of properties of expected materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with similar studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost-benefit analysis of proposed alignments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and/or locations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concept Plan Review</td>
<td>Geology</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reconnaissance Report (File Summary Survey)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consultation of published literature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consultation of unpublished literature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerial photographs and other remote sensing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerial photographs from different years to review varying conditions through time and site history</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As-built plans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance records</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region file survey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consultant reports</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHRS/Unstable slope inventory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review of maintenance activities that have affected the site (e.g. rockfall containment, slope stability, drainage)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review of geographic and geologic conditions affecting slope stability with respect to conceptual evaluation of landslide/rockfall remediation schemes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determine the potential affect of outside stakeholders on the remediation options (USFS, Gorge Commission, Tribal Governments, etc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2-5. Geology / Geotechnical Matrix Checklist QC Check #5 – Exploration Plan (10% TS&L)

<table>
<thead>
<tr>
<th>Exploration Plan</th>
<th>Exploration Plan Summary</th>
<th>Project Features requiring subsurface investigation</th>
<th>AASHTO compliance for project features</th>
<th>FHWA recommended standard practices for rock slopes</th>
<th>Evaluation/inclusion of alternative or supplementary exploration methods</th>
<th>Consideration of alternative tests and/or techniques that would provide better quality and economy</th>
<th>Appropriate rock slope mapping and drilling programs for the proposed mitigation measure</th>
<th>Evaluation of the expected site conditions and compatibility with standard exploration procedures</th>
<th>Minimum explorations for trenchless pipe installation and associated features</th>
<th>Exploration Plan Review</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td>YES</td>
</tr>
<tr>
<td>Exploration Plan</td>
<td></td>
</tr>
<tr>
<td>Exploration Plan Summary</td>
<td></td>
</tr>
<tr>
<td>Survey Requirements</td>
<td></td>
</tr>
<tr>
<td>Work Products</td>
<td></td>
</tr>
<tr>
<td>Scope, Schedule, Budget</td>
<td></td>
</tr>
<tr>
<td>Project Features requiring subsurface investigation</td>
<td></td>
</tr>
<tr>
<td>AASHTO compliance for project features</td>
<td></td>
</tr>
<tr>
<td>Boring/Exploration spacing</td>
<td></td>
</tr>
<tr>
<td>Boring/Exploration depth</td>
<td></td>
</tr>
<tr>
<td>Sampling frequency</td>
<td></td>
</tr>
<tr>
<td>FHWA recommended standard practices for rock slopes</td>
<td></td>
</tr>
<tr>
<td>Evaluation/inclusion of alternative or supplementary exploration methods</td>
<td></td>
</tr>
<tr>
<td>Consideration of alternative tests and/or techniques that would provide better quality and economy</td>
<td></td>
</tr>
<tr>
<td>Appropriate rock slope mapping and drilling programs for the proposed mitigation measure</td>
<td></td>
</tr>
<tr>
<td>Evaluation of the expected site conditions and compatibility with standard exploration procedures</td>
<td></td>
</tr>
<tr>
<td>Minimum explorations for trenchless pipe installation and associated features</td>
<td></td>
</tr>
<tr>
<td>Exploration Plan Review</td>
<td></td>
</tr>
<tr>
<td>Structures and earthworks for exploration</td>
<td></td>
</tr>
<tr>
<td>Proposed exploration at each structure location</td>
<td></td>
</tr>
<tr>
<td>Field Exploration Review</td>
<td>Geology</td>
<td>Geotech</td>
<td>Rock Slopes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------</td>
<td>---------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site-specific field explorations</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borings</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Pits</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand-auger holes</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geophysics</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-Situ testing</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site and vicinity reconnaissance</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project-level geologic mapping</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTM conformance</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drilling methods</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling and testing</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deviations from standards noted and described</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review of alternative tests or techniques</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantity of samples for laboratory testing (collection and recovery)</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adequate samples and laboratory testing to characterize and determine the extent of subsurface materials</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undisturbed samples in cohesive and/or compressible materials</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core drilling procedures</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODOT standard core box placement and labeling</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HQ or larger-sized core diameter</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triple-tube recovery system</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recovery appropriate for the materials encountered (never less than 80% unless special conditions exist)</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core specimens labeled and photographed while wetted</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legible and appropriate core photography</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimens removed for laboratory testing replaced in the core box with the appropriate marker</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drilling techniques correspond to the materials encountered</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Augers used while investigating for the piezometric surface in soil</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indication where natural moisture content was altered by introduced fluids</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QC Check #6 – (⅔ TS&L) (continued)

<table>
<thead>
<tr>
<th>Methods used to determine piezometric surface in rock</th>
<th>Geology</th>
<th>Geotech</th>
<th>Rock Slopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluids used to stabilize boreholes in sandy material or other heaving conditions</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
</tr>
<tr>
<td>Measures to avoid affecting SPT and other testing values and intervals in heaving conditions</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Drilling activities recorded on standard boring log forms

- Fluid return and color changes
- Drill action and rate
- Shift/personnel changes
- Bit wear
- Drilling techniques
- All information used for interpretation of subsurface conditions
- Locations where groundwater was encountered
- Open hole water levels recorded at the beginning of each drilling shift
- Dry holes specifically noted
- Types, quantities, and depths of backfill and sealing materials
- Soil and rock materials identified, classified, and described according to the current version of the ODOT Soil and Rock Classification Manual
- Complete soil and rock descriptions
- Additional physical properties, diagnostic, or distinguishing features recorded on the logs
- Boring locations surveyed with respect to State Plane Coordinates and true elevations
- Conversion to SPC/true elevation where assumed values are used
- Borings referenced by project stationing
- Borings referenced by bearing and distance to permanent features or reference points in the absence of an existing base map or survey
- Preliminary subsurface drawings and/or model for adjusting exploration according to current findings
Boreholes abandoned according to Water Resources standards

Instruments installed according to their purpose (e.g. inclinometers installed below the slide plane, piezometer sensing zones in the water-bearing strata, etc.)

Records of piezometer casing type/size, slotted zones, slot size/frequency

Records of sealing and filter pack placement, sizes and grades of the materials

VWP Installations

- Manufacturers calibration sheets
- Field calibration results
- Initial reading consistent with manual observation

Inclinometers

- Appropriate slurry mixture
- Slurry quantity recorded
- Distinct zones of grout-take noted
- A0 direction noted, proper A0 inclinometer alignment
- Tube stick-up recorded

Water Resources Hole Reports completed correctly and filed within the 30-day requirement

Appropriate rock mass classification system used to evaluate rock slope excavation performance

Rock slope surface mapping

- Overburden thickness and type
- Discontinuity thickness, type, surface roughness, spacing, orientation, and shape
- Zones of differential weathering on the slope
- Location and volume of seeps and springs

<table>
<thead>
<tr>
<th>Geology</th>
<th>Geotech</th>
<th>Rock Slopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
</tr>
<tr>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
</tr>
<tr>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
</tr>
</tbody>
</table>
QC Check #6 – (¾ TS&L) (continued)

<table>
<thead>
<tr>
<th>Geology</th>
<th>Geotech</th>
<th>Rock Slopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
</tr>
<tr>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
</tr>
<tr>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Preliminary Geotechnical Recommendations

- [] YES
- [] NO
- [] N/A

TS&L Foundation Design Memo

- Description of proposed project
- Anticipated subsurface conditions
- Preliminary foundation design recommendations
- Foundation types
- Preliminary capacities
- Rational for selecting the recommended foundation type and capacity
- Discussion of liquefaction potential and associated effects

Suggested retaining wall types

- [] YES
- [] NO
- [] N/A

Preliminary slope recommendations

- [] YES
- [] NO
- [] N/A

Site Model Review

- All exploration locations located on plan view maps referenced to the project
- Plan view maps developed to the appropriate scale to show the necessary features with respect to the overall project
 - Appropriate plan map contour interval and labeling
 - Borehole collar elevations consistent with nearest contours
 - Standard map elements
- Cross-sections, fence diagrams, profiles and/or block diagrams used to display the 3-dimensional distribution of geologic units, features, structures, and engineering properties
- Geologic model consistent with engineering properties of defined units
- Material properties/laboratory testing results recorded on the drill logs
- Laboratory testing used to develop engineering geologic units
- Laboratory testing results displayed graphically to support the engineering geologic model (e.g. graphs or charts plotting engineering properties with depth or along a graphic lithology column)
- Laboratory testing program included samples from each boring or test pit to confirm the field and visual classification
- Laboratory results incorporated into the final drill logs and subsurface model
- Laboratory testing to verify or confirm interpretations or further characterize a unit
Final drill logs match the interpretive drawings and preliminary drawings for the Geotechnical or FoundationDatasheets

Clear distinction between observed and inferred features and relationships in the geologic model

Review laboratory test results to determine if modifications are required in specific geologic units at different locations in the subsurface model

Process developed to incorporate laboratory testing to assure correct and consistent material classification and description between borings and to develop engineering geologic stratigraphy from the test results

Review physical properties testing to determine if initially misidentified materials occur elsewhere in the project subsurface

Related soil classifications modified as a result of physical properties test results

Results of instrumentation programs match the engineering geologic model

Geologic model encompasses the project design details to show the effect of the geology on the facility

<table>
<thead>
<tr>
<th>Geology</th>
<th>Geotech</th>
<th>Rock Slopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Proposed cut lines, excavations, tunnel/pipe alignment, and foundations all plotted in the subsurface model

Geologic features affecting the design such as seeps, springs, piezometric surfaces, and daylighted adverse structures clearly shown and identified in the model

Blocky or rubble-zones that could produce overbreak in rock cuts or excavations

Boulders or other obstructions in proposed excavations or pile and shaft foundations

Groundwater surfaces

Delineation of collapsible or expansive soils

Cuts or fills on known or potential slide areas
QC Check #6 – (¾ TS&L) (continued)

<table>
<thead>
<tr>
<th>Geology</th>
<th>Geotech</th>
<th>Rock Slopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
</tr>
<tr>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
</tr>
<tr>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Foundations in or near bog/marsh areas
- Excavations below the groundwater surface, determination of the amount of water that will be encountered and the effect of piezometric drawdown on groundwater resources
- Delineation of potentially soft subgrade on the project plan map
- Geologic interpretation of materials and stratigraphy incorporates the engineering properties of the strata encountered (e.g. geologic units are subdivided down to the level of distinct engineering properties)
- Cross-cutting relationships established
- Quaternary-aged features and discontinuities identified
- Determine if weak or weathered rock sources identified for use on the project are likely to be friable or nondurable
- Slake Durability testing of exposed rock face material
- Thorough representation of materials tested for strength and compressibility rather than reliance on empirical correlations, especially those based upon Standard Penetration Tests
- Appropriate strength tests conducted to distinguish between drained and undrained conditions where needed
- Determine if the total stress envelope of the CIU test with pore pressure measurements has been used improperly to define the relationship of undrained shear strength with depth
- Determine if the existing and proposed state of stress has been accounted for during strength testing
- Evaluation of consolidation tests: reconciliation of the test-derived preconsolidation pressure with the actual stress history of the sample
Table 2-7. Geology / Geotechnical Matrix Checklist QC Check #7 – Preliminary Plans

<table>
<thead>
<tr>
<th>Item</th>
<th>Geology</th>
<th>Geotech</th>
<th>Rock Slopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Geology Report</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geotechnical Report</td>
<td></td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Rock Slope Report</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preliminary Geotechnical Datasheets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datasheets completed for all required structures or features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profiles drawn along project alignment centerlines or specific offsets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross-sections, additional profiles completed to show structure-specific information, or to provide additional information in areas of complex geology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample and property data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsurface model used to develop the Geotechnical Datasheets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsurface information shown on the datasheets matches the final logs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drawings made at appropriate scales to show the needed level of detail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interpretation shown on the datasheets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geotechnical Datasheets completed according to Subsurface Information Policy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detail Drawings and Plans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review geotechnical items in the bid schedule</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assure specification writer’s review of geotechnical items in the special provisions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review specification writer’s modifications of geotechnical items in the special provisions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct length and locations for buttresses, surface and subsurface water collection and discharge features shown on the plans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct materials called out on the plans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequence of construction for buttresses</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QC Check #7 – Preliminary Plans (continued)

<table>
<thead>
<tr>
<th>Geology</th>
<th>Geotech</th>
<th>Rock Slopes</th>
</tr>
</thead>
</table>

- Staged construction sequence for surcharging, wick drains, and ground improvement
- Appropriate drainage discharge locations
- Recontouring of slide areas clearly shown
- Surface water drainage in slide areas addressed in the plans or detail drawings
- Buttress, drainage, or other features shown with the correct elevations and dimensions

Slope protection mat and rockfall protection fences
- Mesh type
- Anchor spacing
- Quantities
- Special provisions, including those for high-impact fences
- Standard Drawings included in the plans
- Special access issues and requirements
- Standard drawings and special provisions for PVC-coated mesh

Rock Bolts and Dowels
- Design Loads
- Design Lengths
- Locations
- Quantities
- Corrosion protection
- Performance and proof-testing requirements
- Reference to the Qualified Products List

Rockfall Retaining Structures
- Type, Size, and Location
- Quantities
- Slopes (Rockfall Protection Berms)
- Backfill type specifications
- Special Provisions

Rock Slope Drainage
- Location
- Drain lengths
- Drain angles and orientations
- Quantities
- Water collection and disposal
<table>
<thead>
<tr>
<th>QC Check #7 – Preliminary Plans (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geology</td>
</tr>
<tr>
<td>Geology</td>
</tr>
<tr>
<td>Shotcrete</td>
</tr>
<tr>
<td>Locations</td>
</tr>
<tr>
<td>Areas of coverage</td>
</tr>
<tr>
<td>Quantities</td>
</tr>
<tr>
<td>Anchorage</td>
</tr>
<tr>
<td>Reinforcement</td>
</tr>
<tr>
<td>Standard drawings and details</td>
</tr>
<tr>
<td>Drainage</td>
</tr>
<tr>
<td>Performance requirements</td>
</tr>
<tr>
<td>Installation details</td>
</tr>
<tr>
<td>Temporary Rockfall Protection</td>
</tr>
<tr>
<td>Review type for suitability</td>
</tr>
<tr>
<td>Locations</td>
</tr>
<tr>
<td>Length</td>
</tr>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Required materials and quantity</td>
</tr>
<tr>
<td>Details</td>
</tr>
<tr>
<td>Rock Blasting and Rock Excavation</td>
</tr>
<tr>
<td>Quantity of Controlled Blast Holes</td>
</tr>
<tr>
<td>Overburden slopes and slope breaks shown on the plans</td>
</tr>
<tr>
<td>Special Provisions</td>
</tr>
<tr>
<td>Blast Consultants</td>
</tr>
<tr>
<td>Noise/vibration monitoring</td>
</tr>
<tr>
<td>Preblast survey</td>
</tr>
<tr>
<td>Blasting plan review</td>
</tr>
</tbody>
</table>
Table 2-8. Geology / Geotechnical Matrix Checklist QC Check #8 – Advanced Plans

<table>
<thead>
<tr>
<th>Geology</th>
<th>Geotech</th>
<th>Rock Slopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Preliminary Wall Drawings
Review subsurface information on Geotechnical Datasheets for retaining structures

Retaining Wall Drawing Review
Type, Size, Location, Height, Backslope
Quantities
Backfill types
Wall drainage
Special Provisions

Design Changes and Addenda
Design calculations for added structures and features
Design calculations for structures and features that have moved
Review design assumptions
Changed Criteria
Changed Type, Size, Location
Changed Quantities

Additional exploration requirements for added structures or features
Appropriate exploration carried out for added structures or features
New data incorporated into the overall geologic interpretation
Further characterization of geologic units with additional data
Resolution or confirmation of previous inferences and interpretation
Additional risk assessment
<table>
<thead>
<tr>
<th>Final Plan Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geotechnical or Foundation Datasheets completed for all structures, facilities, ad features for which they are required</td>
</tr>
<tr>
<td>Geotechnical Datasheets completed according to Subsurface Information Policy</td>
</tr>
<tr>
<td>Engineer or Geologist has stamped all sheets that they are responsible for</td>
</tr>
<tr>
<td>Information provided on the datasheets exactly matches what is presented on the final logs and in the Engineering Geology report</td>
</tr>
<tr>
<td>Final review of detail and plan sheets</td>
</tr>
<tr>
<td>Final review of bid item quantities</td>
</tr>
<tr>
<td>Final review of Special Provisions</td>
</tr>
</tbody>
</table>
3 Field Investigation

3.1 Introduction

For any transportation project that has components supported on or in the earth, there is a need for subsurface information and geotechnical data during its planning, design, and construction phases. Any geologic feature that affects the design and construction phase of a project, or has a bearing on site or corridor selection in terms of hazards and/or economics must be investigated and analyzed. Of equal importance is the clear and accurate portrayal of these conditions in a format that is accessible and understandable by all users.

Consider the following during field investigation:

- **Subsurface investigation:** The objectives of a subsurface investigation are the provision of general information on the subsurface conditions of soil, rock and water, and specific information concerning the soil and rock properties that are necessary for the project geotechnical design and construction.

- **Scale of investigation:** For transportation projects in Oregon, the appropriate scale of investigation must be carefully considered. Because of Oregon’s geology and geography, subsurface conditions are complex and may vary widely over short distances. A more thorough investigation will provide additional information that will generally decrease the probability of encountering unforeseen conditions during construction, and increase the quality and economy of the geotechnical design of a project.

- **Balance of investigation:** Time and fiscal considerations will constrain the scale and resolution of the field investigation. Therefore; the geotechnical designer must balance the exploration costs with the information required and the acceptable risks.

The technical decisions and details required for site investigations require the input of trained and experienced professionals. Every site has its own particular circumstances, and diverse geologic conditions, professional experience, available equipment, and the previously described time and budgetary restraints all contribute to the most cost-effective site investigations. The implications of site-specific geologic conditions for the type of proposed facility must be investigated for each project. The remainder of this chapter describes established ODOT criteria to be used in field investigations as well as information on any areas where ODOT’s criteria differs from the FHWA and AASHTO guidelines. More information can also be found in the Federal Highway Administration *Subsurface Investigations - Geotechnical Site Characterization Reference Manual* (FHWA NHI-01-031).
3.1.1 Established Investigation Criteria

Professional experience and judgment are the basis of any field investigation program. This chapter is not intended to provide a prescriptive approach to field investigation, however; there are some established base levels of investigation for transportation facilities that must be mandated to assure consistency and quality throughout the agency, and to address a common level of risk acceptance.

- These baselines were based on Federal guidance and the *AASHTO Manual on Subsurface Investigations*, 1988. ODOT has adopted the baseline requirements for subsurface investigations from the AASHTO Manual.
- However, due to the more variable conditions found in Oregon, ODOT’s practice is slightly more rigorous with respect to exploration spacing and sampling. ODOT variance from AASHTO guidelines is outlined in Sections 3.5 Subsurface Exploration Requirements and 3.6 Subsurface Exploration Methods. LRFD Bridge Design Specifications, Section 10 provides an additional resource for subsurface investigations, supplementary to the AASHTO guidelines.

The most important component of subsurface investigation is the personnel that direct the field activities, interpret the information, and present the results in a clear manner to those responsible for the final geotechnical design and construction of the project. The quality of information produced from a subsurface investigation can vary substantially depending on the experience and competence of the personnel charged with its conduct. Radically different interpretations and conclusions can result from substandard investigation programs. Subsurface investigation is an investment in the success of a project with returns that range from 10 to 15 times the cost of the investigation later realized during final design and construction.

3.2 General Subsurface Investigation

For most projects, the main purpose of a subsurface investigation program is to obtain the engineering properties of the soil and rock units and define their vertical and lateral extent with respect to thickness, position in the stratigraphic column – their depth, and aerial extent where they could affect the design and performance of a structural or earthwork feature.

The properties normally evaluated include Index Properties such as:

- natural moisture content, and
- Atterberg Limits.

Additional physical properties may be evaluated, such as

- shear strength,
- density,
- compressibility, and
- in some cases, permeability.

The location and nature of groundwater is evaluated in every subsurface investigation. In addition to material properties, subsurface investigations are carried out to explore and monitor geologic hazards that were identified in the office studies previously conducted.

For this later purpose, landslides are the most common hazard although caverns, compressible materials, high groundwater, faults, and obstructions may also form the basis or extension of a subsurface investigation program.
3.2.1 Subsurface Investigations – Phases

Subsurface investigations may be carried out with varying levels of intensity depending on the phase of the project for which they are conducted. The typical phases are described in the following sections.

3.2.1.1 Phase 1

For the Field Survey and/or Alternative Design phases (Usually described as “Phase 1”) of a project, the information gathered from the office study is usually sufficient for preliminary geologic/geotechnical input to the project team and for completion of the Soils and Geology chapter of the Environmental Impact Statement (EIS). In the case of a large and/or complex project, or if geologic conditions will have a major impact on the design and construction of a project, then some amount of subsurface investigation will be warranted to determine the exact location and extent of the problems and to devise some preliminary cost estimates and alternatives. Ideally, when performing a subsurface investigation during Phase 1, the exploration would be situated at the location of a major project feature that would be investigated later during project design. However, as this occurs early in the project, or certain other alternatives are under consideration, the precise locations of bridge bents and final alignments may not be known.

3.2.1.2 Phase 2

The project design phase (Field Survey up to Preliminary Plans, usually referred to as “Phase 2”) is where the most intense and focused subsurface investigation occurs for specific project features. Wherever possible, the project design or Phase 2 investigation should capitalize on any previous explorations in the project area. Personnel responsible for the field investigation and geotechnical design should determine the utility of this information.

The project design phase subsurface exploration and testing program provides the geotechnical data specifically required by the project’s geotechnical design team. The investigation provides the aforementioned informational needs for the foundation and earthworks design as well as:

- Additional information applicable to other related project elements such as the chemical properties of soil with respect to corrosion of structural elements, and issues associated with environmental protection and erosion control.
- The project geotechnical design analyses, decisions, and recommendations for construction will be based on the information gathered during the Phase 2 investigations.

For these reasons, the information gathered during this phase of investigation should achieve a degree of accuracy, thoroughness of coverage, and relevancy to support the project design decisions and to allow for realistically accurate estimates of geotechnical bid items.
3.2.1.3 Other Phases

There will be some instances where additional subsurface investigation is necessary during Advanced Plans, Final Plans, or even during the construction phase of a project. This is not necessarily due to an incomplete investigation during the project design phase, but rather the result of unforeseeable problems that arise during construction, or late design changes following the main investigational effort and/or geotechnical design. Subsurface investigation is conducted to provide design information and is usually adequate, in most cases, for contractor’s estimates for construction and bidding. Explorations conducted during construction are uncommon, and are usually carried out to resolve problems or answer questions that arise while the project is being built.

Occasionally, explorations will occur as part of the construction activity to install and monitor needed instrumentation. When design changes occur late in a project, additional subsurface investigation can be necessary to confirm the geotechnical design assumptions or to develop additional information.

3.3 Exploration Plan Development

The Exploration Plan is a document that describes the subsurface investigation activities that will take place to obtain the engineering properties required for geotechnical design. The objective of the Exploration Plan is to:

- assure that the sampling and testing carried out for the subsurface investigation thoroughly covers each of the geologic units applicable to the geotechnical design
- verify that the maximum amount of information can be obtained from the fewest number of borings or other higher-cost methods

In order to achieve this, the plan must be updated and modified as exploration proceeds to make sure that the number of samples taken, and tests performed in each unit provides enough numeric measurements of each critical engineering property distributed throughout the geologic unit to provide enough confidence in the property to base the geotechnical design upon. In this regard, the properties of a material at one end of a long alignment may not hold true for the other end, and a geotechnical designer will not want to base all design parameters for that material on only one or a few samples.

Subsurface investigation conducted during the project design phase must fully define the subsurface conditions at a project site to meet the requirements of geotechnical design and construction. The proper execution of the Exploration Plan will assure that samples and tests are numerically adequate and distributed vertically and laterally throughout each geologic unit, and that every important geologic unit at the site is discovered and investigated to the maximum feasible extent. The Exploration Plan will also assure that the site investigation is conducted in accordance with the standards of practice outlined in the 1988 AASHTO Manual on Subsurface Investigations and augmented in this manual. These standards are further subject to modification due to the variability of the site geology, sensitivity to potential changes, and risk or potential impact.

Note:

Exploration Plans should be created, reviewed, and executed by an experienced engineering geologist or geotechnical engineer.

The geotechnical designer should comprehensively evaluate the various methods and procedures for subsurface exploration that are currently available to maximize the amount of information gathered while reducing costs to the extent possible. The most common method for achieving this is to gain the most information from the fewest number of borings.
Alternatively, various types of exploration methods may be used where practical in lieu of the more expensive borings to realize those cost savings without compromising the necessary acquisition of information.

3.3.1 Exploration Plan Considerations

One of the leading issues addressed when developing the Exploration Plan is the overall scale or intensity and level of effort for the subsurface investigation. To answer these questions, the expected complexity of the project site’s geology must be considered with respect to nature of the proposed project, and the project's requirements from the subsurface investigation.

In effect, there are some primary factors that will necessitate increasing the Exploration Plan for a larger-scale subsurface investigation including:

- complex site geology
- complex site conditions
- scale of the project
- sensitivity of the facility to variations in site conditions

The subsurface investigation program should be scoped according to these issues rather than from some baseline requirement. Each exploration should be justifiable in terms of the information needed from it. Such informational requirements form the basis of the following criteria:

- the type of boring
- location
- depth
- types of sampling
- sampling interval

These questions can only be answered by the experience, knowledge, and application of engineering geologic principles by the geotechnical designer. Through careful examination of the results previously obtained by the office study, and their experiences working in the area, they are the essential resource for determining the requirements of the subsurface exploration program.

3.3.1.1 Minimum Requirements for Subsurface Investigations

This does not however, preclude the necessity of established minimum requirements for subsurface investigations. The base level of investigation has value as an initial approach to a subsurface investigation and for preliminary cost estimation of exploration activities as well as assuring that some uniform amount of exploration is accomplished for all geotechnical design. The minimum standards for subsurface investigations are well-defined in the 1988 *AASHTO Manual on Subsurface Investigations* and are broadly accepted in the practice.
Where ODOT Differs from the AASHTO Manual

Where ODOT practice differs from the AASHTO Manual is in the divergence from the minimum amount of investigation. AASHTO allows for a reduction from the minimal amount of exploration in areas of predictable geologic conditions and the absence of any geologic hazards. Such conditions generally do not exist in Oregon and as a rule, prohibit any reduction of the exploration program. Rather, explorations are added to the program due to the unpredictable nature of the state’s geology. Much of the work performed during the preliminary office studies will assist in determining the overall scale of the subsurface investigation program.

Such added expenditures are always justifiable when additional exploration, testing, and analyses result in correlative savings on the construction cost and in an overall better geotechnical design.

3.3.1.2 Risk Tolerance

Further consideration in the development of the Exploration Plan should be given to developing an assessment of the risk tolerance of the project to unforeseen subsurface conditions. In this regard, an assessment of the risks assumed by the constructability and function of the design feature without the benefit of site-specific subsurface information should be conducted with respect to the potential for cost overruns during construction and to potential for long term maintenance or increased lifecycle costs. The cost of an over conservative design resulting from a hedge against unknown subsurface conditions is another aspect of risk that should also be evaluated. This is where a design is forced to be based on the worst possible condition known to be present or perceived at a site in order to prevent failure because the lack of information precludes the assessment of other alternatives. Generally, an evaluation of the potential risks at a project site occurs as exploration progresses and the variability of the subsurface is discovered.

3.3.1.3 Structure Sensitivity

The sensitivity of a structure or other facility in terms of performance to subsurface variability also influences the scale of the subsurface investigation. Consider the following in relation to structure sensitivity:

- Where settlement is concerned, structures are much more sensitive whereas embankments overall are able to tolerate more post-construction deflection not withstanding those sections adjacent to bridges.

- Existing structures adjacent to transportation projects also increase the sensitivity of projects in the built-up or urban environment. Where construction is to occur adjacent to existing structures or private buildings, the tolerance for settlement or deflection and even vibration is essentially eliminated, and correspondingly, the need for subsurface information increases.

- Such sensitivity can also extend to environmental, cultural, and archaeological sites where great efforts will be made to mitigate impacts during construction. For these circumstances, significant efforts in pre through post-construction monitoring are often required with instrumentation installed far in advance of contract letting.

- Certain types of construction may also be more sensitive to unanticipated subsurface conditions such as drilled shaft installation where relatively small changes can result in a sizeable cost increase.
Despite the best efforts and most detailed subsurface investigations, every significant subsurface condition may not be discovered or fully examined. The objective here is to reduce the risks accepted to the barest minimum, and to have some understanding of the risks that will remain.

3.3.1.4 Subsurface Investigation Strategy

An important strategy when conducting the subsurface investigation is to complete the most important explorations first with the idea that the project schedule may change, funding may be terminated, or some other decisions made that preclude the completion of all the planned borings. From this standpoint, the important borings are those that:

1. provide information about geologic hazards affecting the project or that require monitoring for mitigation design,
2. provide the information that the engineer needs to design the most critical structures, and
3. again, those locations that provide the most amount of information for the lowest expenditure.

This approach to the subsurface investigation allows design to proceed in the event of the inevitable project schedule or other priority shifts that may have a more urgent need for geologic or geotechnical resources. It is quite common for a planned exploration to be interrupted by the needs of emergency repair work or other critical-path project, and having these explorations complete first allows engineers to continue work on a project rather than having to wait for the emergency to pass before getting the information they need to continue so that the interrupted project doesn’t become an emergency itself.

Note:

We recommend referring to Section 7.4.1 AASHTO which provides additional items to consider in determining the layout of a project subsurface investigation in addition to prioritization of the explorations. This bulleted list describes key issues in determining importance and priority of explorations from locations to structures that they are intended for as well as the use of less or even more expensive methods for investigation that may be required.

3.3.1.5 Schedule of Subsurface Investigations

Subsurface investigations are ideally completed as early in the project as possible to allow sufficient time for geotechnical design, quantity estimation, and consideration of alternatives. Clearly, many of the project features must already be known to some degree before the Exploration Plan can be formulated. Right-of-way needs must be established to determine cut and fill slope angles and heights or the need for retaining structures. Even more detailed plans are needed to begin bridge foundation investigations. Typically, the bridge type, size, and location (commonly referred to as “TS&L”) must be known in order to obtain ground-truth information at the precise bent locations.

Completion of Exploration Plan

Because of these informational prerequisites, the Exploration Plan is usually completed soon after initiation of the structure TS&L phase with a goal for completion set at the 10% of TS&L completion with respect to its timeline. The target for completion of preliminary geotechnical recommendations is set at 2/3 TS&L.

In order to meet this date, there will be less than 50% of the TS&L timeline to complete the subsurface investigation and provide the needed information to the geotechnical designer charged with making the preliminary recommendations.
Subsurface investigation performed during preliminary phases may be called for at any time prior to Phase 2, particularly during the EIS phase depending on the size of the project or any other special requirements. These investigations are intended to develop project geotechnical constraints and/or to provide general information to assist in alternative route selection, and to address particular requirements of the EIS rather than to gain site-specific geotechnical design parameters. Preliminary subsurface investigation typically takes place on an existing state right-of-way readily accessible areas so there should not be additional time and money spent in acquiring permits of entry, building access roads and reclaiming sites.

Instrument Monitoring Periods

An additional aspect of the subsurface investigation schedule that also needs to be determined is the requirement for instrument monitoring periods. These are particularly important as they commonly extend before and beyond typical project timelines.

- **Landslides:** Projects that involve landslide repair or evaluation are the usual reasons for broadening timelines as it is critical to monitor landslide movements over periods of time that include at least one wet season (usually November through April) to assess the nature of the slide evaluate the relationships between precipitation, groundwater, and slide movement, and determine the correct slide geometry for stability analysis.

- **Groundwater:** It is also important to monitor groundwater for other construction applications throughout seasonal fluctuations to help determine actual construction-time conditions. Grading operations or excavations that would be made “in-the-dry” during certain times of the year may occur below the groundwater surface during other months. Every effort must be made to collect this information regardless of the time of year that exploration is conducted.

- **Post-construction monitoring:** Where post-construction monitoring is necessary, it should also be identified as early in the Exploration Plan development as possible. Critical structures in addition to landslides may require such instrumentation for quality assurance in addition to providing an assessment of long-term performance.

3.3.1.6 Exploration Sites

One of the primary factors affecting the schedule of the subsurface investigation program is providing access to drill sites. This includes acquiring the necessary permits as well as the actual physical occupation of the drill site.

Note:

Preliminary borehole location should have taken place during the initial site reconnaissance and major requirements with respect to accessibility should have been identified at that time. Since access to certain drill sites requires a significant investment of time, it is necessary to start acquiring permits of entry, environmental clearances, and engaging contractors to build access roads or bring additional resources to move the drilling equipment.

The geotechnical designer should clearly indicate the necessary borehole location tolerances to the field crews to assist in determining site access. When situating a borehole, consider the following:

- For some sites, a few extra feet of tolerance available will allow a borehole to be accessed with standard equipment or with minimal disturbance while at others, considerably greater efforts will be necessary to place the borehole at the precise location.

- Where the location of the exploration is crucial, it may be reasonable to mobilize specialty drilling equipment.
• Several factors contribute to the amount of tolerance allowed for an exploration. Among these are the phase of the investigation for which the explorations are performed, in this case, the final design explorations would require the more precise location.

• The types of structure, expected subsurface conditions, and surrounding facilities also have more exacting standards for borehole placement.

• A spread footing on rock, or a tieback wall adjacent to and supporting an existing structure are examples of cases where relatively minor changes in the subsurface conditions have very serious consequences during construction and would therefore warrant the extra expenditure to precisely locate the explorations. In this case, the expenditure for mobilizing special equipment would be far exceeded by orders of magnitude from ensuing claims or even, litigation.

3.3.1.7 Right-of-Way and Permits of Entry

Determining the exact boundaries of the State’s right-of-way during exploration planning is essential since this demarcation is very commonly not correlative to the highway centerline nor does it fall at a constant length perpendicular to it. Current right-of-way maps should be consulted to assure the correct property ownership at the exploration site or for any land that must be traversed by exploration equipment and personnel.

Permits of entry (also known as “Right-of-Entry Permits”) are required for any site exploration outside of the highway right-of-way whether the site is on private property or on public lands outside the jurisdiction of ODOT. For simple cases, these permits can be obtained by the geotechnical designer in charge of the exploration or other staff. For most circumstances however; these permits should be obtained by the Region’s Right-of-Way section. In either case, the region Right-of-Way section should be consulted prior to any entry onto private property. A sample Permit of Entry Form is included in Appendix 3-A.

Each permit of entry form should be accompanied by a site map showing the precise location of the exploration with respect to property lines and any structures or features on the private property.

Considerable delay in the exploration timeline can stem from the permit of entry process. In many cases, property owners are unaware of upcoming transportation projects until a geologist or geotechnical engineer asks them for a permit-of-entry for exploration. Even if unopposed or unaffected by the project, the owner may be reluctant to sign a permit of entry for a variety of reasons.

Often, further explanation of the activity and its purpose will be all that is necessary, or just allowing extra time for consideration is all that is required, but will affect the exploration schedule nevertheless.

How to Handle Problems Obtaining Access to Property for Field Investigation

In some cases, landowners are particularly slow in granting access to their property for whatever reason and may even respond to a request for a permit of entry with a letter from their legal council. In these instances, the Region right-of-way office should be contacted immediately to take a lead role in negotiations to resolve the issue. Although the Agency has the statutory authority to access any real property for the purpose of survey or exploration, it is an exceedingly rare case for ODOT to exercise this authority for subsurface investigation. The cause for performing a subsurface investigation on such a property must be well-founded and without feasible alternatives.
Note:
When a property owner refuses permission to enter their property, then all further communication and resolution becomes the responsibility of the Right-of-Way Section and the project management. Under no circumstances should field personnel mention or discuss the State’s statutory authority to enter upon their property to complete the work, nor should they engage in any bargaining or make agreements other than those stated on the permit of entry form in exchange for access to their properties.

Obtaining Right-of-Way from other Real Property-owing Entities

Other real property-owning entities will take more time in granting a permit of entry. Corporations, governmental agencies, mutually-owned properties, and railroads all have different procedures and requirements for granting access. Corporations may sign permits of entry only from their main offices, governmental agencies may have lengthy policies and procedures for granting permissions, and mutually-owned properties may have numerous non-resident owners that must all be contacted for their consent.

Railway Right-of-Way

Getting permission to access railroad right-of-way is a special case and can be a particularly time-consuming undertaking. For local operators and short lines, getting access may be relatively straightforward. Some larger carriers have a lengthy and rather Byzantine process for handling permit of entry requests that can severely affect a project timeline. If exploration or access is needed on railroad right-of-way, the project timeline should be adjusted accordingly and alternatives sought wherever possible. Permit of entry requests for railroad right-of-way should be forwarded through the headquarters Right-of-Way section.

In the event that the state-owned railroad right-of-way must be accessed, contact ODOT’s Rail Section to obtain that permit.

Limiting Site Impact

When performing subsurface investigation on private property, all care must be taken to avoid and mitigate the site impact. Access to such sites should be planned with the smallest possible impact. Although some exploration sites will be completely removed during construction, there may be considerable time between then and the time of exploration. The responsibility for complete restoration of exploration sites is placed on ODOT by the same statute that provides legal access to those sites.

3.3.1.8 Utility Location/Notification

Underground and overhead utilities in the project area must be identified and approximately located early in the Exploration Plan development. The presence of utilities may dictate the location of, or access to exploration points.

Warning:
Encountering underground utilities during site investigations can be detrimental to the exploration schedule and budget. Digging or drilling into underground utilities or contacting overhead power lines with drill rig masts or backhoe arms can be lethal. For these reasons, the exact location of all utilities must be determined before any equipment is mobilized to the project site.

Utility Notification Center
In Oregon, the law requires that the **Utility Notification Center** is contacted no less than 48 business hours prior to any ground disturbing operations. This includes all test pit excavation, drilling, and even hand-augering or digging.

Note:
The Utility Notification Center (or “One-Call” Center) can be reached at 1-800-332-2344.

The Utility Notification Center contacts all of the utility services with facilities in the location(s) provided to them based on their records. The individual utilities then dispatch their personnel or contractors to the site to locate and mark the positions of their facilities according to the instructions provided. The following occurs in relation to utility marking:

- The utilities are also required by law to locate their facilities within 48 business hours. If the utility operator does not have facilities near the proposed location site, he or she will mark it as such to indicate that it is safe to proceed. Otherwise, they will mark the approximate location of their facility in the requested vicinity.
- If the utility is close to the proposed exploration, prudence would dictate that the exploration be moved slightly to allow for errors in the utility location, and to further prevent the accidental contact with the utility.
- If the utility has not marked the requested area in the required time frame, they should be contacted prior to commencement of exploration to confirm that the utilities have been contacted, and that they do not have facilities in that area.

The utility operators are often hard-pressed to comply with the 48-hour requirement due to the sheer volume of utility locations – particularly during the summer months when numerous contractors are requesting them. Additional time may be required, so utility location with respect to projected exploration starting times should be planned accordingly. It is also important to look for any other utilities that might be operating in the area in case they are not in the records of the Utility Notification Center. Indications of other utilities are marked riser boxes, manholes, valves, and obvious illuminated structures such as street lighting and advertising. It is the responsibility of the project geologist to notify any other utilities operating in the project area.

Procedures to Perform Prior to calling the One-Call Center

The procedures for utility notification and location are relatively simple, but minor mistakes or overlooked information can result in unnecessary delay and risk to the utilities and the exploration personnel. The following steps should be completed and information gathered prior to calling the One-Call Center:

All proposed exploration sites must be located and clearly marked in the field with a survey lath, painted target on the ground surface, or both. By convention, the survey lath and target should be painted white. Efforts should also be made to make the location as visible as possible for the utility locators such as using additional directional markers and survey flagging.

- Each exploration site should be numbered and labeled as either “proposed test boring” or “proposed test pit”.
- The nearest physical address or milepost, and the closest cross-street should be recorded.
- The Township, Range, and quarter Section should also be determined.

When contacting the One-Call Center, the following information will be asked by their operator:

- The caller’s identification number (one will be assigned if not already registered)
• For whom the work is being performed
• Who will be doing the work
• Type of work
• Alternate contact
• Location of site (number of exploration points, county, nearest city, address, cross street, township range, section)
• Marking instructions (typically a 25’ to 50’ radius from each stake or target)
• Presence of any overhead utilities

The operator determines which utilities are known to have facilities in that area and provide the list verbally along with the ticket number which will be used to identify that particular work order. The operator provides the date and time at which the work should be able to proceed. Once this call is complete, the operator will then notify those utilities that will then dispatch their locators. ODOT geotechnical designers use Utility Notification Worksheet, Appendix 3-B, to document utility location for future reference while on site.

3.3.1.9 Methods for Site Access

Exploration equipment selected for the subsurface investigation should be matched to the site conditions. Truck-mounted drills are the most commonly available and are capable of accessing most sites with or without additional work and equipment. However, for many sites, access to boring locations can be difficult and even very complex in some cases. Often, the cost for mobilizing special equipment to a project site is more than compensated for in reduced site impact, reclamation effort, time and materials costs, and the additional personnel and equipment that might be needed. Frequently, the method of site access is selected based on one or a combination of desired outcomes whether time and cost, minimizing impact, equipment availability, or equipment capability.

Truck-Mounted Drill Rigs

Truck-mounted drills that are road-legal generally have limited off-road capability even when equipped with 4-wheel or all-wheel drive due to their size and weight. These types of equipment are best suited to work on paved or surfaced areas although they are capable of reaching many off-road locations “in the dry”. Because of their axle loading, they can rapidly become mired in wet or soft soils.

In order to use a truck-mounted drill in difficult conditions, access roads may need to be built using one or more additional pieces of equipment. In steep terrain, access roads may require substantial cuts and fills, and where soft ground is encountered, sizeable amounts of rock and geotextile will be needed to surface the road. Special mats or even plywood may be used to distribute the trucks weight over soft ground when accessing a boring location. In any case, such work can be expensive, time-consuming, laborious, and high-impact requiring significant reclamation work after exploration.

Truck-Mounted drills that are off-road capable may require lower-standard access roads, but still need these roads. If a significant amount of winching or vehicle towing is necessary, an alternative method of site access should be strongly considered, if only for safety reasons. The advantage of truck-mounted drill rigs is that they are usually the best-equipped and highest-powered pieces of equipment available, so if a particular type of drilling or deep hole is required, these may be the only option. For accessible sites, truck-mounted drills are usually the cheapest and fastest way to accomplish explorations since they can drive over a site, set up, complete the boring, and move on to the next location with relative ease and with fewer support vehicles.
Track or ATV-Mounted Drill Rigs

Many exploration drill manufacturer’s product lines now include drill rigs mounted on a variety of track and rubber-tire ATV platforms with some of the same features and capabilities as their truck-mounted counterparts. In some cases, the drilling equipment is the same, and only the platform varies:

- **Track-mounted drill rigs:** Track-mounted drill rigs offer a much greater off-road capability and ability to access sites in rough terrain and soft ground. Although the track-mounted drill can reach difficult locations, some road-building or at least clearing of trees and vegetation may be required, although to a much lesser degree, than their truck-mounted counterparts. A level pad upon which to set the drill may also need to be constructed. One of the drawbacks of track-mounted drills is that they require slightly more time for set up and moving between longer distances since they must be hauled to project sites on a flatbed truck or trailer. The presence of the trailer or large truck for hauling the drill may also prove to be another encumbrance when working in tight locations or those sites with limited parking or space for maneuvering a long truck and trailer combination. The types of tracks must also be appropriate for the site.

 Note:

 Older-style steel caterpillar tracks are ideal for traversing steep slopes with a soil cover, but will be harmful to pavements or landscaped areas. Newer developments with rubber tracks offer better traction on bare rock surfaces, and are less harmful to pavements and landscaping but should still be used with caution as their treads can still damage or scar most surfaces.

- **ATV Mounts:** Typical ATV-mounts consist of “balloon” or other oversized rubber tires for use in soft ground or swampy areas. The advantage that such vehicles have over tracks is the lighter load per unit area and correspondingly reduced impact to sensitive areas such as wetlands, landscaping, private properties, etc. Because of their distributed load, these vehicles are more suited to soft or uneven ground applications rather than for sites where traction on steep slopes is most needed. Several manufacturers now produce ATV platforms with tractor-style tires that offer many of the advantages of tracked and “balloon” tires with respect to traction, impact, and load distribution.

Difficult Site Access

A variety of site conditions and subsurface information requirements create substantial difficulties in reaching exploration sites whether in remote, environmentally sensitive areas, or restricted space in the built-up environment. Such obstacles can range from high-angle slopes and physical barriers to restricted work areas such as confined spaces (as defined by OSHA), limited work space due to objects or environmentally sensitive areas, and over-water work. Diverse methods are available to assist with difficult site access as well as drilling contractors that specialize in this type of work.

Methods and equipment for difficult site access are as varied as the sites themselves. The common factor that limits what methods can be used for certain applications is the weight of the equipment with the volume of the machinery also being a limitation.

- **Winching or dragging:** Much of this work in the past has been performed by skid or trailer-mounted equipment with some man-portable also employed in some areas. This equipment has been winched, crane-lifted, or dragged into place by other tractors. With the advent of track and ATV-mounted drills, winching and skidding drilling equipment into place is no longer necessary or recommended due to the amount of ground disturbance involved.
• **Cranes:** Cranes are often employed to lift equipment into tight work areas although the weight of many of these drill rigs necessitated very large pieces of equipment to move them and had their own space issues.

• **Specialized equipment:** Until recently, most of the skid or trailer-mounted and man-portable drill rigs had restricted power and capabilities. However, drilling technology has advanced to the point where smaller and lighter equipment is capable of performing heavier drilling tasks. Specialized difficult-access drilling contractors generally use their own customized equipment that comes with a specific platform, or breaks down into lighter compartmentalized sections that are reassembled at the boring location. Much of this specialized equipment is light enough to be transported while slung beneath a helicopter.

Most modern drilling equipment not mounted on a truck chassis, with the exception of some man-portable equipment, is capable of completing almost all geotechnical exploration tasks in the same amount of time as their road-legal counterparts. However, these drills will always be restricted by allowable axle loads during transport, and so they will always have a disadvantage with respect to their overall horsepower versus a truck-mounted rig that does not require a truck and trailer combination for roadway transport. This disadvantage is typically only manifest in very deep and/or large-diameter boreholes.

Barge/Over-Water Drilling

Foundation investigation for bridges commonly requires in-stream access to drill sites. To achieve this, barges or other platforms must be used to set the equipment over the foundation location. Over-water work will add extra details to a site investigation, and depending on the location, this can add extensive logistical complexity to a project.

• **Permitting:** Additional permits will be needed to conduct the over-water work from the US Army Corp of Engineers and/or the U.S. Coast Guard, and from the port authority or harbor master with jurisdiction over the waters in which the investigation is being conducted. An additional staging and launch areas must be identified where equipment can be loaded onto the barge, and where the crew can access the work site for daily operations. The appropriate equipment must also be selected for the site with respect to the currents, depths, river traffic, obstructions, and other details.

• **Launch site:** The site for initially loading and launching the drill barge must be of sufficient size for the type of equipment being used. The launching ramp should have enough grade to provide enough draft for the barge. The facility will also need enough room to either drive or lift the drilling equipment onto the barge and to safely load and unload all other ancillary equipment and supplies. Scheduling the facility for loading and unloading may also be important at different times of the year. Some ports may only be available at certain times due to their ongoing cargo loading operations and public or commercial fishing ramps may be crowded during those seasons. A more proximate and smaller location may be available for launching a skiff or other small craft to support the daily drilling operations and permit crew changes between shifts.

• **Drilling barge:** The barge and any other vessels used for the over-water drilling operations must also be selected and rigged for the conditions.

 o The drilling barge itself must be of sufficient size not only to support the weight of the drill and other equipment, but must also have enough deck space for whatever sampling and testing operations that will also be carried out.
The vessel used to transport the drilling barge should also be capable of moving the barge in all conditions of weather and current.

For work in very slow currents or standing bodies of water, the drill barge may be fixed in place by spud anchors or by lashing to a fixed object such as a driven pile or pier. Where stronger currents occur, whether stream or tidal, a larger vessel may be required to transport and anchor the drill barge during operations. Additional anchoring will be needed in such conditions.

Where water levels will fluctuate quickly during the conduct of drilling such as in tidal zones and downstream of large dams subject to rapid discharge, allowances must be made for the drill barge to move accordingly with respect to elevation. These operations will usually require the drill barge to use free-moving spud anchors that are also fixed to a more securely anchored vessel.

The access vessel or skiff must also be capable of operations in all conditions at the site.

Provision must be made for keeping track of elevation changes during tidal or current changes as this will profoundly affect the drilling operations.

Note:
As a condition of the Corps of Engineers and/or the Coast Guard permit, a licensed Marine Surveyor must be engaged to examine the equipment and the site conditions. This professional will then make recommendations concerning the equipment, personnel, and safe conduct of operations. Whether or not a Marine Surveyor is required, their inclusion for over-water work planning is highly recommended for the particular skills and efficiencies that they bring to this rather hazardous aspect of subsurface investigation.

3.4 Exploration Management and Oversight

The daily field exploration activities on a project should be based primarily on the execution of the Exploration Plan. The Exploration Plan provides a framework for scheduling and adjusting field operations as needed. It will necessarily allow for enough flexibility to modify the subsurface investigation program as information comes in from the field.

- The Project Geologist should maintain a base-level subsurface model from the subsurface information as it is received in order to make the needed modifications.
- The Field Geologist/Drill Inspector will need to provide regular updates on the field activities and information gathered so that changes to the schedule and routine can be made expeditiously. With the advent of cellular telephones and increasing areas of coverage, field crews should only be a few minutes away from contact with the senior geotechnical designers to inform them of unanticipated field conditions and in turn, receive direction on how to proceed with the modifications.
Because of the costs of subsurface exploration and the rapid use of the data, it is imperative that the subsurface investigation is directly supervised by qualified and experienced personnel. All on-site personnel including drillers, field geologists/engineers, and testing specialists should be instructed and familiarized with the project objectives and their role in achieving those objectives. Special geotechnical or other problems that may be anticipated during exploration including contingencies for addressing them should also be conveyed. All field personnel should be instructed in their role concerning project requirements for schedules, environmental protection, and especially, site safety and health procedures. Field personnel should communicate frequently with project supervisors or geotechnical designers.

Regular transmission of field data such as boring logs, test data, field conditions, and daily driller’s reports will streamline and economize the site exploration.

Note:
Any unforeseen site changes, complications, and geologic or geotechnical problems revealed during the investigation that will affect the project scope, schedule or budget should be communicated to the Project Leader without delay. The geotechnical designer charged with the exploration program is responsible for immediately and succinctly informing the Project Leader of the nature of the problem, the expected remediation, and the anticipated impact to the project. The geotechnical designer should then be prepared to offer alternatives and their respective outcomes for the resolution of the problem.

3.5 Subsurface Exploration Requirements

3.5.1 General

The 1988 *AASHTO Manual on Subsurface Investigations* is the basis for subsurface investigations conducted by ODOT. This manual provides guidance on the minimum amount of investigation for the various structures and geotechnical features constructed for transportation projects. The manual states however, in numerous places, that there can never be a set of specifications and guidelines that will determine the amount of exploration that must take place for every project.

Note:
The number of borings, their distribution, sampling interval, and depths of penetration will always be determined by the underlying geology and the size and complexity of the project.

Planning for the subsurface exploration will be based on past knowledge of the site and on the published and unpublished literature that was consulted during the project reconnaissance phase. However, even the most thoroughly studied sites will still reveal previously unknown conditions, and each exploration provides new information about it. In a sense, the site conditions are truly unknown until the exploration begins, and knowledge of it increases as the investigation proceeds so adjustments must be made in the field to economize the investigation while assuring a full investigation of the important geotechnical design elements.

3.5.2 Exploration Spacing and Layout

The layout of explorations on a project is determined by many variables. As previously discussed, the assumed complexity of the underlying geology and the type of facility typically dictate the exploration spacing. Consider the following:

- Where conditions are uniform and a considerable amount of previous, reliable work has been accomplished in a project area, exploration spacing may be increased.
• If the geologic conditions are complex and change significantly over short distances, then explorations will necessarily be conducted on a shorter interval.
• Facilities that will impart a heavy load or are more sensitive to settlement or other movements will also require a more detailed exploration.

The 1988 AASHTO Manual on Subsurface Investigations provides a range of exploration spacing for the various structures and features that are typically the subject of subsurface exploration.

These guidelines are modified for use within the State of Oregon where subsurface conditions at the vast majority of sites warrant much tighter exploration spacing due to the highly changeable nature of the state’s geology.

3.5.2.1 Spacing and Layout Strategies

Because transportation projects are typically linear, explorations tend to be channeled into a relatively straight and narrow corridor, and are often laid out only along the centerline of many features. This should be avoided as it most often results in poor development of the subsurface model. To avoid this, boreholes should be spread out to either side of the centerline to help determine the strike and dip of the underlying strata, the nature of the contacts (i.e. conformal or non-conformal), and other changes or irregularities across the subsurface profile. Exploration to reveal or characterize geologic hazards such as faults and landslides that affect the proposed project may necessarily be conducted outside of the proposed alignment(s). Material source or disposal site investigations normally take place far away from the project alignment and will have different exploration spacing criteria.

Take special care when conducting explorations in particular alignments and foundation locations. Certain geologic conditions, such as openwork cobbles and boulders, heaving sands, or highly fractured rock may bind exploration tools severely enough that the drill crew is unable to retrieve them from the hole where they subsequently form an obstruction during drilled shafts construction. In areas that experience high artesian pressures, improperly sealed boreholes may form an undesirable conduit for groundwater to enter footing excavations, cut slopes, or cofferdams.

Note:
All borings should be abandoned in accordance to Oregon Water Resources Department Regulations to prevent vertical water migration. Provision should also be made to extract bound drilling tools from the boring with special equipment.

The boring layout guidelines presented here are of a general nature and are intended for use in the preliminary location of site exploration points. The final exploration locations should be developed as the site investigation proceeds. Information must be incorporated into the Exploration Plan as it becomes available to assure the most complete, cost-effective outcome.

3.5.2.2 Embankment and Cut Slope Explorations

The maximum exploration spacing for embankment fills over 10 feet (3.05m) in height is 200 feet (61m). Where changeable conditions or problem areas such as those with soft and/or compressible materials are present, then the exploration spacing should be decreased to 100 feet (30m). In many cases it will be necessary to conduct additional exploration using cone penetrometers, hand augers, or backhoe test pits to further define the properties and boundaries of problem foundation conditions. At least one boring should be located at the point of maximum fill height.

For cut slopes 10 feet (3m) and higher, the maximum boring spacing is 100 feet (30m). Borings should be staggered to each side of the cut line to help determine the strike and dip of the units in the cut slope, and one of the borings should be placed at the maximum depth of the cut. For “through-
cuts” where a cut slope will be located on each side of the roadway, boring spacing may be increased to 200 feet (61m) for each cut slope, but the borings must be staggered so that the total 100 foot (30) spacing continues along the length of the cut.

Additional borings will be required in areas of faulted, sheared, tightly folded, highly weathered, or other potentially detrimental conditions exist.

Hand augers, direct push (i.e., GeoProbe), air-track drills, test pits, geophysical surveys and other alternative exploration techniques can be used to supplement the test borings in proposed cut slopes to determine the elevations of variable bedrock surfaces and depths to bedrock. Air-track drills may also be used to penetrate the bedrock surface to determine and further resolve the location(s) of weathered rock zones and other features within the proposed cut slope.

3.5.2.3 Subgrade Borings

Where relatively unvarying subsurface conditions are predicted and no other foundations or earthworks are expected, the maximum subgrade boring spacing should be 200 feet (61m). In areas where highly variably geology is predicted, the boring spacing should be decreased to 100 feet (30m) and further decreased to 50 feet (15m) in highly erratic conditions. Where critical subgrade conditions exist, the boring spacing may be decreased to 25 feet (8m).

Alternate exploration methods may be used in variable geologic conditions to supplement the borings and further resolve the characteristics and distribution of problematic materials and conditions. Such methods may include hand augers, push-probes, geoprobes, and test pits.

Test pits

Test pits on short intervals (25 feet/8meters) are not recommended due to the potential introduction of soft areas in the subgrade where the pits were located. If necessary, this problem may be alleviated by the use of compacted granular backfill materials to abandon the test pits after exploration. The test pit spoils would then need to be disposed of off-site. Several geophysical survey methods may also be appropriate for subgrade investigations to supplement the test boring information. Seismic reflection and electro-magnetic methods are commonly the best-suited for determining material property boundaries and saturated or water-bearing zones.

3.5.2.4 Tunnel and Trenchless Pipe Installation Borings

Tunnel construction for highway projects in Oregon is rare; however, trenchless pipe installation is common. Tunnels and trenchless pipe installations share many common construction and design issues and are thus treated in a similar manner with respect to subsurface characterization and exploration. Borehole spacing requirements for tunneling and trenchless pipe installation are highly dependent on the site geologic conditions and topography. The soil, rock, or mixed-face conditions predicted will determine the borehole spacing as well as the type of exploration and testing conducted. The depth of the tunnel/trenchless pipe alignment will greatly influence the total amount of drilling required.

The actual borehole spacing selected for tunnel or trenchless pipe installation should be determined by the actual site conditions. These conditions should be identified in advance by preliminary site review, and in the case of larger projects, preliminary site investigations conducted during the Phase I field survey. The recommended general borehole spacing for selected conditions is shown in the following table:
Table 3-1. Tunneling and Trenchless Pipe Installation Recommendations

<table>
<thead>
<tr>
<th>Recommendations</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft Ground Tunneling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse Conditions</td>
<td>50-100 feet</td>
<td>200-300 feet</td>
</tr>
<tr>
<td></td>
<td>(15-30m)</td>
<td>(61-91m)</td>
</tr>
<tr>
<td>Favorable Conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed-Face Tunneling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse Conditions</td>
<td>25-50 feet</td>
<td>50-75 feet</td>
</tr>
<tr>
<td></td>
<td>(8-15m)</td>
<td>(15-23m)</td>
</tr>
<tr>
<td>Favorable Conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard Rock Tunneling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse Conditions</td>
<td>50-100 feet</td>
<td>200-500 feet</td>
</tr>
<tr>
<td></td>
<td>(15-30m)</td>
<td>(61-152m)</td>
</tr>
<tr>
<td>Favorable Conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trenchless Pipe Installation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse Conditions</td>
<td>15-30 feet</td>
<td>30-50 feet</td>
</tr>
<tr>
<td></td>
<td>(5-9m)</td>
<td>(9-15m)</td>
</tr>
<tr>
<td>Favorable Conditions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to the geologic conditions, other site constraints will equally determine the number and spacing of borings for tunnels and trenchless pipe installations. The location of existing structures with respect to the proposed depths and alignments will necessitate a more detailed investigation at those locations.

Geophysical surveys may also be used in conjunction with the borings to further define the geologic conditions and to help determine the final boring layouts as defined below.

- Wherever possible, horizontal borings should be taken along the proposed tunnel alignment. Current technology and contractor capabilities allow longer and more accurate horizontal borings that provide essential information regarding the expected tunnel face conditions.
- Trenchless pipe installations through existing embankments can and should be fully penetrated by horizontal borings to determine the conditions along the full length of the trenchless installation. Because the horizontal borings do not reveal the conditions above and below the tunnel/trenchless pipe installation horizons, vertical borings are still required.

Clearly, tunnels with horizontal and vertical curves will be difficult to investigate with horizontal borings, but as technology advances, methods may soon be available to steer borings along these alignments.

3.5.2.5 Structure-Specific Borings

The actual number and spacing for borings for specific structures varies greatly depending on the predicted geologic conditions and the complexity of the site. In this regard, nearby features such as streams and environmentally sensitive areas, geologic hazards, and nearby structures will further prescribe the actual amount of exploration required.

Bridges
For all bridges on ODOT projects, at least one boring will be placed at each bent location. Borings should be placed at opposite sides of adjacent bent locations when practical as defined below.

- For bridges that are 100 feet (30m) wide and larger, at least two borings will be placed at each bent.
- When spread footings are proposed, two borings at opposing corners of the footing are advisable. Spread footings located on the banks of rivers and streams should be investigated with at least two borings – one on the down-slope and one on the upslope side of the proposed footing.
- If wingwalls greater than 20 feet long are to be constructed, then a boring should be placed at the end of each wingwall and at 50 foot (15m) intervals from the end of the wingwall to the bridge abutment.
- Trestle-type bridges (usually for detours) should also be investigated at every bent. Preferably, the borings should be staggered from opposite ends of adjacent bents.
- Where highly variable conditions are anticipated, then a boring should be advanced at both ends of each bent.
- For drilled shaft foundations, 1 boring should be placed at the location of each proposed shaft of 6 feet (1.8m) in diameter and larger. Federal Highway Publication FHWA-IF-99-025 should be consulted for exploration spacing at drilled shaft foundation locations using smaller diameter shafts.

Culverts

All proposed new and replacement culverts require some level of subsurface investigation as defined below:

- Typically, culverts with a diameter of 6 feet (1.8m) and larger are investigated with test borings while smaller culverts are investigated with hand-dug test pits or hand auger holes. However, judgments should be made regarding the actual site conditions and the facility in question to determine the number and spacing of borings.
- Complex geologic conditions merit a more intense investigation, while larger embankments, adjacent facilities, and proximate unstable slopes may result in a more detailed investigation for smaller-diameter culverts.
- At least two borings should be completed for each culvert up to 100 feet (30m) long.
- For culverts longer than 100 feet (30m), borings should have a maximum spacing of 50 feet (15m).
- In complex geologic conditions, boring spacing may be decreased to 20 feet (6m). Borings will typically be located along the axis of the proposed culvert.
- For culvert replacements, the borings should be located immediately outside or partially within the excavation limits of the original culvert installation with particular care to not locate a boring where it will penetrate the existing pipe.
- Borings will typically be located along the axis of any proposed culvert location.
• Box culverts 100 feet (30m) and longer require two borings at each end and at the prescribed interval between the ends. Refer to Section 3.5.3.4 Tunnel and Trenchless Pipe Installation Borings for exploration spacing on culverts installed using trenchless technology.

Retaining Walls

Retaining walls higher than 4 feet (1.2m) and any wall with a foreslope and/or backslope angle steeper than horizontal require a subsurface investigation. At least two borings are required for every retaining wall regardless of length with the exception of retaining walls less than 25 feet (8m) long. The maximum borehole spacing along any retaining wall is 100 feet (30m). The preponderance of retaining walls for ODOT projects will require closer spacing due to the typically variable conditions encountered. One boring is required at each end of the proposed wall. Where the proposed wall is longer than 100 feet (30m) long, and less than 200 feet (61m), the third boring may be placed at either the midpoint of the wall, or at the location of the maximum wall height. Embankments supported by retaining walls on each side should be investigated as two separate walls.

Borings are typically located on the wall alignment at the proposed location of the wall face however; they may be staggered to either side of the wall line but should remain within the wall footprint to evaluate the wall foundation conditions. Consider the following:

• For soil nail, tieback, and similarly reinforced walls, additional borings should be completed in the wall reinforcement zones.

• Borings should be located behind the wall in the predicted bond/anchorage zones for tieback walls, or horizontally 1 to 1.5 times the wall height back from the wall face.

• Borings for tiebacks/anchors should be interspersed with the borings along the wall face. Thus, a 200 foot (61m)-long wall would have (at a minimum) 5 borings – 3 along the wall centerline at the ends and the midpoint and 2 in the prescribed locations behind the wall at the 50 foot (15m) and 150 foot (46m) points along the wall centerline.

The preceding recommended borehole spacing should be halved for walls that will be constructed to retain landslides. Landslide retaining walls should have a minimum of 2 borings along the wall line regardless of length. The maximum borehole spacing along such walls is 50 feet (15m) with corresponding holes interspersed between located in the bond/anchorage zone. These boreholes are specifically for characterizing the subsurface conditions at the location of the proposed retaining wall, and are in addition to any borings advanced to characterize the landslide. Landslide investigation borings may suffice for the retaining wall investigation only where they fall within the prescribed locations.

Soundwalls, Traffic Structures and Buildings

Soundwalls and traffic structures, such as mast arm signal poles, strain poles, monotube cantilever sign supports, sign and VMS truss bridges, luminaire poles, high mast luminaire poles, and camera poles are common features on highway transportation projects. Buildings such as maintenance facilities, rest areas, pump stations, water tanks and other unique structures are also sometimes required for ODOT projects.
Standard drawings have been developed for soundwalls and most of the traffic structures and these standard drawings contain standard foundation designs for each of these structures. Every foundation design shown on a standard drawing is based on a certain set of foundation soil properties, groundwater conditions and other factors that are described on the drawings. These soil properties and conditions must be met in order to use the foundation design shown on the standard drawing.

Note:
The subsurface investigation for these structures (with standard foundation designs) should be sufficient to determine whether or not the subsurface and site conditions meet the requirements shown on the standard drawings. If the foundation conditions at the site are determined not to meet the subsurface and site conditions described on the standard drawings (e.g., “poor” soil conditions or steep slope), then the standard drawings cannot be used and a site specific foundation investigation and design is required.

For buildings and traffic structures without standard foundation designs, the foundation conditions must be investigated sufficiently to determine the soil properties and groundwater conditions required for a site specific foundation design.

All new soundwalls, traffic structures or buildings require some level of subsurface investigation. Considerable judgment is needed to determine which structures will need site-specific field investigations and the extent of those investigations. If the available geotechnical data and information gathered from the site reconnaissance and/or office review is not adequate to make an accurate determination of subsurface conditions, then site specific subsurface data should be obtained through a proper investigation. In these cases, explorations consisting of geotechnical borings, test pits and hand auger holes, or a combination, shall be performed to meet the investigation requirements. Most of these structures require site-specific soil and/or rock properties for their foundation design or to determine foundation embedment depths when using a standard drawing. Therefore, subsurface exploration should be anticipated for most soundwall, traffic structure, and building foundation designs.

The extent of the investigation will be largely dependent on the predicted site conditions and the type of structure. At unfavorable locations, drilling and sampling may need to be conducted more frequently while sites with favorable conditions may allow for less frequent and/or less expensive investigation methods such as hand augers holes and test pits.

As a minimum, develop the subsurface exploration and laboratory test program to obtain information to analyze foundation bearing capacity, lateral capacity, stability and settlement.

The following information is generally obtained:

- Geological formation(s)
- Location and thickness of soil and rock units
- Engineering properties of soil and rock units such as unit weight, shear strength and compressibility
- Groundwater conditions (seasonal variations and maximum level over the design life of the structure)
- Ground surface topography
- Local considerations, (e.g., slope instability potential, expansive or dispersive soil deposits, utilities or underground voids from solution weathering or mining activity)
Specific field investigation requirements for soundwalls, traffic structures and buildings are summarized in Table 3-2. Note that the term “borings” in the table refers to conventional geotechnical boreholes while the term “exploration points” may consist of any combination of borings, test pits, hand augers, probes or other subsurface exploration device as required to adequately determine foundation conditions.

Table 3-2. Specific field investigation requirements

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Field Investigation Requirements</th>
</tr>
</thead>
</table>
| Mast Arm Signal Poles, Strain Poles, Sign and VMS Truss Bridges, Monotube Cantilever Sign Supports, Luminaires, High Mast Luminaire Supports, and Camera poles. | • For mast arm signal pole or strain pole foundations within approximately 75 ft of each other or less, such as at small to moderate sized intersections, one geotechnical boring for the foundation group is adequate if conditions are relatively uniform. For more widely spaced foundation locations, or for more variable site conditions, one boring near each foundation should be obtained.
 • Investigate sign and VMS truss bridges with one boring at each footing location unless uniform subsurface conditions are sufficient to justify only a single boring. Where highly variable conditions occur or where the sign bridge footing is proposed on a slope, additional borings or exploration points may be necessary.
 • For single, isolated monotube cantilever signs; one geotechnical boring at each footing location.
 • Luminaires, High Mast Luminaire Supports and Camera Poles; one exploration point at each footing location.
 • The depth of the explorations should be equal to the maximum expected depth of the foundation plus 2 to 5 ft. |
| Sound Walls | For sound walls less than 100 ft in length, a geotechnical boring approximately midpoint along the alignment and should be completed on the alignment of the wall. For sound walls more than 100 ft in length at least 2 borings are required. Borings or exploration points should be spaced every 100 to 400 feet, depending on the uniformity of subsurface conditions. Where adverse conditions are encountered, the exploration spacing can be decreased to 50 feet. Locate at least one exploration point near the most critical location for stability. Exploration points should be completed as close to the alignment of the wall face as possible. For sound walls placed on slopes, an additional boring off the wall alignment to investigate overall stability of the wall-slope combination should be obtained. |
| Building Foundations | The wide variability of these projects often makes the approach to the investigation of their subsurface conditions a case-by-case endeavor. The following minimum guidelines for frequency of explorations should be used. More detailed guidance can be found in the International Building Code (IBC). Borings should be located to allow the site subsurface stratigraphy to be adequately defined beneath the structure. Additional explorations may be required depending on the variability in site conditions, building geometry and expected loading conditions. Water tanks constructed on slopes may require at least two borings to develop a geologic cross-section for stability analysis. |
Table 3-2 (Cont.)

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Field Investigation Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Building surface area (ft²)</td>
</tr>
<tr>
<td><200</td>
<td>1</td>
</tr>
<tr>
<td>200 - 1000</td>
<td>2</td>
</tr>
<tr>
<td>1000 - 3,000</td>
<td>3</td>
</tr>
<tr>
<td>>3,000</td>
<td>3 – 4</td>
</tr>
</tbody>
</table>

The depth of the borings will vary depending on the expected loads being applied to the foundation and/or site soil conditions. All borings should be extended to a depth below the bottom elevation of the building foundation a minimum of 2.5 times the width of the spread footing foundation or 1.5 times the length of a deep foundation (i.e., piles or shafts). Exploration depth should be great enough to fully penetrate soft highly compressible soils (e.g., peat, organic silt, soft fine grained soils) into competent material suitable for bearing capacity (e.g., stiff to hard cohesive soil, compact dense cohesionless soil or bedrock).

In addition to the exploration requirements in Table 3-2, **Specific field investigation requirements**, groundwater measurements, conducted in accordance with **Chapter 3**, should be obtained if groundwater is anticipated within the minimum required depths of the borings as described herein.

3.5.2.6 Critical-Area Investigations

In areas where critical geologic conditions or hazards such as highly irregular bedrock surfaces, extremely weathered or altered rock, compressible materials, and caverns or abandoned underground facilities are predicted from detailed background study or preliminary exploration, it may be necessary to further investigate the area with additional explorations. Such investigations normally involve drilling on a grid pattern over the area in question. An initial, wider grid pattern may be selected to locate the area of most concern with a closer grid pattern used later to further characterize the area of concern. Grid pattern investigations may consist of hand auger holes, direct push holes, or cone penetrometers in addition to the more conventional test borings. Geophysical surveys may also be used to establish or refine the boundaries of the grid pattern investigation.

3.5.2.7 Landslides

The number and layout of test borings for landslide investigation depends upon the size and nature of the landslide itself and on the results of detailed site mapping and initial subsurface models based on the mapping. Since information about the subsurface is unknown initially, landslide investigation largely becomes an iterative process as new data obtained provides information that is used to further develop enough knowledge of the landslide to begin stability analysis.

The approach to landslide investigation is very complex and involves numerous techniques and procedures, and is discussed in greater detail in **Chapter 13**. This chapter is intended to convey a general sense of the layout of the borings needed for a "typical" landslide investigation.
Enough borings must be made initially to fully develop at least one geologic cross-section through the axis of the slide. Consider the following:

- As a minimum, there should be borings near the top, middle, and bottom of a known or potential landslide area. Ideally, the borings would be placed in the toe or passive wedge area (if applicable), at the head or active slide zone, the area of transition between the active and passive zones, and in the areas behind the headscarp and in front of the toe outside of the slide zone.

- For longer slides, space additional borings in the active and/or passive slide zones on 50 foot (15m) intervals.

- Place additional borings on a 50 foot (15m) interval in a line perpendicular to the direction of slide movement at the deepest zone of slide movement.

For investigation of areas of potential slide movement, a grid pattern of explorations are usually selected for preliminary identification and delineation of the affected area. The grid spacing is dependent on several factors. Usually, the predicted size of the landslide, results of remote sensing, availability of previous data, and site access will primarily determine the spacing between borings. Where large areas would potentially be affected by landslide movement, a 200 foot (61m) square or staggered grid spacing is sufficient for preliminary identification.

Subsurface Investigations on Unstable Rock Slopes

Subsurface investigations for unstable rock slopes are necessary when a significant amount of rock excavation is needed to accommodate highway realignment or an increased fallout area.

- Typically, the amount of information available at a large, accessible rock exposure is sufficient for minor slope modification, and of generally greater value than core drilling with respect to information concerning rock conditions.

- However, when significant modification of the slope is considered for realignment and/or rockfall mitigation, subsurface investigation is frequently needed to determine the rock character within the proposed cut, overburden thicknesses, groundwater conditions, three-dimensional character of the units (if unknown), and other important design and construction information.

- Drilling is recommended to assure continuous subsurface conditions throughout the excavated rock material.

The skilled geologist’s interpretation of the outcrop generally provides enough information for rock slope design, but the changeable nature of the state’s geology, and the need to assure subsurface conditions to prevent construction delays and claims is usually reason enough to gain the additional assurance of further subsurface data. This is not to state that drilling for a rock cut slope modification is automatic. The geotechnical designer must determine the cost-benefit of additional subsurface investigation based on the local geology and the risks involved.
Note:

For the assessment of large block or wedge failures, subsurface investigation should proceed in a similar manner to the approach to landslide investigations as described above. Some of the borings, or additional borings may be needed at prescribed orientations other than vertical to assess the projected failure planes.

For projects where realignment or slope modification to increase the fallout area is needed the investigation should carry on according to the procedures for cut slope investigation described in Section 3.5.3.2 Embankment and Cut Slope Explorations.

3.5.3 Exploration Depths

Determining the required depths of subsurface explorations requires the consideration of many variables such as the size, type, and importance of the structure, and most of all, the underlying geology. Consider the following:

• The borings should penetrate any unsuitable or questionable materials and deep enough into strata of adequate bearing capacity where significant settlement or consolidation from the increased loads from the proposed structure is reduced to a negligible amount. The stress at depth added by the structure is usually taken from the appropriate tables and charts or determined using the Boussingesq or Westergaard solutions.

• All soft, unsuitable, or questionable strata should be fully penetrated by the borings even where they occur below an upper layer of high bearing capacity.

• Test borings should not be terminated in low-strength or questionable materials such as soft silt and clay, organic silt or peat, or any fill materials unless special circumstances arise while drilling.

3.5.3.1 Termination Depths

When competent bedrock is encountered, test borings may generally be terminated after penetrating 15 feet (4.5m) into it. Where very heavy loads are anticipated, test borings may be extended to a considerable depth into the bedrock depending on its characteristics and verification that it is underlain by materials of equal or greater strength. For most structures, it is advisable to extend at least one boring into the underlying bedrock even when the remaining borings are terminated in soils of adequate bearing capacity.

As with all other aspects of subsurface investigation, considerable professional judgment is needed to determine the final depths of planned explorations. Generally, previous subsurface information is needed to determine the approximate depth of the proposed borings on the Exploration Plan. Where this information is unavailable, general guidelines can be used to establish the preliminary exploration depths and quantities. These guidelines are outlined for specific geotechnical features in the following sections.

3.5.3.2 Embankment and Cut Slope Exploration Depths

For embankments of 10 feet (3m) or greater in height, the test borings should penetrate from 2 to 4 times the proposed fill height or more depending on the final width of the roadway and the actual materials encountered. If suitable foundation materials are encountered such as dense granular soils or bedrock, the depth may be decreased up to a minimum depth equaling the height of the embankment. Where confined aquifers with artesian pressures or liquefiable soils are present, the exploration depth should be extended to fully penetrate these units.
Cut slopes with a depth of 10 feet (3m) or more should be explored to a depth that is two times the height of the proposed cut. When bedrock is encountered in a cut slope boring, the boring should extend at least 15 feet below the finish grade of the cut. Cut slope borings should be extended if sheared surfaces or other evidence of landslide susceptibility are encountered that could affect the performance or constructability of the finished slope.

3.5.3.3 Subgrade Borings

Where minor amounts of earthwork (cut slopes less than 10 feet (3m) deep) for the alignment profile are expected, test borings and test pits should extend 15 feet (4.5m) below the proposed final grade elevation. Where bedrock or other hard materials are encountered, coring should be extended 15 feet (4.5m) into the hard stratum to evaluate their conditions. For fill areas less than 10 feet (3m) high, explorations should extend to 15 feet (4.5m) below the original ground surface unless questionable materials are encountered. If soft, organic or other deleterious materials are encountered in subgrade borings, the depth of exploration should be increased as necessary to fully evaluate those materials.

3.5.3.4 Tunnel and Trenchless Pipe Installation Borings

A “rule-of-thumb” for tunnel exploration is the amount of exploration drilling should be 1.5 times the length of the tunnel. This should be considered as a bare minimum for exploration cost estimating for tunnel/trenchless installation projects will shallow alignments in very favorable conditions, and does not include horizontal drilling along the tunnel/pipe profile. Clearly, the amount of drilling for any given length of tunnel/trenchless installation alignment is dependent on several factors that include, among others, the depth of the invert, diameter of the tunnel/pipe, geologic conditions, and contingencies. Typically, tunnel/trenchless installation borings should be extended at least 1.5 tunnel/pipe diameters below the proposed grade of the invert. It may be beneficial to further extend the borings to as much as 3 times the tunnel/pipe diameter as a contingency if the final tunnel alignment has not been determined. The depth of the borings should be increased further to evaluate any unforeseen or unfavorable geologic conditions encountered that may impact the tunnel or pipe design and construction. Wherever practical, horizontal borings should be taken along the tunnel profile because of the advantages of having a full-length representation of the actual tunnel/pipe horizon conditions.

3.5.3.5 Structure-Specific Borings

The guidelines for boring depths presented in Section 3.5.3 Exploration Depths stem from structure-specific boring guidelines developed by AASHTO and other agencies. Follow these guidelines:

- It is highly desirable for all structure-specific borings to penetrate at least 15 feet (4.5m) into bedrock.
- For drilled shaft installations, the test borings should be advanced 1.25 times the total projected shaft length beyond the predicted shaft base elevation.
- If the shaft base is to be founded in soil or rock with an RQD of 50% or less, then the test borings should be extended an additional depth below the proposed bottom of the shaft equal to the larger of 20 feet (6m) or 3 times the shaft base diameter. Shafts are most commonly designed to bear on competent bedrock, thus, where the RQD is greater than 50%, the test boring should also be advanced to the greater of 20 feet (6m) or 3 times the shaft base diameter below the estimated shaft base elevation.
Note:
The geotechnical designer must exercise judgment concerning the nature of the facility with respect to the total and economical amount of drilling needed for the specific structure. Borings for soundwalls, small traffic structures or culverts may not be required to obtain core samples in bedrock, but for bridge foundations, bedrock drilling would certainly be needed.

3.5.3.6 Critical-Area Investigations

In those areas where unfavorable or critical geologic conditions are expected to have an adverse effect on the project design and construction, the explorations should be extended to a depth where those conditions may be fully evaluated. All problematic strata and areas of concern should be fully penetrated by the borings. It is advisable to extend the borings beyond the depths that are strictly necessary rather than terminate them before the desired information is obtained. Borings should never be terminated in soft, organic, or any other deleterious materials that will adversely affect the project design, construction, or performance. Extra drilling in some borings is less expensive than drilling additional borings or even remobilizing equipment to the site to obtain sufficient data for design.

3.5.3.7 Landslides

Considerable flexibility must be built into the Exploration Plan for any landslide, and particularly with respect to the depth of the explorations. Follow these guidelines:

- Typically, the cross-section drawn along the centerline of the landslide is used to develop the preliminary exploration depths.
- Circular, elliptical, or composite curves drawn from the headscarp to the toe bulge are projected onto the cross-section to show the possible depths of slide movement. These curves are commonly exaggerated to conservatively estimate the slide depth.
- The preliminary boring depths should extend 20 feet (6m) or more below the projected slide plane to assure that the zone of movement is fully penetrated, and to secure instruments below the slide plane for the best results.
- Firm, resistant strata, bedrock projections and irregular surfaces will also affect the geometry of the slide plane, and subsequently, the final depths of individual borings.
- Landslide borings should always be extended to a depth that clearly identifies which materials are involved in the current slope movement, which underlying materials are presently stable, and the location of the slide surface(s). This is not only important to the development of a stability analysis, but will become important once again during construction when the precise locations of mitigation efforts will be determined. There is often a possibility that the observed landslide activity is an accelerated portion of a slower, deeper-moving landslide that may only be detected by instrumentation. For this reason, at least one boring should be extended far below the predicted slide surface to divulge such activity. Any Exploration Plan for landslide investigations should contain the flexibility to extend borings to considerable depth during the site exploration.
3.5.4 Sampling Requirements

Since the primary purpose of the subsurface exploration program is the collection of samples that are as closely representative of actual site conditions, the sampling requirements are typically the most stringent in the Exploration Plan. Particular care must be taken in their method of collection, measurement, handling, and preservation since field and laboratory testing results are so greatly dependent on the quality of the sampling. Sampling requirements are also subject to the same variables that affect exploration layout and depth.

- **Sampling interval:** Most Exploration Plans will have a set maximum sampling interval. For most ODOT projects, Standard Penetration Tests (SPTs) are taken, and samples retained, on 2.5-foot (0.76m) intervals in the first 20 feet (6m) of the boring, and on 5-foot (1.5m) intervals thereafter to the bottom of the hole or until rock coring begins. In addition to this minimum interval, samples should also be taken at each noted change in material or subsurface condition. Where thick, uniform strata exist, a wider sampling interval may be warranted however, this greatly depends on the extent of previous site knowledge and project requirements. Where complex conditions and/or numerous strata exist, the sampling interval may be increased to a shorter sampling interval.

- **Sample collection:** Samples should be collected from each identified stratum, preferably from more than one boring to fully characterize each unit. In addition, undisturbed samples should be obtained from all cohesive soil units encountered. It is frequently warranted to drill additional borings to obtain undisturbed samples in particular units that may have been missed by previous sampling intervals or to further characterize those units. Where a larger volume sample is needed, a variety of sampling methods and techniques can be utilized including oversized split-spoons, various coring methods, and Becker-hammer drills. Sampling techniques are discussed in the next section.

- **Continuous sampling:** Continuous sampling is beneficial in areas of changeable site conditions and underlying geology as well as critical zones for project design. The zones immediately below proposed foundation elevations should be sampled continuously in addition to the zones immediately above, through, and below projected landslide zones of movement. For tunnel/trenchless pipe installations, continuous sampling should be conducted for 1 tunnel diameter above and below the tunnel horizon as well as the tunnel horizon itself. Soil and rock coring is by its nature, a continuous sample, and is the most common method to obtain a continuous representation of the subsurface materials. However, continuous SPTs, Shelby Tubes, or a combination of these and other methods can be used.

- **Observation:** Careful observation and evaluation during drilling and logging of the recovered samples is essential to the entire exploration program. Much information can be recovered even when sample recovery itself is minimal.

3.5.5 Sampling Methods

Various sampling methods are described in this section. Many of the sampling methods are based on ASTM International standards located at www.astm.org (the “ASTM Site”).
3.5.5.1 Standard Penetration Testing

All Standard Penetration Tests must be performed according to ASTM D 1586-99. The Standard Penetration Test (SPT) is the most common method for field testing and sampling of soils. Some variations with respect to standard intervals and refusal criteria occur throughout the industry however the fundamental procedure still adheres to the ASTM standard. The SPT uses the following methods:

- This sampling method uses the standard configuration 2-inch (5cm) outside diameter split spoon sampler at the end of a solid string of drill rods. The split spoon is driven for a 1.5-foot (0.45m) interval using a 140 Lb (63.5 Kg) hammer dropped through a 30-inch (76cm) free fall.
- The number of hammer blows needed to advance the sampler for each 6-inch (15cm) interval is recorded on the boring log and sample container.
- The Standard Penetration Resistance or uncorrected “N”-value is the sum of the blows required for the last two 6-inch (15cm) drives. Refusal is defined as 50 blows in 6 inches (15cm) of penetration and recorded on the log as 50 blows and the distance driven in that number of blows.
- The hole is advanced and cleaned out between sampling intervals for at least the full depth of the previous sample.

This general procedure can be used with larger diameter samplers and heavier hammers for the purpose of obtaining additional sample volumes, but the blow counts do not provide standard resistance values. Prior to the commencement of drilling operations, the hammer energy must be measured to determine the actual hammer efficiency. This information can usually be obtained by the drill manufacturer. If it is not available, a competent technician must be engaged to measure the hammer energy for each drill rig.

3.5.5.2 Thin-Walled Undisturbed Tube Sampling

Undisturbed samples of cohesive soils should be taken with 3-inch (7.6cm) diameter Shelby Tubes according to the standard practice for thin-walled tube sampling of soils in ASTM D 1587-00. This method obtains relatively undisturbed samples by pressing the thin-walled tube into the subject strata at the bottom of the boring. Thin-walled sampling is simply a method for retrieving a sample for laboratory testing. There is no actual field testing involved with thin-walled sampling unless a Torvane or Pocket Penetrometer test is performed on the end of the sample. Pressures exerted by the drill rig while pushing Shelby tubes are frequently recorded for general reference but do not provide repeatable test results. After the unfavorable effects of the sampling procedure, transport, handling, and storage, a truly undisturbed sample cannot be realistically tested in the laboratory. However, with appropriate care, valid samples can be taken for shear strength, density, consolidation, and permeability testing.

Shelby tubes do not utilize a sample retention system to hold the sample in place during retrieval from the borehole, so sample recovery can be unreliable. Thin-walled sampling in general is successful only in soft to stiff cohesive soils. Soils that are very soft are difficult to recover with standard Shelby tube while the upper range of stiff and very stiff soils are difficult to penetrate or bend the tube resulting in a disturbed sample. Oversized clasts and organic fragments in the softer soil matrix can also be detrimental to thin-walled sampling.

Various samplers that use retractable pistons to create a vacuum in the top of the tube can achieve greater success in obtaining undisturbed samples of soft cohesive soils as well as granular materials.
3.5.5.3 Rock Coring

Rock core drilling should be carried out according to ASTM-D 2113-99. Successful core drilling is as much a skill as it is a test procedure. Experienced, conscientious personnel are necessary not only to run the equipment, but also to interpret the results of the drill action as well as the samples recovered. Material recovered may not actually represent the subsurface conditions present if not correctly sampled. Observation and interpretation of the drill action, fluid return, and other characteristics provide indications of the actual validity of the core sample as well as other information concerning the actual conditions in the subsurface.

Note:
ASTM states that the instructions given in D 2113-99 cannot replace education and experience and should be used in conjunction with professional judgment. Qualified professional drillers should be given the flexibility to exercise their judgment on every alternative that can be used within the appropriate economic and environmental limitations.

Triple-tube Core Barrel Systems

Because of the close-jointed, highly fractured nature of many rock formations in Oregon, and the detailed observations desired, rock coring should be performed with triple-tube core barrel systems that are best-suited to such material. These systems provide the best recovery in difficult, highly fractured and/or weathered rock which is extremely important since discontinuity spacing and weathering characteristics usually limit the strength of a rock mass with respect to foundation loading, or the performance of rock excavations. Triple-tube barrels provide direct observation of the rock core specimen in the split-half of the innermost tube as it is extracted from the inner core barrel. This allows accurate measurement of RQD and recovery and discontinuity attitudes prior to further specimen handling. Partial isolation of the sample in the inner split-barrel from the drilling fluids also preserves much of the discontinuity texture and infilling material that is also very important to rock mass characterization.

Most rock coring is performed with “H”-sized systems that provide core specimens with a diameter of 2\(\frac{13}{32}\) inches (61.1mm).

Note:
Considerable penalties occur with respect to sample quality when using smaller diameter coring systems due primarily to drill action, particularly at greater boring depths; thus, H-sized core should be considered the minimum size for explorations.

Larger diameter cores also provide a better assessment of discontinuity properties. There may be situations where smaller diameter coring is necessary such as difficult access sites where small equipment is needed that may not have the torque required to turn larger diameter casing. Core runs are typically made in 5-foot sections since this is the approximate length of most commonly-available core barrels. Runs may be shortened when difficult drilling conditions are encountered. Longer barrels may also be used in highly favorable conditions such as quarry site investigations or other areas with uncommonly massive rock.
Rock core specimens should be preserved and transported according to the standard practice in ASTM D 5079-02. Core specimens should always be extruded from the inner core barrel using the hydraulic piston system. The inner split barrel should not be manually rammed out of the inner barrel as this will result in sample disturbance. The core should not be dumped out of the end of the barrel either since this will also disturb the sample as well as invalidate some of the information.

3.5.5.4 Bulk Sampling

Bulk sampling should be carried out at all pipe/culvert locations from the actual invert elevation when test borings are not required. The samples collected are submitted for the appropriate chemical testing. Typically, bulk samples of 25 lbs (11Kg) if impermeable bags are used, or 2 gallons (7.5 liters) for jar/bucket samples are collected from each discrete sampling site. Sample receptacles must be sealed to preserve natural moisture conditions. Bulk sampling may also be conducted for material source investigations and other surficial applications. All samples collected should be preserved and transported according to ASTM D 4220-95.

3.5.6 Sample Disposition

Soil and rock samples collected during subsurface exploration should be transported to the appropriate ODOT region storage facility upon completion of the investigation. Soil samples are usually retained for only a short period of time after project construction since physical and chemical changes occur that, over time, invalidate the results of further testing regardless of any effort to preserve them. Rock core specimens are typically retained for 3 years after the final acceptance of the project or when the contractors and other concerned parties have been settled with provided that there are no problems with the performance of the facility. Specimens related to future construction activities should be retained. Under no circumstance will soil samples and rock core specimens that may have a bearing on an unsettled claim be disposed of until such claims are finally resolved.

3.5.7 Exploration Survey Requirements

The actual location and elevation of all exploration sites should be surveyed and plotted on the project base map. Once exploration is complete, the actual exploration site should be marked with a survey lath or painted target so that the survey crew can readily measure the intended location. The exploration number should also be marked in the field for accurate reference by the surveyors. Surveys should be completed based on the project coordinates in addition to the WSG-84 datum. Elevations should be referenced to Mean Sea Level (MSL).

3.6 Subsurface Exploration Methods

3.6.1 General

Many factors influence the applicability and selection of subsurface exploration equipment and methodology for any selected project site investigation. Selection of equipment and methods are usually based entirely on geotechnical data needs and geologic conditions but may also be based on site access, equipment availability, project budget, environmental restrictions, or a combination of any of these.

In many cases, trade-offs between expected results and the exploration method chosen must be evaluated to achieve the needed results within defined time limits and project budget constraints.

Geotechnical designers should be familiar with the exploration methods applied on their projects, and their results and potential limitations or effects on the data they receive from the field.
Most test borings conducted for transportation projects in Oregon are standard diameter vertical borings using rotary or auger drilling methods. Sampling within the boring is typically done by Standard Penetration Tests (SPTs), 3-inch (7.62cm) Undisturbed Shelby Tube samples, HQ3-sized rock coring, and auger coring. Additional, supplementary explorations are conducted using hand augers, direct push (i.e. GeoProbe) rigs, cone penetrometers, and test pits dug either by hand or more commonly with hydraulic excavators. ODOT is currently evaluating and using newer exploration technologies as they are developed or become increasingly available. The use of sonic drilling and geophysical methods are examples.

3.6.2 Test Boring Methods

The most commonly used drilling methods on ODOT projects are auger boring and rotary drilling. Continuous sampling core drilling is employed with both methods. Most modern drill rigs are capable of employing both of these techniques with only minor adjustments to the tooling in the field. Other techniques that are less commonly used are displacement borings using rotosonic or percussion methods. Each drilling method should be selected based on the quality of information obtained in the materials for which the drilling method is best suited for, thus, selection of drilling technique should be carefully considered. Since most test borings penetrate many types of materials, several techniques are commonly employed in any single test boring. Various institutions or individuals have strong preferences for certain types of drilling methods and will tend to use them as a “default” for almost any condition encountered. This behavior should be corrected or avoided. Almost every technique is capable of penetrating the subsurface or “making a hole”. The quality of the results is the purpose of subsurface investigation, and different drilling techniques are better suited to certain materials and conditions. Achieving quality results from a drilling program are more important than convenience.

3.6.2.1 Methods Generally Not Used

Cable-tool, wash, jet, and air-rotary methods are generally not used on ODOT projects for many reasons. Cable-tool drilling may be useful for some environmental applications and well installations, but is generally antiquated and not productive for geotechnical investigation. Wash and jet borings cause down-hole disturbance well past the bottom of the boring, and the fluids are difficult to recover making them more of a liability than a source of data. Air-rotary drilling usually causes too much down-hole disturbance to provide reliable SPT data, and difficult to advance in soft soils. Groundwater typically stops further advancement of air-rotary drills, forms large voids, and casts sediment-laden water about the site. Air-rotary drilling may be suited to specific applications where known materials at a site are delineated based on the drill advance rate and obvious changes in the drill cuttings as they are flushed from the hole. In these applications, the air-rotary borings should be supplemental to standard geotechnical exploration borings conducted at the site.
3.6.2.2 Auger Borings

Rotary auger drilling is one of the more rapid and economical methods of advancing exploration borings. Most modern drilling equipment has enough power to turn augers of considerable diameter to a substantial depth. Currently, most augering uses a hollow-stem auger that allows the hole to remain cased while the various sampling or drilling tools are used and withdrawn from the hole with drill rods or wireline retrievers. A central “stinger” bit or plug is placed at the bottom of the auger while the boring is advanced. Solid stem auger use has largely been discontinued due largely to the advent of hollow stem augers and the more powerful equipment that is capable of turning their larger diameter drill string. The standard practice for using hollow-stem augers is described by ASTM D 6151-97. Auger boring has many advantages and disadvantages for various materials encountered as described below.

Auger Boring Advantages

Auger boring has many advantages and disadvantages for various materials encountered. The primary advantages of augers are the preservation of the natural moisture content of the soil and the rapid advancement of the drill through soft to stiff soils. Augers are also useful where drill fluids are difficult to obtain or are an environmental concern, and in freezing conditions where the use of water is problematic. An additional advantage of augers is that they create a large enough hole to install larger-diameter standpipe piezometers or nested piezometers in conformance with Water Resources Department regulations. In addition, the natural piezometric surface is more readily monitored during drilling. Coring tools are also available for auger systems that provide continuous sampling in soils and even weak rock materials. These tools can be placed by either rods or wireline into special auger bits that feed a continuous soil sample into a split barrel that is then retrieved in 2.5 or 5-foot (0.76-1.52m) sampling intervals. Plastic liners that fit in the auger core barrel can also be used to preserve soil cores in their natural moisture conditions.

Auger Boring Advantages and Disadvantages

The disadvantages of augering are the power needed to turn long strings of auger in dense formations, the volume of the hole and the cuttings created, and the disturbance of the natural materials in certain conditions. When hollow-stem augers are used in granular soils below the water table, the hydrostatic pressure differential between the inside and outside of the auger casing will force saturated sands, silts, and fine gravels up into the casing effectively loosening the materials below the auger bit. This can be caused by either the natural differential, or by the pressure induced during retraction of the “stinger” bit or plug. The augers themselves can also affect the conditions of loose granular materials and silts ahead of the bit. In both cases, SPT values obtained will be different than what is true for the natural conditions. To counter this effect, a head of water or other drilling fluid can maintained in the auger casing to counteract these effects. Adding fluids to the auger generally negates their advantages and if such action is necessary, a different drilling technique should be employed. Hollow stem augering should not be employed when assessing liquefaction potential.

A common complaint about augering is the volume of cuttings generated. Where disposal is a concern, this is probably a disadvantage. However, when drilling in an environmentally sensitive area, augering is often preferable because the cuttings are easily contained on site when drilling above the water table. A past complaint has also been the weight of the augers themselves although this has largely been negated by the more powerful equipment and the available wire line systems to assist with moving them around the site.
3.6.2.3 Rotary Drilling

Rotary drilling is the most common, and usually the most versatile drilling method available. Various tools and products available for rotary drilling allow it to be adaptable to most drilling conditions and geologic materials. Rotary boreholes can be uncased holes advanced with a drill bit on rods or cased holes made with a casing, casing advancer and casing shoe. The casing advancer is a driver assembly with latches that fit in the bottom of the casing where it holds the center bit at the bottom of the hole and is subsequently retrieved with a wireline system. This method of drilling involves a relatively fast rotation speed, fluid circulation and variable pressure on the drill bit to penetrate the formation, pulverize the formation particles at the bottom of the borehole. The circulating fluids carry these cuttings away from the bit, up the borehole annulus, and out of the hole.

When the desired sampling depth is reached, the drill rods or casing advancer are retracted from the hole and replaced with the desired sampling tool. The sampling/testing is conducted while the hole is filled with fluid, retrieved from the hole, and then replaced once again with the drilling tool and borehole advancement continues to the next sampling depth. For uncased holes, the drilling fluid is relied upon to stabilize the borehole and prevent it from caving or heaving. In particularly weak or porous formations where drilling fluids are rapidly lost, cased holes are generally used. In uncased holes, the drilling fluid is usually recirculated from a mud tank or pit at the ground surface. Borings that use casing advancers typically use pure water that is not recirculated.

Rotary Drilling Advantages

The advantage of rotary drilling is the relative speed of advancement in deep borings while maintaining borehole stability that best preserves in-situ soil conditions by counteracting soil and pore-water pressures in partially or fully saturated conditions. It is of particular advantage in very soft materials that are very sensitive to disturbance by the drilling equipment. Because of its ability to maintain natural conditions, rotary drilling is usually the best choice when conducting in-situ analysis such as vane shear and pressuremeter testing. The trade-offs for rotary drilling is the introduction of moisture and other minerals that will influence the natural moisture conditions, and the difficulties with installing groundwater monitoring instruments although this later can in some cases be rectified by the use of special drilling fluids and by purging the borehole prior to installation. Special care is needed to contain drilling fluids during exploration, and for ultimate disposal that may involve transport off-site.

Drill Rods

A variety of drilling rods, casings, and drill bits are available for various tasks. Most drilling tools come in standard sizes that are generally adaptable to one another. However, complexities arise when changing from one size to another when various thread sizes and configurations are used. Use the following information relating to drill rods and casing sizing:

- Drill rod and casing sizes are designated from smaller to larger by the letters R, E, A, B, N, and H. Drill rod outside diameters range from $1^{5/32}$ inches (27.8mm) for R-sized rods to 3.5 inches (88.9mm) for H-sized rods.

- Drill casing outside diameter sizes range from $1^{7/16}$ inches (36.5mm) for R-sized casing to 4.5 inches (114.3mm) for H-sized casing. Additional letters such as HW or NWJ designate different thread or coupling configurations. Complete tables of drilling tool types, sizes, weights, and volumes are available from the drilling suppliers and manufacturers.
• The important aspects of tool size is that the larger diameter, heavier drill sizes generally provide a more stable hole and allow a greater variety of testing and sampling tools to be used. These larger sizes also help control the eccentric movement of longer drill strings, reduce vibration at the drill bit, and help the driller maintain a straight and plumb boring.

The Diamond Core Drill Manufacturers Association (DCDMA) has standardized the drill rod and casing sizes although any number of other sizes and types remain on the market or are frequently introduced.

Drill Bits

The choice of drill bit greatly influences the test boring quality and speed of completion. Rotary drill bits come in a variety of different types, each suited to a particular soil and/or rock composition. Driller preference is usually what determines what type of bit is used. Experienced drillers can and should normally be relied upon to select the appropriated bit. Certain drill bits are intended for specific geologic materials, but many drillers, through their experience and specific equipment, are able to achieve superb results with bits that are not usually used for that type of material. Follow these guidelines when using drill bits:

- **Soft or loose soils:** Soft or loose soils are usually drilled with drag bits. These bits have two or more wings of either tempered steel or carbide inserts that act as cutting teeth.

- **Hard soils and rock:** Roller bits are used to penetrate hard soils and rock. Roller bits may consist of hardened steel teeth or carbide “buttons”. Typically, steel teeth are sufficient for hard soil drilling while carbide button bits are used for bedrock drilling or for drilling in formations with numerous boulders and potential obstructions.

Rotary Drilling Fluids

Various admixtures are available for mixing with the drilling fluids in different applications. Usually, the drilling fluid or “mud” is a mineral solution (usually bentonite and water, thus, a colloidal fluid) with a viscosity and specific gravity that is greater than water. These properties allow the fluid to better stabilize the borehole, cool and lubricate the bit, lift the cuttings out of the hole, and can also increase sample recovery. Various chemical and mineral additives may also be added to the mud mixture for the site-specific conditions. Certain chemical additives, such as pH stabilizers and flocculants, are introduced for common groundwater or mineral conditions that are the source of particular drilling difficulties. Mineral additives, such as barite, may be used to further increase the specific gravity of the mud for unstable boreholes and zones of high artesian pressures. Other additives inhibit corrosion of tools; seal off highly fractured or porous formations to prevent fluid loss, increase the suspension and entrainment of sediments to flush the borehole, and numerous other applications.

Fluids or “mud mixtures” can greatly enhance rotary drilling, and in some very difficult drilling situations, is the only way to complete borings. Mud mixing should be treated with care as improper materials and quantities can actually be detrimental. Volumes and weights should be carefully measured and fluid density and viscosity should be monitored during borehole advancement as these properties will be affected by the formation materials. Several batches may be needed for individual borings depending on the depth of the borehole and other conditions.

The [U.S. Bureau of Reclamation](https://www.usbr.gov) and the [U.S. Natural Resources Conservation Service](https://www.nrcs.usda.gov) have established general guidelines for drilling mud mixtures including amounts of dry materials, volume of water, and fluid densities. [ASTM D 4380-84](https://www.astm.org) describes the procedures for determining the density of bentonitic slurries that can be used in rotary drilling.
3.6.2.4 Rock Coring

Rock core sampling is used to obtain a continuous, relatively undisturbed sample of the intact rock mass for evaluation of its geologic and engineering characteristics. When performed appropriately, core drilling produces invaluable subsurface information. Rock coring procedures have generally remained the same since the advent of the technology: a steel tube with a diamond bit rotated into the rock. Advancements in the bits, core barrels for retrieving the samples, and improvements to mechanized equipment overall have greatly enhanced this method.

Note:
Rock core drilling procedures and equipment has largely been standardized by ASTM D2113-99. The Diamond Core Drill Manufacturers Association (DCDMA) has also standardized bit, core barrel, reaming shell, and casing sizes similar to drill rods.

Rock coring almost exclusively involves the use of diamond bits, thus the terms “rock coring” and “diamond drilling” are used interchangeably. Selecting the proper drill bit for the rock coring conditions is essential. Sample recovery and drill production is dependent upon it. The ultimate responsibility for bit selection is the driller's, however, it is important to be familiar with bit types to help determine recovery problems in the field since they may actually be unrelated to the drilling method. The actual configuration of the drill bit is selected based on the actual site conditions. The cross-sectional configuration, kerf, crown, and number of water ports are all determined by the anticipated conditions and characteristics of the rock mass. Consider the following:

- Incorrect bit selection can be extremely detrimental to core recovery, production, and project budget.
- Typically, a surface-set bit consisting of industrial diamonds set in a hardened matrix is used for massive rock bodies.
- Larger and fewer diamonds in the set are used for soft rocks while smaller and more numerous diamonds are used in hard rock. Hard rock bits commonly have a rounded or steeply-angled crown.
- Flat-headed bits are usually for very soft rock. Impregnated bits consist of very fine diamonds in the matrix and are generally used for soft, severely weathered and highly fractured formations. Some carbide blade and button bits are used for soft, sedimentary rocks. These are ideally suited for soft rocks with voluminous cuttings that require a considerable amount bit flushing and cutting extraction.

Core Barrel

The core barrel is the section of the drill string that retains the core specimens and allows them to be retrieved as a whole section. Core barrels may be of different types and sizes, and may consist of numerous components that may be changed depending on the rock mass condition. Core barrels have evolved greatly over time. Single-tube barrels were originally used and required the entire drill string to be retracted to withdraw the sample. These have evolved through double-tube systems of either rigid-types where the inner tube rotates with the outer barrel, or swivel-types where the inner tube remains stationary. Most core barrels used today are triple-tube systems that employ another non-rotating liner to a swivel-mounted double core barrel. This split metal liner retains the sample during extraction that allows minimal sample handling and disturbance prior to measurement and observation. Where desired, a solid, clear plastic tube can be used in place of the split metal tube. Single and even double-tube coring system often require a considerable amount of effort to extract the cores from the barrel that can result in detrimental sample disturbance.

Consider the following:
Available triple-tube coring systems usually provide specimens that range in diameter from $\frac{13}{16}$ inches (33.5mm) for “B”-sized core to $\frac{39}{32}$ inches (83mm) for “P”-sized core.

Larger core sizes are also available from rather specialized systems.

A substantial penalty on the quality of rock structural information results from smaller diameter cores. Most rock core taken is “H”-sized ($2\frac{33}{32}$ inches, 61.1mm) in diameter.

The use of smaller N-sized cores may be necessary in difficult access, or very deep drilling applications.

The difference in RQD measurements between single, double, and triple tube systems are substantial.

Specialized Methods

These specialized methods are also used:

- **Oriented core barrels**: Orienting core barrels can be used to determine the true attitudes of discontinuities in the rock mass. These specialized core barrels usually scribe a reference mark on the core as it is drilled. Recording devices within the core barrel relate the known azimuth to the reference mark so that the exact orientation of the discontinuities can be determined after the sample has been retrieved.

- **Borehole camera surveys**: Borehole camera surveys are used to determine discontinuity orientations. Several methods for both oriented coring and down-hole surveying have evolved, and highly trained personnel are typically needed to operate them successfully. The 1988 AASHTO Manual is a good source of information on the older core orientation systems while vendors such as the Baker-Hughes Corporation have technical information on the newer magnetic/electronic core alignment systems.

3.6.2.5 Vibratory or Sonic Drilling

Sonic drilling may be called vibratory or rotosonic drilling. This type of drilling is used for continuous sampling in unconsolidated sediments and soft, weathered bedrock. It is best suited for use in oversized unconsolidated deposits enriched with cobbles and boulders such as talus slopes, colluvium, and debris flows or any other formation containing large clasts.

Benefits

- The primary benefit of this method is recovery of oversized materials in a continuous sample, rapid drilling rate, reduced volume of cuttings, and fast monitoring well installation.

- This drilling technique is 8 to 10 times faster than hollow stem augering and produces about 10% of the volume of cuttings.

Drawbacks

- The drawbacks to this method are that it is typically more expensive, and cannot penetrate very far into bedrock.

- The vibration of the drill stem during borehole advancement may disturb the subsurface materials for an unknown distance ahead of the bit, and soft, loose materials can be liquefied during sampling.

- The sample size and speed of extraction will require additional personnel to process, log, and classify in the field.
Sonic drill rigs use hydraulic motors that drive eccentric weights to oscillate the drill head. The oscillation generates a standing sinusoidal wave in the drill stem with a frequency that can be varied depending on the materials encountered. The drill head also rotates the drill stem. An inner and outer casing is advanced so that the hole can be cased at the same time that samples are collected. During drill advancement, the sample is forced into the inner casing from which it is retrieved on a set interval. SPTs and Shelby tube samples can be taken between runs of roto sonic coring.

3.6.2.6 Becker Hammer Drilling

Becker hammer drills are specifically for use in sand, gravel, and boulders. Some Becker hammer drill operators may also have a coring system that can also be run for limited applications. Becker hammer drills use a small diesel-powered pile hammer to drive a special double-walled casing. The casing can be fitted with an array of toothed bits depending on the application. An air compressor forces air through the annulus between the casings to the bottom of the hole where it extracts the materials up through the center of the innermost casing, through a cyclone, and into the sampling bucket. The materials can be extracted on a set interval as the driller engages the air compressor. The Becker drill casings range in size from 5.5-inch (14cm) to 9 inches (23cm) for the outer casing, and 3.3-inch (8.4cm) to 6 inches (15.2cm) respectively for the inner casing. This size of casing allows retrieval of relatively large, unbroken clasts. As the drill is advanced, blow counts are taken along with measurements of the hammer’s bounce chamber pressure. Becker hammer drill data can be correlated to the soil density and strength in coarse-grained soils similarly to the SPT test. In addition, SPTs can be taken through the inner casing of the Becker hammer string.

3.6.2.7 Supplemental Drilling/Exploration Applications

A wide assortment of exploration techniques are available to supplement the subsurface information gathered from test borings at a project site. Typically, any method that can be employed to properly evaluate the subsurface conditions in a supplementary capacity is acceptable on an ODOT project if not constrained by environmental considerations. These methods are usually the most simple and economic to quickly gather subsurface information with minimal cost. In some cases, more extensive and costly methods are required to obtain critical design information. Generally, supplemental investigations consist of simple hand auger borings or backhoe test pits to gather more detailed information and collect additional samples in near-surface or overburden materials.

Hand Tools

Hand augers are available in many forms that allow rapid penetration of near-surface soils and collection of representative samples. Various bits can be used that are suited to general soil conditions that help penetrate and retain samples from certain materials. Extra sections of rods can be added to extend the depth range of these tools. Small engine-powered augers can also be used to increase the depth of penetration and to reduce the physical workload. Most hand augers are of sufficient diameter to permit undisturbed Shelby-tube sampling in the boring where soft soils are encountered. Additional tools such as jacks, cribbing, and extra weights may be needed to retract the tube after sampling. Most field vehicles are equipped with shovels that geotechnical designers can apply to subsurface investigations. Hand-excavated pits can provide essential, detailed information on the near-surface environment.

Various hand probes and penetrometers can be used to make soundings of soft material depths and delineate underground facilities in soft ground conditions. Hand auger borings and hand-excavated test pits are often required for collection of bulk samples.

Cone Penetrometers
Cone penetrometers can be operated from most drill rigs, or they may come as a separate vehicle specially rigged for cone penetration testing. The cone penetration test (CPT) is conducted by pushing an instrumented cylindrical steel probe at a constant rate into the subsurface with some type of hydraulic ram. The cone penetration test is very advantageous in certain (usually soft) soil conditions as it provides a continuous log of stress, pressures, and other measurements without actually drilling a hole. CPTs can be conducted with a transducer to measure penetration pore pressure. Additional instrumentation can be used to measure the propagation of shear waves generated at the surface. Standard cone penetration test procedures are described in ASTM D 3441-98. Electronic CPT testing must be done in accordance with ASTM D 5778.

Percussion or Direct push (i.e. GeoProbe®) Borings

Direct push drills are hydraulically-powered, percussion/probing machines originally intended for use in environmental investigations. The direct push method uses the weight of the vehicle combined with percussion to advance the drill string. Drive tools are used to obtain continuous, small-diameter soil cores or discrete samples from specific locations. Direct push drills can obtain continuous samples through the soil column and are capable of penetrating most soils up to about 100 feet (30m). Small-diameter piezometers can also be installed through the direct push tools. Direct push rigs are quick and economical to mobilize and sample the soil column very quickly. Their small diameter and method of penetration produce few if any cuttings that must be disposed of. The percussion advance of the direct push method produces a considerable amount of sample disturbance.

Note:
Direct push advancement rates may provide a relative determination of soil density with respect to material encountered by that particular machine but it is not correlative to SPT data. Direct push rigs are lighter and less powerful than most conventional drill rigs. Thus, they do not have the ability to penetrate certain formations, and because of the effort in doing so, may give a false, overestimation of the formation density.

Test Pits

Backhoe-excavated test pits or trenches are commonly used to provide detailed examination of near surface geologic conditions and to collect bulk samples. Test pits allow examination of larger-scale features that would not be visible in standard borehole samples. Features such as faulting, seepage zones, material contact geometry and others are readily measured in test pit walls. In addition, Torvane and pocket penetrometer tests can be performed in the walls and floor of the test pit. In-place percolation testing can also be carried out in test pits. Test pits have the advantage of the shear bulk of materials that can be observed. In this regard, the overall composition of the materials in a unit are better assessed by the many cubic feet of material excavated and observed opposed to the relatively minute amount of material contained in a split spoon sampler.

Warning:
Under no circumstances will personnel enter a test pit deeper than 4 feet (1.2m) below the ground surface unless the appropriate shoring and bracing is used. If any evidence of instability or seepage is evident in the test pit walls, no entry will be permitted until shoring is complete. Test pits must be filled in as soon as they are completed to prevent passersby from entering or falling in. When a test pit is used for percolation tests or for assessment of trench stability, appropriate barricades and signs must be placed around the site to prevent accidental entry.

ODEX or Air-Track Drilling

Percussive air drilling is typically used in a similar manner to other probing systems with the exception that air-drill holes are used to probe harder materials. A relative rate of advancement
coupled with the cuttings retrieved in certain intervals allows basic interpretation of subsurface conditions. ODEX systems using an outer casing allow installation of instruments below the water table that would otherwise be impossible to install with other air-driven equipment. The advantage of this method is the speed of installation and borehole advancement. As previously described, air drilling system are not suited for standard testing methods due to the unknown amount of down-hole disturbance.

3.6.3 Alternative Exploration Methods and Geophysical Surveys

Alternatives to drilling and test pit excavations characteristically involve the use of geophysical methods. For ODOT projects, geophysical survey results are always supplemental to direct observation of subsurface conditions by borings and test pits and should never be considered as a replacement.

Geophysical surveys play an important role in engineering geology and geotechnical engineering however they do not provide all of the information needed for the development of geotechnical design parameters.

Note:
From a liability and construction claims standpoint, direct observation, sampling, and testing are critical. Direct observation and measurement will assure that subsurface conditions not measured by geophysical survey methods are revealed and further support or refute the results of geophysical surveys.

Most of the data obtained from a geophysical survey require an experienced and highly-trained geophysicist to interpret and process before it is of any use to an engineering geologist or geotechnical engineer. Geophysicists can base their interpretation on direct calculations, tabulations, or regression analyses, or they may base it wholly upon their own experience. Any geophysical method used has its own aspects that can result in serious misinterpretation or inappropriate use of the results. Prior knowledge of the actual site conditions and the possible errors of the survey technique are needed to calibrate, or fit the data to the known baseline data.

Geophysical survey results and resolution of the data is dependent upon the density of measurement points, and frequency of measurements. These variables may be set according to the overall project needs and level of detail required. Modern geophysical instruments are sensitive enough to produce measurements at the levels needed for geotechnical investigations. Methods most frequently used are:

- Seismic methods are the most commonly conducted techniques for engineering geologic investigations.
- Seismic refraction provides the most basic geologic data by using the simplest procedures, and commonly available equipment. The data provided is the most readily interpreted and correlated to other known material properties.

3.7 Geotechnical Instrumentation

3.7.1 General – Instrumentation and Monitoring

Of equal importance to site characterization and exploration as sampling and testing data is the information provided by geotechnical instrumentation and monitoring. Sampling and testing of
materials provides needed design information concerning the existing site conditions at the time of investigation. Information regarding certain site conditions as they change through time due to the effects of natural variations in the earth’s surface and atmosphere or the effects of human activities, such as construction, can be provided by the appropriate selection, installation, and monitoring of geotechnical instruments. Most geotechnical instruments are used to monitor the performance of structures and earthworks during construction and operation of the facility. Some instrumentation programs are planned to provide actual design criteria such as landslide depths of movement and piezometric surfaces. Other programs are intended to verify design assumptions. In any case, considerable design and planning efforts are needed to derive the needed results. Geotechnical instrumentation has become much more “user-friendly” as technologies have developed, but an all-inclusive process beginning with a determination of the instrumentation project objectives that are carried through to completion and use of the data.

3.7.2 Purposes of Geotechnical Instrumentation

A rule of thumb for geotechnical instrumentation programs is: “every instrument installed should be selected and placed to assist in answering a specific question”. The point of this rule is to start a geotechnical instrumentation program on the correct course of study to acquire the necessary results with the greatest efficiency. Instruments can have an initially high installation cost, but the time and effort for reading them and making sense of the results is where the most costly inefficiencies occur. Any instrument installed will provide some information; whether or not it is relevant to the immediate project requirements is the issue. Therefore, efforts must be concentrated on the primary questions to gather the most important data from the instrumentation program without time lost to the analysis of extraneous data.

3.7.2.1 Site Investigation and Exploration

Instruments are regularly used to characterize the initial site conditions during the design phase of a project. Landslide remediation projects rely on instruments to determine depths and rates of movement as well as pore water pressures to provide basic information for stability analysis and mitigation design.

Most project sites require some information concerning the actual depth and seasonal fluctuation of groundwater that not only affects the project design, but also its constructability.

3.7.2.2 Design Verification

Instruments are frequently used to verify design assumptions and to check that facility performance is as expected. Instrument data gathered early in a project can be used to modify the design in later phases. Geotechnical instruments are also an inherent part of proof testing to verify design adequacy.

3.7.2.3 Construction and Quality Control

Geotechnical instruments are commonly used to monitor the effects of construction. Construction procedures and schedules can be modified based on actual behavior of the project features for ensuring safety as well as gaining efficiency in the actual construction as determinations can be made regarding how fast construction can proceed without the risk of failure or unacceptable deflections. Instruments can be used to monitor contractor performance to assure that contract requirements and specifications are being met.
3.7.2.4 Safety and Legal Protection

Instruments can be used to provide early warning of impending failures allowing time to isolate the problems and begin implementation of remedial actions. Instrument data provides crucial evidence for legal defense of the agency should owners of adjacent properties claim that construction or operations have caused damage.

3.7.2.5 Performance

Instruments are used for the short and long-term service performance of various facilities. Deformation, slope movement, and piezometric surface measurements in landslides can be used to evaluate the performance of drainage systems installed to stabilize the landslide. Loads on rock bolts and tiebacks may be monitored to assess their long-term performance or evaluate the need for additional supports.

3.7.3 Criteria for Selecting Instruments

For each project, the critical parameters must be identified by the designer that will require instrumentation to determine. The appropriate instruments should then be selected to measure them based on the required range, resolution, and precision of measurements. The ground conditions are another consideration in the choice of instruments. Use the following to help select instruments:

- **Landslides**: Relatively fast-moving landslides may require a larger-diameter inclinometer pipe or TDR cable to determine the zone of slide movement, or Vibrating Wire piezometers may be selected to measure groundwater in low permeability soils where a standpipe would require a large volume of water to flow into it before even small changes in pore-water pressure can be detected.

- **Temperature and humidity**: Temperature and humidity also affect the choice of instruments. Certain instruments may be difficult to use in freezing conditions while warm and humid environments may affect the reliability of electronic instruments unless particular care is taken to isolate their environment.

- **Number of parameters**: The number of parameters to measure is also important for instrument selection since soil and rock masses typically have more than one property that dictates their behavior. Some parameters correlate with one another, and instruments that obtain complementary measurements provide an efficiency gain. In areas with complex problems, several parameters can be measured, and a number of correlations can be found from instrumentation data leading to a better understanding of the site conditions. Strain gages and load cells on a retaining wall and inclinometers behind it are examples where complementary data can be obtained. When relationships can be developed with the data, further data can be obtained even when one set of instruments fail.

- **Instrument performance and reliability**: Instrument performance and reliability are also important considerations. The cost of an instrument generally increases with higher resolution, accuracy, and precision in the instrument. Also, the range of measurements obtained can be reduced by higher-functioning instruments, so the geotechnical designer should have a clear understanding of the scale and level of measurements to be taken.

Example: An example is the placement of a vibrating wire transducer in a borehole to measure an unknown piezometric surface. The instrument selected would have a wide range of testing, but a lower resolution of values that could be read. Where the piezometric surface is known within a narrower range and small changes are of significance to the
design, an instrument capable of reading a smaller range of values but at a higher resolution within the known range.

- **Quality of the instrument:** There are some instances where the use of lower-quality instruments is warranted, but in general, choosing a lower-quality instrument to save on initial costs is a false economy. The difference in cost between a high-quality instrument and a lower-quality instrument is low with respect to the overall cost of installing and monitoring an instrument.

- **Cost:** The cost of drilling a hole and the labor of installing the instrument is usually an order of magnitude higher than the cost of the instrument. The less easily quantifiable loss of data from a failed instrument in terms of monetary cost should also be considered. It is expensive and often impossible to replace failed instruments. Furthermore, essential baseline data is also lost that cannot be replaced.

3.7.3.1 Automatic Data Acquisition Systems (ADAS)

Automatic Data Acquisition Systems (ADAS) can provide significant advantages to a geotechnical instrumentation program. They can provide numerous readings at set and reliable intervals, and they can store and transmit data from remote or difficult access locations. ADAS are necessary for real-time instrument monitoring and relay. They are beneficial at sites where many sensors are present that would require copious staff time to read manually or for large-scale proof tests with many concurrently-read instruments to be monitored throughout the test.

Automatic Data Acquisition Systems come in many forms ranging from the very simple, user-friendly devices to systems requiring significant programming and electronics to install and run. Project requirements usually dictate what system is selected, but the simplest, most inexpensive, and easiest to connect to the chosen instruments are best. Follow these guidelines:

- Simple dataloggers connected to individual instruments that are retrieved and downloaded periodically are sufficient for most projects.

- Large, complex problems may require a more intelligent system that can be programmed to change monitoring routines in response to site or environmental changes.

- Most instrumentation companies also have companion dataloggers to go with their products while several independent companies also manufacture easy-to-use dataloggers. Other companies, such as Campbell Scientific Incorporated, produce more complex systems that can read multiple installations of different types of instruments as well as store and transmit data.

- In addition to the data collection devices, these firms also produce software for processing and displaying the data. The software is another consideration if export to other systems is desired. Compatibility between programs can create problems and errors in the end product of an instrumentation project.

3.7.3.2 Instrument Use and Installation

Instruments have been developed to monitor many specific geologic conditions and engineering parameters. In many cases, a single instrument can be used or adapted for use on other applications. For this, the manufacturer and other professionals should be consulted to assure that the results obtained are valid, or, they may have insights and case histories that are of use for the situation. The manufacturer’s literature, installation procedures, and other guidance documents should be followed for proper installation of their products as procedures can vary for different
manufacturers same instrument products. Detailed discussions of instrument installation and initialization procedures, function, and operation can be found in manufacturer’s documents such as Slope Indicator Company (SINCO) Applications Guide or in published literature such as Dunnicliff (1988).

3.7.3.3 Inclinometers

Inclinometers are used on transportation projects mainly to detect and monitor lateral earth movements in landslides and embankments. They are also used to monitor deflections in laterally loaded piles and retaining walls. Horizontally installed inclinometers can also be used to monitor settlement. Inclinometer systems are composed of:

- grooved casing installed in a borehole, embedded in a fill or concrete, or attached to structures,
- probe and cable for taking measurements at set intervals in the casing, and
- a digital readout unit and/or data storage device.

The installed casing is for single installation use, and the probe, cable and data storage unit are used for almost all installations.

Note:

It is important to use the same probe for each reading in any particular installation since each probe must be independently calibrated.

Inclinometers are manually read by a trained technician on a set schedule or in response to environmental changes such as increased rainfall in the area or observation of surficial signs of slope movement. In-place inclinometers spanning known or highly suspected zones of movement can be installed for continuous, automatic monitoring. These usually remain in the hole permanently if significant slope movement occurs.

- Inclinometer casing installation is essential to successful performance of the instrument. Shortcuts taken during installation will frequently result in poor performance of the instrument or render it completely useless.
- Inclinometers should be installed according to the procedures described in the SINCO Applications guide with the exception of the grout valve.
- Borings should be initially drilled or later reamed to a sufficient diameter that will accommodate the inclinometer casing and an attached tremie tube.
- The tremie tube should be attached to the inclinometer casing approximately 6 inches above the bottom and along the casing at a close enough interval to prevent it from getting tangled or constricted in the borehole.
- One of the four grooves in the inclinometer casing should be aligned to the direction of slide movement as the casing is assembled and lowered into the hole to prevent spiraling.
- If the borehole walls are unstable, the drill casing may need to remain in the borehole, and withdrawn as the grout level rises. Generally, the grout should be maintained at a visible level in the casing as the drill string is withdrawn.

Initial readings should be taken as soon as the grout has sufficiently set up. This is usually 3 to 5 days after grouting. During installation, some grout is naturally lost to fractures and voids in the
formation. This may occur to the extent that additional grouting is required. Usually, this only entails topping off the hole with a small batch of grout to stabilize the uppermost portion of the casing. In more severe cases, the grout pump may be reconnected to the tremie tube to re-grout the remaining voids.

3.7.3.4 Piezometers

Piezometers used to measure pore-water pressure and groundwater levels can range from simple standpipes to complex electronic devices or pneumatic systems. Piezometers are typically installed in selected layers to measure the piezometric pressures in that layer. The layout and target depths of piezometer installation are determined by actual site conditions and project requirements.

Note: All piezometers must be installed according to Oregon Water Resources Department regulations defined by ORS 690.240 and ORS 537.747 through ORS 737.799 (appropriation of water generally). Specifications for a properly operating instrument are usually more stringent than these rules apart from the requirements for abandonment.

The various types of piezometers are generally used for different applications as described below.

- Standpipe piezometers are general-purpose instrument for monitoring piezometric water levels and are best-suited for granular materials. Standpipe piezometers require a water level indicator to obtain readings.
- Vibrating Wire piezometers utilize a pressure transducer to convert water pressure to a frequency signal that is read by an electronic device. Vibrating Wire piezometers can be automated by electronic systems.
- Pneumatic piezometers are typically used to measure pore water pressure in saturated conditions. Both Pneumatic and vibrating wire piezometers are used for all soil types and are better suited to fine-grained soils than the standpipe variety due to the response time and volume of water needed to record changes in water level in that type.

Piezometers should be placed at the desired sensing zone in a porous medium and sealed with the appropriate materials above and below this zone to assure measurement of the piezometric pressure in the desired location. Porous mediums or filter packs should be composed of pre-screened commercial-grade silica sand. All piezometers should be installed and initialized according to their manufacturer’s specifications.

3.7.3.5 Other Instruments

A vast array of geotechnical instruments is available for most applications. Strain gauges, extensometers and load cells of all types and configurations for structural as well as geotechnical applications are obtainable from numerous vendors. Most vendors have prescribed applications as well as installation and monitoring procedures that should be followed when using their products on transportation projects. Professional knowledge, experience, and judgment must be applied to the use of all instruments to assure appropriate use of these instruments and the adequacy of data obtained.

3.8 Environmental Protection during Exploration

Compliance with all State, Federal, and Local ordinances, laws and regulations concerning environmental protection at all work locations is mandatory for any activity that may disturb the ground surface or vegetation. All environmental permits, clearances, or any other documentation
needed for compliance with the pertinent environmental regulations must be ready prior to mobilization of exploration equipment.

The ODOT Programmatic Biological Opinion for Drilling, Surveying, and Hydraulic Engineering Activities may be applicable for some sites. This document can be referenced on the ODOT Geo-Environmental web page.

Note:
Every precaution necessary to minimize environmental impacts during site investigation must be taken, and every effort made to restore the site to its original condition. All drilling fluids and cuttings must be disposed of safely and legally. In no circumstance should sediment-laden water or other pollutants be allowed to enter streams or other bodies of water. In the event where there is a potential for pollutants to contaminate such, all operations will be suspended until the situation can be rectified. Violation of Federal, State, and Local environmental protection laws can result in personal penalties, including arrest and incarceration.

3.8.1 Protection of Fish, Wildlife, and Vegetation

Compliance with the Laws of the Oregon Department of Fish and Wildlife, National Marine Fisheries Service, United States Fish and Wildlife Service, and the rules and practices developed through the Oregon Plan for Salmon and Watersheds is also mandatory. All subsurface investigation activities shall be conducted to avoid any hazard to the safety and propagation of fish and shellfish in the waters of the State.

Unless specifically authorized by the State and by permit, the Contractor shall not:

- Use water jetting
- Release petroleum or other chemicals into the water, or where they may eventually enter the water
- Disturb spawning beds or other wildlife habitat
- Obstruct streams
- Cause silting or sedimentation of water
- Use chemically treated timbers or platforms
- Impede fish passage

The permitted work area boundaries will be defined by the permit for the project from the regulatory agencies.

3.8.2 Forestry Protection

All necessary permits must be obtained prior to exploration in accordance with ORS 477.625 and ORD 527.670, and comply with the laws of any authority having jurisdiction for protection of forests. At certain times of the year, the exploration activities will be subject to IFPL constraints, and operational schedules must be adjusted accordingly. Fire-suppression equipment may be required on site as well as a designated fire watch.

3.8.3 Wetland Protection

All operations shall comply with the Clean Water Act Section 404 (33 U.S.C. 1344); Federal Rivers and Harbors Act of 1899, Section 10 (33 U.S.C. 403 et seq.); Oregon Removal-Fill law (ORS
196.800 - 196.990; Oregon Removal and Filling in Scenic Waterways law (ORS 390.805 - 390.925), and other applicable Laws governing preservation of wetland resources.

Note:
The terms “wetland”, or “wetlands” are defined as “Areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstance do support, vegetation typically adapted for life in saturated Soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas”. Wetlands also include all other jurisdictional waters of the U.S. and/or the State.

If wetlands are known to be on the project site, they should be delineated by the region’s wetland specialist or their contractor to prevent accidental entry by the exploration operation. Wetlands to be temporarily impacted should also be identified at this time. Wetlands to be protected will be considered as “no work zones”.

Subsurface exploration operations must also comply with Clean Water Act Section 404 permits issued by the U.S. Army Corps of Engineers, and Fill/Removal permits issued by DSL. These permits allow specified quantities of fill and excavation, including soil and rock samples within specifically identified areas of wetlands.

3.8.4 Cultural Resources Protection

The exploration crew is also required to comply with all Laws governing preservation of cultural resources. Cultural resources may include, but are not limited to, dwellings, bridges, trails, fossils, and artifacts. Known locations of cultural resources will be considered as “no work zones”.

If cultural resources are encountered in the project area, and their disposition is not addressed in the contract, the exploration crew shall:

- Immediately cease operations or move to another area of the project site
- Protect the cultural resource from disturbance or damage
- Notify the region’s cultural resource specialist

The region’s cultural resource specialist will:

- Arrange for immediate investigation
- Arrange for disposition of the cultural resources
- Notify the exploration crew when to begin or resume operations in the affected area
3.9 REFERENCES

References are made to various ASTM standards. The ASTM International standards located at www.astm.org (the “ASTM Site”).
Appendix 3-A Permit of Entry Form

Oregon Department of Transportation
RIGHT-OF-ENTRY for EXPLORATION
REGION 3 GEOLOGY
Phone: (541) 957-3602 FAX: (541) 957-3604
3500 NW Stewart Parkway
Roseburg, OR 97470

(1) (We) ______________ and __________________________ hereinafter referred to as “grantor”, do hereby grant to the STATE OF OREGON, by and through the Oregon Department of Transportation, and its officers, agents, and employees, the right and license to go upon the following described real property to drill or to gain access to highway Right-of-Way for exploration core drilling at:

Township 37 South, Range 2 West, Section 28
77 Hanley Road
Central Point, Oregon 97502

Property Description:

D-89-16328
37-2W-28 TL 800

IT IS UNDERSTOOD AND AGREED: That this right and license shall be valid until all exploration is completed unless revoked by grantor before completion. It is further understood that the Oregon Department of Transportation shall, to the extent permitted by Oregon law, be responsible for any unnecessary damage done, in connection with said exploration, this will include any crops or other improvements on said property.

Grantor hereby represents and warrants that He/She is the owner of said property or otherwise has the right to grant this permit of entry.

Date____________ Day______, 2003

Permission Acquired by: ________________________

Signature:_____________________________________

Title: Project Geologist

Owner(s)
Signature(s):__________________________________
Appendix 3-B Utility Notification Worksheet

UTILITY LOCATE DATA SHEET
Region Geology Unit
Oregon Department of Transportation

Project Name:
Highway and Mile Point:

Utility Locate Called By:
Locators Called (When):

<table>
<thead>
<tr>
<th>Required Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Caller ID #:</td>
<td></td>
</tr>
<tr>
<td>Type of Work:</td>
<td></td>
</tr>
<tr>
<td>County/City</td>
<td></td>
</tr>
<tr>
<td>Highway:</td>
<td></td>
</tr>
<tr>
<td>Mile Point:</td>
<td></td>
</tr>
<tr>
<td>Township/Range/Quarter Section:</td>
<td></td>
</tr>
<tr>
<td>Distance from Nearest Cross Street:</td>
<td></td>
</tr>
<tr>
<td>Overhead Lines:</td>
<td></td>
</tr>
<tr>
<td>Special Markings:</td>
<td></td>
</tr>
<tr>
<td>Date to Be Located:</td>
<td></td>
</tr>
<tr>
<td>Ticket#:</td>
<td></td>
</tr>
<tr>
<td>Name of Person Called:</td>
<td></td>
</tr>
<tr>
<td>Utilities Notified:</td>
<td></td>
</tr>
</tbody>
</table>

Utilities Field Marked:

- Gas
- Electric
- Sewer
- Water
- Telephone
- Cable Television
- Irrigation
- Signals/Illumination
- Other
4 Soil and Rock Classification and Logging

4.1 General
The ODOT Soil and Rock Classification Manual (1987) should be used for the description and classification of all soil and rock materials. This manual is available on the Geo-Environmental web page at the following address:

Soil_Rock_Classification_Manual.pdf on ftp.odot.state.or.us
5 Engineering Properties of Soil and Rock

5.1 General

The purpose of this chapter is to identify appropriate methods of soil and rock property assessment and describe how to use soil and rock property data to establish engineering parameters for geotechnical design. Soil and rock design parameters should be based on the results of a geotechnical investigation which includes in-situ field testing and a laboratory testing program, used separately or in combination. The geotechnical designer’s responsibility is to determine which parameters are critical to the design of the project and then determine the parameters to an acceptable level of accuracy. See Chapter 2 and the individual chapters that cover each geotechnical design element area for further information on how to plan and obtain soil and rock parameters.

The focus of geotechnical design property assessment and final selection should be on the individual geologic strata identified at the project site. A geologic stratum is characterized as having the same geologic depositional history and stress history, and generally has similarities throughout the stratum in terms of density, source material, stress history, and hydrogeology. It should be recognized that the properties of a given geologic stratum at a project site are likely to vary significantly from point to point within the stratum. In some cases, a measured property value may be closer in magnitude to the measured property value in an adjacent geologic stratum than to the measured properties at another point within the same stratum. However, soil and rock properties for design should not be averaged across multiple strata. It should also be recognized that some properties (e.g., undrained shear strength in normally consolidated clays) may vary as a predictable function of a stratum dimension (e.g., depth below the top of the stratum). Where the property within the stratum varies in this manner, the design parameters should be developed taking this variation into account, which may result in multiple values of the property within the stratum as a function of a stratum dimension such as depth.
5.2 Influence of Existing and Future Conditions on Soil and Rock Properties

Many soil properties used for design are not intrinsic to the soil type, but vary depending on conditions. In-situ stresses, the presence of water, rate and direction of loading can all affect the behavior of soils. Prior to evaluating the properties of a given soil, it is important to determine the existing conditions as well as how conditions may change over the life of the project. Future construction, such as new embankments, may place new surcharge loads on the soil profile or the groundwater table could be raised or lowered. Often it is necessary to determine how subsurface conditions or even the materials themselves will change over the design life of the project. Normally, consolidated clays can gain strength with increases in effective stress and over-consolidated clays may lose strength with time when exposed in cuts. Some construction materials such as weak rock may lose strength due to weathering within the design life of the embankment.

5.3 Methods of Determining Soil and Rock Properties

Subsurface soil or rock properties are generally determined using one or more of the following methods:

- in-situ testing during the field exploration program,
- laboratory testing, and
- back analysis based on site performance data.

The two most common in-situ test methods for use in soil are the Standard Penetration Test, (SPT) and the Cone Penetrometer Test (CPT). Other in-situ tests, such as pressuremeter and vane shear are used less frequently, but are important tests in specific instances. In-situ tests for rock are sometimes performed for the design of major structures but generally are not common for highway applications.

The laboratory soil and rock testing program generally consists of index tests to obtain general information or to use with correlations to estimate design properties, and performance tests to directly measure specific engineering properties. A wide array of index and performance tests for soil, rock and groundwater measurement are discussed in Sabatini, et al, April, 2002, U.S. Department of Transportation, Federal Highway Administration Evaluation of Soil and Rock Properties, Geotechnical Engineering Circular No. 5, FHWA-IF-02-034.

The observational method, or use of back analysis, to determine engineering properties of soil or rock is often used with slope failures, embankment settlement or excessive settlement of existing structures.

- **Landslides or slope failures:** With landslides or slope failures, the process generally starts with determining the geometry of the failure and then determining the soil/rock parameters or subsurface conditions that cause the safety factor to approach 1.0. Often the determination of the back-calculated properties is aided by correlations with index tests or experience on other projects.

- **Embankment settlement:** For embankment settlement, a range of soil properties is generally determined based on laboratory performance testing on undisturbed samples.
Monitoring of fill settlement and pore pressure in the soil during construction allows the soil properties and prediction of the rate of future settlement to be refined.

- **Structure settlement**: For structures such as bridges that experience unacceptable settlement or retaining walls that have excessive deflection, the engineering properties of the soils can sometimes be determined if the magnitudes of the loads are known. As with slope stability analysis, the geometry of the subsurface soil must be adequately known, including the history of the groundwater level at the site.

5.4 In-Situ Field Testing

Standards and details regarding field tests such as the Standard Penetration Test (SPT), the Cone Penetrometer Test (CPT), the vane shear test, and other tests and their applications in geotechnical design are provided in Sabatini, et al. (2002). Standards for sampling and testing of materials are in general accordance with ASTM (www.astm.org).

In general, correlations between N-values and soil properties should only be used for cohesionless soils and sand, in particular. Caution should be used when using N-values obtained in gravelly soil. Gravel particles can plug the sampler, resulting in higher blow counts and estimates of friction angles than actually exist. Caution should also be used when using N-values to determine silt or clay parameters due to the dynamic nature of the test and resulting rapid changes in pore pressures and disturbance within the deposit. Correlations of N-values with cohesive soil properties should generally be considered as preliminary. N-values can also be used for liquefaction analysis. See Chapter 6 for more information regarding the use of N-values for liquefaction analysis.

A discussion of field measurement of permeability is presented in Sabatini, et al. (2002), and ASTM D 4043 presents a guide for the selection of various field methods.

Note:

If in-situ test methods are utilized to determine hydraulic conductivity, one or more of the following methods should be used:

- Well pumping tests
- Packer permeability tests
- Seepage Tests
- Slug tests
- Piezocone tests

5.4.1 Correction of Field SPT Values

The N-values obtained are dependent on the equipment used and the skill of the operator, and should be corrected to standard N60 values (an efficiency of 60 percent is typical for rope and cathead systems). This correction is necessary because many of the correlations developed to determine soil properties are based on N60-values. SPT N-values should be corrected for hammer efficiency in accordance with section 4.4.3 of Sabatini, et al. (2002).

ODOT requires that all hammers have an energy measurement performed at the time of drilling of a boring or that the hammer efficiency of each hammer be supplied with the boring log. Caution must be used when noting N-value correlations and the notation “N(uncorr)” or “N'(60)” must be indicated.
The following values for energy ratios (ER) may be assumed if hammer specific data are not available:

- ER = 60% for conventional drop hammer using rope and cathead
- ER = 80% for automatic trip hammer

Hammer efficiency (ER) for specific hammer systems used in local practice may be used in lieu of the values provided. If used, specific hammer system efficiencies shall be developed in general accordance with ASTM D-4945 for dynamic analysis of driven piles or another accepted procedure.

Corrections for rod length, hole size, and use of a liner may also be made, if appropriate. In general, these are only significant in unusual cases or where there is significant variation from standard procedures. These corrections may be significant for evaluation of liquefaction. Information on these additional corrections may be found in: “Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils”; Publication Number: MCEER-97-0022; T.L. Youd, I.M. Idriss (1997) and in “Cetin, K., Seed, R., et al.

N-values are also affected by overburden pressure, and in general should be corrected for that effect, if applicable to the design method or correlation being used. N-values corrected for both overburden and the efficiency of the field procedures used shall be designated as (N1)60 as stated in Sabatini, et al. (2002).

5.5 Laboratory Testing of Soil and Rock

Laboratory testing is a fundamental element of a geotechnical investigation. The ultimate purpose of laboratory testing is to measure physical soil and rock properties utilizing standard repeatable procedures. Laboratory test data is also used to refine the visual observations and field testing data from the subsurface field exploration program, and to determine how the soil or rock will behave under the proposed loading conditions. The ideal laboratory program will provide sufficient data to complete an economical design without incurring excessive tests and costs. Depending on the project issues, testing may range from simple soil classification testing to complex strength and deformation testing. Details regarding specific types of laboratory tests and their use are provided in Sabatini, et al. (2002).

5.5.1 Quality Control for Laboratory Testing

Improper storage, transportation and handling of samples can significantly alter the material properties and result in misleading test results. The requirements provided in FHWA-HI-97-021, Subsurface Investigations, NHI course manual #132031, Mayne, et al., (1997) for these issues and laboratory testing of soils should be followed. Laboratories conducting geotechnical testing shall be either AASHTO accredited or fulfill the requirements of AASHTO R18 for qualifying testers and calibrating/verifications of testing equipment for those tests being performed.

5.5.2 Developing the Testing Plan

The amount of laboratory testing required for a project will vary depending on availability of preexisting data, the character of the soils and the requirements of the project. Laboratory tests should be selected to provide the desired and necessary data as economically as possible. Geotechnical information requirements are provided in Sabatini, et al. (2002) that address design of geotechnical features. Laboratory testing should be performed on both representative and critical test specimens obtained from geologic layers across the site. Critical areas correspond to locations where the results of the laboratory tests could result in a significant change in the proposed design. In
general, a few carefully conducted tests on samples selected to cover the range of soil properties
with the results correlated by classification and index tests is the most efficient use of resources. The
following should be considered when developing a testing program:

- Project type (bridge, embankment, rehabilitation, buildings, etc.)
- Size of the project
- Loads to be imposed on the foundation soils
- Types of loads (i.e., static, dynamic, etc.)
- Whether long-term conditions or short-term conditions are in view
- Critical tolerances for the project (e.g., settlement limitations)
- Vertical and horizontal variations in the soil profile as determined from boring logs and visual
 identification of soil types in the laboratory
- Known or suspected peculiarities of soils at the project location (i.e., swelling soils, collapsible
 soils, organics, etc.)
- Presence of visually observed intrusions, slickensides, fissures, concretions, etc in sample – how
 will it affect results
- Project schedules and budgets

5.6 Engineering Properties of Soil

5.6.1 Laboratory Performance Testing

Laboratory performance testing of soil is mainly used to estimate strength, compressibility, and
permeability characteristics. Shear strength may be determined on either undisturbed specimens of
fine-grained soil (undisturbed specimens of granular soils are very difficult, if not impossible, to
obtain), or disturbed or remolded specimens of fine or coarse grained soil. There are a variety of
shear strength tests that can be conducted, and the specific type of test selected depends on the
specific application. See Sabatini, et al. (2002) for specific guidance on the types of shear strength
tests needed for various applications.

5.6.1.1 Disturbed Shear Strength Testing

Disturbed soil shear strength testing is less commonly performed, and is primarily used as
supplementary information when performing back-analysis of existing slopes, or for fill material and
construction quality assurance when minimum shear strength is required. It is difficult to obtain
accurate shear strength values through shear strength testing of disturbed (remolded) specimens
since the in-situ density and soil structure is quite difficult to accurately recreate, especially
considering the specific in-situ density may not be known. The accuracy of this technique in this case
must be recognized when interpreting the results. However, for estimating the shear strength of
compacted backfill, more accurate results can be obtained, since the soil placement method, as well
as the in-situ density and moisture content, can be recreated in the laboratory with some degree of
confidence. The key in the latter case is the specimen size allowed by the testing device, as in many
cases, compacted fills have a significant percentage of gravel sized particles, requiring fairly large
test specimens (i.e., minimum 3 to 4 inch diameter, or narrowest dimension specimens of 3 to 4
inches).
Typically, a disturbed sample of the granular backfill material (or native material in the case of obtaining supplementary information for back-analysis of existing slopes) is sieved to remove particles that are too large for the testing device and test standard, and is compacted into a mold to simulate the final density and moisture condition of the material. The specimens may or may not be saturated after compacting them and placing them in the shear testing device, depending on the condition that is to be simulated. In general, a drained test is conducted, or if it is saturated, the pore pressure during shearing can be measured (possible for triaxial testing; generally not possible for direct shear testing) to obtained drained shear strength parameters. Otherwise, the test is run slow enough to be assured that the specimen is fully drained during shearing (note that estimating the testing rate to assure drainage can be difficult). Multiple specimens tested using at least three confining pressures should be tested to obtain a shear strength envelope. See Sabatini, et al. (2002) for additional details.

5.6.1.2 Other Laboratory Tests

Tests to evaluate compressibility or permeability of existing subsurface deposits must be conducted on undisturbed specimens, and sample disturbance must be kept to a minimum. See Sabatini, et al. (2002) for additional requirements regarding these and other types of laboratory performance tests that should be followed.

5.6.2 Correlations to Estimate Engineering Properties of Soil

Correlations that relate in-situ index test results such as the SPT or CPT or laboratory soil index testing may be used in lieu of, or in conjunction with, performance laboratory testing and back-analysis of site performance data to estimate input parameters for the design of the geotechnical elements of a project. Since properties estimated from correlations tend to have greater variability than measurement using laboratory performance data (see Phoon, et al., 1995), properties estimated from correlation to in-situ field index testing or laboratory index testing should be based on multiple measurements within each significant geologic unit (if the geologic unit is large enough to obtain multiple measurements). A minimum of 3 to 5 measurements should be obtained from each geologic unit as the basis for estimating design properties.

The drained friction angle of granular deposits should be determined based on the correlation provided in Table 5-1.

Table 5-1. Correlation of SPT N values to drained friction angle of granular soils (modified after Bowles, 1977)

<table>
<thead>
<tr>
<th>N1(60) from SPT (blows/ft)</th>
<th>Φ' (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td><4</td>
<td>25-30</td>
</tr>
<tr>
<td>4</td>
<td>27-32</td>
</tr>
<tr>
<td>10</td>
<td>30-35</td>
</tr>
<tr>
<td>30</td>
<td>35-40</td>
</tr>
<tr>
<td>50</td>
<td>38-43</td>
</tr>
</tbody>
</table>

Experience should be used to select specific values within the ranges. In general, finer materials or materials with significant silt-sized material will fall in the lower portion of the range. Coarser materials with less then 5% fines will fall in the upper portion of the range.
Care should be exercised when using other correlations of SPT results to soil parameters. Some published correlations are based on corrected values (N1(60)) and some are based on uncorrected values (N). The designer should ascertain the basis of the correlation and use either N1(60) or N as appropriate. Care should also be exercised when using SPT blow counts to estimate soil shear strength if in soils with coarse gravel, cobbles, or boulders. Large gravels, cobbles, or boulders could cause the SPT blow counts to be unrealistically high.

Correlations for other soil properties (other than as specifically addressed above for the soil friction angle) as provided in Sabatini, et al. (2002) may be used if the correlation is well established and if the accuracy of the correlation is considered regarding its influence if the estimate obtained from the correlation in the selection of the property value used for design. Local geologic formation-specific correlations may also be used if well established by data comparing the prediction from the correlation to measured high quality laboratory performance data, or back-analysis from full scale performance of geotechnical elements affected by the geologic formation in question.

5.7 Engineering Properties of Rock

Engineering properties of rock are generally controlled by the discontinuities within the rock mass and not the properties of the intact material. Therefore, engineering properties for rock must account for the properties of the intact pieces and for the properties of the rock mass as a whole, specifically considering the discontinuities within the rock mass. A combination of laboratory testing of small samples, empirical analysis, and field observations should be employed to determine the engineering properties of rock masses, with greater emphasis placed on visual observations and quantitative descriptions of the rock mass.

Rock properties can be divided into two categories: intact rock properties and rock mass properties.

- **Intact rock**: Intact rock properties are determined from laboratory tests on small samples typically obtained from coring, outcrops or exposures along existing cuts. Engineering properties typically obtained from laboratory tests include specific gravity, unit weight, ultrasonic velocity, compressive strength, tensile strength, and shear strength.

- **Rock mass properties**: Rock mass properties are determined by visual examination and measurement of discontinuities within the rock mass, and how these discontinuities will affect the behavior of the rock mass when subjected to the proposed construction.

The methodology and related considerations provided by Sabatini, et al. (2002) should be used to assess the design properties for the intact rock and the rock mass as a whole.

However, the portion of Sabatini, et al. (2002) that addresses the determination of fractured rock mass shear strength parameters (Hoek and Brown, 1988) is outdated. The original work by Hoek and Brown has been updated and is described in Hoek, et al. (2002).

The updated method uses a Geological Strength Index (GSI) to characterize the rock mass for the purpose of estimating strength parameters, and has been developed based on re-examination of hundreds of tunnel and slope stability analyses in which both the 1988 and 2002 criteria were used and compared to field results. While the 1988 method has been more widely published in national (e.g., FHWA) design manuals than has the updated approach provided in Hoek, et al. (2002), considering that the original developers of the method have recognized the shortcomings of the 1988 method and have reassessed it through comparison to actual rock slope stability data, the Hoek, et al. (2002) is considered to be the most accurate methodology. Therefore the Hoek, et al. (2002) method should be used for fractured rock mass shear strength determination. Note that this method is only to be used for highly fractured rock masses in which the stability of the rock slope is not structurally controlled.
5.8 Final Selection of Design Values

5.8.1 Overview

After the field and laboratory testing is completed, the geotechnical designer should review the quality and consistency of the data, and should determine if the results are consistent with expectations. Once the lab and field data have been collected, the process of final material property selection begins. At this stage, the geotechnical designer generally has several sources of data consisting of that obtained in the field, laboratory test results and correlations from index testing. In addition, the geotechnical designer may have experience based on other projects in the area or in similar soil/rock conditions. Therefore, if the results are not consistent with each other or previous experience, the reasons for the differences should be evaluated, poor data eliminated and trends in data identified. At this stage it may be necessary to conduct additional performance tests to try to resolve discrepancies.

Geotechnical Design Property Assessment

As stated in Section 5.1, the focus of geotechnical design property assessment and final selection is on the individual geologic strata identified at the project site. A geologic stratum is characterized as having the same geologic depositional history and stress history, and generally has similarities throughout the stratum in its density, source material, stress history, and hydrogeology. All of the information that has been obtained up to this point including preliminary office and field reconnaissance, boring logs, CPT soundings etc., and laboratory data are used to determine soil and rock engineering properties of interest and develop a subsurface model of the site to be used for design. Data from different sources of field and lab tests, from site geological characterization of the site subsurface conditions, from visual observations obtained from the site reconnaissance, and from historical experience with the subsurface conditions at or near the site must be combined to determine the engineering properties for the various geologic units encountered throughout the site.

However, soil and rock properties for design should not be averaged across multiple strata, since the focus of this property characterization is on the individual geologic stratum. Often, results from a single test (e.g. SPT N-values) may show significant scatter across a site for a given soil/rock unit. Data obtained from a particular soil unit for a specific property from two different tests (e.g. field vane shear tests and lab UU tests) may not agree. Techniques should be employed to determine the validity and reliability of the data and its usefulness in selecting final design parameters. After a review of data reliability, a review of the variability of the selected parameters should be carried out. Variability can manifest itself in two ways: 1) the inherent in-situ variability of a particular parameter due to the variability of the soil unit itself, and 2) the variability associated with estimating the parameter from the various testing methods. From this step, final selection of design parameters can commence, and from there completion of the subsurface profile.

5.8.2 Data Reliability and Variability

Inconsistencies in data should be examined to determine possible causes and assess any mitigation procedures that may be warranted to correct, exclude, or downplay the significance of any suspect data. Chapter 8 of Sabatini, et al. (2002) outlines step-by-step procedures for analyzing data and resolving inconsistencies.
5.8.3 Final Property Selection

The final step is to incorporate the results of the previous section into the selection of values for required design properties. Recognizing the degree of variability discussed in the previous section, the potential impact of that variability (or uncertainty) on the level of safety in the design, and on potential cost and constructability impacts, should be assessed. If the impact of this uncertainty is likely to be significant, parametric analyses should be conducted, or more data could be obtained to help reduce the uncertainty. Since the sources of data that could be considered may include measured laboratory data, field test data, performance data, and other previous experience with the geologic unit(s) in question, it will not be possible to statistically combine all this data together to determine the most likely property value.

Engineering judgment, combined with parametric analyses as needed, will be needed to make the final assessment and determination of each design property. This assessment should include a decision as to whether the final design value selected should reflect the interpreted average value for the property, or a value that is somewhere between the most likely average value and the most conservative estimate of the property. Design property selection should achieve a balance between the desire for design safety and the cost effectiveness and constructability of the design. In some cases, the selection of conservative design properties could result in very conservative designs that are un-constructible (e.g., using very conservative design parameters resulting in a pile foundation that must be driven deep into a very dense soil unit that in reality is too dense to penetrate with available equipment).

Note that in Chapter 8, where reliability theory was used to establish load and resistance factors, the factors were developed assuming that mean values for the design properties are used. However, even in those cases, design values that are more conservative than the mean may still be appropriate, especially if there is an unusual amount of uncertainty in the assessment of the design properties due, for example to highly variable site conditions, lack of high quality data to assess property values, or due to widely divergent property values from the different methods used to assess properties within a given geologic unit.

Depending on the availability of soil or rock property data and the variability of the geologic strata under consideration, it may not be possible to reliably estimate the average value of the properties needed for design. In such cases, the geotechnical designer may have no choice but to use a more conservative selection of design parameters to mitigate the additional risks created by potential variability or the paucity of relevant data. Note that for those resistance factors that were determined based on calibration by fitting to allowable stress design, this property selection issue is not relevant, and property selection should be based on the considerations discussed previously.

The process and examples to make the final determination of properties to be used for design provided by Sabatini, et al. (2002) should be followed.

5.8.4 Development of the Subsurface Profile

While Section 5.8 generally follows a sequential order, it is important to understand that the selection of design values and production of a subsurface profile is more of an iterative process. The development of design property values should begin and end with the development of the subsurface profile. Test results and boring logs will likely be revisited several times as the data is developed and analyzed before the relation of the subsurface units to each other and their engineering properties are finalized.

The ultimate goal of a subsurface investigation is to develop a working model that depicts major subsurface layers exhibiting distinct engineering characteristics.
The end product is the subsurface profile, a two dimensional depiction of the site stratigraphy. The following steps outline the creation of the subsurface profile:

1. Complete the field and lab work and incorporate the data into the preliminary logs.
2. Lay out the logs relative to their respective field locations and compare and match up the different soil and rock units at adjacent boring locations, if possible. However, caution should be exercised when attempting to connect units in adjacent borings, as the geologic stratigraphy does not always fit into nice neat layers. Field descriptions and engineering properties will aid in the comparisons.
3. Group the subsurface units based on engineering properties.
4. Create cross sections by plotting borings at their respective elevations and positions horizontal to one another with appropriate scales. If appropriate, two cross sections should be developed that are at right angles to each other so that lateral trends in stratigraphy can be evaluated when a site contains both lateral and transverse extents (i.e. a building or large embankment).
5. Analyze the profile to see how it compares with expected results and knowledge of geologic (depositional) history. Have anomalies and unexpected results encountered during exploration and testing been adequately addressed during the process? Make sure that all of the subsurface features and properties pertinent to design have been addressed.

5.8.5 Selection of Design Properties for Engineered Materials

This section provides guidelines for the selection of properties that are commonly used on ODOT projects such as engineered fills. The engineering properties are based primarily on gradation and compaction requirements, with consideration of the geologic source of the fill material typical for the specific project location. For materials such as common borrow where the gradation specification is fairly broad, a wider range of properties will need to be considered.

5.8.5.1 Borrow Material

The standard specification for Borrow Material, section 00330.12, states it may be virtually any soil or aggregate either naturally occurring or processed which is free of unsuitable materials. Follow these guidelines:

- On ODOT projects, Borrow Material which meets the criteria for Moisture-Density Testable Material is compacted to at least 95 percent of maximum density based on the Standard Proctor in accordance with 00330.43(b) (2-b). Borrow Material which is a Non-Moisture Density Testable Material is typically compacted in accordance with the procedure described in 00330.43(c).
- Because of the variability of the materials that may be used as Borrow Material, the estimation of an internal friction angle and unit weight should be based on the actual material used.
- For non-plastic materials, the friction angle may be in the 30 to 34 degree range, and the unit weight may be in the 115 to 130 pcf range.
- Lower range values should be used for finer grained materials compacted to 90 percent of maximum density.
In general during design, the specific source of borrow is not known. Therefore, it is not prudent to select a design friction angle that is near or above the upper end of the range unless the geotechnical designer has specific knowledge of the source(s) likely to be used, or unless quality assurance shear strength testing is conducted during construction. Borrow material will likely have a high enough fines content to be moderately to highly moisture sensitive. This moisture sensitivity may affect the design property selection if it is likely that placement conditions are likely to be marginal due to the timing of construction.

5.8.5.2 Select Granular Backfill

The standard specification for Select Granular Backfill, section 00330.14, ensures that the mixture will be granular and contain at least a minimal amount of gravel size material. The materials are likely to be poorly graded sand and contain enough fines to be moderately moisture sensitive. The following applies:

- Select Granular Backfill is not an all-weather material. Select Granular Backfill gradation indicates that drained friction angles of 34 to 38 degrees are possible when the soil is well compacted.
- Relatively clean sands in a loose state will likely have drained friction angles of 30 to 35 degrees. Unit weights will be in the 120 to 130 pcf range for all the Select Granular Backfill materials. However, these values are highly dependent on the geologic source of the material. Windblown, beach, or alluvial sands that have been rounded through significant transport could have significantly lower shear strength values.
- Reject and scalped materials from processing could also have relative low friction angles depending on the uniformity of the material and the degree of rounding in the soil particles.

In general, during design, the specific source of borrow is not known. Therefore, it is not prudent to select a design friction angle that is near or above the upper end of the range unless the geotechnical designer has specific knowledge of the source(s) likely to be used or unless quality assurance shear strength testing is conducted during construction. Select Granular Backfill with significant fines content may sometimes be modeled as having a temporary or apparent cohesion value from 50 to 200 psf. If a cohesion value is used, the friction angle should be reduced so as not to increase the overall strength of the material. For long term analysis, all the Granular Materials should be modeled with no cohesive strength.

5.8.5.3 Select Stone Backfill

The standard specification for Select Stone Backfill, section 00330.15, should ensure reasonably well graded sand and gravel. Maximum fines content is not specified, so the material may be moisture sensitive. In very wet conditions, material with lower fines content should be used. The Select Stone Backfill specification indicates that internal angles of friction up to 40 degrees are possible, and that shear strength values less than 36 degrees are not likely. However, lower shear strength values are possible for Select Stone Backfill from naturally occurring materials obtained from non-glacially derived sources such as wind blown or alluvial deposits. In many cases, processed materials are used for Select Stone Backfill, and in general, this processed material has been crushed, resulting in rather angular particles and high soil friction angles. Unit weights of 130 to 140 pcf are possible if very well graded. In general, during design, the specific source of borrow is not known. Therefore, it is not prudent to select a design friction angle that is near or above the upper end of the range unless the geotechnical designer has specific knowledge of the source(s) likely to be used or unless quality assurance shear strength testing is conducted during construction.
5.8.5.4 Stone Embankment Material

Stone Embankment Material, standard specification section 00330.16, is considered an all-weather material. Compactive effort is based on a method specification. Because of the nature of the material, compaction testing is generally not feasible. The specification allows for a broad range of material and properties such that the internal friction angle and unit weight can vary considerably based on the amount and type of rock in the fill. For compacted rock embankments constructed with Stone Embankment Material:

- Internal friction angles of up to 45 degrees may be reasonable.
- Unit weights for rock embankments generally range from 130 to 140 pcf.

Durability is major issue with this material. Rock excavated from cuts consisting of siltstone, sandstone and claystone may break down during the compaction process, resulting in less coarse material. Also, if the rock is weak, failure may occur through the rock fragments rather than around them. In these types of materials, the strength parameters may resemble those of embankments constructed from Borrow Materials. For existing embankments, the soft rock may continue to weather with time, if the embankment materials continue to become wet. Inadequate slope stability and excessive settlement of embankments with non-durable materials are the long term effects of using weak rock materials without proper placement and compaction.

5.8.5.5 Wood Fiber

Wood fiber fills have been used by ODOT for fill heights up to about 20 feet. The wood fiber has generally been used as lightweight fill material in emergency repair situations because wet weather does not affect the placement and compaction of the embankment. Only fresh wood fiber should be used to prolong the life of the fill, and the maximum particle size should be 6 inches or less. The wood fiber is generally compacted in lifts of about 12 inches with two or more passes of a track dozer. Presumptive design values of 50 pcf for unit weight and an internal angle of friction of about 40 degrees may be used for the design of the wood fiber fills (Allen et al., 1993).

To mitigate the effects of leachate, the amount of water entering the wood should be minimized. Generally, topsoil caps of about 2 feet in thickness are used. The pavement section should be a minimum of 2 feet (a thicker section may be needed depending on the depth of wood fiber fill). Wood fiber fill will experience creep settlement for several years and some pavement distress should be expected during that period. Additional information on the properties and durability of wood fiber fill is provided in Kilian and Ferry (1993).

5.8.5.6 Geofoam

Geofoam has not been used as lightweight fill on ODOT projects, but there may be projects that will incorporate it in the future. In contrast, WSDOT has had about 10 years of experience with Geofoam in embankment construction. Geofoam ranges in unit weight from about 1 to 2 pcf. The Geofoam material is made from expanded polystyrene (EPS) and is manufactured according to ASTM standards for minimum density (ASTM C 303), compressive strength (ASTM D 1621) and water absorption (ASTM C 272). Type I and II Geofoam are generally used in highway applications. Bales of recycled industrial polystyrene waste are also available. These bales have been used to construct temporary haul roads over soft soil. However, these bales should not be used in permanent applications.
5.9 References

6 Seismic Design

6.1 General

This chapter describes ODOT’s standards and policies regarding the geotechnical aspects of the seismic design of ODOT projects. The purpose is to provide geotechnical engineers and engineering geologists with specific seismic design guidance and recommendations not found in other standard design documents used for ODOT projects. Complete design procedures (equations, charts, graphs, etc.) are usually not provided unless necessary to supply, or supplement, specific design information, or if they are different from standards described in other references. This chapter also describes what seismic recommendations should typically be provided by the geotechnical engineer in the Geotechnical Report.

6.1.1 Seismic Design Standards

The seismic design of ODOT bridges shall follow methods described in the most currently adopted edition of the AASHTO Guide Specifications for LRFD Seismic Bridge Design (AASHTO, 2009) supplemented by the Bridge Design and Drafting Manual (BDDM) and the recommendations supplied in this chapter. Refer to the ODOT BDDM for additional design criteria and guidance regarding the use of the new Guide Specification on bridge projects. The term “AASHTO” as used in this chapter refers to AASHTO LRFD design methodology. For seismic design of new buildings the 2003 International Building Code (IBC) (International Code Council, 2002) should be used. In addition to these standards, the manuals listed below may be referenced for additional design guidance in seismic design for issues and areas not addressed in detail in the AASHTO specifications or this chapter. Unless otherwise noted, the standards and policies described in this chapter supersede those described in the referenced documents.

This FHWA document provides design guidance for geotechnical earthquake engineering for highways. Specifically, this document provides guidance on earthquake engineering fundamentals, seismic hazard analysis, ground motion characterization, site characterization, seismic site response analysis, seismic slope stability, liquefaction, and seismic design of foundations and retaining walls. The document also includes design examples (Volume II) for typical geotechnical earthquake engineering analyses.

- For liquefaction analysis, embankment deformation estimates and bridge damage assessment the following two documents should be referenced:

The above two documents are available on the ODOT Geo-Environmental web page. In light of the continuous advances being made in evaluating the impact of liquefaction hazards and ground failures on structures the above two references should be supplemented with the most up to date technical information and guidelines.

- **NCHRP Report 472**: The National Cooperative Highway Research Program Report 472 (2002), “Comprehensive Specifications for the Seismic Design of Bridges”, is a report containing the findings of a study completed to develop recommended specifications for seismic design of highway bridges. The report covers topics including design earthquakes and performance objectives, foundation design, liquefaction hazard assessment and design, and seismic hazard representation.

- **United States Geological Survey (USGS) Website.**

 The USGS National Seismic Hazard Maps website is a valuable tool for characterizing the seismic hazard for a specific site. This site provides the results of Probabilistic Seismic Hazard Analyses (PSHA) in the form of the Uniform Seismic Hazard, which reflects the contribution of all seismic sources in the region on the ground motion parameters. The website provides ground motion parameters (Peak Ground Acceleration (PGA), and acceleration response spectral ordinates between 0.1 and 5.0 seconds) on Site Class B rock for various return periods, specified as a percentage probability of exceedance in a given exposure interval, in years. The website provides PGA and spectral acceleration ordinates at periods of 0.2 and 1.0 second for risk levels of 5 and 10 percent probabilities of exceedance (PE) in 50 years for use in the development of response spectra, in accordance with AASHTO. This risk level of 5 and 10 percent PE corresponds to approximately 7 and 14 percent PE in 75 years, respectively. The website also provides interactive deaggregation of a site’s probabilistic seismic hazard. The deaggregation is useful for demonstrating the relative contribution of regional seismic sources, in terms of magnitude and source-to-site distance, on the seismic hazard at a site. De-aggregation is particularly useful for demonstrating how the ground motion parameters generated by individual sources compare to the mean motions determined for the Uniform Seismic Hazard.

- **WSDOT Geotechnical Design Manual, M46-03.01, November, 2008**
6.1.2 Background

In light of the complexity of seismic foundation design, continuous enhancements to analytical and empirical methods of evaluation are being made as more field performance data is collected and research advances the state of knowledge. New methods of analysis and design are continuously being developed and therefore it is considered prudent to not be overly prescriptive in defining specific design methods for use in the seismic design process. However, a standard of practice needs to be established within the geotechnical community regarding minimum required design criteria for seismic design. It is well recognized that these standards are subject to change in the future as a result of further research and studies. This chapter will be continually updated as more information is obtained, new design codes are approved and better design methods become available.

Significant engineering judgment is required throughout the entire seismic design process. The recommendations provided herein assume the geotechnical designer has a sound education and background in basic earthquake engineering principles. These recommendations are not intended to be construed as complete or absolute. Each project is different in some way and requires important decisions and judgments be made at key stages throughout the design process. The applicability of these recommended procedures should be continually evaluated throughout the design process. Peer review may be required to assist the design team in various aspects of the seismic hazard and earthquake-resistant design process.

Earthquakes often result in the transfer of large axial and lateral loads from the bridge superstructure into the foundations. At the same time, foundation soils may liquefy, resulting in a loss of soil strength and foundation capacity. Under this extreme event condition it is common practice to allow the foundations to be loaded up to the nominal (ultimate) foundation resistances (allowing resistance factors as high as 1.0). This design practice requires an increased emphasis on quality control during the construction of bridge foundations since we are now often relying on the full, unfactored nominal resistance of each foundation element to support the bridge during the design seismic event.

In addition to seismic foundation analysis, seismic structural design also involves an analysis of the soil-structure interaction between foundation materials and foundation structure elements. Soil-structure interaction is typically performed in bridge design by modeling the foundation elements using equivalent linear springs. Some of the recommendations presented herein relate to bridge foundation modeling requirements and the geotechnical information the structural designer needs in order to do this analysis. Refer to Section 1.1.4 of the ODOT Bridge Design and Drafting Manual (BDDM) for more information on bridge foundation modeling procedures.

6.1.3 Responsibility of the Geotechnical Designer

The geotechnical designer is responsible for providing geotechnical/seismic input parameters to the structural engineers for their use in design of the transportation infrastructure. Specific elements to be addressed by the geotechnical designer include the design ground motion parameters, site response, geotechnical design parameters and geologic hazards. The geotechnical designer is also responsible for providing input for evaluation of soil-structure interaction (foundation response to seismic loading), earthquake induced earth pressures on retaining walls, and an assessment of the impacts of geologic hazards on the structures. Refer to Chapter 21 for geotechnical seismic design reporting requirements.

The seismic geologic hazards to be evaluated include fault rupture, liquefaction, ground failure including flow slides and lateral spreading, ground settlement, and instability of natural slopes and earth structures. The seismic performance of tunnels is a specialized area of geotechnical earthquake engineering not specifically addressed in this guidance document; however the ground
motion parameters determined in the seismic hazard analyses outlined herein may form the basis for tunnel stability analyses (e.g., rock fall adjacent to portals and in unlined tunnels, performance of tunnel lining). The risk associated with seismic geologic hazards shall be evaluated by the geotechnical designer following the methods described in this chapter.

6.2 Seismic Design Performance Requirements

6.2.1 New Bridges

A two-level approach is used in ODOT for the seismic design of all new bridges. The seismic design of ODOT bridges is evaluated in terms of performance requirements for ground motions having average return periods of approximately 500-years and 1000-years. The 500-year and 1000-year return period ground motions have probabilities of exceedance of approximately 14% and 7% in 75 years respectively. For a 50 year time period, the probabilities of exceedance of the 500 and 1000 year ground motions are approximately 10% and 5% respectively. The seismic foundation design requirements, including approach embankments, shall be consistent with meeting the current ODOT Bridge Engineering Section seismic design criteria. Excerpts from those criteria are summarized as follows from the BDDM:

1000-year “No-Collapse” Criteria: Design all bridges for 1000-year return period ground motions (7% probability of exceedance in 75 years) under “No Collapse” criteria.

Under this level of shaking, the bridge and approach structures, bridge foundation and approach fills must be able to withstand the forces and displacements without collapse of any portion of the structure. In general, bridges that are properly designed and detailed for seismic loads can accommodate relatively large deflections without the danger of collapse. If large embankment displacements (lateral spread) or overall slope failure of the end fills are predicted, the impacts on the bridge end bent, abutment walls and interior piers should be evaluated to see if the impacts could potentially result in collapse of any part of the structure. Slopes adjacent to a bridge or tunnel should be evaluated if their failure could result in collapse of a portion or all of the structure.

500-year “Serviceability” Criteria: In addition to the 1000-year “No Collapse” criteria, design all bridges to remain “Serviceable” after subjected to 500-year return period ground motions (14% probability of exceedance in 75 years).

Under this level of shaking, the bridge and approach fills, are designed to remain in service shortly after the event (after the bridge has been properly inspected) to provide access for emergency vehicles. In order to do so, the bridge is designed to respond semi-elastically under seismic loads with minimal damage. Some structural damage is anticipated but the damage should be repairable and the bridge should be able to carry emergency vehicles immediately following the earthquake. This holds true for the approach fills leading up to the bridge.

Approach fill settlement and lateral displacements should be minimal to provide for immediate emergency vehicle access for at least one travel lane. For mitigation purposes approach fills are defined as shown on Figure 6-12. As a general rule of thumb, an estimated lateral embankment displacement of up to 1 foot is considered acceptable in many cases as long as the “serviceable” performance criteria described above can be met. Vertical settlements on the order of 6” to 12” may be acceptable depending on the roadway geometry and anticipated performance of the bridge end panels. Bridge end panels are required on all state highway bridge projects (per BDDM) and should be evaluated for their ability to...
withstand the anticipated embankment displacements and settlement and still provide the required level of performance. These displacement criteria are to serve as general guidelines only and engineering judgment is required to determine the final amounts of acceptable displacement that will meet the desired criteria. It should be noted that these estimated displacements are not at all precise values and may easily vary by factors of 2 to 3 depending on the analysis method(s) used. The amounts of allowable vertical and horizontal displacements should be decided on a case-by-case basis, based on discussions and consensus between the bridge designer and the geotechnical designer and perhaps other project personnel.

In addition to bridge and approach fill performance, embankments through which cut-and-cover tunnels are constructed should be designed to remain stable during the design seismic event because of the potential for damage or possible collapse of the structure should they fail.

Approach embankments and structure foundations should be designed to meet the above performance requirements. Unstable slopes such as active or potential landslides, and other seismic hazards such as liquefaction, lateral spread, post-earthquake settlement and downdrag may require mitigation measures to ensure that the structure meets these performance requirements. Refer to Chapter 11 for guidance on approved ground improvement techniques to use in mitigating these hazards.

6.2.2 Bridge Widening

For the case where an existing bridge is to be widened, the foundations for the widened portion of the bridge and bridge approaches should be designed to remain stable and meet the same bridge performance criteria as new bridges. In addition, if the existing bridge foundation is not stable and could cause collapse of the bridge widening, or if liquefiable soils are present, to the extent practical, measures should be taken to prevent collapse of the existing bridge during the design seismic event. If foundation retrofit or liquefaction mitigation is necessary to meet the performance criteria, these designs shall be reviewed and approved by the HQ Bridge Section. The foundations for the widening should be designed in a way that the seismic response of the bridge widening can be made compatible with the seismic response of the existing bridge as stabilized in terms of foundation deformation and stiffness. If it is not feasible to stabilize the existing bridge such that it will not cause collapse of the bridge widening during the design seismic event, consideration should be given to replacing the existing bridge rather than widening it.

6.2.3 Bridge Abutments and Retaining Walls

Seismic design performance objectives for retaining walls depend on the function of the retaining wall and the potential consequences of failure.

There are four retaining wall categories, as defined in Section 15.2.1. The seismic design performance objectives for these four categories are listed below:

- **Bridge Abutments**: Bridge Abutments are considered to be part of the bridge, and shall meet the seismic design performance objectives for the bridge see Section 6.2.1.

- **Bridge Retaining Walls**: Design all Bridge Retaining Walls for 1000-year return period ground motions under the “No Collapse” bridge criteria. Under this level of shaking, the Bridge Retaining Wall must be able to withstand seismic forces and
displacements without failure of any part of the wall or collapse of any part of the bridge which it supports. Bridge Retaining Walls shall be designed for overall stability under these seismic loading conditions, including anticipated displacements associated with liquefaction. Mitigation to achieve overall stability may be required.

In addition, design all Bridge Retaining Walls for 500-year return period ground motions under the “Serviceability” bridge criteria. Under this level of shaking, Bridge Retaining Wall movement must not result in unacceptable performance of the bridge or bridge approach fill, as described under the 500-Year “Serviceability” criteria in Section 6.2.1.

- **Highway Retaining Walls**: Design all Highway Retaining Walls for 1000-year return period ground motions. Under this level of shaking, the Highway Retaining Wall must be able to withstand seismic forces and displacements without failure of any part of the Highway Retaining Wall. Highway Retaining Walls shall be designed for overall stability under these seismic loading conditions, including anticipated displacements associated with liquefaction. Mitigation to achieve overall stability may be required.

- **Minor Retaining Walls**: Landscape Retaining Walls have no seismic design requirements.

The policy to design all Highway Retaining Walls to meet overall stability requirements for seismic design may not be practical at all wall locations. Where it is not practical to design a Highway Retaining Wall for overall stability under seismic loading, and where a failure of this type would not endanger the public, impede emergency and response vehicles along essential lifelines, or have an adverse impact on another structure, the local Region Tech Center will evaluate practicable alternatives for improving the seismic resistance and performance of the retaining wall.

In general, retaining walls and bridge abutments should not be built on or near landslides or other areas that are marginally stable under static conditions. However, if site conditions and project constraints provide no cost effective or technical alternative, the local Region Tech Center will evaluate, on a case-by-case basis, the possible placement of these structures in these locations, as well as requirements for global (overall) instability of the landslide during the design seismic event.

6.2.4 Embankments and Cut Slopes

Cut slopes, fill slopes, and embankments are generally not evaluated for seismic instability unless they directly affect a bridge, highway retaining wall or other structure. Bridge approach fills should always be evaluated for stability and settlement, especially if they are relied upon to provide passive soil resistance behind the abutment (Earthquake-Resisting System). Seismic instability associated with routine cuts and fills are typically not mitigated due to the high cost of applying such a design policy uniformly to all slopes statewide. If failure and displacement of existing slopes, embankments or cut slopes, due to seismic loading, could adversely impact an adjacent structure, these areas should be considered for stabilization. Such impacts should be evaluated in terms of meeting the performance criteria described in Section 6.2.
6.3 **Ground Motion Parameters**

The ground motion parameters to be used in design are currently based on the 2002 USGS National Seismic Hazard maps for the Pacific Northwest region. The USGS seismic hazard mapping project provides the results of probabilistic seismic hazard analysis (PSHA) at the regional scale. The ground motion maps for the 500 and 1000-year return periods are available in the *ODOT Bridge Design and Drafting Manual (BDDM)*.

Ground motion parameters for the 2002 USGS hazard maps are also available on the USGS website at:

http://earthquake.usgs.gov/hazmaps/

The designer should review the basis of these hazard maps and have a thorough understanding of the data they represent and the methods used for their development. The 2008 USGS National Seismic Hazard maps are currently under review by the ODOT Bridge Section and are not approved for use on ODOT projects at this time.

The BDDM maps provide Peak Ground Acceleration (PGA), 0.20 sec. and 1.0 sec. spectral accelerations scaled in contour intervals of 0.01g. Ground motion values can be obtained from the USGS website by selecting the “Custom Mapping and Analysis Tools” link and then the “Interactive Deaggregation, 2002” link. The PGA and spectral accelerations can then be obtained by entering the latitude and longitude of the site and the desired probability of exceedance (i.e., 5% in 50 years for the 1000 year return event). It should be noted that the PGA obtained from these maps is actually the Peak “Bedrock” Acceleration (i.e., Site Class B), and does not include, or take into account, any local soil amplification effects. See [Section 6.5.1](#) for the development of design ground motion data.

6.3.1 Site Specific Probabilistic Seismic Hazard Analysis

Ground motion parameters are also sometimes determined from a site specific Probabilistic Seismic Hazard Analysis (PSHA). A site specific probabilistic hazard analysis may be considered when:

- New information about one or more active seismic sources that affect the site has become available since the most recent USGS/AASHTO Seismic Hazard Maps were developed (2006), and the new seismic source information will result in a significant change to the seismic hazard at the site. The existence of the Next Generation Attenuation (NGA) relationships shall not be the sole justification for conducting a PSHA.

- The site is located within 6 miles of a known active fault capable of producing at least a magnitude 5 earthquake. For these cases, near-fault ground motion effects (directivity, directionality) were not explicitly modeled in the development of national ground motion maps, and the code/specification based hazard level may be significantly unconservative. These “near-fault” effects are normally only considered for essential or critical structures.

- The size or importance of the bridge is such that a lower probability of exceedance (and therefore a longer return period) should be considered.

It should be noted that the site-specific PSHA is often uncoupled from subsequent site-specific ground response analyses, which are described in [Section 6.5.1.3](#). A site specific probabilistic hazard analysis focuses on the spatial and temporal occurrence of earthquakes, and evaluates all of the possible earthquake sources contributing to the seismic hazard at a site with the purpose of
developing ground motion data consistent with a specified uniform hazard level. The analysis takes into account all seismic sources that may affect the site and quantifies the uncertainties associated with the seismic hazard, including the location of the source, extent and geometry, maximum earthquake magnitudes, rate of seismicity, and estimated ground-motion parameters. The result of the analysis is a uniform hazard acceleration response spectrum that is based on a specified uniform hazard level or probability of exceedance within a specified time period (i.e., 7% probability of exceedance in 75 years). The PSHA is routinely performed to yield ground motion parameters for bedrock (Site Class B) sites. The influence of the soil deposits at the site on the ground motion characteristics is subsequently evaluated using the results of the PSHA for bedrock conditions. A ground response analysis commonly utilizes computer programs such as SHAKE or D-MOD to model the response of a soil column subjected to bedrock ground motion. The input bedrock motion is in the form of time-histories that are typically matched (or scaled) to the bedrock response spectrum developed from the probabilistic hazard analysis.

A site specific probabilistic hazard analysis is typically not performed on routine ODOT projects. If such an analysis is desired for the design of ODOT bridge projects the HQ Bridge Engineering Section must approve the justification and procedures for conducting the analysis and the analysis must be reviewed by an independent source approved by the HQ Bridge Engineering Section. The review and approval of the PSHA will be coordinated with the region geotechnical engineer.

6.3.2 Magnitude and PGA for Liquefaction Analysis

Earthquake engineering evaluations that address repeated (cyclic) loading and failure of soils must include estimates of the intensity and duration of the earthquake motions. In soils, liquefaction and cyclic degradation of soil stiffness/strength represent fatigue failures that often impact bridge structures. In practice-oriented liquefaction analysis, the intensity of the cyclic loading is related to the PGA and/or cyclic stress ratio, and the duration of the motions is correlated to the magnitude of the causative event. The PGA and magnitude values selected for the analysis should represent realistic ground motions associated with specific, credible scenario earthquakes. The PGA values obtained from the USGS web site represent the “mean” values of all of the sources contributing to the hazard at the site for a particular recurrence interval. These “mean” PGA values should not typically be used for liquefaction analysis unless the ground motions at the site are dominated by a single source, as demonstrated in the PSHA deaggregation. Otherwise, the “mean” PGA values may not represent realistic ground motions resulting from known sources affecting the site. Additionally, the mean magnitude provided by PSHA should not be used as the causative event as this often averages the magnitude of large Cascadia Subduction Zone earthquakes and the magnitude of the smaller, local crustal events with a resulting magnitude that is not representative of any seismic source in the region. For this reason the modal event(s), designated as Magnitude and Distance (M-R) pairs, should be evaluated individually.

Deaggregation of Seismic Hazard

A deaggregation of the total seismic hazard should be performed to find the principal individual sources contributing to the seismic hazard at the site. As a general rule of thumb, all sources that contribute more than about 5% to the hazard should be evaluated. However, sources that contribute less than 5% may also be sources to consider since they may still significantly affect the liquefaction analysis or influence portions of the site’s response spectra. The relative contribution of all considered sources, in terms of magnitude and distance, on PGA and on spectral accelerations at 9 different frequencies (or periods) of structural vibration can be readily evaluated using the results of the USGS seismic hazard mapping tools and deaggregation capabilities available on-line.

It is recommended that the relative contributions of all of the following sources be considered when performing liquefaction and ground deformation hazards:

1. Cascadia Subduction Zone – mega-thrust earthquakes
2. Deep, intraslab Benioff Zone earthquakes such as the 1949 and 1965 Puget Sound, and 2001 Nisqually earthquakes,
3. Shallow crustal earthquakes associated with mapped faults, and
4. Regional background seismicity and ‘randomly’ occurring earthquakes that are not associated with mapped faults (gridded seismicity).

Deaggregation of the seismic hazard will provide the Magnitude (M) and Distance (R) of each source contributing to the hazard at the site. These M & R values can then be utilized with ground motion attenuation relationships to obtain bedrock PGA values at the site due to the individual sources. It is recommended that more than one attenuation relationship be used to estimate ground motion parameters for each of the primary seismic sources in Oregon (i.e., Cascadia Subduction Zone events, and shallow crustal events). The use of three to four attenuation relationships is common in practice. In order to facilitate direct comparison of the ground motion parameters with the USGS seismic hazard mapping results it is necessary to employ the same attenuation relationships that were used in developing the 2002 USGS seismic hazard maps. These attenuation relationships are summarized below. Additional attenuation relationships, appropriate for the style of faulting, can be used at the discretion of the geotechnical engineer.

Crustal Faults:

Extensional Areas: Equal weight for all:

Non-Extensional Areas: Equal weight for all:

Extensional and non-extensional areas are defined in Figure 5 of the USGS report:

Cascadia Subduction Zone:

Magnitude 9.0:

Use equal weighting for both methods for distances where the Sadigh et al. (1997) PGA values for M8.5 exceed those of Youngs et al. (1997) for M9.0. For larger distances (R > 60 km), where the Youngs et al. (1997) PGA values are the higher of the two, use only the Youngs et al. (1997) relations.
Magnitude 8.3:

Use equal weighting for both methods for distances up to 70km. For distances larger than 70km, apply full weight to Youngs et al. (1997).

The source distances for the subduction zone events reported from the USGS deaggregation web site are the closest distances to the fault or slab (Rrup). Review the following document for more information on the proper applications and usage of these attenuation relationships.

It is important to note that the ground motion values (PGA, S0.2, S1.0) obtained for the primary M-R pairs obtained in this fashion will not likely be the same as the "mean" values developed for the Uniform Seismic Hazard (USH), which are used as the basis for structural analysis. Also, it is likely that the average value of a specific ground motion parameter obtained for the principal M-R pairs will also vary from the mean value provided by the USGS USH. The difference will reflect the number M-R pairs considered and the relative contributions of the sources to the overall hazard.

This deaggregation process will likely yield more than one M-R pair, and therefore more than one magnitude and peak ground acceleration, for liquefaction analysis in some areas of the state where the hazard is dominated by two or more seismic sources. In most of western Oregon, this will include both shallow crustal sources and the Cascadia Subduction Zone. In this case, each M-R (i.e., M-PGA) pair should be evaluated individually in a liquefaction analysis. If liquefaction is estimated for any given M-PGA pair, the evaluation of that pair is continued through the slope stability and lateral deformation evaluation processes. In some areas in the state where the seismic hazard is dominated by a single source, such as the Cascadia Subduction Zone along the coast, a single pair of M-R values (largest magnitude (M) and closest distance (R)) may be appropriate for defining and assessing the worst case liquefaction condition.

The steps involved in a simplified deaggregation application and liquefaction analysis are described in Dickenson, 2005. Four example problems are provided in Dickenson, 2005 for different areas of the state, demonstrating the deaggregation procedure. A recommended procedure for estimating lateral embankment deformations is also included in this paper along with two example problems. A flow chart of this process, extracted from this paper, is attached as Appendix 6-A.

6.4 Site Characterization for Seismic Design

The geotechnical site investigation should identify and characterize the subsurface conditions and all geologic hazards that may affect the seismic analysis and design of the proposed structures or features. The goal of the site characterization for seismic design is to develop the subsurface profile and soil property information needed for seismic analyses. The geotechnical designer should review and discuss the project objectives with the project engineering geologist and the structural designer, as seismic design is a cooperative effort between the geotechnical and structural engineering disciplines. The geotechnical designer should do the following as a minimum:

- Identify potential geologic hazards, areas of concern (e.g., deep soft soils or liquefiable soils), and potential variability of local geology.

- Identify engineering analyses to be performed (e.g., ground response analysis, liquefaction susceptibility, lateral spreading/slope stability assessments, seismic-induced settlement/downdrag, dynamic earth pressures).
• Identify engineering properties required for these analyses.

• Determine methods to obtain the required design parameters and assess the validity of such methods for the soil and rock material types.

Develop an integrated investigation of in-situ testing, soil sampling, and laboratory testing. This includes determining the number of tests/samples needed and appropriate locations to obtain them.

6.4.1 Subsurface Investigation for Seismic Design

Refer to Section 6.0 of AASHTO, 2009, for guidance regarding subsurface investigation and site characterization for seismic foundation design. With the possible exception of geophysical explorations associated with obtaining seismic shear wave velocities in soil and rock units, the subsurface data required for seismic design is typically obtained concurrently with the data required for static design of the project (i.e., additional exploration for seismic design over and above what is required for foundation design is typically not necessary). However, the exploration program may need to be adjusted to obtain the necessary parameters for seismic design. For example, the use of the seismic cone penetration test, SCPT, is recommended in order to supplement tip resistance and friction data with shear wave velocity. Also, for Site Class determination, subsurface investigations must extend to a depth of at least 100 feet unless bedrock is encountered before reaching that depth.

The selection of field drilling equipment and sampling methods will reflect the goals of the investigation. If liquefaction potential is a significant issue, mud rotary drilling with SPT sampling is the preferred method of investigation. Hollow-stem auger (HSA) drilling may be utilized for SPT sampling and testing if precautionary measures are taken. Soil heaving and disturbance in HSA borings can lead to unreliable SPT “N” values. Therefore care must be taken if using HSA methods to maintain an adequate water head in the boring at all times and to use drilling techniques that minimize soil disturbance. Non-standard samplers shall not be used to collect data used in liquefaction analysis and mitigation design.

In addition to standard subsurface investigation methods, the following equipment calibration, soil testing, and/or sampling should be considered depending upon site conditions.

• **SPT Hammer Energy:** This value (usually termed hammer efficiency) should be noted on the boring logs or in the Geotechnical Report. The hammer efficiency should be obtained from the hammer manufacturer, preferably through field testing of the hammer system used to conduct the test. This is needed to determine the hammer energy correction factor, C_{ref}, for liquefaction analysis.

• **Soil Samples for Gradation Testing:** Used for determining the amount (percentage) of fines in the soil for liquefaction analysis. Also useful for scour estimates.

• **Undisturbed Samples:** Laboratory testing for S_{u}, e_{50}, E, G, and other parameters for both foundation modeling and seismic design.

• **Shear Wave Velocity Measurements:** For use in determining soil Site Class. Also used to develop a shear wave velocity profile of the soil column and to obtain low strain shear modulus values to use in analyses such as dynamic soil response.

• **Seismic Piezocone Penetrometer:** For use in determining soil Site Class. Also used to develop a shear wave velocity profile and obtain low strain shear modulus values to use in a ground response analysis.
- **Piezocone Penetrometer Test:** Used for liquefaction analysis and is even preferred in some locations due to potential difficulties in obtaining good quality SPT results. Pore pressure measurements and other parameters can be obtained for use in foundation design and modeling. Also useful in establishing the pre-construction subsurface soil conditions prior to conducting ground improvement techniques and the post-construction condition after ground improvement.

- **Depth to Bedrock:** If a ground response analysis is to be performed, the depth to bedrock must be known. "Bedrock" material for this purpose is defined as a material unit with a shear wave velocity of at least 2500 ft/sec.

- **Pressuremeter Testing:** For development of p-y curves if soils cannot be adequately characterized using standard COM624P or LPILE parameters. Testing is typically performed in soft clays, organic soils, very soft or decomposed rock and for unusual soil or rock materials. The shear modulus, G, for shallow foundation modeling and design can also be obtained.

Table 6-1 provides a summary of site characterization needs and testing considerations for geotechnical/seismic design.
Table 6-1. Summary of site characterization needs and testing considerations for seismic design (adapted from Sabatini, et al., 2002)

<table>
<thead>
<tr>
<th>Geotechnical Issues</th>
<th>Engineering Evaluations</th>
<th>Required Information For Analyses</th>
<th>Field Testing</th>
<th>Laboratory Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Response</td>
<td>• source characterization and attenuation</td>
<td>• subsurface profile (soil, groundwater, depth to rock)</td>
<td>• SPT</td>
<td>• cyclic triaxial tests</td>
</tr>
<tr>
<td></td>
<td>• site response spectra</td>
<td>• shear wave velocity</td>
<td>• CPT</td>
<td>• Atterberg Limits</td>
</tr>
<tr>
<td></td>
<td>• time history</td>
<td>• bulk shear modulus for low strains</td>
<td>• seismic one</td>
<td>• specific gravity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• relationship of shear modulus with increasing shear strain</td>
<td>• geophysical testing (shear wave velocity)</td>
<td>• moisture content</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• equivalent viscous damping ratio with increasing shear strain</td>
<td>• piezometer</td>
<td>• unit weight</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Poisson’s ratio</td>
<td></td>
<td>• resonant column</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• unit weight</td>
<td></td>
<td>• cyclic direct simple shear test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• relative density</td>
<td></td>
<td>• torsional simple shear test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• seismicity (PGA, design earthquakes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geologic Hazards Evaluation (e.g. liquefaction, lateral spreading, slope stability)</td>
<td>• liquefaction susceptibility</td>
<td>• subsurface profile (soil, groundwater, rock)</td>
<td>• SPT</td>
<td>• soil shear tests</td>
</tr>
<tr>
<td></td>
<td>• liquefaction induced settlement</td>
<td>• shear strength (peak and residual)</td>
<td>• CPT</td>
<td>• triaxial tests (including cyclic)</td>
</tr>
<tr>
<td></td>
<td>• settlement of dry sands</td>
<td>• unit weights</td>
<td>• seismic cone</td>
<td>• grain size distribution</td>
</tr>
<tr>
<td></td>
<td>• lateral spreading</td>
<td>• grain size distribution</td>
<td>• Becker penetration test</td>
<td>• Atterberg Limits</td>
</tr>
<tr>
<td></td>
<td>• slope stability and deformations</td>
<td>• plasticity characteristics</td>
<td>• vane shear test</td>
<td>• specific gravity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• relative density</td>
<td>• piezometers</td>
<td>• organic content</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• penetration resistance</td>
<td>• geophysical testing (shear wave velocity)</td>
<td>• moisture content</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• shear wave velocity</td>
<td></td>
<td>• unit weight</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• seismicity (PGA, design earthquakes)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6-1 Summary of site characterization needs and testing considerations for seismic design (cont'd) (adapted from Sabatini, et al., 2002).

<table>
<thead>
<tr>
<th>Geotechnical Issues</th>
<th>Engineering Evaluations</th>
<th>Required Information For Analyses</th>
<th>Field Testing</th>
<th>Laboratory Testing</th>
</tr>
</thead>
</table>
| Input for Structural Design | • shallow foundation springs
• p-y data for deep foundations
• down-drag on deep foundations
• residual strength
• lateral earth pressures
• lateral spreading/slope movement loading
• post earthquake settlement | • subsurface profile (soil, groundwater, rock)
• shear strength (peak and residual)
• seismic horizontal earth pressure coefficients
• shear modulus for low strains or shear wave velocity
• relationship of shear modulus with increasing shear strain
• unit weight
• Poisson's ratio
• seismicity (PGA, design earthquake)
• site topography | • CPT
• SPT
• seismic cone
• piezometers
• geophysical testing (shear wave velocity)
• vane shear test | • triaxial tests
• soil shear tests
• unconfined compression
• grain size distribution
• Atterberg Limits
• specific gravity
• moisture content
• unit weight
• resonant column
• cyclic direct simple shear test
• torsional simple shear test |

For routine designs, in-situ or laboratory testing for parameters such as the dynamic shear modulus at small strains, equivalent viscous damping, shear modulus and damping ratio versus shear strain, and residual shear strength are generally not directly obtained. Instead, index properties and correlations based on in-situ field measurements (such as the SPT and CPT) are generally used in lieu of in-situ or laboratory measurements for routine design to estimate these values.

If correlations are used to obtain seismic soil design properties, the following correlations are recommended. Other acceptable correlations can be found in Dickenson et al. (2002), Kramer (1996), and other technical references. Region and site-specific correlations developed by practitioners are acceptable with adequate supporting documentation and approval by ODOT.

- **ODOT Table 6-2**, which presents correlations for estimating initial shear modulus (G_{max}) based on relative density, penetration resistance or void ratio.

- **ODOT Figure 6-1**, which presents shear modulus reduction curves and equivalent viscous damping ratio for cohesionless soils (sands) as a function of shear strain and depth.
• ODOT Figure 6-2 and Figure 6-3, which present shear modulus reduction curves and equivalent viscous damping ratio, respectively, as a function of cyclic shear strain and plasticity index for fine grained (cohesive) soils.

• ODOT Figure 6-4, Figure 6-5 and Figure 6-6 which presents a chart for estimating undrained residual shear strength for liquefied soils as a function of SPT blow counts (N’60) and vertical effective stress.

Table 6-2. Correlations for estimating initial shear modulus (Kavazijian, et al., 1997).

<table>
<thead>
<tr>
<th>Reference</th>
<th>Correlation</th>
<th>Units (1)</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed et al. (1984)</td>
<td>(G_{\text{max}} = 220 \left(K_2 \right)_{\text{max}} \left(\sigma_m^{\prime} \right)^{\frac{1}{3}})</td>
<td>kPa</td>
<td>((K_2)_{\text{max}}) is about 30 for very loose sands and 75 for very dense sands; about 80 to 180 for dense well graded gravels; Limited to cohesionless soils</td>
</tr>
<tr>
<td></td>
<td>((K_2){\text{max}} = 20(N_1){60}^{\frac{1}{3}})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imai and Tonouchi (1982)</td>
<td>(G_{\text{max}} = 15,560 N_{60}^{0.68})</td>
<td>kPa</td>
<td>Limited to cohesionless soils</td>
</tr>
<tr>
<td>Mayne and Rix (1993)</td>
<td>(G_{\text{max}} = 99.5(P_a)^{0.305}(q_c)^{0.665}/(e_0)^{1.13})</td>
<td>kPa (2)</td>
<td>Limited to cohesive soils; (P_a =) atmospheric pressure</td>
</tr>
<tr>
<td>Notes:</td>
<td>(1) 1 kPa = 20.885 psf</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) (P_a) and (q_c) in kPa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 6-1. Shear modulus reduction and damping ratio curves for sand (EPRI, 1993).
Figure 6-2. Variation of G/G_{max} vs. cyclic shear strain for fine grained soils (redrafted from Vucetic and Dobry, 1991).

Figure 6-3. Equivalent viscous damping ratio vs. cyclic shear strain for fine grained soils (redrafted from Vucetic and Dobry, 1991).
Figure 6-4. Residual undrained shear strength for liquefied soils as a function of SPT blow counts (Seed and Harder, 1990 and Idriss, 2003).

Figure 6-5. Estimation of residual strength ratio from SPT resistance (Olson and Stark, 2002).
6.5 Geotechnical Seismic Design Procedures

The geotechnical designer shall evaluate the site and subsurface conditions to the extent necessary to provide the following assessments and recommendations:

- an assessment of the seismic hazard,
- determination of design ground motion values,
- site characterization,
- seismic analysis of the foundation materials and
- an assessment of the effects of the foundation response on the proposed structure.

Figure 6-6. Variation of residual strength ratio with SPT resistance and initial vertical effective stress using Kramer-Wang model (Kramer, 2008).
Specific aspects of seismic foundation design generally consist of the following procedures:

- Determine the Peak Bedrock Acceleration (PGA), 0.2 and 1.0 second spectral accelerations for the bridge site from the 2002 USGS National Seismic Hazard Maps for the 500 and 1000-year return periods,

- Determine the Site Class and Site Coefficients based on the properties of the soil profile,

- Develop the Design Response Spectrum for the site or conduct ground response analysis if necessary,

- Determine liquefaction potential of foundation soils,

- If liquefaction is predicted:
 1. Estimate embankment deformations (lateral spread), bridge damage potential and approach fill performance for both the 500 and 1000-year events.
 2. Determine seismic fill settlement (potential downdrag and bridge damage if applicable).
 3. Provide soil properties for both the liquefied and non-liquefied soil conditions for use in the lateral load analysis of deep foundations.
 4. Determine reduced foundation resistances and their effects on proposed bridge foundation elements.

- Evaluate slope stability and settlement for non-liquefied soil conditions.

- Evaluate impacts of seismic geologic hazards including liquefaction, lateral spreading and slope instability on infrastructure, including estimated loads and deformations acting on the structure.

- Develop foundation spring values for dynamic loading (liquefied and non-liquefied soil conditions). Also recommendations regarding lateral springs for use in modeling abutment backfill soil resistance.

- Determine earthquake induced earth pressures (active and passive) and provide stiffness values for equivalent soil springs (if required) for retaining structures and below grade walls.

- Evaluate options to mitigate seismic geologic hazards, such as ground improvement, if appropriate.

Note that separate analysis and recommendations will be required for the 500 and 1000 year seismic design ground motions. A general design procedure is described in the following flow chart (Figure 6-7) along with the information that should be supplied in the final geotechnical report.
6.5.1 Development of Design Ground Motion Data

6.5.1.1 Development

In general, there are two options for the development of design ground motion parameters (response spectral ordinates) for seismic design. Both procedures are based on the USGS 2002 PSHA maps. These are described as follows:

2. **Ground Response Analysis**: Use specification/code based hazard (2002 USGS Maps) with site specific ground response analysis.

Both methods take local site effects into account. For most routine structures at sites with competent soils (i.e., no liquefiable, sensitive, or weak soils), the first method (General Procedure), described in Article 3.4 of the *AASHTO Guide Specification for LRFD Seismic Bridge Design*, is sufficient to account for site effects. However, the importance of the structure, the ground motion levels and the soil and geological conditions of a site may dictate the need for a Ground Response Analysis (second method). The geotechnical engineer is responsible for developing and providing the design response spectra for the project.

6.5.1.2 AASHTO General Procedure

The standard method of developing the acceleration response spectrum is described in AASHTO, 2009. First, the peak ground acceleration (PGA), the short-period spectral acceleration (S_s) and the long-period spectral acceleration (S_1) are obtained from the 2002 USGS Seismic Hazard Maps for the location of the bridge. PGA, S_s, and S_1 are obtained for both the 500-year and 1000-year return periods. Then the soil profile is classified as one of six different site classes (A through F). This Site Class designation is then used to determine the “Site Coefficients”, F_{pga}, F_a and F_v, except for sites classified as Site Class F, which required a site-specific ground response analysis Section 6.5.3. These site coefficients are then multiplied by the peak ground acceleration ($F_{pga} \times PGA$), the short-period spectral acceleration ($F_a \times S_s$) and the long period spectral acceleration ($F_v \times S_1$) respectively and used to develop the site response spectrum. A program to develop the response spectra using the general procedure has been developed by the Bridge Section and can be accessed through the ODOT Bridge Section web page.

Once the response spectrum is developed the structural engineer can determine the Response Spectral Acceleration (per AASHTO 2009 Guide Specifications) for use in the seismic design of the structure.
STEP 1; Ground Motion Data
- Identify the seismic sources in the region affecting the site for the given return period (500 and 1000 yrs):
- Determine Peak Ground Accelerations (PGA), S_u, and S_1, from the 2002 USGS Seismic Hazard Maps for bedrock (Site Class B) conditions.
- Determine Site Class and Site Coefficients, then develop the Design Response Spectrum representing the Uniform Seismic Hazard.

STEP 2; Site Response Analysis
- Decide whether a site response analysis is warranted.
- If so, perform deaggregation of seismic hazard to determine principal M & R pairs.
- Select appropriate acceleration time histories and establish scaling factors or perform spectral matching.
- Generate the following:
 - PGA and 5% damped smoothed response spectra at the depth(s) of interest (e.g., ground surface, depth of pile/pier fixity).
 - Profiles of PGA, cyclic shear strain, and cyclic shear stress with depth.

STEP 3; Evaluate Liquefaction Potential & Effects (PGA $\geq 0.10g$)
- Estimate the cyclic resistance of the soils as a function of depth from in situ and/or lab data.
- Specify the cyclic loading at each depth from Step 2.
- Using the ratio of the cyclic resistance to the cyclic loading determine the potential for significant excess pore pressure generation and cyclic degradation of soil stiffness and strength.

STEP 3a; For foundation soils susceptible to liquefaction:
- Estimate post-liquefaction soil strengths
- Evaluate embankment stability and estimated deformations
- Develop mitigation designs if required
- Assess the effects of liquefaction on foundation resistances and provide reduced foundation resistances under liquefied soil conditions.
 (CHECK DOWNDRAG)

STEP 3a; Evaluate Non-liquefied Soil Response
- Dynamic settlement of foundation soils and downdrag potential
- Evaluate approach fill slope stability
- Estimate lateral approach fill displacements

STEP 4; Provide seismic foundation modeling parameters as appropriate (see Section 1.1.4 of BDDM):
- **Spread Footings**
 - Shear modulus; ‘G’ is dependent on the shear strain; generally a ‘G’ corresponding to a shear strain in the range of 0.20% to 0.02% is appropriate. For large magnitude events (M>7.5) and very high PGA (>0.6g), a ‘G’ corresponding to a shear strain of 1% is recommended. A ground response analysis may also be conducted to determine the appropriate shear strain value to use.
 - Poissons ratio, ν
 - Kp, Su, μ, γ

- **Piles**
 - p-y curve data for non-liquefied and liquefied soils
 - p-y multipliers
 - Designation as “end bearing” or “friction” piles for modeling axial stiffness

- **Shafts**
 - p-y curve data for non-liquefied and liquefied soils
 - p-y multipliers

Liquefaction Potential

No Liquefaction Potential

Figure 6-7. General Geotechnical Seismic Design Procedures
6.5.1.3 Response Spectra and Analysis for Liquefied Soil Sites

Site coefficients have not been developed for liquefied soil conditions. For this case site-specific analysis is required to estimate ground motion characteristics. The AASHTO Guide Specifications for LRFD Seismic Bridge Design states that at sites where soils are predicted to liquefy the bridge shall be analyzed and designed under two configurations, the nonliquefied condition and liquefied soil condition described as follows:

- **Nonliquefied Configuration:** The structure is analyzed and designed, assuming no liquefaction occurs by using ground response spectrum and soil design parameters based on nonliquefied soil conditions.

- **Liquefied Configuration:** The structure is reanalyzed and designed under liquefied soil conditions assuming the appropriate residual resistance for lateral and axial deep foundation response analyses consistent with liquefied soil conditions (i.e., modified P-Y curves, modulus of subgrade reaction, T-Z curves, axial soil frictional resistance). The design spectrum should be the same as that used in nonliquefied configuration.

A site-specific response spectrum may be developed for the “Liquefied Configuration” based on a ground response analysis that utilizes non-linear, effective stress methods, which properly account for pore pressure buildup and stiffness degradation of the liquefiable soil layers see Section 6.5.1.4. The decision to complete a ground response analysis where liquefaction is anticipated should be made by the geotechnical designer based on the site geology and characteristics of the bridge being designed. The design response spectrum resulting from the ground response analyses shall not be less than two-thirds of the spectrum developed using the general procedure for the non-liquefied soil condition.

6.5.1.4 Ground Response Analysis

For most projects, the General Procedure as described in Article 3.4.1 of the AASHTO Guide Specifications for LRFD Seismic Bridge Design is appropriate and sufficient for determining the seismic hazard and site response spectrum. However, it may be appropriate to perform a site-specific evaluation for cases involving special aspects of seismic hazard (e.g., near fault conditions, high ground motion values, coastal sites located in relatively close proximity to the CSZ source), specific soil profiles, and essential bridges. The results of the site-specific response analysis may be used as justification for a reduction in the spectral response ordinates determined using the standard AASHTO design spectrum (General Procedure) representing the Uniform Seismic Hazard.

Site specific ground response analyses (GRA) are required for Site Class “F” soil profiles, and may be warranted for other site conditions or project requirements. Site Class “F” soils are defined as follows:

- Peat or highly organic clays, greater than 10 ft in thickness,
- Very high plasticity clays (H > 25 ft with PI > 75),
- Very thick soft/medium stiff clays (H >120 ft),
Other conditions under which a ground response analysis should be considered are listed below:

- Very important or critical structures or facilities,
- Liquefiable Soil Conditions. For liquefiable soil sites, it may be desirable to develop response spectra that take into account increases in pore water pressure and soil softening. This analysis results in a response spectra that is generally lower than the nonliquefied response spectra except for spectral accelerations in the higher period range (above 1.0 second). A nonlinear effective stress analysis may also be necessary to refine the standard liquefaction analysis based on Seed’s Simplified (SPT) Method (or others) with information from a GRA. This is especially true if liquefaction mitigation designs are proposed. The cost of liquefaction mitigation is sometimes very large and a more detailed analysis to verify the potential, and extent, of liquefaction is usually warranted.
- very deep soil deposits or thin (<40 – 50 feet) soil layers over bedrock.
- to obtain better information for evaluating lateral deformations, near surface soil shear strain levels or deep foundation performance.
- to obtain ground surface PGA values for abutment wall or other design.

Procedures for conducting a site specific ground response analysis are described in Article 3.4.3. of the AASHTO guide specifications and in Chapter 4 of Kavazanjian, et al. (1997).

A ground response analysis evaluates the response of a layered soil deposit subjected to earthquake motions. One-dimensional, equivalent-linear models are commonly utilized in practice. This model uses an iterative total stress approach to estimate the nonlinear elastic behavior of soils. Modified versions of the numerical model SHAKE (e.g., ProSHAKE, SHAKE91, SHAKE2000) are routinely used to simulate the propagation of seismic waves through the soil column and generate output consisting of ground motion time histories at selected locations in the soil profile, plots of ground motion parameters with depth (e.g., PGA, cyclic shear stress, cyclic shear strain), and acceleration response spectra at depths of interest. The program calculates the induced cyclic shear stresses in individual soil layers which may be used in liquefaction analysis.

The equivalent linear model provides reasonable results for small to moderate cyclic shear strains (less than about 1 to 2 percent) and modest accelerations (less than about 0.3 to 0.4g) (Kramer and Paulsen, 2004). Equivalent linear analysis cannot be used where large strain incompatibilities are present, to estimate permanent displacements, or to model development of pore water pressures in a coupled manner. Computer programs capable of modeling non-linear, effective stress soil behavior are recommended for sites where high ground motion levels are indicated and it is anticipated that moderate to large shear strains will be mobilized. These are typically sites with soft to medium stiff fine-grained soils or saturated deposits of loose to medium dense cohesionless soils.

Basically, the input parameters required for site specific seismic response analysis include soil layering (thickness), standard geotechnical index properties for the soils, dynamic soil properties for each soil layer, the depth to bedrock or firm soil interface, and a set of ground motion time histories representative of the primary seismic hazards in the region.
Soil parameters required by the equivalent linear models include the shear wave velocity or initial (small strain) shear modulus and unit weight for each soil layer, and curves relating the shear modulus and damping ratio as a function of shear strain (see Section 6.4.1 and Figure 6-1, Figure 6-2 and Figure 6-3 for examples).

6.5.1.5 Selection of Time Histories for Ground Response Analysis

AASHTO (2009) allows two options for the selection of time histories to use in ground response analysis. The two options are:

a) Use a suite of 3 response-spectrum-compatible time histories with the design response spectrum developed enveloping the maximum response, or

b) Use of at least 7 time histories and develop the design spectrum as the mean of the computed response spectra.

For both options, the time histories shall be developed from the representative recorded earthquake motions, or in special instances synthetic ground motions may be used with approval of ODOT. The time histories for these applications shall have characteristics that are representative of the seismic environment of the site and the local site conditions, including the response spectrum for the site.

Analytical techniques used for spectral matching shall be demonstrated to be capable of achieving seismologically realistic time series. The time histories should be scaled to the approximate level of the design response spectrum in the period range of significance (i.e., $0.5 < T < 2.0$).

The procedures for selecting and scaling time histories for use in ground motion response analysis can be summarized as follows:

1. Identify the target response spectra to be used to develop the time histories. The target spectra are obtained from the 2002 USGS Seismic Hazard Maps for top-of-rock locations (base of soil column). Two spectra are required, one for the 500-yr return event and one for the 1000-yr event.

2. Identify the seismic sources that contribute to the seismic hazard for the site, considering the desired probability of exceedance (i.e., 500 and 1000-yr return periods). Use the deaggregation information for the 2002 USGS Seismic Hazard maps to obtain information on the primary sources that affect the site. All seismic sources (M-R pairs) that contribute more than 5% to the hazard in the period range of interest should be considered.

3. Select time histories to be considered for the analysis, considering tectonic environment and style of faulting (subduction zone, Benioff zone, or shallow crustal faults), seismic source-to-site-distance, earthquake magnitude, duration of strong shaking, peak acceleration, site subsurface characteristics, predominant period, etc. In areas where the hazard has a significant contribution from both the Cascadia Subduction Zone (CSZ) and from crustal sources (e.g., Portland and much of the Western part of the state) both earthquake sources need to be included in the analysis and development of a site specific response spectra. In cases such as this, it is recommended that the ground response analysis be conducted using a collection of time histories that include at least 3 motions representative of subduction zone events and 3 motions appropriate for shallow crustal earthquakes with the design response spectrum developed considering the mean spectrum of each of these primary sources.
At sites where the uniform hazard is dominated by a single source, three (3) time histories, representing the seismic source characteristics, may be used and the design response spectrum determined by enveloping the caps of the resulting response spectra.

4. Scale the time histories to match the target spectrum as closely as possible in the period range of interest prior to spectral matching. Match the response spectra from the recorded earthquake time histories to the target spectra using methods that utilize either time series adjustments in the time domain or adjustments made in the frequency domain. See AASHTO Guide Specifications for LRFD Seismic Bridge Design and Kramer (1996) for additional guidance on these techniques.

5. Once the time history(ies) have been spectrally matched, they can be used directly as input into the ground response analysis programs to develop response spectra and other seismic design parameters. Five percent (5%) damping is typically used in all site response analysis.

The results of the dynamic soil response modeling should be presented as the “mean”, “average” and “85th percentile” curves from all of the output response spectra. A “smoothed” response spectra may be obtained by enveloping the peaks of the 85% percentile response curve. The resulting design spectrum may be lower than the 85th percentile curve outside of the period range of interest. Engineering judgment will be required to account for possible limitations of the response modeling. For example, equivalent linear analysis methods may overemphasize spectral response where the predominant period of the soil profile closely matches the predominant period of the bedrock motion. Final modification of the design spectrum must provide representative constant velocity and constant displacement portions of the response. Site-specific response spectra may be used for design however the lower limit shall be no less than 2/3rd of the AASHTO response spectrum using the General Procedure. An example response spectrum is attached in Appendix 6-B.

At some bridge sites, the subsurface conditions (soil profile) may change dramatically along the length of the bridge and more than one response spectrum may be required to represent segments of the bridge with different soil profiles. If the site conditions dictate the need for more than one response spectrum for the bridge, the design response spectrum should be developed by combining the individual spectra into a composite spectrum that envelopes the spectral acceleration values of the individual spectra.

Nonlinear effective stress analysis methods such as D-MOD, DESRA and others may be used to develop response spectra especially at sites where liquefaction of foundation soils is likely. All nonlinear, effective stress modeling and analysis will require an independent peer reviewer with expertise in this type of analysis. In some cases, the response spectra resulting from a nonlinear effective stress analysis may result in spectral acceleration values exceeding the 2/3 AASHTO general procedure criteria in the range of higher periods. If this is the case, the higher response spectra values of the two methods shall be used. For non-linear analysis methods the lower limit shall be no less than 2/3rd of the AASHTO response spectrum developed using the General Procedure.

6.5.1.6 Ground Motion Parameters for Other Structures

For buildings, restrooms, shelters, and other non-transportation structures, specification based seismic design parameters required by the 2003 IBC should be used. The seismic design requirements of the 2003 IBC are based on a risk level of 2 percent PE in 50 years. The 2 percent PE in 50 years risk level corresponds to the maximum considered earthquake. The 2003 IBC identifies procedures to develop a maximum considered earthquake acceleration response spectrum, and defines the design response spectrum as two-thirds of the value of the maximum considered earthquake acceleration response spectrum.
Site response shall be in accordance with the 2003 IBC. As is true for transportation structures, for critical or unique structures or for sites characterized as soil profile Type F (thick sequence of soft soils or liquefiable soils), site response analysis may be required.

6.5.1.7 Bedrock versus Ground Surface Acceleration

Soil amplification factors that account for the presence of soil over bedrock with regard to the estimation of peak ground acceleration (PGA) are directly incorporated into the development of the general procedure for developing response spectra for structural design of bridges and similar structures in the AASHTO LRFD Bridge Design and Guide Specifications and for the structural design of buildings and non-transportation related structures in the 2003 IBC. Additional amplification factors should not be applied to peak bedrock accelerations when code based response spectra are used. However, amplification factors should be applied to the peak bedrock acceleration to determine the peak ground acceleration (PGA) for liquefaction assessment, such as for use with the Simplified Method Section 6.5.5.2, and for the estimation of seismic earth pressures and inertial forces for retaining wall and slope design. For liquefaction assessment and retaining wall and slope design, the Site Factors (Fpga) presented in AASHTO 3.10.3.2 may be applied to the bedrock PGA used to determine the ground surface acceleration, unless a site specific evaluation of ground response is conducted.

6.5.2 Liquefaction Analysis

Liquefaction has been one of the most significant causes of damage to bridge structures during past earthquakes. Liquefaction can damage bridges and structures in many ways including:

- Bearing failure of shallow foundations founded above liquefied soil;
- Liquefaction induced ground settlement;
- Lateral spreading of liquefied ground;
- Large displacements associated with low frequency ground motion;
- Increased earth pressures on subsurface structures;
- Floating of buoyant, buried structures; and
- Retaining wall failure.

Liquefaction refers to the significant loss of strength and stiffness resulting from the generation of excess pore water pressure in saturated, cohesionless soils. Liquefaction can occur in sand and non-plastic to low plasticity silt-rich soils, and in confined gravel layers; however, it is most common in sands and silty sands. For a detailed discussion of the effects of liquefaction, including the types of liquefaction phenomena, liquefaction-induced bridge damage, evaluation of liquefaction susceptibility, post liquefaction soil behavior, deformation analysis and liquefaction mitigation techniques refer to Dickenson, et al. (2002).

Liquefaction hazard assessment includes identifying soils susceptible to liquefaction on the basis of composition and cyclic resistance, evaluating whether the design earthquake loading will initiate liquefaction, and estimating the potential effects of liquefaction on the planned facility. Potential effects of liquefaction on soils and foundations include the following:

- Loss in strength in the liquefied layer(s)
- Liquefaction-induced ground settlement
• Flow failures, lateral spreading, and slope instability.

Due to the high cost of liquefaction mitigation measures, it is important to identify liquefiable soils and the potential need for mitigation measures early on in the design process (during the DAP (TS&L) phase) so that appropriate and adequate funding decisions are made. The following sections provide ODOT’s policies regarding liquefaction and a general overview of liquefaction hazard assessment and its mitigation.

6.5.2.1 Liquefaction Design Policies

All new bridges, bridge widening projects and retaining walls in areas with seismic acceleration coefficients, or PGA, greater than or equal to 0.10g should be evaluated for liquefaction potential. The maximum considered liquefaction depth shall be limited to 75 feet. The potential for liquefaction and limited strength and stiffness reductions due to pore pressure increase caused by ground shaking may be considered below this depth on the basis of cyclic laboratory test data and/or the use of non-linear, effective stress analysis techniques. All non-linear, effective stress modeling and analysis will require an independent peer reviewer with expertise in this type of analysis.

Bridges scheduled for seismic retrofit should also be evaluated for liquefaction potential if they are in a seismic zone with an acceleration coefficient (or PGA) ≥ 0.10g.

In general, liquefaction is conservatively predicted to occur when the factor of safety against liquefaction (FSL) is less than 1.1. A factor of safety against liquefaction of 1.1 or less also indicates the potential for liquefaction-induced ground movement (lateral spread and settlement). Soil layers with FSL between 1.1 and 1.4 will have reduced soil shear strengths due to excess pore pressure generation. For soil layers with FSL greater than 1.4, excess pore pressure generation is considered negligible and the soil does not experience appreciable reduction in shear strength.

If liquefaction is predicted based on the Simplified Method Section 6.5.2.2, and the effects of liquefaction require mitigation measures, a more thorough ground response analysis (e.g. SHAKE, DMOD) is recommended to verify and substantiate the predicted, induced ground motions. This procedure is especially recommended for sites where liquefaction potential is marginal (0.9 < FSL < 1.10). It is also important to determine whether the liquefied soil layer is stratigraphically (laterally) continuous and oriented in a manner that will result in lateral spread or other adverse impact to the bridge.

Groundwater: The groundwater level to use in the liquefaction analysis should be determined as follows:

• **Static Groundwater Condition:** Use the estimated, average annual groundwater level. Perched water tables should only be used if water is estimated to be present in these zones more than 50% of the year.

• **Tidal Areas:** Use the mean high tide elevation.

• **Adjacent Stream, Lake or Standing Water Influence:** Use the estimated, annual, average elevation for the wettest (6 month) seasonal period.
Note:

Note that groundwater levels measured in borings advanced using water or other drilling fluids may not be indicative of true static groundwater levels. Water in these borings should be allowed to stabilize over a period of time to insure measured levels reflect true static groundwater levels. Groundwater levels are preferably measured and monitored using piezometers, taking measurements throughout the climate year to establish reliable static groundwater levels taking seasonal effects into account.

6.5.2.2 Methods to Evaluate Liquefaction Potential

Evaluation of liquefaction potential should be based on soil characterization using in-situ testing methods such as Standard Penetration Tests (SPT) and Cone Penetration Tests (CPT). Liquefaction potential may also be evaluated using shear wave velocity (V_s) testing and Becker Penetration Tests (BPT); however, these methods are not preferred and are used less frequently than SPT or CPT methods. V_s and BPT testing may be appropriate in soils difficult to test using SPT and CPT methods such as gravelly soils though, in the absence of fine grained soil layers that may act as poorly drained boundaries, these soils often have a low susceptibility to liquefaction potential due to high permeability and rapid drainage. If the CPT method is used, SPT sampling and soil gradation testing shall still be conducted to obtain direct information on soil type and gradation parameters for use in liquefaction susceptibility assessment.

Preliminary Screening: A detailed evaluation of liquefaction potential is not required if any of the following conditions are met:

- The bedrock PGA (or Acceleration Coefficient, As) is less than 0.10g,
- The ground water table is more than 75 feet below the ground surface,
- The soils in the upper 75 feet of the profile have a minimum SPT resistance, corrected for overburden depth and hammer energy (N160), of 25 blows/ft, or a cone tip resistance qc, of 150 tsf.
- All soils in the upper 75 feet are classified as “cohesive”, and have a PI ≥ 18. Note that cohesive soils with PI ≥ 18 may still be very soft or exhibit sensitive behavior and could therefore undergo significant strength loss under earthquake shaking. This criterion should be used with care and good engineering judgment. Recent advances in the screening and evaluation of fine-grained soils for strength loss during cyclic loading can be found in Bray and Sancio, (2006) and Boulanger and Idriss, (2006, 2007).

Simplified Procedures: Simplified Procedures should always be used to evaluate the liquefaction potential even if more rigorous methods are used to supplement or refine the analysis. The Simplified Procedure was originally developed by Seed and Idriss (1971) and has been periodically modified and improved since. It is routinely used to evaluate liquefaction resistance in geotechnical practice.

The procedures described in Section 3.4 of the report “Assessment and Mitigation of Liquefaction Hazards to Bridge Approach Embankments in Oregon”, (Dickenson et al, 2003) should be followed for assessing the liquefaction potential of soil by the Simplified Procedures.

The paper titled “Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils” (Youd et al., 2001) also provides a state of the practice summary of the Simplified Procedures for assessment of liquefaction
susceptibility. This paper resulted from a 1996 workshop of liquefaction experts sponsored by the National Center for Earthquake Engineering Research and the National Science Foundation with the objective being to gain consensus on updates and augmentation of the Simplified Procedures. Youd et al. (2001) provide procedures for evaluating liquefaction susceptibility using SPT, CPT, \(V_s \), and BPT criteria.

The Simplified Procedures are based on the evaluation of both the cyclic resistance ratio (CRR) of a soil layer (i.e., the cyclic shear stress required to cause liquefaction) and the earthquake induced cyclic shear stress ratio (CSR). The resistance value (CRR) is estimated based on empirical charts relating the resistance available to specific index properties (i.e. SPT, CPT, BPT or shear wave velocity values) and corrected to an equivalent magnitude of 7.5 using a magnitude scaling factor. Youd et al. (2001) provide the empirical liquefaction resistance charts for both SPT and CPT data to be used with the simplified procedures.

The basic form of the simplified procedures used to calculate the earthquake induced CSR for the Simplified Method is shown in the following equation:

\[
CSR_q = \frac{\tau_{av}}{\sigma_{ov}} = 0.65 \left(\frac{a_{\max}}{g} \right) \left(\frac{\sigma_{ov}}{g} \right) r_d \tag{Equation 6.1}
\]

Where:
- \(\tau_{av} \) = average or uniform earthquake induced cyclic shear stress
- \(a_{\max} \) = peak horizontal acceleration at the ground surface accounting for site amplification effects (ft/sec\(^2\))
- \(g \) = acceleration due to gravity (ft/sec\(^2\))
- \(\sigma_o \) = initial total vertical stress at depth being evaluated (lb/ft\(^2\))
- \(\sigma_o' \) = initial effective vertical stress at depth being evaluated (lb/ft\(^2\))
- \(r_d \) = stress reduction coefficient

The factor of safety against liquefaction is defined by:

\[
FS_{liq} = \frac{CRR}{CSR}
\]

The use of the SPT for the Simplified Procedure has been most widely used and has the advantage of providing soil samples for fines content and gradation testing. The CPT provides the most detailed soil stratigraphy, is less expensive, can simultaneously provide shear wave velocity measurements, and is more reproducible. If the CPT is used, soil samples shall be obtained using the SPT or other methods so that detailed gradational and plasticity analyses can be conducted. The use of both SPT and CPT procedures can provide the most detailed liquefaction assessment for a site.

Where SPT data is used, the sampling and testing procedures should include:

- Documentation on the hammer efficiency (energy measurements) of the system used.
- Correction factors for borehole diameter, rod length and sampler liners should be used, where appropriate.
• Where gravels or cobbles are present, the use of short interval adjusted SPT N values may be effective for estimating the N values for the portions of the sample not affected by gravels or cobbles.

• Blowcounts obtained using non-standard samplers such as the Dames and Moore or modified California samplers shall not be used for liquefaction evaluations.

Limitations of the Simplified Procedures: The limitations of the Simplified Procedures should be recognized. The Simplified Procedures were developed from empirical evaluations of field observations. Most of the case history data was collected from level to gently sloping terrain underlain by Holocene-age alluvial or fluvial sediment at depths less than 50 feet. Therefore, the Simplified Procedures are applicable to only these site conditions. Caution should be used for evaluating liquefaction potential at depths greater than 50 feet using the Simplified Procedure. In addition, the Simplified Procedures estimate the trend of earthquake induced cyclic shear stress ratio with depth based on a coefficient, \(r_d \), which becomes highly variable at depths below about 40 feet.

As an alternative to the use of Equation 6.1, one dimensional ground response analyses should be used to better determine the maximum earthquake induced shear stresses at depths greater than about 50 feet. Equivalent linear, total stress computer programs (Shake2000, ProShake or other equivalent program) may be used for this purpose.

Nonlinear Effective Stress Methods: An alternative to the simplified procedures for evaluating liquefaction susceptibility is to perform a nonlinear, effective stress site response analysis utilizing a computer code capable of modeling pore water pressure generation and dissipation (D-MOD2000, DESRA, FLAC). These are more rigorous analyses and they require additional soil parameters, validation by the practitioner, and additional specialization.

The advantages of this method of analysis include the ability to assess liquefaction at depths greater than 50 feet, the effects of liquefaction and large shear strains on the ground motion, and the effects of higher accelerations that can be more reliably evaluated. In addition, seismically induced deformation can be estimated, and the timing of liquefaction and its effects on ground motion at and below the ground surface can be assessed.

Several non-linear, effective stress analysis programs can be used to estimate liquefaction susceptibility at depth. However, few of these programs are being used by geotechnical designers at this time. In addition, there has been little verification of the ability of these programs to predict liquefaction at depths greater than 50 feet because there are few well documented sites of deep liquefaction.

Due to the highly specialized nature of these more sophisticated liquefaction assessment approaches, an independent peer review by an expert in this type of analysis is required to use nonlinear effective stress methods for liquefaction evaluation.

Magnitude and PGA for Liquefaction Analysis: The procedures described in Section 6.3.2, and in Dickenson et al. (2002), should be used to determine the appropriate earthquake magnitude and peak ground surface acceleration to use in the simplified procedure for liquefaction analysis. If a site specific ground response analysis is used to determine the peak ground surface acceleration(s) for use in liquefaction analyses, this value should be representative of the cyclic loading induced by the M-R pair(s) of interest. It is anticipated that PGA values obtained from site-specific ground response analysis will differ from the PGA determined by the AASHTO General Procedure for the Uniform Seismic Hazard. The PGA and magnitude values used in the liquefaction hazard analysis shall be tabulated for all considered seismic sources.
Magnitude Scaling Factors (MSF): Magnitude scaling factors are required to adjust the cyclic stress ratios (either CRR or CSR) obtained from the Simplified Method (based on M = 7.5) to other magnitude earthquakes. The range of Magnitude Scaling Factors recommended in the 1996 NCEER Workshop on Evaluation of Liquefaction Resistance of Soils (Youd, et. al., 2001) is recommended. Below magnitude 7.5, a range is provided and engineering judgment is required for selection of the MSF. Factors more in line with the lower bound range of the curve are recommended. Above magnitude 7.5 the factors recommended by Idriss are recommended. This relationship is presented in the graph (**Figure 6-8**) and the equation of the curve is:

\[MSF = \frac{102.24}{M^{2.5}} \]
6.5.2.3 Liquefaction Induced Settlement

Both dry and saturated deposits of loose granular soils tend to densify and settle during earthquake shaking. Settlement of unsaturated (dry) granular deposits is discussed in Section 6.5.4. If the Simplified Procedure is used to evaluate liquefaction potential, liquefaction induced ground settlement of saturated granular deposits should be estimated using the procedures by Tokimatsu and Seed (1987) or Ishihara and Yoshimine (1992). The Tokimatsu and Seed (1987) procedure estimates the volumetric strain as a function of earthquake induced CSR and corrected SPT blowcounts. The Ishihara and Yoshimine (1992) procedure estimates the volumetric strain as a function of factor of safety against liquefaction, relative density, and corrected SPT blowcounts or normalized CPT tip resistance. Example charts used to estimate liquefaction induced settlement using the Tokimatsu and Seed procedure and the Ishihara and Yoshimine procedure are presented as Figures 6-9 and 6-10, respectively.

Non-plastic to low plasticity silts (PI ≤ 12) have also been found to be susceptible to volumetric strain following liquefaction. In cases where saturated silt is liquefiable the post-cyclic loading volumetric strain should be estimated from cyclic laboratory testing, or approximately from the relationship developed by Ishihara and Yoshimine.
Figure 6-9. Liquefaction induced settlement estimated using the Tokimatsu & Seed procedure (redrafted from Tokimatsu and Seed, 1987).
Figure 6-10. Liquefaction induced settlement estimated using the Ishihara and Yoshimine procedure. (redrafted from Ishihara and Yoshimine, 1992).
6.5.2.4 Residual Strength Parameters

Liquefaction induced instability is strongly influenced by the residual strength of the liquefied soil. Instability occurs when the shear stresses required to maintain equilibrium exceed the residual strength of the soil deposit. Evaluation of residual strength of a liquefied soil deposit is one of the most difficult problems in geotechnical practice. A variety of methods are available to estimate the residual strength of liquefied soils. The procedures recommended in Section 6.4.1, include Seed and Harder (1990), Olson and Stark (2002), Idriss (2003) and Kramer (2008). Other methods as described in Dickenson, et. al., (2002), as well as the results of cyclic laboratory testing, may also be used.

All of these methods estimate the residual strength of a liquefied soil deposit based on an empirical relationship between residual undrained shear strength and equivalent clean sand SPT blowcounts using the results of back-calculation of the apparent shear strengths from case histories, including flow slides. All of these methods should be used to calculate the residual undrained shear strength and an average value selected based on engineering judgment, taking into consideration the basis and limitations of each correlation method.

6.5.3 Slope Stability and Deformation Analysis

Sloping earth structures and native slopes can become unstable due to: 1) liquefaction, or increased pore pressures in soils, associated with a seismic event, 2) inertial effects associated with ground accelerations, or 3) both. The methods described in this section, in Dickenson et. al (2002), and the reference, should be used to assess seismic slope stability and for estimating ground displacements. The slopes and conditions requiring such assessments and analysis are described in Section 6.2.4.

If liquefaction is not present, ground accelerations may produce inertial forces within the slope or embankment that could exceed the strength of the foundation soils and result in slope failure and large displacements. At these sites a pseudo-static analysis, which includes earthquake induced inertia forces, is conducted to determine the general stability of the slope or embankment under these conditions, as described in Section 6.5.3.1. The pseudo-static analysis is also used to determine the yield acceleration which is then used in estimating slope or embankment displacements.

If soils vulnerable to cyclic degradation (liquefiable soils, sensitive soils, brittle soils) are present slope instability may develop in the form of flow failures, lateral spreading or other large embankment deformations. Conventional slope stability analysis methods are typically conducted for liquefiable soil sites using residual strength parameters to model the liquefied soils. The results of the analysis are used to assess the potential for flow failures (FOS<1.0) and for use in displacement analysis. Under liquefied soil conditions, slope stability is usually modeled in the “post-earthquake” condition without including any inertial force from the earthquake ground motions (a de-coupled analysis) as described in Section 6.5.3.2.
6.5.3.1 Pseudo-static Analysis

Pseudo-static slope stability analyses should be used to evaluate the seismic stability of slopes and embankments. The pseudo-static analysis shall consist of conventional limit equilibrium static slope stability analysis, using horizontal and vertical pseudo-static acceleration coefficients (kh and kv) that act upon the critical failure mass. Refer to Dickenson et al. (2002) for a discussion and detailed guidance on pseudo-static analysis.

Non-liquefied soil conditions: For non-liquefied soil conditions, a horizontal pseudo-static coefficient, kh, of 0.5As and a vertical pseudo-static coefficient, kv, equal to zero should be used when seismic stability of slopes is evaluated. For these conditions, the minimum allowable factor of safety is 1.0. Pseudo-static analyses do not result in predictions or estimates of slope deformation and therefore are not sufficient for evaluation of bridge approach fill performance or for evaluating foundations at the service limit state. The pseudo-static analysis is generally used to determine a yield acceleration for use in the Newmark (or other) analysis for estimating ground displacements, as described in Section 6.5.3.2.

Liquefiable soil conditions: For liquefiable soil conditions, the potential for flow failures should be assessed. Flow failures are driven by large static stresses that lead to large deformations or flow following triggering of liquefaction. Such failures are similar to debris flows. Flow failures typically occur near the end of strong shaking or shortly after shaking. However, delayed flow failures caused by post-earthquake redistribution of pore water pressures can occur—particularly if liquefiable soils are capped by relatively impermeable layers. For flow failures, both stability and deformation should be assessed and mitigated if stability failure or excessive deformation is predicted.

Conventional limit equilibrium slope stability analysis methods are most often used to assess flow failure potential. Residual undrained shear strength parameters are used to model the strength of the liquefied soil. When using liquefied soil strengths, the horizontal and vertical pseudo-static coefficients, kh and kv, respectively, should be set equal to zero (de-coupled analysis). Alternatively, a site-specific, non-linear effective stress ground response analysis may be conducted to more thoroughly assess liquefaction effects and determine appropriate acceleration values to use in the pseudo-static analysis.

Where the factor of safety is less than 1.0, flow failure shall be considered likely. In these instances, the magnitude of deformation is usually too large to be acceptable for design of bridges or structures, and some form of mitigation may be appropriate. The exception is where the liquefied material and crust flow past the structure and the structure can accommodate the imposed loads see Section 6.5.6. Where the factor of safety is greater than 1.0, deformations can be estimated using the methods described in Section 6.5.3.2.
6.5.3.2 Deformation Analysis

Deformation analyses should be employed where estimates of the magnitude of seismically induced slope deformation are required. This is especially important for bridge approach fills where the deformation analysis is a crucial step in evaluating whether or not the bridge performance requirements described in Section 6.2 will be met. The procedures for estimating ground deformations and examples are provided in Dickenson et al. (2002) and Dickenson (2005) along with a discussion of which procedures are appropriate for specific conditions. It is recommended that several of the methods described in these reports be used as appropriate and engineering judgment applied to the results to determine the most reasonable range of predicted displacements.

Acceptable methods of estimating the magnitude of seismically induced lateral slope deformation include:

- Empirically-based displacement estimates for lateral spreading (Youd et al. (2002),
- Newmark-type analyses using acceleration time histories generated from site-specific soil response modeling.
- Simplified charts based on Newmark-type analyses (Makdisi and Seed, 1978)
- Simplified procedures based on refined Newmark-type analyses (Bray and Travasarou 2007, Saygili and Rathje 2008)
- Simplified charts based on nonlinear, effective stress modeling (Dickenson et al, 2002)
- Two-dimensional numerical modeling of dynamic slope deformation.

The Newmark sliding block methods should not be employed to estimate displacements associated with liquefaction or cyclic strength loss if the static factor of safety with the reduced (residual) strength parameters is less than 1.0.

Brief summaries of each method are described below.

Youd et al. (2002); Lateral Spreading: If the slope stability factor of safety from the flow failure analysis Section 6.5.3.1, assuming liquefied conditions, is 1.0 or greater, a lateral spreading/deformation analysis should be conducted. Lateral spreading results when the shear strength of the liquefied soil is incrementally exceeded by the inertial forces induced during an earthquake. The result of lateral spreading is typically horizontal movement of nonliquefied soils located above liquefied soils, in addition to the liquefied soils themselves.

The potential for liquefaction induced lateral spreading on gently sloping sites or where the site is located near a free face may be evaluated using empirical relationships such as the procedure of Youd et al. (2002). This procedure uses empirical relationships based on case histories of lateral spreading. Input into the Youd et al. model includes earthquake magnitude, source-to-site distance, and site geometry/slope, cumulative thickness of saturated soil layers and their characteristics (e.g. SPT "N" values, average fines content and average grain size). This method is based on a regression analysis of several independent variables correlated to
field measurements of lateral spread. Therefore it is best applied to site conditions that fit within
the range of the variables used in the models. Care should be taken when applying this method
to sites with conditions outside the range of the model variables. The Youd et al. procedure can
provide a useful approximation of the potential magnitude of deformation for sites with
liquefiable soils.

Newmark Analysis: Newmark (1965) proposed a seismic slope stability analysis that provides
an estimate of seismically induced slope deformation. The advantage of the Newmark analysis
over pseudo-static analysis is that it provides an index of permanent deformation. The Newmark
analysis treats the unstable soil mass as a rigid block on an inclined plane. The procedure for
the Newmark analysis consists of three steps that can generally be described as follows:

- Identify the yield acceleration of the slope by completing limit equilibrium stability analyses.
The yield acceleration is the horizontal pseudo-static coefficient, k_h, required to bring the
factor of safety to unity (1.0). Note that if the yield acceleration applied to the entire
acceleration time history is based on residual soil strengths consistent with fully liquefied
conditions, the estimated lateral deformation will likely be overly conservative since the
liquefied, residual soil strength condition (and associated yield acceleration) will only be in
effect over a portion of the entire time history.

- Select earthquake time histories representative of the design earthquakes. A minimum of
three time histories representative of the predominant earthquake source zone(s) should be
selected for this analysis. Note that these time histories need to be propagated through the
soil column to the ground surface to adjust them for local site effects.

- Double integrate all relative accelerations (i.e., the difference between acceleration and yield
acceleration) in the earthquake time histories.

A number of commercially available computer programs are available to complete Newmark
analysis, such as Shake2000 or Java Programs for using Newmark's Method and Simplified
Decoupled Analysis to Model Slope Performance during Earthquakes (Jibson, 2003).

Makdisi-Seed Analysis: Makdisi and Seed (1978) developed a simplified procedure for estimating
seismically induced slope deformations based on Newmark sliding block analysis. The Makdisi-Seed
procedure provides an estimated range of permanent seismically induced slope deformation as a
function of the ratio of yield acceleration over maximum acceleration and earthquake magnitude as
shown on Figure 6-11. The Makdisi-Seed procedure provides a useful index of the magnitude of
slope deformation. Because the Makdisi-Seed procedure includes the dynamic effects of the seismic
response of dams, its results should be interpreted with caution when applied to other slopes.
Figure 6-11. The Makdisi-Seed procedure for estimating the range of permanent seismically induced slope deformation as a function of the ratio of yield acceleration over maximum acceleration (redrafted from Makdisi and Seed, 1978).
Refined Newmark-Type Analysis-Bray and Travasarou (2007): This method is another modification, or enhancement, of the original Newmark sliding block model. It consists of a simplified, semiempirical approach for estimating permanent displacements due to earthquake-induced deviatoric deformations using a nonlinear, fully coupled, stick-slip sliding block model. In addition to estimating permanent displacements from rigid body slippage (basic Newmark approach) it also includes estimates of permanent displacement (volumetric staining) from shearing within the sliding mass itself. The model can be used to predict the probability of exceeding certain permanent displacements or for estimating the displacement for a single deterministic event. This procedure is available in EXCEL spreadsheet form.

Refined Newmark-Type Analysis – Saygili and Rathje (2008): This method is another modification, or enhancement, of the original Newmark sliding block model, suitable for shallow sliding surfaces that can be approximated by a rigid sliding block. The model predicts displacements based on multiple ground motion parameters in an effort to reduce the standard deviation of the predicted displacements.

Bracketed Intensity Method: The bracket intensity method is a modification of the Arias Intensity procedure developed by Jibson (1993). The primary difference between the two methods is that the bracketed intensity is a measure of only the ground motion intensity that is actually contributing to the displacement of the sliding block. This method is quite similar to the Newmark-type methods. A step-by-step procedure for calculating the estimated displacement is presented in Dickenson et al. (2002).

Numerical Modeling Correlations (GMI): This is a simplified method for estimating lateral deformations of embankments over liquefied soils. The method is presented Dickenson et al. (2002)) and is based on two dimensional numerical modeling of typical approach embankments using a finite difference computer code (FLAC). In the procedure developed, limit equilibrium methods are used to first calculate the post-earthquake factor of safety, using residual shear strengths in liquefied soils as appropriate. The resulting FOS is then used in combination with a Ground Motion Intensity (GMI) parameter to estimate embankment displacements. The GMI was developed to account for the intensity and duration of the ground motions used in the FLAC analysis and is equal to the PGA divided by the MSF (magnitude scaling factor). This procedure is also useful for estimating the amount, or area, of ground improvement needed to limit displacements to acceptable levels.

Numerical Modeling of Dynamic Slope Deformation: Seismically induced slope deformations can be estimated through a variety of dynamic stress-deformation computer models such as PLAXIS, DYNAFLOW, and FLAC. The accuracy of these models is highly dependent upon the quality of the input parameters. As the quality of the constitutive models used in dynamic stress-deformation models improves, the accuracy of these methods will improve. Another benefit of these models is their ability to illustrate mechanisms of deformation, which can provide useful insight into the proper input for simplified analyses.

Dynamic stress deformation models should not be used for routine design due to their complexity, and due to the sensitivity of the accuracy of deformation estimates from these models on the constitutive model selected and the accuracy of the input parameters.
6.5.4 Settlement of Dry Sand

Seismically induced settlement of unsaturated granular soils (dry sands) is well documented. Factors that affect the magnitude of settlement include the density and thickness of the soil deposit and the magnitude of seismic loading. The most common means of estimating the magnitude of dry sand settlement are through empirical relationships based on procedures similar to the Simplified Procedure for evaluating liquefaction susceptibility. The procedures provided by Tokimatsu and Seed (1987) for dry sand settlement should be used. The Tokimatsu and Seed approach estimates the volumetric strain as a function of cyclic shear strain and relative density or normalized SPT N’60 values. The step-by-step procedure is presented in Section 8.5 of Geotechnical Engineering Circular No. 3 (Kavazanjian, et al., 1997).

6.5.5 Liquefaction Effects on Structure Foundations

6.5.5.1 Bridge Approach Fills

All bridge approach fills should be assessed for the potential of excessive embankment deformation (lateral displacement and settlement) due to seismic loading and the effects of these displacements on the stability and functional performance requirements of the bridge. This is true whether liquefaction of the foundation soils is predicted or not. As a general rule, for the 500-year event, up to one (1) foot of lateral and 6 to 12 inches of vertical embankment displacement can be used as a general guideline for determining adequate performance of the approach fill. This range of displacements should be considered only as a general guideline for evaluating the final condition of the roadway surface and the ability to provide one-lane access to the bridge for emergency response vehicles following the earthquake. Always keep in mind the accuracy of the methods used to predict embankment deformations. Lateral displacement and fill settlement will also produce loads on the bridge foundation elements which also have to be evaluated in terms of providing the required overall bridge stability and performance. Specific embankment displacement limits are not provided for the 1000-year event since under this level of shaking the bridge and approach fills are evaluated only in terms of meeting the “No-Collapse” criteria.

6.5.5.2 General Liquefaction Policies Regarding Bridge Foundations

If liquefaction is predicted under either the 500 or 1000 year return events, the effects of liquefaction on foundation design and performance must be evaluated. Soil liquefaction and the associated effects of liquefaction on foundation resistances and stiffness is generally assumed, in standard analyses, to be concurrent with the peak loads in the structure (i.e. no reduction in the transfer of seismic energy due to liquefaction and soil softening). This applies except for the case where a site-specific nonlinear effective stress ground response analysis is performed which takes into account pore water pressure increases (liquefaction) and soil softening.

Liquefaction effects include:

- reduced axial and lateral capacities and stiffness in deep foundations,
- lateral spread, global instabilities and displacements of slopes and embankments,
- ground settlement and possible downdrag effects
The following design practice, related to liquefied foundation conditions, should be followed:

- **Spread Footings**: Spread footings are not recommended for bridge or abutment wall foundation support over liquefiable soils unless ground improvement techniques are employed that eliminate the potential liquefaction condition.

- **Piles and Drilled Shafts**: The tips of piles and drilled shafts shall be located below the deepest liquefiable soil layer. Friction resistance from liquefied soils should not be included in either compression or uplift resistance recommendations for the Extreme Event Limit I state loading condition. As stated above, liquefaction of foundation soils, and the accompanying lose of soil strength, is assumed to be concurrent with the peak loads in the structure. If applicable, reduced frictional resistance should also be applied to partially liquefied soils either above or below the predicted liquefied layer. Methods for this procedure are presented in Seed and Idriss, (1971) and Dickenson et al. (2002).

Pile Design Alternatives: Obtaining adequate lateral pile resistance is generally the main concern at pier locations where liquefaction is predicted. Battered piles are not recommended. Prestressed concrete piles have not been recommended in the past due to problems with excessive bending stresses at the pile-footing connection. Vertical steel piles are generally recommended in high seismic areas to provide the most flexible, ductile and cost-effective pile foundation system. Steel pipe piles often are preferred over H-piles due to their uniform section properties, versatility in driving with either closed or open ended and their potential for filling with reinforced concrete. The following design alternatives should be considered for increasing group resistance or stiffness and the most economical design selected:

- Increase pile size, wall thickness (section modulus) and/or strength.
- Increase numbers of piles.
- Increase pile spacing to reduce group efficiency effects.
- Deepen pile cap and/or specify high quality backfill around pile cap for increase capacity and stiffness.
- Design pile cap embedment for fixed conditions.
- Ground improvement techniques.

Liquefied P-y Curves: Studies have shown that liquefied soils retain a reduced, or residual, shear strength and this shear strength may be used in evaluating the lateral capacity of foundation soils. In light of the complexity of liquefied soils behavior (including progressive strength loss, strain mobilization, and possible dilation and associated increase in soil stiffness) computer programs commonly used for modeling lateral pile performance under liquefied soil conditions often rely on simplified relationships for soil-pile interaction. At this time, no consensus exists within the professional community on the preferred approach to modeling lateral pile response in liquefied soil. Peer review is recommended for projects involving deep foundations in liquefiable soils.

One simplified procedure for modeling pile performance utilizes the static sand model(s) in the LPILE program, modified using the residual shear strength and the effective overburden stress, at the depth at which the residual strength was calculated (or measured), to estimate a reduced soil friction angle (Φ_r) and initial soil modulus (k). The reduced soil friction angle is calculated using the inverse tangent (i.e., \tan^{-1}) of the residual undrained shear strength divided by the effective vertical stress at the
depth where the residual shear strength was determined or measured. Other procedures can be used with approval by ODOT.

The reduced soil parameters may be applied to either the L-Pile static model or the strain wedge static model (i.e., in DFSAP). DFSAP has an option built in to the program for estimating liquefied lateral stiffness parameters and lateral spread loads on a single pile or shaft. However, it should be noted the accuracy of the liquefied soil stiffness and predicted lateral spread loads using strain wedge theory, in particular the DFSAP program, has not been well established and is not recommended at this time.

For pile or shaft groups, for fully liquefied conditions, P-y curve group reduction factors may be set to 1.0. For partially liquefied conditions, the group reduction factors shall be consistent with the group reduction factors used for static loading.

Additional liquefied P-y curve recommendations are provided in the research report titled: “TILT: The Treasure Island Liquefaction Test: Final Report", (Ashford, S. and Rollins, K., 2002) available from the HQ Bridge Engineering Section. This full scale pile load test study produced P-y curves for liquefied sand conditions that are fundamentally different than those derived from the standard static P-y curve models. These liquefied P-y curves are available in Version 5 of the L-Pile computer program, however the use of these liquefied p-y curves is not recommended at this time until further studies are completed and a consensus is reached on the standard of practice for P-y curves to use in modeling liquefied soils.

T-Z curves: Modify either the PL/AE method or APile Plus program as follows:

- For the PL/AE method, if the liquefied zone reduces total pile skin friction to less than 50% of ultimate bearing capacity, use “end bearing” condition (i.e. full length of pile) in stiffness calculations. Otherwise use “friction” pile condition.
- For the APile program, assume sand layer for liquefied zone with modified soil input parameters similar to methods for P-y curve development.

Foundation Settlement: Settlement of foundation soils due to liquefaction or due to the densification of unsaturated cohesionless soils could result in downdrag loads on foundation piling or shafts. Refer to Chapter 8 for guidance on the seismic design of pile and shaft foundations taking into account seismic-induced settlement and downdrag loads.

6.5.5.3 Lateral Spread / Slope Failure Loads on Structures

In general, there are two different approaches to estimate the induced load on deep foundations systems due lateral spreading — a displacement based method and a force based method. Displacement based methods are more prevalent in the United States. The force based approach has been specified in the Japanese codes and is based on case histories from past earthquakes, especially the pile foundation failures observed during the 1995 Kobe earthquake. Overviews of both approaches are presented in the following sections.
6.5.5.4 Displacement Based Approach

The recommended displacement based approach for evaluating the impact of liquefaction induced lateral spreading loads on deep foundation systems is presented in the NCHRP Report 472 titled “Comprehensive Specification for Seismic Design of Bridges” (NCHRP, 2002) and supporting documentation by Martin et al., (2002). The general procedure is as follows:

- **Evaluate the Liquefaction Potential:** Evaluate the liquefaction potential of the site for the design risk levels (500 and 1000-yr. return periods). Assign residual and reduced strength parameters to liquefied and partially liquefied soils layers.

- **Conduct Slope Stability Analyses:** If liquefaction is predicted, conduct slope stability analyses using residual strength parameters for the liquefied soil layers and reduced strength parameters for partially liquefied soil layers. If the static factor of safety is less than 1.0, a flow failure is predicted. If the static factor of safety is greater than 1.0, conduct pseudo-static stability analyses to determine the yield acceleration K_y.

- **Check Zone of Influence:** Assess whether or not the estimated failure surface could impact the bridge foundation system. If the bridge foundations are expected to be within the zone of influence, estimate the ground deformations.

- **Slope Deformations:** Estimate lateral displacements based on the procedures described in Section 6.5.3.2. Use all appropriate methods that could apply to the site conditions and use judgment to determine the most reasonable amount of predicted displacement that could occur.

- **Induced Loads on Foundation Elements:** Assess whether the soil will displace and flow around a stable foundation or whether foundation movement will occur in concert with the soil. This assessment requires a comparison between the estimated passive soil forces that can be exerted on the foundation and the ultimate resistance that can be provided by the structure.

The magnitudes of moment and shear induced in the foundations by the ground displacement can be estimated using soil-pile structure interaction programs, such as LPile. The process is to apply the assumed displacement field to the interface springs whose properties are represented by P-y curves. The liquefied soil layers are typically modeled in the LPile or DFSAP programs using the modified sand P-y model and the undrained residual strength of the liquefied soil see Section 6.5.5.2. Partially liquefied soil layers are typically adjusted by reducing their friction angle (see Dickenson et al. 2003 for methods to reduce the friction angle based on increased pore pressures). The strength parameters of non-liquefied layers above and/or below the liquefied zones are not reduced.

The estimated induced loads are then checked against the ability of the foundation system to resist those loads. The ultimate foundation resistance is based in part on the resistance provided by the portion of the pile/shaft embedded in non-liquefiable soils below the lateral spread zone and the structural capacity of the pile/shaft. Large pile deformations may result in plastic hinges forming in the pile/shaft. If foundation resistance is greater than that applied by the lateral spreading soil, the soil will flow around the structure. If the potential load applied by the soil is greater than the ultimate foundation system resistance, the pile/shaft is likely to move in concert with the soil. Also, the passive pressure generated on the pile cap by the spreading soil needs to be considered in the total load applied to the foundation system. In cases where a significant crust of non-liquefiable material may exist, the foundation is likely to continue to move with the soil. Since large-scale structural deformations may be difficult and costly to accommodate in design, mitigation of foundation subsoils will likely be required.
In-ground hinging and plastic failure of piles or shafts due to lateral spread and slope failures is not permitted on ODOT bridge projects for either the 500 or 1000 year design events.

Similar approaches to those outlined above can be used to estimate loads that other types of slope failure may have on the bridge foundation system.

6.5.5.5 Force Based Approaches

A force-based approach to assess lateral spreading induced loads on deep foundations is specified in the Japanese codes. The method is based on back-calculations from pile foundation failures caused by lateral spreading. The pressures on pile foundations are simply specified as follows:

- The liquefied soil exerts a pressure equal to 30 percent of the total overburden pressure (lateral earth pressure coefficient of 0.30 applied to the total vertical stress).
- Non-liquefied crustal layers exert full passive pressure on the foundation system.

Data from simulated earthquake loading of model piles in liquefiable sands in centrifuge tests indicate that the Japanese force method is an adequate design method (Finn, 2004).

Another force-based approach to estimate lateral spreading induced foundation loads is to use a limit equilibrium slope stability program to determine the load the foundation must resist to achieve a target safety factor of 1.1. This force is distributed over the foundation in the liquefiable zone as a uniform stress. This approach may be utilized to estimate the forces that foundation elements must withstand if they are to act as shear elements stabilizing the slope.

6.5.6 Mitigation Alternatives for Lateral Spread

The two basic options to mitigate the lateral spread induced loads on the foundation system are to design the structure to accommodate the loads or improve the ground such that the hazard does not occur.

Structural Options (design to accommodate imposed loads): The general structural approach to design for the hazard is outlined below.

- **Step 1:** If the soil is expected to displace around the foundation element, the foundation is designed to withstand the passive force exerted on the foundation by the flowing soil and any overlying layers, or crust, of resistant soil. In this case, the maximum loads determined from the P-y springs for large deflections are applied to the pile/shaft, and the pile/shaft is evaluated using a soil structure interaction program similar to L-Pile. The pile/shaft stiffness, strength, and embedment are adjusted until the desired structural response to the loading is achieved.

 Note:

 Note that it is customary to evaluate the lateral spread/slope failure induced loads independently from the inertial forces caused by the shaking forces (i.e. the shaking force loads and the lateral spread loads are typically not assumed to act concurrently). In most cases this is reasonable since peak vibration response is likely to occur in advance of maximum ground displacement, and displacement induced maximum shear and moments will generally occur at deeper depths than those from inertial loading.
• **Step 2:** If the assessment indicates that movement of the foundation is likely to occur in concert with the soil, then the structure is evaluated for the maximum expected ground displacement. In this case the soil loads are generally not the maximum possible (loads at large displacements), but instead some fraction thereof. Again the P-y data for the soils in question are used to estimate the loading.

If the deformations determined in step 2 are beyond tolerable limits for structural design, the options are to a) re-evaluate the deformations based on the “pinning” or “doweling” action that foundations provide as they cross a potential failure plane (with consideration of the foundation strength; or b) re-design the foundation system to accommodate the anticipated loads. Simplified procedures for evaluating the available resistance to slope movements provided by the foundation “pinning” action are presented in (NCHRP, 2002) and (Martin, et al., 2002) and require knowledge of the plastic moment and location of plastic hinges in the foundation elements. This information should be provided by the bridge designer or structural consultant. The concept of considering a plastic mechanism or hinging in the piles/shafts is tantamount to accepting foundation damage.

With input from the structural designer regarding “pinning” resistance provided by the foundation system, recalculate the estimated displacement based on the revised resistance levels. If the structure’s behavior is acceptable under the revised displacement estimate, the design for liquefaction induced lateral spreading is complete. If the performance is not acceptable, then the foundation system should be redesigned or ground improvement should be considered.

It is sometimes cost prohibitive to design the bridge foundation system to resist the loads imposed by liquefaction induced lateral loads, especially if the depth of liquefaction extends more than about 20 feet below the ground surface and if a non-liquefied crust is part of the failure surface. Ground improvement to mitigate the liquefaction hazard is the likely alternative if it is not practical to design the foundation system to accommodate the lateral loads.

Ground Improvement: The need for ground improvement techniques to mitigate liquefaction effects depends, in part, upon the type and amount of anticipated damage to the structure and approach fills due to the effects of liquefaction and embankment deformation (both horizontal and vertical). The performance criteria described in Section 6.2 should be followed. Ground Improvement methods are described in Elias et al. (2000) and Chapter 11. All ground improvement designs required to mitigate the effects of soil liquefaction shall be reviewed by the HQ Bridge Section.

If, under the 500-year event, the estimated bridge damage is sufficient to render the bridge out of service for one lane of emergency traffic then ground improvement measures should be undertaken. If, under the 1000-year event, estimated bridge damage results in the possible collapse of a portion or all of the structure then ground improvement is recommended. A flow chart of the ODOT Liquefaction Mitigation Procedures is provided in Appendix 6-C.
Ground improvement techniques should result in reducing estimated ground and embankment displacements to acceptable levels. Mitigation of liquefiable soils beneath approach fills should extend a distance away, in both longitudinal and transverse directions, from the bridge abutment sufficient enough to limit lateral embankment displacements to acceptable levels. As a general rule of thumb, foundation mitigation should extend at least from the toe of the end slope to a point where a 1:1 slope extending from the back of the bridge end panel intersects the original ground (Figure 6-12). The final limits of the mitigation area required should be determined from iterative slope stability analysis and consideration of ground deformations. Practice-oriented procedures have been described in Dickenson et al (2002).

![Figure 6-12. Lateral Extent of Ground Improvement for Liquefaction Mitigation](image)

Ground improvement techniques should also be considered as part of any Phase II (substructure & foundation) seismic retrofit process. All Phase II retrofit structures should be evaluated for liquefaction potential and mitigation needs. The cost of liquefaction mitigation for retrofitted structures should be assessed relative to available funding.

The primary ground improvement techniques to mitigate liquefaction fall into three general categories, namely densification, altering the soil composition, and enhanced drainage. A general discussion regarding these ground improvement approaches is provided below.

- **Densification and Reinforcement**: Ground improvement by densification consists of sufficiently compacting the soil such that it is no longer susceptible to liquefaction during a design seismic event. Densification techniques include vibro-compaction, vibro-flotation, vibro-replacement (stone columns), deep dynamic compaction, blasting, and compaction grouting. Vibro-replacement and compaction grouting also reinforce the soil by creating columns of stone and grout, respectively. The primary parameters for selection include grain size distribution of the soils being improved, depth to groundwater, depth of improvement required, proximity to settlement/vibration sensitive infrastructure, and access constraints.

- **Altering Soil Composition**: Altering the composition of the soil typically refers to changing the soil matrix so that it is no longer susceptible to liquefaction. Examples of ground improvement techniques include permeation grouting (either chemical or micro-fine cement), jet grouting, and deep soil mixing. These types of ground improvement are typically more costly than the densification/reinforcement techniques, but may be the most effective techniques if access is limited, construction induced vibrations must be kept to a minimum, and/or the improved ground has secondary functions, such as a seepage barrier or shoring wall.
• **Drainage Enhancements:** By improving the drainage properties of sandy soils susceptible to liquefaction, it may be possible to reduce the build-up of excess pore water pressures, and thus liquefaction during seismic loading. However, drainage improvement is not considered adequately reliable by ODOT to prevent excess pore water pressure buildup due to the length of the drainage path, the time for pore pressure to dissipate, the influence of fines on the permeability of the sand, and due to the potential for drainage structures to become clogged during installation and in service. In addition, with drainage enhancements some settlement is still likely. Therefore, drainage enhancements alone shall not be used as a means to mitigate liquefaction.

Geotechnical engineers are encouraged to work with ground treatment contractors having regional experience in the development of soil improvement strategies for mitigating hazards due to permanent ground deformation.

6.6 Input for Structural Design

6.6.1 Foundation Springs

Structural dynamic response analyses incorporate the foundation stiffness into the dynamic model of the structure to capture the effects of soil structure interaction. The foundation stiffness is typically represented as a system of equivalent springs placed in a foundation stiffness matrix. The typical foundation stiffness matrix incorporates a set of six springs, namely a vertical spring, horizontal springs in the orthogonal plan dimensions, rocking about each horizontal axis, and torsion around the vertical axis.

The primary parameters for calculating the individual springs are the foundation type (shallow spread footings or deep foundations), foundation geometry, and dynamic soil shear modulus. The dynamic soil shear modulus is a function of the shear strain (foundation displacement), so determining the appropriate foundation springs can be an iterative process. Refer to the *ODOT BDDM* for additional information on foundation modeling methods and the soil/rock design parameters required by the structural designer for the analysis.

6.6.1.1 Shallow Foundations

For evaluating shallow foundation springs, the structure designer requires values for the dynamic shear modulus, \(G \), Poisson’s ratio, and the unit weight of the foundation soils. The maximum, or low-strain, shear modulus can be estimated using index properties and the correlations presented in Table 6-2. Alternatively, the maximum shear modulus can be calculated using Equation 6.2, if the shear wave velocity is known:

\[
G_{\text{max}} = \frac{\gamma}{g(V_s)^2}
\]

Where:

- \(G_{\text{max}} \) = maximum dynamic shear modulus
- \(\gamma \) = soil unit weight
- \(V_s \) = shear wave velocity
- \(g \) = acceleration due to gravity
The maximum dynamic shear modulus is associated with small shear strains (less than 0.0001 percent). As shear strain level increases, dynamic shear modulus decreases. At large cyclic shear strain (1 percent), the dynamic shear modulus approaches a value of approximately 10 percent of G_{max} (Seed et al., 1986). As a minimum, shear modulus values for 0.2 percent shear strain and 0.02 percent shear strain to simulate large and small magnitude earthquakes should be provided to the structural engineer. Shear modulus values at other shear strains could also be provided as needed for the design. Shear modulus values may be estimated using Figure 6-1, Figure 6-2 and Figure 6-3. Alternatively, laboratory tests, such as the cyclic triaxial or direct simple shear, or resonant column tests may be used to determine the shear modulus values at intermediate shear strains. The results of in situ tests such as the CPT and DMT have also been used to develop non-linear relationships for soil stiffness (Mayne, 2001).

Poisson’s Ratio can be estimated based on soil type, relative density/consistency of the soils, and correlation charts such as those presented in Foundation Analysis and Design (Bowles, 1996).

6.6.1.2 Deep Foundations

Lateral soil springs for deep foundations shall be determined in accordance with Chapter 8. Refer to Section 6.5.5.2 for guidance on modifying t-z curves and the soil input required for P-y curves representing liquefied or partially liquefied soils.

6.6.1.3 Downdrag Loads on Structures

Downdrag loads on foundations shall be determined in accordance with Chapter 8.
6.7 References

Idriss, I. M., 2003, Resolved and unresolved issues in soil liquefaction, Presentation at US-Taiwan Workshop on Soil Liquefaction Hsinchu, Taiwan, November 2.

Induced Ground Failure Hazards, Transportation Research Board. National Research Council, Washington, D.C.

Oregon Department of Transportation, 2005, Bridge Design and Drafting Manual.

Appendix 6-A

FLOW CHART FOR EVALUATION OF LIQUEFACTION HAZARD AND GROUND DEFORMATION AT BRIDGE SITES

STEP 1
Identify Seismic Sources in the Region
CSZ interplate, deep intraplate, shallow crustal earthquakes refer to USGS Seismic Hazard Mapping Project Web Site
Obtain M-R pairs from de-aggregation tables for 475 and 975 mean return periods
Consider the following sources:

- **CSZ Interplate Earthquakes**
 - M 8.3 and M 9.0
 - as defined by the USGS

- **Deep Intraplate Earthquake**
 - Very small contribution to PGA hazard in most of Oregon
 - Confirm on De-Aggregation tables by checking for representative M-R pairs

- **Crustal, Areal, or “Gridded” Seismicity**
 - Obtain M-R pairs from USGS de-aggregation tables for all regional
 - Define criteria for selecting all M-R pairs that significantly contribute to the overall seismic hazard

STEP 2
Select Appropriate Ground Motion Attenuation Relationships for each Source and Style of Faulting
Calculate the bedrock PGA values for each M-R pair

STEP 3
Select Appropriate Acceleration Time Histories for Bedrock Motions
- Three, or more, records from different earthquakes are recommended per M-R pair
- Consider style of faulting, magnitude, and the characteristics of the candidate motions (duration, frequency content, and energy)

STEP 4
Perform Dynamic Soil Response Analysis
- Develop profiles of cyclic stress ratio (CSR) versus depth for each M-R pair (3 or more time histories per M-R pair)
- Compute the average CSR profile with depth for each M-R pair
- Compute suite of Acceleration Response Spectra (ARS) if needed for structural engineering

STEP 5
Compute the Factor of Safety against Liquefaction for each M-R Pair
- Use the averaged CSR profile for each M-R pair
- Utilize standard methods for liquefaction susceptibility evaluation based on penetration resistance or shear wave velocity
STEP 6
Establish the Post-Cyclic Loading Shear Strengths of Embankment and Foundation Soils
- If $F_{S_{liq}} \geq 1.4$
 - Use drained shear strengths
- If $1.4 > F_{S_{liq}} > 1.0$
 - Estimate the residual excess pore pressure
 - Compute the equivalent friction angle
- If $F_{S_{liq}} \leq 1.0$
 - Estimate the residual undrained strength using two or more methods

STEP 7
Perform Slope Stability Analysis
- Static analysis using post-cyclic loading shear strengths for each M-R pair
- Calculate the FOS against sliding and determine the critical acceleration values for each M-R pair
- Focus trial slip surfaces on weak soil layers

STEP 8
Perform Deformation Analysis for each M-R pair
- Rigid-body, sliding block analysis (Newmark Method)
- Simplified chart solutions
- Numerical modeling

STEP 9
Evaluate Computed Deformations in Terms of Tolerable Limits
- Permanent Deformations are Acceptable
 - Computed displacements are less than defined limits
 - Continue with structural design
- Permanent Deformations are Unacceptable
 - Computed displacements exceed defined limits repeat analysis incorporating the effects of remedial ground treatment
 - Return to Step 4 if the soil improvement does not significantly change the anticipated dynamic response of the soil column (e.g., isolated soil improvement)
 - Return to Step 3 if the ground treatment substantially alters the dynamic response of the site (e.g., extensive soil improvement in the vertical and lateral direction, extensive treatment including grouting or deep soil mixing)
 - A reduced number of input time histories are acceptable for each M-R pair (bracket the problem using trends from the initial
Appendix 6-B: Example of Smoothed Response Spectra

![Graph showing smoothed response spectra with different lines representing upper limit, lower limit, average, median, and 85th percentile. The x-axis represents period in seconds, ranging from 0.01 to 10. The y-axis represents spectral acceleration, ranging from 0 to 3. The graph shows peaks and troughs across the spectrum.]
Appendix 6-C: ODOT Liquefaction Mitigation Procedures

Foundation Design Engineer evaluates liquefaction potential using the 500 yr. event and estimates approach fill deformations (Lateral displacement, settlement and global stability)

Check liquefaction and est. displacements under 1000 yr. event

Is there potential for large embankment deformations? (see Note 1 below)

Geotechnical and Structural Designers meet and determine damage potential to structure and serviceability of bridge. Will the bridge and/or approaches be damaged such that the bridge will be out of service? (see Note 2 below)

Typical Design

Proceed with Mitigation Design Alternatives (Note 3)

Note 1: For meeting the performance requirements of the 500 year return event (serviceability), lateral deformation of approach fills of up to 12” are generally considered acceptable under most circumstances pending an evaluation of this amount of lateral deformation on abutment piling. Larger lateral deformations and settlements may be acceptable under the 1000 year event as long as the “no-collapse” criteria are met.

Note 2: The bridge should be open to emergency vehicles after the 500-year design event, following a thorough inspection. If the estimated embankment deformations (vertical or horizontal or both) are sufficient enough to cause concerns regarding the serviceability of the bridge mitigation is recommended.

As a general guideline, the foundation mitigation should extend from the toe of the end slope to a point that is located at the base of a 1:1 slope which starts at the end of the bridge end panel:

Existing Grade Bridge End Panel (typ. 30 ft.)

Original Ground Limits of Mitigation

1:1 2:1 (typ.)
7 Slope Stability Analysis

7.1 General
Slope stability analysis is used in a wide variety of geotechnical engineering problems, including, but not limited to, the following:

- Determination of stable cut and fill slopes
- Assessment of overall stability of retaining walls, including global and compound stability (includes permanent systems and temporary shoring systems)
- Assessment of overall stability of shallow and deep foundations for structures located on slopes or over potentially unstable soils, including the determination of lateral forces applied to foundations and walls due to potentially unstable slopes
- Stability assessment of landslides (mechanisms of failure, and determination of design properties through back-analysis), and design of mitigation techniques to improve stability
- Evaluation of instability due to liquefaction

Types of slope stability analyses include rotational slope failure, sliding block analysis, irregular surfaces of sliding, and infinite slope failure. Stability analysis techniques specific to rock slopes, other than highly fractured rock masses, that can in effect be treated as soil, are described in Chapter 12. Detailed stability assessment of landslides is described in Chapter 13.

7.2 Development of Design Parameters and Input Data for Slope Stability Analysis
The input data needed for slope stability analysis is described in Chapter 2 for site investigations in general, Chapter 9, Chapter 10 for fills and cuts, and Chapter 13 for landslides. Chapter 5 provides requirements for the assessment of design property input parameters. Detailed assessment of soil and rock stratigraphy is critical to the proper assessment of slope stability, and is in itself a direct input parameter for slope stability analysis. It is important to define any thin weak layers present, the presence of slickensides, etc., as these fine details of the stratigraphy could control the stability of the slope in question. Knowledge of the geologic nature of the units present at the site and knowledge of past performance of such units may also be critical factors in the assessment of slope stability. Whether long-term or short-term stability is in view, and which will control the stability of the slope, will affect the selection of soil and rock shear strength parameters used as input in the analysis. For short-term stability analysis, undrained shear strength parameters should be obtained. For long-term stability analysis, drained shear strength parameters should be obtained. For assessing the stability
of landslides, residual shear strength parameters will be needed, since the soil has in such cases already deformed enough to reach a residual value. For highly over-consolidated clays, if the slope is relatively free to deform after the cut is made or is otherwise unloaded, residual shear strength parameters should be obtained and used for the stability analysis.

Detailed assessment of the groundwater regime within and beneath the slope is also critical. Detailed piezometric data at multiple locations and depths within and below the slope will likely be needed, depending on the geologic complexity of the stratigraphy and groundwater conditions. Potential seepage at the face of the slope must be assessed and addressed. In some cases, detailed flow net analysis may be needed. If seepage does exit the slope face, the potential for soil piping should also be assessed as a slope stability failure mechanism, especially in highly erodable silts and sands.

7.3 Design Requirements

Limit equilibrium methodologies are usually used to assess slope stability. The Modified Bishop, simplified Janbu, Spencer, or other widely accepted slope stability analysis methods should be used for rotational and irregular surface failure mechanisms. In cases where the stability failure mechanisms anticipated are not well modeled by limit equilibrium techniques, or if deformation analysis of the slope is required, more sophisticated analysis techniques (e.g., finite difference methodologies such as is used by the computer program FLAC) may be used in addition to the limit equilibrium methodologies. Since these more sophisticated methodologies are quite sensitive to the quality of the input data and the details of the model setup, including the selection of constitutive models used to represent the material properties and behavior, limit equilibrium methods should also be used in such cases. If the differences in the results are significant, engineering judgment should be applied in conjunction with any available field observations to assess the correctness of the design model used. If the potential slope failure mechanism is anticipated to be relatively shallow and parallel to the slope face, with or without seepage affects, an infinite slope analysis should be conducted. Typically, slope heights of 15 to 20 ft or more are required to have this type of failure mechanism. For infinite slopes which are either above the water table or which are fully submerged, the factor of safety for slope stability is determined as follows:

- **Seepage**: Considering that the buoyant unit weight is roughly one-half of the saturated unit weight, seepage on the slope face can reduce the factor of safety by a factor of two, a condition which should obviously be avoided through some type of drainage if at all possible; otherwise much flatter slopes will be needed.

- **Slopes**: When using the infinite slope method, if the FS is near or below 1.0 to 1.15, severe erosion or shallow slumping is likely. Vegetation on the slope can help to reduce this problem, as the vegetation roots add cohesion to the surficial soil, improving stability. Note that conducting an infinite slope analysis does not preclude the need to check for deeper slope failure mechanisms, such as would be assessed by the Modified Bishop or similar methods listed above. For very simplified cases, design charts to assess slope stability are available. Examples of simplified design charts are provided in NAVFAC DM-7. These charts are for a c-φ soil, and apply only to relatively uniform soil conditions within and below the cut slope. They do not apply to fills over relatively soft ground, as well as to cuts in primarily cohesive soils. Since these charts are for a c-φ soil, a small cohesion will be needed to perform the calculation.

If these charts are to be used, it is recommended that a cohesion value of 50 to 100 psf be used in combination with the soil friction angle obtained from SPT correlation for relatively clean sands and gravels.
• **Soil parameters:** For silty to very silty sands and gravels, the cohesion could be increased to 100 to 200 psf, but with the friction angle from SPT correlation (see Chapter 5) reduced by 2 to 3 degrees, if it is not feasible to obtain undisturbed soil samples suitable for laboratory testing to measure the soil shear strength directly. This should be considered general guidance, and good engineering judgment should be applied when selecting soil parameters for this type of an analysis. Simplified design charts should only be used for final design of non-critical slopes that are 10 ft in height or less and that are consistent the simplified assumptions used by the design chart. Simplified design charts may be used as applicable for larger slopes for preliminary design. The detailed guidance for slope stability analysis provided by Abramson, et al. (1996) should be used.

7.4 Resistance Factors and Safety Factors for Slope Stability Analysis

For overall stability analysis of walls and structure foundations, design shall be consistent with Chapter 6, Chapter 8 and Chapter 15 and the AASHTO LRFD Bridge Design Specifications. For slopes adjacent to but not directly supporting structures, a maximum resistance factor of 0.75 should be used. For foundations on slopes that support structures such as bridges and retaining walls, a maximum resistance factor of 0.65 should be used. Exceptions to this could include minor walls that have a minimal impact on the stability of the existing slope, in which the 0.75 resistance factor may be used. Since these resistance factors are combined with a load factor of 1.0 (overall stability is assessed as a service limit state only), these resistance factors of 0.75 and 0.65 are equivalent to a safety factor of 1.3 and 1.5, respectively. For general slope stability analysis of cuts, fills, and landslide repairs, a minimum safety factor of 1.25 should be used. Larger safety factors should be used if there is significant uncertainty in the slope analysis input parameters. For seismic analysis, if seismic analysis is conducted see Chapter 6 for policies on this issue, a maximum resistance factor of 0.9 should be used for slopes involving or adjacent to walls and structure foundations. This is equivalent to a safety factor of 1.1. For other slopes (cuts, fills, and landslide repairs), a minimum safety factor of 1.05 should be used.

7.5 References

8 Foundation Design

8.1 General

This chapter covers the geotechnical design of bridge foundations, retaining wall foundations and cut-and-cover tunnel foundations. Both shallow and deep foundation types are addressed. Foundation design work entails assembling all available foundation information for a structure, obtaining additional information as required, performing foundation analyses and compiling the information into a report that includes the specific structure foundation recommendations. An adequate site inspection, office study, appropriate subsurface exploration program and comprehensive foundation analyses that result in foundation recommendations are all necessary to construct a safe, cost-effective structure. See Chapter 21 for guidance on the foundation information that should be included in Geotechnical Reports. See Chapter 2 for guidance on foundation information available through office studies and the procedures for conducting a thorough site reconnaissance.

Unless otherwise stated in this manual, the Load and Resistance Factor Design approach (LRFD) shall be used for all foundation design projects, as prescribed in the most current version of the AASHTO LRFD Bridge Design Specifications. The ODOT foundation design policies and standards described in this chapter supersede those in the AASHTO LRFD specifications. FHWA design manuals are also acceptable for use in foundation design and preferable in cases where foundation design guidance is not adequately provided in AASHTO. Structural design of bridge foundations, and other structure foundations, is addressed in the ODOT Bridge Design and Drafting Manual (BDDM).

It is important to establish and maintain close communication between the geotechnical designer and the structural designer at all times throughout the entire foundation design process and continuing through construction.

8.2 Project Data and Foundation Design Requirements

The scope of the project, project requirements, project constraints and the geology and subsurface conditions of the site should be analyzed to determine the type and quantity of geotechnical investigation work to be performed. Project information such as a vicinity map, a project narrative, preliminary structure plans/layout (pre-Type, Size & Location) and hydraulics information (if applicable) should be obtained to allow for proper planning of the subsurface exploration program. Keep abreast of changes to the project scope that might impact the geotechnical investigation and
design work required. Proposed retaining wall and bridge bent locations should be obtained from the bridge designer prior to the beginning of field work to properly locate bore holes.

Anticipated foundation loads, structure settlement criteria and the heights of any proposed fills should be determined or estimated to insure that the exploration boreholes are advanced to the proper depth and the proper information is obtained.

Refer to AASHTO Article 10.4.1 for more details of the information needed at this stage.

The foundation type(s) selected for each structure will each require specific subsurface investigation methods, materials testing, analysis and design. Table 8-1 provides a summary of information needs and testing considerations for foundation design.

Table 8-1. Summary of information needs and testing considerations
(modified after Sabatini, et. al. 2002)

<table>
<thead>
<tr>
<th>Foundation Type</th>
<th>Engineering Evaluations</th>
<th>Required Information For Analyses</th>
<th>Field Testing</th>
<th>Laboratory Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow Foundations</td>
<td>• bearing capacity
• settlement (magnitude & rate)
• shrink/swell of foundation soils (natural soils or embankment fill)
• frost heave
• scour (for water crossings)
• liquefaction</td>
<td>• subsurface profile (soil, groundwater, rock)
• shear strength parameters
• compressibility parameters (including consolidation, shrink/swell potential, and elastic modulus)
• frost depth
• stress history (present and past vertical effective stresses)
• depth of seasonal moisture change
• unit weights
• geologic mapping including orientation and characteristics of rock discontinuities</td>
<td>• SPT (granular soils)
• CPT
• PMT
• dilatometer
• rock coring (RQD)
• plate load testing
• geophysical testing</td>
<td>• 1-D Oedometer tests
• soil/rock shear tests
• grain size distribution
• Atterberg Limits
• specific gravity
• moisture content
• unit weight
• organic content
• collapse/swell potential tests
• intact rock modulus
• point load strength test</td>
</tr>
</tbody>
</table>
Table 8-1 (Continued)

| Driven Pile Foundations | • pile end-bearing
| | • pile skin friction
| | • settlement
| | • down-drag on pile
| | • lateral earth pressures
| | • chemical compatibility of soil and pile
| | • drivability
| | • presence of boulders/very hard layers
| | • scour (for water crossings)
| | • vibration/heave damage to nearby structures
| | • liquefaction
| | • subsurface profile (soil, groundwater, rock)
| | • shear strength parameters
| | • horizontal earth pressure coefficients
| | • interface friction parameters (soil and pile)
| | • compressibility parameters
| | • chemical composition of soil/rock (e.g., potential corrosion issues)
| | • unit weights
| | • presence of shrink/swell soils (limits skin friction)
| | • geologic mapping including orientation and characteristics of rock discontinuities
| Drilled Shaft Foundations | • shaft end bearing
| | • shaft skin friction
| | • constructability
| | • down-drag on shaft
| | • quality of rock socket
| | • lateral earth pressures
| | • settlement (magnitude & rate)
| | • groundwater seepage/deepwatering/potential for caving
| | • presence of boulders/very hard layers
| | • scour (for water crossings)
| | • liquefaction
| | • subsurface profile (soil, groundwater, rock)
| | • shear strength parameters
| | • interface shear strength
| | • friction parameters (soil and shaft)
| | • compressibility parameters
| | • horizontal earth pressure coefficients
| | • chemical composition of soil/rock
| | • unit weights
| | • permeability of water-bearing soils
| | • presence of artesian conditions
| | • presence of shrink/swell soils (limits skin friction)
| | • geologic mapping including orientation and characteristics of rock discontinuities
| | • degradation of soft rock in presence of water and/or air (e.g., rock sockets in shales)
| | • SPT (granular soils)
| | • pile load test
| | • CPT
| | • PMT
| | • vane shear test
| | • dilatometer
| | • piezometers
| | • rock coring (RQD)
| | • geophysical testing
| | • installation technique test shaft
| | • shaft load test
| | • vane shear test
| | • CPT
| | • SPT (granular soils)
| | • PMT
| | • dilatometer
| | • piezometers
| | • rock coring (RQD)
| | • geophysical testing
| | • soil/rock shear tests
| | • interface friction tests
| | • grain size distribution
| | • 1-D Oedometer tests
| | • pH, resistivity tests
| | • Atterberg Limits
| | • specific gravity
| | • organic content
| | • collapse/swell potential tests
| | • intact rock modulus
| | • point load strength test
| | • 1-D Oedometer tests
| | • soil/rock shear tests
| | • grain size distribution
| | • interface friction tests
| | • pH, resistivity tests
| | • Atterberg Limits
| | • specific gravity
| | • organic content
| | • collapse/swell potential tests
| | • intact rock modulus
| | • point load strength test
| | • slake durability

Volume 1 ODOT Geotechnical Design Manual April 2010
8.3 Field Exploration for Foundations

Subsurface explorations shall be performed in accordance with Article 10.4.2 of the AASHTO LRFD Bridge Design Specifications, supplemented by the FHWA Geotechnical Engineering Circular No. 5, “Evaluation of Soil and Rock Properties” (FHWA-IF-02-034). The procedures outlined in the ODOT “Soil and Rock Classification Manual” are used to describe and classify subsurface materials. The explorations shall provide the information needed for the design and construction of foundations. Accurate and adequate subsurface information at, or as near as possible to, each structure support is extremely important, especially for drilled shaft and spread footing designs.

The minimum exploration requirements specified in AASHTO Section 10, and as supplemented in Chapter 3, should be considered the standard of practice with regards to subsurface investigation requirements. It is understood that engineering judgment will need to be applied by a licensed and experienced geotechnical professional to adapt the exploration program to the foundation types and depths needed and to the variability in the subsurface conditions observed. The extent of exploration shall be based on the variability in the subsurface conditions, structure type, foundation loads, and any project requirements that may affect the foundation design or construction. The exploration program should be extensive enough to reveal the nature and types of soil deposits and/or rock formations encountered the engineering properties of the soils and/or rocks, the potential for liquefaction, and the groundwater conditions. The exploration program should be sufficient to identify and delineate problematic subsurface conditions such as deep, very soft soil deposits, bouldery deposits, swelling or collapsing soils, existing fill or waste areas, etc.

For cut-and-cover tunnels, culverts, arch pipes, etc., spacing of exploration locations shall be consistent with the requirements described in Chapter 3.

The groundwater conditions at the site are very important for both the design and construction of foundations. Groundwater conditions are especially important in the construction of drilled shafts, spread footings or any other excavation that might extend below the water table or otherwise encounter groundwater. Piezometer data adequate to define the limits and piezometric head in all unconfined, confined, and locally perched groundwater zones should be obtained at each foundation location. The measured depth and elevations of groundwater levels, and dates measured, should be noted on the exploration logs and discussed in the final Geotechnical Report. It is important to distinguish between the groundwater level and the level of any drilling fluid. Also, groundwater levels encountered during exploration may differ from design groundwater levels. Any artesian groundwater condition or other unusual groundwater condition should be identified and reported as this often has important impacts on foundation design and construction.

8.4 Field and Laboratory Testing for Foundations

Conduct subsurface investigations and materials testing in conformance with AASHTO Articles 10.4.3 and 10.4.4. Table 8-1 provides a summary of field and laboratory testing considerations for foundation design. Foundation design will typically rely upon the Standard Penetration Test (SPT), Cone Penetrometer Test (CPT) and rock core samples obtained during the field exploration. Visual descriptions of the soil and rock materials are recorded. Correlations are usually made between these field tests to shear strength and compressibility of the soil. Groundwater and other hydraulic information needed for foundation design and constructability evaluation is typically obtained during the exploration using field instrumentation (e.g., piezometers) and in-situ tests (e.g., slug tests, pump tests, etc.).
ODOT owns the following equipment:

- A Texam Pressuremeter which is available for use on Agency designed projects. The pressuremeter requires predrilled boreholes. The pressuremeter is stored in Region 2. Contact the Region 2 Bridge/Geo-Hydro Section for assistance in obtaining the use of this equipment.

- A Vane Shear device, a Point Load Tester and a Geoprobe. Contact the Pavements Unit to schedule use of the Geoprobe equipment.

In general, for foundation design, laboratory testing should be used to augment the data obtained from the field investigation program and to refine the soil and rock properties selected for design. Index tests such as soil gradation, Atterberg limits, water content, and organic content are used to confirm the visual field classification of the soils encountered, but may also be used directly to obtain input parameters for some aspects of foundation design (e.g., soil liquefaction, scour, degree of overconsolidation, and correlation to shear strength or compressibility of cohesive soils). Laboratory tests conducted on undisturbed soil samples are used to assess shear strength or compressibility of finer grained soils, or to obtain seismic design input parameters such as shear modulus.

8.5 Material Properties for Design

The selection of soil and rock design properties should be in conformance with those described in Chapter 5 with additional reference to "Evaluation of Soil and Rock Properties", Geotechnical Engineering Circular No. 5, (FHWA-IF-02-034).

8.6 Bridge Approach Embankments

The embankments at bridge ends should be evaluated for stability and settlement. The FHWA publication “Soils and Foundations Reference Manual”, 2006, (FHWA NHI-06-088) should be referenced for guidance in the analysis and design of bridge approach embankments. New embankment placed for bridge approaches should be evaluated for short term (undrained) and long term (drained) conditions.

Bridge end slopes are typically designed at 2(H):1(V). If steeper end slopes such as 1½: 1 are desired, they should be evaluated for stability and designed to meet the required factors of safety. If embankment stability concerns arise, consider the use of staged construction, wick drains, flatter slopes, soil reinforcement, lightweight materials, subexcavation/replacement, counterbalances, or other measures depending on site conditions, costs and constraints. The embankment stability analysis, any recommended stabilization measures, instrumentation or other embankment monitoring needs, should be described in detail in the Geotechnical Report.

For overall stability, the static factor of safety for bridge approach embankments should be at least 1.30. A factor of safety of at least 1.5 must be provided against overall stability for abutment spread footings supported directly on embankments or abutment retaining walls. The programs XSTABL5.2 and Slope/W are available for evaluating slope stability. Dynamic (seismic) slope stability, settlement and lateral displacements are discussed in Chapter 6.

The FHWA program “EMBANK” (Urzua, A., 1993) is available for use in estimating embankment settlement. If the estimated post-construction settlement is excessive, consider the use of waiting periods, surcharges, wick drains or other ground improvement methods to expedite or minimize embankment settlement and allow for bridge construction. Consider relocating the bridge end if embankment settlement and stability concerns result in extreme and costly measures to facilitate embankment construction. Also, evaluate long term embankment settlement potential and possible...
downdrag effects on piles or drilled shafts and provide downdrag mitigation recommendations, such as wait periods, if necessary. In general, design for the long term settlement of approach embankments to not exceed 1" in 20 years. Refer to the BDDM for additional approach fill settlement limitations regarding integral abutments.

8.6.1 Abutment Transitions

ODOT standard practice is to provide bridge end panels at each end bent location for bridges constructed on the State Highway system. Embankment settlement often occurs at this transition point after construction is completed and the end panels are necessary to eliminate a potentially dangerous traffic hazard and reduce the impact of traffic loads to the bridge. The settlement is sometimes the result of poorly placed and compacted embankment material or abutment backfill or might be due to long-term settlement of the foundation soils. Guidance for proper detailing and material requirements for abutment backfill is provided in the "Soils and Foundations Reference Manual", 2006, (FHWA NHI-06-088).

End panels may be considered for deletion if the following geotechnical conditions are met:

- Foundation materials are characterized as “incompressible” (e.g., bedrock or very dense granular soils)
- Post-construction settlement estimates are negligible (<0.25”),
- Provisions are made to insure the specifications for embankment and backfill materials, placement and compaction are adhered to (increased inspection and testing QC/QA)

A geotechnical and structural evaluation is required for considering the deletion of end panels and approval of a deviation from standard ODOT BDDM practice is required. The final decision on whether or not to delete end panels shall be made by the ODOT HQ Bridge Section Engineer with consideration to the geotechnical and structural evaluation.

In addition to geotechnical criteria, other issues such as average daily traffic (ADT), design speed, or accommodation of certain bridge structure details may supersede the geotechnical reasons for deleting end panels. End panels shall be used for all ODOT bridges with stub, or integral abutments to accommodate bridge expansion and contraction. End panels shall also be used in all cases where seismic loads could result in excessive dynamic fill settlement and the failure to meet the performance criteria described in the BDDM.

8.6.2 Overall Stability

The evaluation of overall stability of earth slopes with or without a foundation unit shall be investigated at the service limit state as specified in Article 11.6.2.3 of the AASHTO LRFD Bridge Design Specifications. Overall stability should be evaluated using limiting equilibrium methods such as modified Bishop, Janbu, Spencer, or other widely accepted slope stability analysis methods. Article 11.6.2.3 recommends that overall stability be evaluated at the Service I limit state (i.e., a load factor of 1.0) and a resistance factor, ϕ_{os}, of 0.65 for slopes which support a structural element. This corresponds to a factor of safety of 1.5.

Most slope stability programs produce a single factor of safety, FS. Overall slope stability shall be checked to insure that foundations designed for a maximum bearing stress equal to the specified service limit state bearing resistance will not cause the slope stability factor of safety to fall below 1.5. This practice will essentially produce the same result as specified in Article 11.6.2.3 of the AASHTO LRFD Bridge Design Specifications. The foundation loads should be as specified for the Service I limit state for this analysis. If the foundation is located on the slope such that the foundation load
contributes to slope instability, the designer shall establish a maximum footing load that is acceptable for maintaining overall slope stability for Service, and Extreme Event limit states (see Figure 8-1 for example). If the foundation is located on the lower portion of the slope such that the foundation load increases slope stability, overall stability of the slope shall be evaluated ignoring the effect of the footing on slope stability.

![Diagram](image)

Figure 8-1. Example where footing contributes to instability of slope (left figure) vs. example where footing contributes to stability of slope (right figure)

8.7 Foundation Selection Criteria

The foundation type selected for a given structure should result in the design of the most economical bridge, taking into account any constructability issues and constraints. The selection of the most suitable foundation for the structure should be based on the following considerations:

- the ability of the foundation type to meet performance requirements (e.g., deformation, bearing resistance, uplift resistance, lateral resistance/deformation) for all limit states including scour and seismic conditions,
- the constructability of the foundation type (taking into account issues like traffic staging requirements, construction access, shoring required, cofferdams)
- the cost of the foundation,
- meeting the requirements of environmental permits (e.g. in-water work periods, confinement requirements, noise or vibration effects from pile driving or other operations, hazardous materials)
- constraints that may impact the foundation installation (e.g., overhead clearance, access, surface obstructions, and utilities)
- the impact of foundation construction on adjacent structures, or utilities, and the post-construction impacts on such facilities,
- the impact of the foundation installation (in terms of time and space required) on traffic and right-of-way
This is the most important step in the foundation design process. These considerations should be discussed (as applicable) with the structural designer. Bridge bent locations may need to be adjusted based on the foundation conditions, construction access or other factors described above to arrive at the most economical and appropriate design.

Spread Footings

Spread footings are typically very cost effective, given the right set of conditions. Footings work best in hard or dense soils that have adequate bearing resistance and exhibit tolerable settlement under load. Footings can get rather large in less dense soils such as medium dense sand or stiff clays depending on the structure loads and settlement requirements. Structures with tall columns or with high lateral loads which result in large eccentricities and footing uplift loads may not be suitable candidates for footing designs. Footings are not allowed or cost-effective where soil liquefaction can occur at or below the footing level. Other factors that affect the cost feasibility of spread footings include:

- the need for a cofferdam and seals when placed below the water table,
- the need for significant over-excavation and replacement of unsuitable soils,
- the need to place footings deep due to scour, liquefaction or other conditions,
- the need for significant shoring to protect adjacent existing facilities, and
- inadequate overall stability when placed on slopes that have marginally adequate stability.

Settlement (service limit state criteria) often controls the feasibility of spread footings. The amount of footing settlement must be compatible with the overall bridge design. The superstructure type and span lengths usually dictate the amount of settlement the structure can tolerate and footings may still be feasible and cost effective if the structure can be designed to tolerate the estimated settlement (e.g., flat slab bridges, bridges with jackable abutments, etc.). Footings may not be feasible where expansive or collapsible soils are present near the bearing elevation. Refer to the *FHWA Geotechnical Engineering Circular No. 6, Shallow Foundations*, for additional guidance on the selection and use of spread footings.

Deep Foundations

Deep foundations are the next choice when spread footings cannot be founded on competent soils or rock at a reasonable cost. Deep foundations are also required at locations where footings are unfeasible due to extensive scour depths, liquefaction or lateral spread problems. Deep foundations may be installed to depths below these susceptible soils to provide adequate foundation resistance and protection against these problems. Deep foundations should also be used where an unacceptable amount of spread footing settlement may occur. Deep foundations should be used where right-of-way, space limitations, or other constraints as discussed above would not allow the use of spread footings.

Two general types of deep foundations are typically considered: pile foundations, and drilled shaft foundations. The most economical deep foundation alternative should be selected unless there are other controlling factors. Shaft foundations are most advantageous where very dense intermediate strata must be penetrated to obtain the desired bearing, uplift, or lateral resistance, or where materials such as boulders or logs must be penetrated. Shafts may also become cost effective where a single shaft per column can be used in lieu of a pile group with a pile cap, especially when a cofferdam, seal and/or shoring is required to construct the pile cap. However, shafts may not be desirable where contaminated soils are present, since the contaminated soil removed would require
special handling and disposal. Constructability is also an important consideration in the selection of drilled shafts. Shafts can be used in lieu of piles where pile driving vibrations could cause damage to existing adjacent facilities.

Piles may be more cost effective than shafts where pile cap construction is relatively easy, where the depth to the foundation layer is large (e.g., more than 100 ft), or where the pier loads are such that multiple shafts per column, requiring a shaft cap, are needed. The tendency of the upper loose soils to flow, requiring permanent shaft casing, may also be a consideration that could make pile foundations more cost effective. Artesian pressure in the bearing layer could preclude the use of drilled shafts due to the difficulty in keeping enough head inside the shaft during excavation to prevent heave or caving under slurry.

When designing pile foundations keep in mind the potential cost impacts associated with the use of large pile hammers. Local pile driving contractors own hammers typically ranging up to about 80,000 ft.-lbs of energy. When larger hammers are required to drive piles to higher pile bearing resistance they have to rent the hammers and the mobilization cost associated with furnishing pile driving equipment may increase sharply. Larger hammers may also impact the design and cost work bridges due to higher hammer and crane loads.

For situations where existing substructures must be retrofitted to improve foundation resistance, where there is limited headroom available for pile driving or shaft construction, or where large amounts of boulders must be penetrated, micropiles may be the best foundation alternative, and should be considered.

Augercast piles can be very cost effective in certain situations. However, their ability to resist lateral loads is minimal, making them undesirable to support structures where significant lateral loads must be transferred to the foundations. Furthermore, quality assurance of augercast pile integrity and capacity needs further development. Therefore, it is ODOT current policy not to use augercast piles for bridge foundations.

8.8 Overview of LRFD for Foundations

The basic equation for load and resistance factor design (LRFD) states that the loads multiplied by factors to account for uncertainty, ductility, importance, and redundancy must be less than or equal to the available resistance multiplied by factors to account for variability and uncertainty in the resistance per the AASHTO LRFD Bridge Design Specifications. The basic equation, therefore, is as follows:

\[
\sum \eta_i \gamma_i Q_i \leq \phi R_n \quad (8-1)
\]

\(\eta_i\) = Factor for ductility, redundancy, and importance of structure
\(\gamma_i\) = Load factor applicable to the i’th load \(Q_i\)
\(Q_i\) = Load
\(\phi\) = Resistance factor
\(R_n\) = Nominal (predicted) resistance

For typical ODOT practice, \(\eta_i\) is set equal to 1.0 for use of both minimum and maximum load factors.
The product, ϕR_n, is termed the “factored resistance”. This term is analogous to the term “allowable capacity” previously used in Allowable Stress Design. AASHTO Article 10.5.5 provides the resistance factors to use in foundation design. Resistance factors for a given foundation type are a function of the design method used, soil type/condition and other factors. AASHTO Article 10.5.5, and its associated commentary, should be reviewed for information on the development of the specified resistance factors used in foundation design and provides guidance in the selection and use of these factors. Foundations shall be proportioned so that the factored resistance is always greater than or equal to the factored loads. The loads and load factors to be used in pile foundation design shall be as specified in Section 3 of the AASHTO LRFD Bridge Design Specifications.

8.9 Foundation Design Policies

8.9.1 Downdrag Loads

Downdrag loads on piles, shafts, or other deep foundations shall be evaluated as described in AASHTO Article 3.11.8. If a downdrag condition exists, the resulting downdrag loads (DD) are included with the permanent load combinations used in structure design and an appropriate load factor is applied to the downdrag loads. In addition to applying the downdrag loads on the load side of the LRFD equation, the downdrag loads must also be subtracted from the resistance side of the equation since this resistance will not be available for foundation support.

If the settlement cannot be mitigated, consideration should be given to reducing the effects of downdrag loads on the foundations by the use of bitumen coating or pile sleeves. The NCHRP Report “Design and Construction Guidelines for Downdrag on Uncoated and Bitumen-Coated Piles” (Briaud, J. et al., 1997) should be referenced for more guidance on downdrag mitigation methods.

Earthquakes may also produce foundation settlement and downdrag loads due to either liquefaction of saturated sandy soils or dynamic compaction of unsaturated sandy soils resulting from seismic ground motions. Chapter 6 presents methods for calculating liquefaction potential and dynamic settlement estimates. Downdrag loads resulting from seismic loading conditions should not be combined with downdrag loads resulting from static long-term foundation settlement.

8.9.2 Scour Design

Structures crossing waterways may be subject to damage by scour and erosion of the streambed, stream banks, and possibly the structure approach fills. Bents placed in the streambed increase the potential for scour to occur. The degree and depth of scour will have a significant affect on the selection of the most appropriate foundation type. The Hydraulic Report should be consulted for scour predictions.

Scour depths are typically calculated for both the 100-year (“base flood”) and 500-year (“check flood”) events. However, if overtopping of the roadway can occur, the incipient roadway overtopping condition is then the worst case for scour because it will usually create the greatest flow contraction and highest water velocities at the bridge. This overtopping condition may occur less than every 100 years and therefore over-ride the base flood (100-yr) design condition or it could occur between 100 and 500 years and over-ride the 500-year (check flood) condition.
All bridge scour depths are calculated for the following flood conditions, depending on the recurrence interval for the overtopping flood:

- $Q_{\text{overtopping}} > Q_{500}$: Both the 100-year and 500-year flood scour depths are analyzed
- $Q_{100} < Q_{\text{overtopping}} < Q_{500}$: The 100-year flood and the overtopping flood scour depths are analyzed
- $Q_{\text{overtopping}} < Q_{100}$: Only the overtopping flood scour depth is analyzed

The top of the footing should be set below the potential scour elevation for the 100-year scour or the roadway-overtopping flood, whichever is the deepest. The bottom of the footing should be set below the potential scour elevation for the Check Flood, which will be either the roadway-overtopping flood or the 500-year flood.

Minimum pile and drilled shaft tip elevations and spread footing elevations should be based on providing the nominal bearing resistance (resistance factor equal to 1.0) with the estimated 500-year flood scour depths or with the scour depths from the overtopping flood if the recurrence interval of the overtopping flood is greater than 100-years. A resistance factor of 0.70 may be used in foundation design with the estimated 100-year flood scour depths. However, if the recurrence interval of the overtopping flood is less than 100 years, the resistance factor should be evaluated on a case by case basis using engineering judgment and assessing the long term hydraulics and scour potential of the site. Overtopping recurrence intervals that are much less than every 100 years are not considered extreme events and therefore resistance factors associated with the no-scour condition may be more appropriate to use.

For footings constructed on bedrock, provide recommendations regarding the scour potential of the bedrock to the Hydraulics designer. Some types of “bedrock” are very weak and extremely susceptible to erosion and scour. At present, there are no specific recommendations or guidelines to use to determine the scour potential of bedrock types typically found in Oregon. Good engineering judgment should be used in estimating the scour potential of marginally “good” quality rock, taking into account rock strength, RQD, joint spacing, joint filling material, open fractures, weathering, degradation characteristics and other factors. See if any exposed bedrock at the site shows signs of erosion or degradation or if there is a history of bedrock scour in the past. Signs of bedrock scour may include the undermining of existing footings, steeply incised stream banks or scour holes in the bedrock streambed. If any doubts remain, drilled shafts should be considered.

Spread footings supporting bridge abutments should generally be constructed assuming the contraction and degradation scour depths calculated for the main channel are present at the abutment location. Exceptions to this policy include bridge abutment footings that are constructed on non-erodable rock and/or located sufficiently far away from the main channel (e.g. long approach ramps or viaduct). Refer to the ODOT Hydraulics Manual for more guidance regarding scour, riprap protection and footing depth requirements. Loose riprap is not considered permanent protection. Design riprap protected abutments according to the guidance and recommendations outlined in FHWA HEC-18 manual, “Evaluating Scour at Bridges” (Richardson, E. et al., 2001).

8.9.3 Seismic Design

Chapter 6 describes ODOT seismic practices regarding design criteria, performance requirements, ground motion characterization, liquefaction analysis, ground deformation and mitigation. Once the seismic analysis is performed the results are applied to foundation design in the Extreme Event I limit state analysis as described in AASHTO Section 10. Also refer to, and be familiar with, Section 1.1.4; “Foundation Modeling”, of the ODOT Bridge Design and Drafting Manual.
This section describes the various methods bridge designers use to model the response of bridge foundations to seismic loading and also the geotechnical information required to perform the analysis. In general, nominal resistances are used in seismic design except for pile and shaft uplift conditions (see AASHTO Article 10.5.5.3).

If the foundation soils are determined to be susceptible to liquefaction, then spread footings should not be recommended for foundation support of the structure unless proven ground improvement techniques are employed to stabilize the foundation soils and eliminate the liquefaction potential. Otherwise, a deep foundation should be recommended.

Deep foundations (piles and drilled shafts) supporting structures that are constructed on potentially liquefiable soils are normally structurally checked for two separate loading conditions; i.e. with and without liquefaction. Nominal (unfactored) resistances, downdrag loads (if applicable) and soil-pile interaction parameters should be provided for both nonliquefied and liquefied foundation conditions. Communication with the structural designer is necessary to insure that the proper foundation design information is provided.

If the predicted amount of earthquake-induced embankment deformation (lateral deformation and/or settlement) is excessive then assessments should be made of approach fill performance and the potential for bridge and approach fill damage. The need for possible liquefaction mitigation measures should then be evaluated. Refer to the “ODOT Liquefaction Mitigation Policy”, in Chapter 6, for more guidance on ODOT liquefaction mitigation policies.

8.10 Soil Loads on Buried Structures
For tunnels, culverts and pipe arches, the soil loads to be used for design shall be as specified in Sections 3 and 12 of the AASHTO LRFD Bridge Design Specifications.

8.11 Spread Footing Design
Refer to AASHTO Article 10.6 for spread footing design requirements.

Once footings are selected as the preferred design alternative, the general spread footing design process can be summarized as follows. Close communication and interaction is required between the structural and geotechnical designers throughout the footing design phase.

- Determine footing elevation based on location of suitable bearing stratum and footing dimensions (taking into account any scour requirements, if applicable)
- Determine foundation material design parameters and groundwater conditions
- Calculate the nominal bearing resistance for various footing dimensions (consult with structural designer for suitable dimensions)
- Select resistance factors depending on design method(s) used; apply them to calculated nominal resistances to determine factored resistances
- Determine nominal bearing resistance at the service limit state
- Check overall stability (determine max. bearing load that maintains adequate slope stability)

For footings located in waterways, the bottom of the footing should be below the estimated depth of scour for the check flood (typically the 500 year flood event or the overtopping flood). The top of the footing should be below the depth of scour estimated for the design flood (either the overtopping or 100-year event). As a minimum, the bottom of all spread footings should also be at least 6 feet below...
the lowest streambed elevation unless they are keyed full depth into bedrock that is judged not to erode over the life of the structure. Spread footings are not permitted on soils that are predicted to liquefy under the design seismic event.

8.11.1 Nearby Structures

Refer to AASHTO, Article 10.7.1.6.4. Issues to be investigated include, but are not limit to, settlement of the existing structure due to the stress increase caused by the new footing, decreased overall stability due to the additional load created by the new footing, and the effect on the existing structure of excavation, shoring, and/or dewatering to construct the new foundation.

8.11.2 Service Limit State Design of Footings

Footing foundations shall be designed at the service limit state to meet the tolerable movements for the structure in accordance with AASHTO Article 10.5.2. The nominal unit bearing resistance at the service limit state, \(q_{\text{serve}} \), shall be equal to or less than the maximum bearing stress that results in settlement that meets the tolerable movement criteria for the structure.

8.12 Driven Pile Foundation Design

Refer to AASHTO, Article 10.7 for pile design requirements. Pile design should meet or exceed the requirements specified for each limit state. ODOT standards and policies regarding pile foundation design and construction shall also be followed.

All driven piles shall be accepted based on bearing resistance determined from dynamic formula, wave equation, dynamic measurements with signal matching (PDA/CAPWAP) or full-scale load testing. Pile acceptance shall not be accepted based solely on static analysis.

For piles requiring relatively low nominal resistances (<600 kips) and without concerns about high driving stresses, the dynamic formula is typically used for determining pile driving acceptance criteria. In cases where piles are driven to higher resistances or where high pile driving stresses are a concern, such as short, end bearing piles, the wave equation is typically used for both drivability analysis and in determining the final driving acceptance criteria.

Pile acceptance based on the pile driving analyzer (PDA) is typically reserved for projects where it is economically advantageous to use, or for cases where high pile driving stresses are predicted and require monitoring. The PDA (with signal matching) method can be most cost effective on projects that have a large number of long, high capacity, friction piles.

Full-scale static pile load tests are less common in practice due to their inherent expense. However, they may be economically justified in cases where higher bearing resistances can be verified through load testing and applied in design to reduce the cost of the pile foundation. If static load testing is considered for a project it should be conducted early on in the design stage so the results may be utilized in the design of the structure. Also, the pile load test should be taken to complete failure if at all possible. Refer to AASHTO Section 10 for descriptions on how to use the results of the static load tests results to determine driving criteria. Static load test results should be used in combination with either PDA testing or wave equation analysis to develop final driving criteria for the production piles.

Once the pile (bent) locations and foundation materials and properties are defined, the pile foundation design process for normal bridge projects typically consists of the following:

- Determine scour depths (if applicable),
• Determine liquefaction potential and depths; estimate seismic induced settlement (if applicable),
• Evaluate long-term embankment settlement and downdrag potential,
• Select most appropriate pile type,
• Select pile dimension (size) based on discussions with structural designer regarding preliminary pile loading requirements (axial and lateral),
• Establish structural nominal resistance of the selected pile(s)
• Conduct static analysis to calculate nominal single pile resistance as a function of depth for the strength and extreme limit states (or a pile length for a specified resistance),
• Select resistance factors based on the field method to be used for pile acceptance (e.g. dynamic formula, wave equation, PDA/CAPWAP, etc.)
• Calculate single pile factored resistance as a function of depth,
• Estimate downdrag loads; consolidation and/or seismic-induced (if applicable)
• Calculate pile/pile group settlement or pile lengths required to preclude excessive settlement,
• Determine nominal uplift resistance as a function of depth,
• Determine p-y curve parameters for lateral load analysis; modify parameters for liquefied soils (if applicable),
• Determine required pile tip elevation(s) based on geotechnical design requirements including the effects of scour, downdrag, or liquefaction,
• Obtain and verify final pile tip elevations and required resistances (factored and unfactored loads) from the structural designer, finalize required pile tip elevations and assess the following:
 o Determine the need to perform a pile drivability analysis to obtain required tip elevation,
 o Evaluate pile group settlement (if applicable). If settlement exceeds allowable criteria, adjust pile lengths or the size of the pile layout and/or lengths,
• Determine the need for pile tip reinforcement.

8.12.1 Required Pile Tip Elevation
The required tip elevation may require driving into, or through, very dense soil layers resulting in potentially high driving stresses. Under these conditions a wave equation driveability analysis is necessary to make sure the piles can be driven to the required embedment depth (tip elevation). Higher grade steel (ASTM A252, Grade 3 or A572, Grade 50) are sometimes specified if needed to meet driveability criteria. If during the structural design process, adjustments in the required tip elevations are necessary, or if changes in the pile diameter are necessary, the geotechnical designer should be informed so that pile drivability can be re-evaluated.
8.12.2 Pile Drivability Analysis and Wave Equation Usage

The highest pile stresses occur during pile driving and, depending on subsurface and loading conditions, a Wave Equation analysis may be needed to determine if driving stresses could be a problem. All piles driven to nominal resistances greater than 600 kips should be driven based on wave equation criteria. Piles driven to nominal resistance less than or equal to 600 kips may require wave equation depending on the subsurface conditions and pile loads. Engineering judgment is required in this determination. Contrary to Article 10.7.8, pile driving stresses should be limited to the following:

- **Steel Piles:** Tensile and compressive stresses in the pile of 90% of the pile material’s yield strength for the grade of steel specified at any time during the pile installation.

- **Prestressed Concrete Piles:**
 - A tensile stress of \((3 \sqrt{f_c'}) + \text{effective prestress}\)
 - A compressive stress of \((0.85 \times f_c') - \text{effective prestress}\)

 Where: \(f_c' = \text{concrete compressive strength (psi)}\)

- **Timber Piles** - A compressive driving stress of three times the base resistance of the wood in compression parallel to the grain.

8.12.3 Driven Pile Types, and Sizes

The pile types generally used on most permanent structures are steel pipe piles (driven both open and closed-end) and steel H-piles. Either H-pile or open-end steel pipe pile can be used for end bearing conditions. For friction piles, steel pipe piles are often preferred because they can be driven closed-end (as full displacement piles) and because of their uniform cross section properties, which provides the same structural bending capacity in any direction of loading. This is especially helpful under seismic loading conditions where the actual direction of lateral loading is not precisely known. Uniform section properties also aid in pile driving. Pipe piles are available in a variety of diameters and wall thickness; however there are some sizes that are much more common than others and therefore usually less expensive. The most common pipe pile sizes used on ODOT projects are:

- PP 12.75 x 0.375
- PP 16 x 0.500
- PP 20 x 0.500
- PP 24 x 0.500

Timber piles are occasionally used for temporary detour structures and occasionally on specialty bridges, for retrofit or repair, and, on rare occasions, "in-kind" widening projects. ODOT standard prestressed concrete piles are rarely used due to the following reasons:

- They typically have less bending capacity than steel piles for a given size
- They are difficult to connect to the pile cap for uplift resistance
- They are inadequately reinforced for plastic hinge formation
- Pile driving damage potential
- Splicing difficulties
• Cost, (typically more expensive than steel for a given capacity)

Prestressed concrete piles may however be appropriate in some areas like low seismic zones or highly corrosive environments. The use of prestressed concrete piles is not prohibited in ODOT if they are properly designed and cost effective.

• The typical ASTM steel specifications and grades used in ODOT are as follows:
 • Steel Pipe Piles: ASTM A 252, Grade 2 & 3
 • Steel H-piles: ASTM A 572, Grade 50

The higher-grade steel may be required in some cases due to predicted high driving stresses or due to high lateral bending stresses. Refer to AASHTO for ASTM requirements for other pile types.

Reinforced pile tips may be warranted in some cases where piles may encounter, or are required to penetrate through, very dense cobbles and/or boulders. Pile tips are useful in protecting the tip of the pile from damage. However, installing a reinforced pile tip does not eliminate all potential for pile damage. High driving stresses may occur at these locations and still result in pile damage located just above the reinforce pile tip. A driveability analysis should be performed in these cases where high tip resistance is anticipated. All reinforced tips are manufactured from high strength (A27) steel.

Tip reinforcement for H-piles are typically called pile points. These come in a variety of shapes and designs. H-pile tips are listed on the ODOT QPL. For pipe piles tip reinforcement are typically termed “shoes”, although close-end “points”, like conical points, are also available. Pipe pile shoes may be either inside or outside-fit. Besides protecting the pile tip, inside-fit shoes are sometimes specified to help in delaying the formation of a pile “plug” inside the pipe pile so the pile may penetrate further into, or even through, a relatively thin dense soil layer. If outside-fit shoes are specified, the outside lip of the shoe may affect (reduce) the pile skin friction and this effect should be taken into account in the pile design.

8.12.4 Extreme Event Limit State Design

For the applicable factored loads for each extreme event limit state, the pile foundations shall be designed to have adequate factored axial and lateral resistance.

8.12.4.1 Scour Effects on Pile Design

The effects of scour, where scour can occur, shall be evaluated in determining the required pile penetration depth. The pile foundation shall be designed so that the pile penetration after the design scour events satisfies the required nominal axial and lateral resistance. The pile foundation shall also be designed to resist debris loads occurring during the flood event in addition to the loads applied from the structure. The resistance factors for scour shall be those described in Section 8.10. The axial resistance of the material lost due to scour should be determined using a static analysis. The axial resistance of the material lost due to scour should not be factored. The piles will need to be driven to the required nominal axial resistance plus the skin friction resistance that will be lost due to scour.

From Equation 8-1:

\[\Sigma \eta_i Q_i \leq \phi R_n \]

(8-1)

The summation of the factored loads (\(\Sigma \eta_i Q_i \)) must be less than or equal to the factored resistance (\(\phi R_n \)). Therefore, the nominal resistance needed, \(R_n \), must be greater than or equal to the sum of the factored loads divided by the resistance factor \(\phi \):
\[R_n \geq (\Sigma \gamma_i Q_i)/\phi_{dyn} \]

For scour conditions, the resistance that the piles must be driven to needs to account for the resistance in the scour zone that will not be available to contribute to the resistance required under the extreme event (scour) limit state. The total driving resistance, Rndr, needed to obtain Rn, is therefore:

\[R_{ndr} = R_n + R_{scour} \]

Note that \(R_{scour} \) remains unfactored in this analysis to determine \(R_{ndr} \).

Pile design for scour is illustrated further in Figure 8-2, where,

- \(R_{scour} \) = skin friction which must be overcome during driving through scour zone (KIPS)
- \(Q_p \) = \((\Sigma \gamma_i Q_i) \) = factored load per pile (KIPS)
- \(D_{est.} \) = estimated pile length needed to obtain desired nominal resistance per pile (FT)
- \(\phi_{dyn} \) = resistance factor

![Figure 8-2. Design of pile foundations for scour](image_url)
8.12.4.2 Seismic Design for Pile Foundations

For seismic design, all soil within and above liquefiable zones, shall not be considered to contribute axial compressive resistance. Downdrag resulting from liquefaction induced settlement shall be determined as specified in AASHTO and included in the loads applied to the foundation. Static downdrag loads should not be combined with seismic downdrag loads due to liquefaction.

In general, the available factored geotechnical resistance should be greater than the factored loads applied to the pile, including the downdrag, at the extreme event limit state. The pile foundation shall be designed to structurally resist the downdrag plus structure loads. Pile design for liquefaction downdrag is illustrated in Figure 8-3, where,

- R_{Sdd} = skin friction which must be overcome during driving through downdrag zone
- $Q_p = (\Sigma \gamma_i Q_i)$ = factored load per pile, excluding downdrag load
- DD = downdrag load per pile
- $D_{est.}$ = estimated pile length needed to obtain desired nominal resistance per pile
- ϕ_{seis} = resistance factor for seismic conditions
- γ_p = load factor for downdrag

The nominal bearing resistance of the pile needed to resist the factored loads, including downdrag, is therefore,

- $R_n = (\Sigma \gamma_i Q_i)/\phi_{seis} + \gamma_p DD/\phi_{seis}$

The total driving resistance, R_{ndr}, needed to obtain R_n, must account for the skin friction that has to be overcome during pile driving that does not contribute to the design resistance of the pile. Therefore:

- $R_{ndr} = R_n + R_{Sdd}$

Note that R_{Sdd} remains unfactored in this analysis to determine R_{ndr}.
Figure 8-3. Design of pile foundations for liquefaction downdrag (WSDOT, 2006)

In the instance where it is not possible to obtain adequate geotechnical resistance below the lowest layer contributing to downdrag (e.g., friction piles) to fully resist the downdrag, or if it is anticipated that significant deformation will be required to mobilize the geotechnical resistance needed to resist the factored loads including the downdrag load, the structure should be designed to tolerate the settlement resulting from the downdrag and the other applied loads.

The static analysis procedures in AASHTO should be used to estimate the skin friction within, above and below, the downdrag zone and to estimate pile lengths required to achieve the required bearing resistance. For this calculation, it should be assumed that the soil subject to downdrag still contributes overburden stress to the soil below the downdrag zone.

The pile foundation shall also be designed to resist the horizontal force resulting from lateral spreading, if applicable, or the liquefiable soil shall be improved to prevent liquefaction and lateral spreading. For lateral soil resistance of the pile foundation, the P-y curve soil parameters should be reduced to account for liquefaction. To determine the amount of reduction, the duration of strong shaking and the ability of the soil to fully develop a liquefied condition during the period of strong shaking should be considered.

The force resulting from lateral spreading should be calculated as described in Chapter 6. In general, the lateral spreading force should not be combined with the seismic forces. See Chapter 6, “Seismic Design” for additional guidance regarding this issue.
Regarding the reduction of soil strength and stiffness parameters to account for liquefaction, fully liquefied soil may be treated as a soft clay, using residual strength parameters from Seed and Harder (1990) as described in Chapter 6, assuming the strain required to mobilize 50% of the ultimate resistance to be equal to 0.02. Alternatively, the soil can be treated as very loose sand, or computer programs that contain theoretical algorithms to generate the pore pressures induced by liquefaction and can thereby calculate directly the liquefied soil stiffness parameters may be used. Regardless of the method selected good engineering judgment will be necessary. The geotechnical designer should be aware that use of the soft clay model to simulate the as liquefied soil may result in a stiffer response than the sand model for the un-liquefied condition at low loads or displacements due to the difference in the shape of the P-y curves.

8.13 Drilled Shaft Foundation Design

Refer to AASHTO Article 10.8 for drilled shaft design requirements. Common shaft sizes range from 3 feet to 8 feet in diameter in 6 inch increments. Larger shaft diameters are also possible. The minimum shaft diameter is 12 inches.

Once the shaft locations and foundation materials and properties are known, the drilled shaft design process for normal bridge projects typically consists of the following:

- Determine scour depths (if applicable),
- Determine liquefaction potential and depths; estimate seismic induced settlement (if applicable),
- Evaluate long-term embankment settlement and downdrag potential,
- Select most appropriate shaft diameter(s) in consultation with structure designer,
- Determine (in consult with the structure designer) whether or not permanent casing will be used,
- Calculate nominal single shaft resistance as a function of depth,
- Select and apply resistance factors to nominal resistance
- Estimate downdrag loads (if applicable),
- Estimate shaft or shaft group settlement and adjust shaft diameter or lengths if necessary to limit settlement to service state limits,
- Determine p-y curve parameters for lateral load analysis; modify parameters for liquefied soils (if applicable).

The diameter of shafts will usually be controlled by the superstructure design loads and the configuration of the structure but consideration should also be given to the foundation materials to be excavated. If boulders or large cobbles are anticipated, attempt to size the shafts large enough so the boulders or cobbles can be more easily removed if possible. Shaft diameters may also need to be increased to withstand seismic loading conditions. The geotechnical engineer and the bridge designer should confer and decide early on in the design process the most appropriate shaft diameter(s) to use for the bridge, given the loading conditions, subsurface conditions at the site and other factors. Also decide early on with the bridge designer if permanent casing is desired since this will affect both structural and geotechnical designs. Specify each shaft as either a “friction” or “end bearing” shaft since this dictates the final cleanout requirements in the specifications.
When the drilled shaft design calls for a specified length of shaft embedment into a bearing layer (rock socket) and the top of the bearing layer is not well defined, an additional length of shaft reinforcement should be added to the length required to reach the estimated tip elevation. This extra length is required to account for the uncertainty and variability in the final shaft length. This practice is much preferred instead of having to splice on additional reinforcement in the field during which time the shaft excavation remains open. Any extra reinforcement length that is not needed can be easily cut off prior to steel placement once the final shaft tip elevation is known. CSL tubes would also need to be either cut off and recapped or otherwise adjusted. This additional reinforcement length should be determined by the geotechnical engineer based on an evaluation of the site geology, location of borehole information and the potential variability of the bearing layer surface at the plan location off the shaft. The additional recommended length should be provided in the Geotechnical Report and included in the project Special Provisions. Refer to the Standard Special Provisions for Section 00512 for further guidance and details of this application.

If a minimum rock embedment (socket) depth is required, specify the reason for the rock embedment. Try to minimize hard rock embedment depths if possible since this adds substantially to the cost of drilled shafts.

Settlement may control the design of drilled shafts in cases where side resistance (friction) is minimal, loads are high and the shafts are primarily end bearing on compressible soil. The shaft settlement necessary to mobilize end bearing resistance may exceed that allowed by the bridge designer. Confer with the bridge designer to determine shaft service loads and allowable amounts of shaft settlement. Refer to the AASHTO methods to calculate the settlement of individual shafts or shaft groups. Compare this settlement to the maximum allowable settlement and modify the shaft design if necessary to reduce the estimated settlement to acceptable levels.

8.13.1 Nearby Structures

Where shaft foundations are placed adjacent to existing structures, the influence of the existing structure(s) on the behavior of the foundation, and the effect of the foundation on the existing structures, including vibration effects due to casing installation, should be investigated. In addition, the impact of caving soils during shaft excavation on the stability of foundations supporting adjacent structures should be evaluated. At locations where existing structure foundations are adjacent to the proposed shaft foundation, or where a shaft excavation cave-in could adversely affect an existing foundation, the design should require that casing be advanced as the shaft excavation proceeds.

8.13.2 Scour

The effect of scour shall be considered in the determination of the shaft penetration. The shaft foundation shall be designed so that the shaft penetration and resistance remaining after the design scour events satisfies the required nominal axial and lateral resistance. For this calculation, it shall be assumed that the soil lost due to scour does not contribute to the overburden stress in the soil below the scour zone. The shaft foundation shall be designed to resist debris loads occurring during the flood event in addition to the loads applied from the structure.

Resistance factors for use with scour are described in Section 8.9.2. The axial resistance of the material lost due to scour shall not be included in the shaft resistance.
8.13.3 Extreme Event Limit State Design of Drilled Shafts

The provisions of Section 8.12.4 shall apply. The nominal shaft resistance available to support structure loads plus downdrag shall be estimated by considering only the positive skin and tip resistance below the lowest layer contributing to the downdrag. For this calculation, it shall be assumed that the soil contributing to downdrag does contribute to the overburden stress in the soil below the downdrag zone.

In general, the available factored geotechnical resistance should be greater than the factored loads applied to the shaft, including the downdrag, at the extreme limit state. The shaft foundation shall be designed to structurally resist the downdrag plus structure loads.

In the instance where it is not possible to obtain adequate geotechnical resistance below the lowest layer contributing to downdrag (e.g., friction shafts) to fully resist the downdrag, the structure should be designed to tolerate the settlement resulting from the downdrag and the other applied loads.

8.14 Micropiles

Micropiles shall be designed using an allowable stress approach in accordance with the FHWA Reference Manual titled; "Micropile Design and Construction" (Publication No. FHWA NHI-05-039).

8.15 References

9 Embankments – Analysis and Design

9.1 General

This chapter addresses the analysis and design of rock and earth embankments. Also addressed briefly are foundation improvement (ground improvement), the use of lightweight fill and settlement and stability mitigation techniques. Bridge approach embankments, defined as fill under bridge ends, are not covered in this chapter, but are addressed in Chapter 8 and in Chapter 6. The primary geotechnical issues that impact embankment performance are overall (global) stability, internal (slope) stability, settlement, material selection, compaction, and constructability. For the purposes of this chapter, embankments include the following:

- Rock embankments, also known as all-weather embankments, are defined as fills in which the material is non-moisture-density testable and is composed of durable granular materials.

- Earth embankments are fills that are typically composed of onsite or imported borrow, and could include a wide variety of materials from fine to coarse grain. The material is usually moisture-density testable.

- Lightweight fills contain lightweight fill or recycled materials as a significant portion of the embankment volume, and the embankment construction is specified by special provision. Lightweight fills are most often used as a portion of the bridge approach embankment to mitigate settlement or in landslide repairs to reestablish roadways.

Embankments under 10 feet high in areas of stable ground and with slopes flatter than 2:1 generally do not require a detailed geotechnical investigation and analysis. These embankments can be designed based on past experience with similar soils and on engineering judgment. Embankments over 10 feet high, with steeper slopes, constructed in problem soil areas, or from specially designed or unique materials will require a detailed geotechnical analysis, development of special provisions and possibly details included in the contract plans.
9.2 Design Considerations

9.2.1 Typical Embankment Materials and Compaction

New embankments and embankment widenings require suitable fill materials to be used and properly compacted with the right equipment for the type of material. Compaction control of soil embankments requires the development of moisture-density relationships to allow measurement of in-place compaction during construction. Tamping foot rollers and specified passes of the rollers are used to achieve the required density of the fill. Non-durable rock materials may require additional compactive effort beyond the usual soil construction methods to prevent long term settlement of an embankment. The ODOT Standard Specifications for Construction identifies the acceptable embankment construction methods for soil, non-durable rock and rock materials. The geotechnical designer should determine during the exploration program if any of the material from planned earthwork excavations will be suitable for embankment construction. Consideration should be given as to whether the material is moisture sensitive and difficult to compact during wet weather.

9.2.1.1 All-Weather Embankment Materials

ODOT projects are increasingly being constructed within shorter time frames that may require fill placement occurring at any time of the year. Clean, granular, all-weather embankment materials allow the contractor the ability to properly place and compact fill materials year round. Clean, granular fill material use also provides better access to work areas, and facilitates construction staging and traffic detouring. The ODOT Standard Specifications identify 2 materials considered to be suitable for all-weather construction: Selected Stone Backfill (section 00330.15), and Stone Embankment Material (section 00330.16). Both of these materials have in common the use of “durable” material, as defined in section 00110.20 Durable Rock. Compaction tests cannot be applied to coarse material with any degree of accuracy; therefore, a method specification approach is typically specified for granular embankments, as described in section 00330.43 Non-Moisture Density Testable Materials.

9.2.1.2 Durable and Non-Durable Rock Materials

Special consideration should be given during design to the type of material that will be used in rock embankments. In some areas of the state, moderately weathered or very soft rock may be encountered in cuts and used as embankment fill. Follow these guidelines:

- Degradable fine grained sandstone and siltstone are often encountered in the cuts and the use of this material in embankments can result in significant long term settlement and stability problems as the rock degrades, unless properly compacted with heavy tamping foot rollers (Machan, et al., 1989). The slake durability test (ASTM D4644) should be performed if the geologic nature of the rock source proposed indicates that poor durability rock is likely to be encountered.

- When the rock is found to be non-durable, it should be physically broken down and compacted as earth embankment provided the material meets or exceeds common borrow requirements. Special compaction requirements, defined by method specification, may be needed for these materials. In general, tamping foot rollers work best for breaking down the rock fragments. The minimum size roller should be about 30 tons. Specifications should include the maximum size of the rock fragments and maximum lift thickness. These requirements will depend on the hardness of the rock, and a test section should be
incorporated into the contract to verify that the Contractor’s methods will achieve compaction and successfully break down the material. In general, both the particle size and lift thickness should be limited to 12 inches.

9.2.1.3 **Earth Embankments**

Embankments constructed with common borrow materials must be placed in accordance with the procedures of the ODOT Standard Specifications, section 00330 Earthwork. These specifications are intended for use where it is not necessary to strictly control the strength properties of the embankment material and where all-weather construction is not required.

9.2.2 **Embankment Stability Assessment**

In general, embankments 10 feet or less in height with 2H:1V or flatter side slopes, may be designed based on past precedence and engineering judgment provided there are no known problem soil conditions such as liquefiable sands, organic soils, soft/loose soils, or potentially unstable soils such as clay, estuarine deposits, or peat. Embankments over 10 feet in height or any embankment on soft and/or unstable soils or those comprised of light weight fill require more in depth stability analyses, as do any embankments with side slope inclinations steeper than 2H:1V. Moreover, any fill placed near or against a bridge abutment or foundation, or that can impact a nearby buried or above-ground structure, will likewise require stability analyses by the geotechnical designer. Slope stability analysis, discussed in [Chapter 7](#), are to be conducted in accordance with the standard of practice for geotechnical engineering.

The geotechnical designer should determine key issues that need to be addressed to perform stability analysis. These include:

- Is the site underlain by soft silt, clay or peat? If so, a staged stability analysis (staged construction of fill with stability analysis at each stage) may be required.
- Are site constraints such that slopes steeper than 2H:1V are required? If so, a detailed slope stability assessment is needed to evaluate the various alternatives.
- Is the embankment temporary or permanent? Factors of safety for temporary embankments may be lower than for permanent ones, depending on the site conditions and the potential for variability.
- Will the new embankment impact nearby structures or bridge abutments? If so, more thorough sampling, testing and analysis are required.
- Are there potentially liquefiable soils at the site? If soil, seismic analysis to evaluate this may be warranted see [Chapter 6](#) and ground improvement may be needed.

Several methodologies for analyzing the stability of slopes are detailed or identified by reference in [Chapter 7](#) and are directly applicable to earth embankments.

9.2.2.1 Safety Factors

All embankments not supporting or potentially impacting structures shall have a minimum safety factor of 1.25. Embankments supporting or potentially impacting non-critical structures shall have a minimum factor of safety of 1.3. As discussed in [Section 8.7](#), all bridge approach embankments and embankments supporting critical structures shall have a safety factor of 1.5.
Under seismic conditions, only those portions of the new embankment that could impact an adjacent structure such as bridge abutments and foundations or nearby buildings require seismic analyses and an adequate overall stability resistance factor (i.e., a maximum resistance factor of 0.9 or a minimum factor of safety of 1.1). See Chapter 6 for specific requirements regarding seismic design of embankments.

9.2.2.2 Strength Parameters

Strength parameters are required for any stability analysis. Strength parameters appropriate for the different types of stability analyses are determined based on Chapter 5 and by reference to FHWA Geotechnical Engineering Circular No. 5 (Sabatini, et al., 2002). If the critical stability is under drained conditions, such as in sand or gravel, then effective stress analysis using a peak friction angle is appropriate and should be used for stability assessment. In the case of over-consolidated fine grained soils, a friction angle based on residual strength may be appropriate. This is especially true for soils that exhibit strain softening or are particularly sensitive to shear strain. If the critical stability is under undrained conditions, such as in most clays and silts, a total stress analysis using the undrained cohesion value with no friction is appropriate and should be used for stability assessment.

For staged construction, both short (undrained) and long term (drained) stability need to be assessed. At the start of a stage the input strength parameter is the undrained cohesion. The total shear strength of the fine-grained soil increases with time as the excessive pore water dissipates, and friction starts to contribute to the strength.

9.2.3 Embankment Settlement Assessment

New embankments and embankment widenings should be analyzed using the methods discussed in the FHWA Soils and Foundation Reference Manual, (Samtani, N. and Nowatzki, E. 2006). Laboratory test results of foundation soil samples obtained should be used as a basis for determining the primary and secondary settlement amounts and rates. Because primary consolidation and secondary compression can continue to occur long after the embankment is constructed (post construction settlement), they represent the major settlement concerns for embankment design and construction. Post construction settlement can damage structures and utilities located within the embankment, especially if those facilities are also supported by adjacent soils or foundations that do not settle appreciably, leading to differential settlements. If the primary consolidation is allowed to occur prior to placing utilities or building structures that would otherwise be impacted by the settlement, the impact is essentially mitigated. However, it can take weeks to years for primary settlement to be essentially complete, and significant secondary compression of organic soils can continue for decades. Many construction projects cannot absorb the scheduling impacts associated with waiting for primary consolidation and/or secondary compression to occur. Therefore, estimating the time rate of settlement is often as important as estimating the magnitude of settlement.

9.2.3.1 Settlement Analysis

The key parameters for evaluating the amount of settlement below an embankment include knowledge of:

- The subsurface profile including soil types, layering, groundwater level and unit weights;
- The compression indexes for primary, rebound and secondary compression from laboratory test data, correlations from index properties, and results from settlement monitoring programs completed for the site or nearby sites with similar soil conditions.
• The geometry of the proposed fill embankment, including the unit weight of fill materials and any long term surcharge loads.

9.2.3.2 Analytical Tools

The primary consolidation and secondary settlement can be calculated by hand or by using computer programs such as EMBANK (FHWA, 1993). Alternatively, spreadsheet solutions can be easily developed. The advantage of computer programs such as EMBANK are that multiple runs can be made quickly, and they include subroutines to estimate the increased vertical effective stress caused by the embankment or other loading conditions.

9.3 Stability Mitigation

A variety of techniques are available to mitigate inadequate slope stability for new embankments or embankment widenings. These techniques include staged construction to allow for the underlying soils to gain strength, base reinforcement, ground improvement, use of lightweight fill, and construction of toe berms (counterweights) and shear keys. A summary of these instability mitigation techniques is presented below along with the key design considerations.

9.3.1 Staged Construction

Where soft compressible soils are present below a new embankment location and it is not economical to remove and replace these soils with compacted fill, the embankment can be constructed in stages to allow the strength of the compressible soils to increase under the weight of new fill. Construction of the second and subsequent stages commences when the strength of the compressible soils is sufficient to maintain stability. In order to define the allowable height of fill for each stage and maximum rate of construction, detailed geotechnical analysis is required. The analysis to define the height of fill placed during each stage and the rate at which the fill is placed is typically completed using a limit equilibrium slope stability program along with time rate of settlement analysis to estimate the percent consolidation required for stability. Field monitoring of settlement and pore water pressures are usually required during construction.

9.3.2 Base Reinforcement

Base reinforcement may be used to increase the factor of safety against slope failure. Base reinforcement typically consists of placing a geotextile or geogrid at the base of an embankment prior to constructing the embankment. Base reinforcement is particularly effective where soft/weak soils are present below a planned embankment location. The base reinforcement can be designed for either temporary or permanent applications. Most base reinforcement applications are temporary, in that the reinforcement is needed only until the underlying soil’s shear strength has increased sufficiently as a result of consolidation under the weight of the embankment, see Section 9.3.1. Therefore, the base reinforcement does not need to meet the same design requirements as permanent base reinforcement regarding creep and durability. The design of base reinforcement is similar to the design of a reinforced slope in that limit equilibrium slope stability methods are used to determine the strength required to obtain the desired safety factor. The detailed design procedures provided by Holtz, et al. (1995) should be used for embankments utilizing base reinforcement.

Base reinforcement materials should be placed in continuous longitudinal strips in the direction of main reinforcement. Joints between pieces of geotextile or geogrid in the strength direction (perpendicular to the slope) should be avoided. All seams in the geotextiles should be sewn and not
lapped. Likewise, geogrids should be linked with mechanical fasteners or pins and not simply overlapped. Where base reinforcement is used, the use of Select Stone Backfill or Stone Embankment Material, instead of common or select borrow, may also be needed to increase the embankment shear strength.

9.3.3 Ground Improvement
Refer to Chapter 11 for references and information on ground improvement design.

9.3.4 Lightweight Fills
Lightweight embankment fill may be used to improve embankment stability. Lightweight fill materials are generally used to reduce driving forces contributing to instability, and reduce potential settlement resulting from consolidation of compressible foundation soils. Situations where lightweight fill may be appropriate include conditions where the construction schedule does not allow the use of staged construction, where existing utilities or adjacent structures are present that cannot tolerate the magnitude of settlement induced by placement of typical fill, and at locations where post-construction settlements may be excessive under conventional fills. Lightweight fill can consist of a variety of materials including polystyrene blocks (geofoam), light weight aggregates (rhyolite, expanded shale, blast furnace slag, fly ash), wood fiber, shredded rubber tires, and other materials. Lightweight fills are infrequently used due to either high costs or other disadvantages with using these materials.

9.3.5 Toe Berms and Shear keys
Toe berms and shear keys are methods to improve the stability of an embankment by increasing the resistance along potential failure surfaces. Toe berms are typically constructed of granular materials that can be placed quickly, do not require much compaction, and have relatively high shear strength. ODOT would typically specify the use of Stone Embankment Material when toe berms and shear keys are required.

9.4 Settlement Mitigation

9.4.1 Acceleration Using Wick Drains
Wick drains, or prefabricated drains, are in essence, vertical drainage paths that can be installed into compressible soils to decrease the overall time required for completion of primary consolidation. Wick drain design considerations, example designs, guideline specifications, and installation considerations are provided by reference in Chapter 11. Section 00435 of the ODOT Standard Specifications addresses installation of wick drains.

9.4.2 Acceleration Using Surcharges
Surcharge loads are additional loads placed on the fill embankment above and beyond the finish grades. The primary purpose of a surcharge is to speed up the consolidation process. Two significant design and construction considerations for using surcharges include embankment stability and re-use of the additional fill materials. New embankments over soft soils can result in stability problems. Adding additional surcharge fill could exacerbate the stability problem. Furthermore, after the settlement objectives have been met, the surcharge will need to be removed. If the surcharge material cannot be moved to another part of the project site for use as site fill or as another surcharge, it is often not economical to bring the extra surcharge fill to the site only to haul it away.
again. Also, when fill soils must be handled multiple times (such as with a “rolling” surcharge), it is advantageous to use gravel borrow to reduce workability issues during wet weather conditions.

9.4.3 Lightweight Fills
Lightweight fills can also be used to mitigate settlement issues as indicated in Section 9.3.4. Lightweight fills reduce the new loads imposed on the underlying compressible soils, thereby reducing the magnitude of the settlement.

9.4.4 Subexcavation
Subexcavation refers to excavating the soft compressible or unsuitable soils from below the embankment footprint and replacing these materials with higher quality, less compressible material. Because of the high costs associated with excavating and disposing of unsuitable soils as well as the difficulties associated with excavating below the water table, subexcavation and replacement typically only makes economic sense under certain conditions. Some of these conditions include, but are not limited to:

- The area requiring overexcavation is limited;
- The unsuitable soils are near the ground surface and do not extend very deep (typically, even in the most favorable of construction conditions, subexcavation depths greater than about 10 ft are in general not economical);
- Temporary shoring and dewatering are not required to support or facilitate the excavation and;
- Suitable materials are readily available to replace the over-excavated unsuitable soils.
9.5 References

10 Soil Cuts - Analysis and Design

10.1 General

Soil cut slope design must consider many factors such as the materials and conditions present in the slope, materials available or required for construction on a project, space available to make the slopes, minimization of future maintenance and slope erosion. Soil slopes less 10 feet high are generally designed based on past experience with similar soils and on engineering judgment. Cut slopes greater than 6 to 10 feet in height usually require a more detailed geotechnical analysis. Relatively flat (2H:1V or flatter) cuts in granular soil when groundwater is not present above the ditch line, will probably not require rigorous analysis. Any cut slope where failure would result in large rehabilitation costs or threaten public safety should obviously be designed using more rigorous techniques. Situations that will warrant more in-depth analysis include:

- large cuts,
- cuts with irregular geometry,
- cuts with varying stratigraphy (especially if weak zones are present),
- cuts where high groundwater or seepage forces are likely,
- cuts involving soils with questionable strength, or
- cuts in old landslides or in formations known to be susceptible to landsliding.

A major cause of cut slope failure is related to reduced confining stress within the soil upon excavation. Undermining the toe of the slope, increasing the slope angle, and cutting into heavily overconsolidated clays have also resulted in slope failures. Careful consideration should be given to preventing these situations by surcharging or buttressing the base of the slope, choosing an appropriate slope angle (i.e., not oversteepening), and by keeping drainage ditches a reasonable distance away from the toe of slope. Cutslopes in heavily overconsolidated clays may require special mitigation measures, such as retaining walls rather than an open cut in order to prevent slope deformation and reduction of soil strength to a residual value. Consideration should also be given to establishing vegetation on the slope to prevent long-term erosion. It may be difficult to establish vegetation on slopes with inclinations steeper than 2H:1V without the use of erosion mats or other stabilization methods.
10.1.1 Design Parameters

The major cut slope design parameters are slope geometry, soil shear strength and predicted or measured groundwater levels. For cohesionless soil, stability of a cut slope is independent of height and therefore slope angle becomes the key parameter of concern. For cohesive (\(\phi = 0 \)) soils, the height of the cut becomes the critical design parameter. For c’-\(\phi’ \) and saturated soils, slope stability is dependent on both slope angle and height of cut. Also critical to the proper design of cut slopes is the incorporation of adequate surface and subsurface drainage facilities to reduce the potential for future stability or erosional problems.

Establishment of design parameters is done by a thorough site reconnaissance, sufficient exploration and sampling, and a laboratory testing program designed to identify the material soil strength properties to be used in analysis. Backanalysis methods may also be used to determine the appropriate shear strength for design. The geotechnical designer should be familiar with the state of the practice in determining the design parameters for analysis. References are presented in Section 10.3.

10.2 Soil Cut Design

10.2.1 Design Approach and Methodology

Safe design of cut slopes is typically based on past experience or on more in-depth analysis. Both approaches require accurate site specific information regarding geologic conditions obtained from standard field and laboratory classification procedures. Design guidance for simple projects is provided in the ODOT Highway Design Manual, located on the ODOT website, and can be used unless indicated otherwise by the geotechnical designer. Slopes less than 6 to 10 feet high, with slopes flatter than 2:1, may be used without in-depth analysis if no special concerns are noted by the geotechnical designer. If the geotechnical designer determines that a slope stability study is necessary, information that will be needed for analysis includes:

- an accurate cross section showing topography,
- proposed grade,
- soil unit profiles,
- unit weight and strength parameters (c’,\(\phi’ \), (c,\(\phi \)), or Su (depending on soil type and drainage and loading conditions) for each soil unit, and
- location of the water table and flow characteristics.

The design factor of safety for static slope stability is 1.25. This safety factor should be increased to a minimum of 1.30 for slopes where failure would cause significant impact to adjacent structures. For pseudo-static seismic analysis the factor of safety can be decreased to 1.1. Cut slopes are generally not designed for seismic conditions unless slope failure could impact adjacent structures. These factors of safety should be considered as minimum values. The geotechnical designer should decide on a case by case basis whether or not higher factors of safety should be used based the consequences of failure, past experience with similar soils, and uncertainties in analysis related to site and laboratory investigation.
Preliminary slope stability analysis can be performed using simple stability charts. See Abramson, et al. (1994) for example charts. These charts can be used to determine if a proposed cut slope might be subject to slope failure. If slope instability appears possible, or if complex conditions exist beyond the scope of the charts, more rigorous computer methods such as XSTABL, PCSTABL, and SLOPE/W can be employed see Chapter 7. Effective use of these programs requires accurate determination of site geometry including surface profiles, soil unit boundaries, and location of the water table, as well as unit weight and strength parameters for each soil type.

10.2.2 Seepage Analysis and Impact on Design

The introduction of groundwater to a slope is a common cause of slope failures. The addition of groundwater often results in a reduction in the shear strength of soils. A higher groundwater table results in higher pore pressures, causing a corresponding reduction in effective stress and soil shear strength. A cutslope below the groundwater table results in destabilizing seepage forces, adds weight to the soil mass, increasing driving forces for slope failures. It is important to identify and accurately model seepage within proposed cut slopes so that adequate slope and drainage designs are employed.

For slope stability analysis requiring effective stress parameters, pore pressures have to be known or estimated. This can best be done by measuring the phreatic (water table) surface with open standpipes or observation wells. Piezometric data from piezometers can be used to estimate the phreatic surface or piezometric surface if confined flow conditions exist. A manually prepared flow net or a numerical method such as finite element analysis can be used provided sufficient boundary information is available. The pore pressure ratio (ru) can also be used. However, this method is generally limited to use with stability charts or for determining the factor of safety for a single failure surface.

10.2.3 Surface and Subsurface Drainage Considerations and Design

The importance of adequate drainage cannot be overstated when designing cut slopes. Surface drainage can be accomplished through the use of drainage ditches and berms located above the top of the cut, around the sides of the cut, and at the base of the cut. Surface drainage facilities should direct surface water to suitable collection facilities.

Subsurface drainage should be employed to reduce driving forces and increase soil shear strength by lowering the water table, thereby increasing the factor of safety against a slope failure. Subsurface conditions along cut slopes are often heterogeneous. Thus, it is important to accurately determine the geologic and hydrologic conditions at a site in order to place drainage systems where they will be the most effective. Subsurface drainage techniques available include:

- cut-off trenches (French drains)
- horizontal drains
- relief wells

Cut-off trenches: Cut-off trenches, also known as French drains, are a gravel filled trench near the top of the cut slope to intercept groundwater and convey it around the slope. They are effective for shallow groundwater depths from 2 to 15 feet deep.

Horizontal drains: If the groundwater table needs to be lowered to a greater depth, horizontal drains can be installed, if the soils are noncohesive and granular in nature. Horizontal drains are generally not very effective in finer grained soils. Horizontal drains consist of small diameter holes drilled at...
slight angles into a slope face and backfilled with perforated pipe wrapped in drainage geotextile. Installation might be difficult in soils containing boulders, cobbles or cavities. Horizontal drains require periodic maintenance as they tend to become clogged over time.

Relief wells: Relief wells can be used in situations where the water table is at a great depth. They consist of vertical holes cased with perforated pipe connected to a disposal system such as submersible pumps or discharge channels similar to horizontal drains. They are generally not common in the construction of cut slopes.

Whatever subsurface drainage system is used, monitoring should be implemented to determine its effectiveness. Typically, piezometers or observation wells are installed during exploration. These should be left in place and periodic site readings should be taken to determine groundwater levels or pore pressures depending on the type of installation. High readings would indicate potential problems that should be mitigated before a failure occurs.

Surface drainage, such as brow ditches at the top of the slope, and controlling seepage areas as the cut progresses and conveying that seepage to the ditch at the toe of the cut, should be applied to all cut slopes. Subsurface drainage is more expensive and should be used when stability analysis indicates pore pressures need to be lowered in order to provide a safe slope. The inclusion of subsurface drainage for stability improvement should be considered in conjunction with other techniques outlined below to develop the most cost effective design meeting the required factor of safety.

10.2.4 Stability Improvement Techniques

There are a number of options that can be used in order to increase the stability of a cut slope. Techniques include:

- Flattening slopes
- Benching slopes
- Lowering the water table (discussed previously)
- Structural systems such as retaining walls or reinforced slopes.

Changing the geometry of a cut slope is often the first technique considered when looking at improving stability. For flattening a slope, enough right-of-way must be available. As mentioned previously, stability in purely dry cohesionless soils depends on the slope angle, while the height of the cut is often the most critical parameter for cohesive soils. Thus, flattening slopes usually proves more effective for granular soils with a large frictional component.

Structural systems are generally more expensive than the other techniques, but might be the only option when space is limited. Shallow failures and sloughing can be mitigated by placing a 2 to 3-foot thick rock drainage blanket over the slope in seepage areas. Moderate to high survivability permanent erosion control geotextile should be placed between native soil and drain rock to keep fines from washing out and/or clogging the drain rock. In addition, soil bioengineering can be used to stabilize cut slopes against shallow failures (generally less than 3 feet deep), surface sloughing and erosion along cut faces.
10.2.5 Erosion and Piping Considerations

Surface erosion and subsurface piping are most common in clean sands, nonplastic silts and dispersive clays. Loess and volcanic ash are particularly susceptible. However, all cut slopes should be designed with adequate drainage and temporary and permanent erosion control facilities to limit erosion and piping as much as possible. The amount of erosion that occurs along a slope is a factor of soil type, rainfall intensity, slope angle, length of slope, and vegetative cover. The first two factors cannot be controlled by the designer, but the last three factors can. Longer slopes can be terraced at approximate 15- to 30-foot intervals with drainage ditches installed to collect water. Best Management Practices (BMPs) for temporary and permanent erosion and stormwater control as outlined in the ODOT Highway Design Manual should always be used. Construction practices should be specified that limit the extent and duration of exposed soil. For cut slopes, consideration should be given to limiting earthwork during the wet season and requiring that slopes be covered as they are exposed, particularly for the highly erodable soils mentioned above.

10.2.6 Sliver Cuts

A sliver cut is defined as slope excavation less than 10 feet wide over some or all of its height. Sliver cuts in soils should be avoided because they are difficult to build. Cuts at least 10 feet wide over the full height of the cut require the use of conventional earth moving machinery to maximize production. Cuts less than 10 feet wide and up 25 feet high measured along the slope can be excavated with a large backhoe but at the expense of production. If a sliver cut is used, consider how it will be built and be sure to account for the difficulty in the cost estimate.
10.3 References

11 Ground Improvement

11.1 General

Ground improvement is used to address a wide range of geotechnical engineering problems, including, but not limited to, the following:

- Improvement of soft or loose soil to reduce settlement, increase bearing resistance, and/or to improve overall stability of bridge foundations, retaining walls, and/or for embankments.
- To mitigate liquefiable soils.
- To improve slope stability for landslide mitigation.
- To retain otherwise unstable soils.
- To improve workability and usability of fill materials.
- To accelerate settlement and soil shear strength gain.

Types of ground improvement techniques include the following:

- Vibrocompaction techniques such as stone columns and vibroflotation, and other techniques that use vibratory probes that may or may not include compaction of gravel in the hole created to help densify the soil.
- Deep dynamic compaction.
- Blast densification.
- Geosynthetic reinforcement of embankments.
- Wick drains, sand columns, and similar methods that improve the drainage characteristics of the subsoil and thereby help to remove excess pore water pressure that can develop under load applied to the soil.
- Grout injection techniques and replacement of soil with grout, such as compaction grouting, jet grouting, and deep soil mixing.
- Lime or cement treatment of soils to improve their shear strength and workability characteristics.
- Permeation grouting and ground freezing (temporary applications only).

Each of these methods has limitations regarding their applicability and the degree of improvement that is possible.
11.2 Development of Design Parameters and Other Input Data for Ground Improvement Analysis

In general, the geotechnical investigation conducted to design the cut, fill, structure foundation, retaining wall, etc., that the improved ground is intended to support will be adequate for the design of the soil improvement technique proposed. However, specific soil information may need to be emphasized depending on the ground improvement technique selected. For example, for vibro-compaction techniques, deep dynamic compaction, and blast densification, detailed soil gradation information is critical to the design of such methods, as minor changes in soil gradation characteristics could affect method feasibility. Furthermore, the in-situ soil testing method used (e.g., SPT testing, cone testing, etc.) will need to correspond to the technique specified in the contract to verify performance of the ground improvement technique, as the test data obtained during design will be the baseline to which the improved ground will be compared. Other feasibility issues will need to be addressed if these types of techniques are used. Ground vibrations caused by the improvement technique may have critical impacts on adjacent structures. Investigation of the foundation and soil conditions beneath adjacent structures and utilities may be needed, (in addition to standard precondition surveys of the structures) to enable evaluation of the risk of damage caused by the ground improvement technique.

- **Wick Drains:** For wick drains, the ability to penetrate the soil with the wick drain mandrel, in addition to obtaining rate-of-settlement information, must be assessed. Atterberg limit and water content data should be obtained, as well as any other data that can be useful in assessing the degree of overconsolidation of the soil present, if any.

- **Grout Injection Techniques:** Grout injection techniques (not including permeation grouting) can be used in a fairly wide range of soils, provided the equipment used to install the grout can penetrate the soil. The key is to assess the ability of the equipment to penetrate the soil, assign soil density and identify potential obstructions such as boulders.

- **Permeation Grouting:** Permeation grouting is more limited in its application, and its feasibility is strongly dependent on the ability of the grout to penetrate the soil matrix under pressure. To evaluate the feasibility of these two techniques, detailed grain size characterization and permeability assessment must be conducted, as well as the effect groundwater may have on these techniques. An environmental assessment of such techniques may also be needed, especially if there is potential to contaminate groundwater supplies.

- **Ground Freezing:** Similarly, ground freezing is a highly specialized technique that is strongly depending on the soil characteristics and groundwater flow rates present.

11.3 Design Requirements

The following design manuals and references shall be used for specific ground improvement applications:

- **General Ground Improvement Design Requirements:**

• **Stone Column Design:**

• **Deep Dynamic Compaction:**

• **Wick Drain Design:**

• **Blast Densification:**

 Blast Densification for Mitigation of Dynamic Settlement and Liquefaction, Kimmerling, R. E., 1994, WSDOT Research Report WA-RD 348.1

• **Lime and Cement Soil Treatment:**

11.4 References

12 Rock Cuts – Analysis, Design and Mitigation

12.1 General
This chapter discusses the analysis, design guidelines and standards for rock slopes adjacent to highways. Rock slope design for material sources is discussed in Chapter 20.

12.2 ODOT Rock Slope Design Policy
The purpose of the policy is to establish slope design standards for rock cuts and to encourage the active involvement of geologists and geotechnical engineers in the rock slope design process. This involvement is intended to ensure that rock slopes are safe to construct and economical and will optimize safety for the public. In general, the policy includes four sections that deal with rock slopes. These sections cover the rockslope design, rock fallout area requirements, the use of benches, and rock slope stabilization and mitigation techniques.

12.2.1 Rock Slope Design
The purpose of the rock slope design is to develop rock cuts that will be safe to construct and will provide long term safety for the public. The inclination of rock slopes should be based on the structural geology and stability of the rock units, as described in the Geology or Geotechnical Report. Rock unit slopes of vertical, 0.25:1, 0.5:1, 0.75:1 and 1:1 are commonly considered. The design rock cut slope should be the steepest continuous slope (without benches) that satisfies physical and stability considerations. Controlled blasting (using presplit and trim blasting techniques) is normally required for rock cut slopes from vertical to 0.75:1. The purpose of controlled blasting is to minimize blast damage to the rock backslope to help insure long-term-stability, improve safety, and lessen maintenance. See Section 12.5 for more details regarding rock slope design.

12.2.2 Rockslope Fallout Areas
Fallout areas should be used where hazardous rockfall could occur. The fallout area is a non-traveled area between the highway and the cutslope with minimum width, depth and slope requirements. The minimum dimensions should be determined based on rock cut slope inclination and height. The depth of the fallout area varies with the slope configuration. A preliminary determination of the fallout area or catch ditch dimensions can be obtained from the Ritchie Rockfall Catch Ditch Design Chart located in the ODOT Highway Design Manual, section 10.4.
Final catch ditch dimensions should be determined using the *Rockfall Catchment Area Design Guide* (FHWA Final Report SPR-03(032)).

As noted in the 2003 *ODOT Highway Design Manual, section 10.4.4*, a goal of 90% retention of rock in the catchment area has been adopted for all new and reconstructed rock slopes. This goal may not be achievable in all cases due to cost, environmental reasons, or other factors. The catchment area depth may be achieved in a number of ways, including excavation and/or placing suitable retaining structures at the highway shoulder. Where the slopes are inclined at flatter than 0.75:1, and where the anticipated size of a single rock is less than 2 feet in diameter, chain link catch fences may be considered as a substitute for depth of fallout. Slopes less than 40 feet high and flatter than 1:1 generally have a ditch and recoverable slope equal to or greater than a fallout ditch shown in the *Rockfall Catchment Area Design Guide*. In that case, the standard roadway ditch will serve as adequate rockfall catchment.

Temporary detours may require the construction of rockslopes and fallout areas. If the site has previously been an area of rockfall activity, and the detour will reduce the fallout area, thereby putting motorists in increased risk, the rockslope and fallout area must be designed to, at a minimum, not increase the risk to the public. Fallout areas should then be designed to capture or retain at least as much rockfall as was previously available prior to construction. Additional mitigation measures, along with one way travel, reduced travel speed in the rockfall zone, and increased sight distances may be required to reduce risk to the public. The designer should be prepared to address all of these issues in the design process.

12.2.3 Benches

For most rock slope designs, benches should be avoided. The need for benches will be evaluated in the geology and geotechnical investigations and described in the resulting reports. The minimum bench design should satisfy the requirements outlined in the *Rockfall Catchment Area Design Guide*. The bench configuration may be controlled by the need to perform periodic maintenance which requires access to the bench. Soil and rock slopes may need a modification with benches to conform to the environment or for safety and economic concerns. Following are some appropriate bench applications.

- Benching may improve slope stability where continuous slopes are not stable.

- Where maintenance due to sloughing of soil overburden may be anticipated, a bench will provide access and working room at the overburden rock contact.

- Developing an access bench may facilitate construction where the top of cut begins at an intermediate slope location.

- On very high cuts, benches may be included for safety where rockfall is expected during construction.

- Where necessary, benches may be located to intercept and direct surface water runoff and groundwater seepage to an appropriate collection facility.

- All benches should be constructed to allow for maintenance access.
12.2.4 Rock Slope Stabilization and Rockfall Mitigation Techniques

Rock slope stabilization techniques may be required to accommodate special geologic features. Stabilization techniques include rock bolts and dowels, wire mesh and cable net slope protection, reinforced shotcrete, trim and production blasting. Specific stabilization techniques with appropriate design will be recommended in the Geotechnical Report as necessary. Refer to Section 12.4 for more detail.

12.3 Rockslope Stability Analysis

Slope stability analysis for rock slopes involves a thorough understanding of the structural geology and rock mechanics. For most rock cuts on highway slopes, the stresses in the rock are much less than the rock strength so there is little concern with the fracturing of the intact rock. Therefore, stability is concerned with the stability of rock blocks formed by the discontinuities. Field data collection of the dip, dip direction, nature and type of joint infilling, joint roughness and spacing are important for the stability analysis of planar, wedge and toppling failure modes. Slope height, angle, presence of potential rock launching features, block size, and block shape are important for the analysis and design of rockfall mitigation techniques. Hand-calculation methods can be used to analyze potential planar and wedge failures and computer programs such as ROCKPACK are also available. Rockfall simulation programs, such as CRSP (Colorado Rockfall Simulation Program), are used to analyze for rockfall catchment size and the prediction of rock kinetic energy. Only geotechnical practitioners experienced in using these programs should perform the analysis. Refer to Wyllie and Mah, 1998, for details on design, excavation, and stabilization of rock slopes.

12.4 Design Guidelines

General design guidelines are found in the references listed in Section 12.7. Design of rock slopes adjacent to ODOT highways must also include consideration of additional factors such as environmental issues, history of rockfall hazards, cost, risk/benefit, and needs of the project. The following guidelines provide information on ODOT rock slope design.

12.4.1 Geologic Investigation and Mapping

For projects that include rock cuts, the geotechnical designer should contact the local Maintenance district office to discuss the history of past rockfall events and consult the Region Geologist for the project area to determine the RHRS (Rockfall Hazard Rating System) score and priority for that highway and for the Region. The designer should also discuss the geologic hazard potential with the Region Geologist so that a consensus on the degree of rockfall potential is reached. The discussions will serve to highlight concerns regarding construction, local environmental needs, and feasible options for mitigation of the hazard. The development and implementation of the geologic investigation can then be completed.

Field data collection is generally done on a project site specific basis. Wiley and Mah, 1998, discussed joint mapping techniques, stereographic projection, and types of subsurface exploration that may be performed on rockslopes. Full scale tests of rockfall at the site may also be performed, however, the cost and practicality of traffic control generally prevents this type of work.
12.4.2 Analysis and Design

As previously stated, analysis of planar, wedge and toppling failure modes can be performed by hand or with some available computer programs. Wiley and Mah, 1998, discusses the analysis in detail.

Simulation of rockfall using the CRSP computer program may be needed to determine the minimum required dimensions of a rockfall catch ditch and the kinetic energy of rocks that may need to be restrained by barriers, wire mesh, screens or walls. As a rule of thumb, draped gabion wire mesh slope protection and screens are capable of withstanding impacts from rocks up to 2 feet in diameter. For larger rocks, proprietary rockfall net systems or retaining walls will likely be needed. Experience with the Rockfall Catchment Areas Design Guide study indicates that rockfall catch areas wider that 30 to 35 feet are not typically cost effective to construct, and additional barriers, fences or walls to gain ditch depth become more cost effective than wider ditches.

12.4.3 Construction Issues

Construction of rock slopes near highways frequently must consider traffic control during blasting and scaling operations. The traffic control may include adjacent railroad facilities where trains are running next to the highway or other adjacent structures and facilities. The cost of traffic control for a busy highway can potentially result in a doubling of the project cost. Therefore, careful consideration of staging, detours, work zones and blast-produced flyrock control must be done during design. It may even be necessary to choose another mitigation option than the preferred one because of these issues.

Environmental concerns in scenic highway corridors have made construction of rock slopes more difficult. Presplit hole half-casts that are visible after blasting may be regarded as a visual concern and a bid item may be needed to partially or completely removed them. This issue has been most notable in the Columbia River Gorge Scenic Corridor, and in a few USFS forest highways. Rock coloration has also been a concern and a bid item for Permeon, a rock coloration product, has been included on several projects contracts.

12.4.4 Blasting Consultant

A Blasting Consultant may need to be retained to assist a contractor in designing a safe blast if there are nearby structures, if the site is particularly challenging, or otherwise has the potential to result in undesired consequences. Guidelines for determining when a Blasting Consultant is needed are located on the ODOT website. ODOT keeps a list of preapproved blasting consultants and has a method of approving new blasting consultants and the HQ Geotechnical Group should be contacted.

12.4.5 Gabion Wire Mesh Slope Protection/ Cable Net Slope Protection

For gabion wire mesh slope protection, the designer must choose either galvanized or PVC coated wire in order to place the correct Standard Detail in the construction plans. Anchor spacing for Wire Mesh, Cable Net, and Post-Supported Wire Mesh Slope Protection are based on the weight of the mesh alone. Narrower spacing may be required where snow and ice loads will add a significant amount of stress to the anchors.

The WashDOT research report, Design Guidelines for Wire Mesh/Cable Net Slope Protection, WA-RD 612.1, should be used to determine anchor spacing in snow/ice load situations. If mesh is use in a coastal environment, stainless steel fasteners and hardware or heavy galvanizing should be used to inhibit corrosion.
12.4.6 Rock Reinforcing Bolts and Rock Reinforcing Dowels

The designer must identify the installation area, size and strength of steel, pattern or spacing, inclination, minimum length, and design loads of the bolts or dowels and this information must be included in the Geotechnical Report. Since rock reinforcing bolts are considered to be permanent, acceptable materials for bonding the bolt into rock are non-shrink cement grouts, while polyester resin or cement grout is acceptable for the semi-permanent rock reinforcing dowels. Mechanical anchorage bolts and non-shrink cement grout are included in the ODOT Qualified Products List (QPL). Split set and bail set type anchorage systems are considered temporary or low stress installations and are not acceptable for use on ODOT projects.

12.4.7 Proprietary Rockfall Net Systems

High capacity rockfall net systems are available from two accepted manufacturers, GeoBrugg and ROTEC International. Full scale tests on these systems have been performed by the manufacturers. The systems are generally capable of withstanding impact kinetic energies up to 735 ft-tons and can be constructed with breakaway post base connections and post heights up to 20 to 25 feet. These systems are expensive and can raise objections about their highly visible nature. However, they can be a viable alternative to high barriers and MSE walls in rockfall situations.

12.5 Standard Details

The ODOT GeoEnvironmental webpage includes a link to Standard Details normally used in the mitigation of rockfall hazards. These details are also found in the Roadway Contract Plans Development Guide. The following details, in English and Metric units, are presented:

- Det 2200 - Cable Net Slope Protection Detail
- Det 2201 - Wire Mesh/Cable Net Anchors Detail
- Det 2202 - Shotcrete Slope Detail
- Det 2203 - Wire Mesh Slope Protection Detail
- Det 2204 - Barrier Mounted Rock Protection Screen Detail
- Det 2205 - Post Supported Wire Mesh Slope Protection Detail
- Det 2206 - Post Supported Wire Mesh Slope Protection Detail
- Det 2207 - Post Supported Wire Mesh Slope Protection and Post Supported Rock Protection Screen Anchor Details
- Det 2208 - Rock Protection Screen Behind Concrete Barrier or Guardrail Detail
- Det 2209 - Rock Protection Screen Behind Concrete Barrier or Guardrail Detail

12.6 Specifications

The location of Standard Specifications and Special Provisions for items pertaining to rockslopes and rockslope mitigation are listed in the next sections.
12.6.1 Blasting

Specifications for general excavation of rock slopes flatter than 0.75:1, where presplit (controlled blasting) of the backslope is not required, are located in Section 00330.41(e) - Blasting of the Standard Specifications.

Specifications for rock excavation where slopes are 0.75:1 or steeper are located in Section 00335 - Blasting Methods and Protection of Excavation Backslopes of the Standard Specifications. A per foot bid item quantity for Controlled Blast Holes is required if this specification is used.

Special Provisions for retaining a Blasting Consultant (see Section 00335.44 Blasting Consultant), Vibration Control (see Section 00335.45 Vibration Control), and Blasting Noise Control (see Section 00335.46 Airblast and Noise Control) are located in the Special Provisions section of the ODOT Specifications Webpage.

12.6.2 Rockslope Mitigation Methods

The following rockslope mitigation methods are located in a new section of the Standard Specifications, Section 00398 – Rockslope Stabilization and Reinforcement.

- Wire Mesh Slope Protection
- Post Supported Wire Mesh Slope Protection
- Rock Protection Screen Behind Barrier or Guardrail
- Barrier Mounted Rock Protection Screen
- Rock Reinforcing Bolts/Rock Reinforcing Dowels
- Proprietary Rockfall Net System
12.7 References

13 Slope Stability Analysis

13.1 General

This Chapter to be completed at a later date.
14 Geosynthetic Design

14.1 General

This Chapter to be completed at a later date.
Geotechnical Design Manual
Table of Contents

Oregon Department of Transportation ... ii
15 Retaining Structures .. 15-1
 15.1 Introduction .. 15-1
 15.1.1 Implementation .. 15-2
 15.2 Retaining Wall Practices and Procedures ... 15-3
 15.2.1 Retaining Wall Categories and Definitions ... 15-3
 15.2.1.1 Retaining Wall Categories .. 15-3
 15.2.1.2 Definitions ... 15-7
 15.2.2 General Steps in a Retaining Wall Project ... 15-9
 15.2.3 Retaining Wall Project Schedule .. 15-10
 15.2.4 Selection of Retaining Wall System Type ... 15-10
 15.2.4.1 General Criteria for Selection of Retaining Wall System Type 15-10
 15.2.4.2 Retaining Wall System Types ... 15-12
 15.2.5 Proprietary Retaining Wall Systems .. 15-13
 15.2.5.1 Agency Control Plans for Proprietary Retaining Wall Systems 15-13
 15.2.5.2 Elements of Preapproved Proprietary Retaining Wall Systems 15-14
 15.2.6 Nonproprietary Retaining Wall Systems ... 15-14
 15.2.6.1 Agency Detailed Plans for Nonproprietary Retaining Wall Systems 15-14
 15.2.6.2 Components of Nonproprietary Retaining Wall Systems 15-14
 15.2.7 Unique Nonproprietary Wall Designs .. 15-14
 15.2.8 Details of Contract Documents .. 15-15
 15.2.8.1 Elements of Contract Plans for Retaining Wall Systems 15-15
 15.2.8.2 Standard Specifications .. 15-17
 15.2.8.3 Special Provisions .. 15-17
 15.2.8.4 Quantity and Cost Estimates ... 15-18
 15.2.8.5 Calculation Books .. 15-19
 15.2.8.6 Structure Numbers ... 15-21
 15.3 Design Requirements: General Wall Design ... 15-22
 15.3.1 Design Methods .. 15-22
 15.3.2 Wall Facing Considerations .. 15-22
 15.3.3 Wall Face Angle (Batter) ... 15-23
 15.3.3.1 CIP Gravity and Cantilever Walls .. 15-23
 15.3.3.2 Mechanically Stabilized Earth (MSE) Walls .. 15-23
 15.3.3.3 Prefabricated Modular Walls .. 15-24
 15.3.4 Horizontal Wall Alignment .. 15-24
 15.3.4.1 CIP Gravity and Cantilever Walls .. 15-24
 15.3.4.2 Mechanically Stabilized Earth (MSE) Walls .. 15-24
 15.3.4.3 Prefabricated Modular Walls .. 15-24
 15.3.5 Tiered or Superimposed Walls .. 15-25
 15.3.6 Back-to-Back Walls ... 15-25
 15.3.7 Wall Bench ... 15-25
 15.3.8 Wall Back Slope ... 15-25
 15.3.9 Wall Stability ... 15-26
 15.3.10 Lateral Earth Pressures .. 15-26
 15.3.10.1 Active Earth Pressure ... 15-26
 15.3.10.2 At-Rest Earth Pressure .. 15-26
 15.3.10.3 Passive Earth Pressure ... 15-27

Volume 2 ODOT Geotechnical Design Manual
April 2010
15.6.9 Wall Internal Drainage ... 15-52
15.6.10 Traffic Railing .. 15-53
15.6.11 Reserved for Future Use .. 15-57
15.6.12 Reserved for Future Use .. 15-57
15.6.13 Tiered or Superimposed Walls ... 15-57
15.6.14 Back-to-Back Walls ... 15-57
15.6.15 MSE Bridge Retaining Walls (Steel-Reinforced Backfill) 15-57
15.6.16 MSE Bridge Retaining Walls (Geogrid-Reinforced Backfill) 15-58
15.6.16.1 Design Requirements .. 15-61
15.6.17 Temporary Geotextile-Reinforced MSE Wall 15-61
15.6.17.1 Design Requirements .. 15-63
15.7 Prefabricated Modular Walls .. 15-65
15.7.1 Metal and Pre-cast Concrete Bin Retaining Walls 15-65
15.7.1.1 General Considerations .. 15-65
15.7.1.2 Geotechnical Investigation ... 15-65
15.7.1.3 Wall Selection Criteria ... 15-65
15.7.1.4 Layout and Geometry ... 15-66
15.7.1.5 Design Requirements .. 15-66
15.7.1.6 External Stability Analysis ... 15-66
15.7.2 Pre-cast Concrete Crib Retaining Walls .. 15-67
15.7.2.1 General Considerations .. 15-67
15.7.2.2 Geotechnical Investigation ... 15-67
15.7.2.3 Wall Selection Criteria ... 15-68
15.7.2.4 Layout and Geometry ... 15-68
15.7.2.5 Design Requirements .. 15-68
15.7.2.6 External Stability Analysis ... 15-68
15.7.2.7 Internal Stability Analysis ... 15-70
15.7.3 Gabion Walls ... 15-70
15.7.3.1 General Considerations .. 15-70
15.7.3.2 Geotechnical Investigation ... 15-70
15.7.3.3 Wall Selection Criteria ... 15-71
15.7.3.4 Layout and Geometry ... 15-71
15.7.3.5 Design Requirements .. 15-71
15.7.3.6 External Stability Analysis ... 15-71
15.7.4 Dry Cast Concrete Block Gravity Walls ... 15-73
15.7.4.1 General Considerations .. 15-73
15.7.4.2 Geotechnical Investigation ... 15-73
15.7.4.3 Wall Selection Criteria ... 15-73
15.7.4.4 Wall Height, Footprint and Construction Easement 15-74
15.7.4.5 Design Requirements .. 15-74
15.7.5 Wet Cast Concrete Block Gravity Walls .. 15-75
15.7.5.1 General Considerations .. 15-75
15.7.5.2 Geotechnical Investigation ... 15-75
15.7.5.3 Wall Selection Criteria ... 15-75
15.7.5.4 Wall Height, Footprint and Construction Easement 15-75
15.7.5.5 Design Requirements .. 15-76
15.8 Non-Gravity (Cantilever) Soldier Pile\Lagging and Sheet Pile Walls 15-77
15.8.1 General Considerations .. 15-77
15.8.2 Design Requirements ... 15-78
15.8.3 Soldier Pile\Lagging Walls ... 15-79
15.8.4 Sheet Pile Walls .. 15-80
15.9 Anchored Soldier Pile/Lagging and Sheet Pile Walls .. 15-82
 15.9.1 General Considerations ... 15-82
 15.9.2 Design Requirements ... 15-82
15.10 Ground Anchors, Deadmen, and Tie-Rods ... 15-85
 15.10.1 General Considerations ... 15-85
 15.10.2 Anchor Location and Geometry .. 15-85
 15.10.3 Ground Anchor Design ... 15-86
 15.10.4 Corrosion Protection ... 15-87
 15.10.5 Anchor Load Testing ... 15-87
 15.10.6 Ground Anchor Proof Testing Schedules 15-88
 15.10.7 Ground Anchor Performance Testing Schedule 15-88
 15.10.8 Ground Anchor Verification Testing Schedule 15-90
 15.10.9 Deadmen or Anchor Blocks ... 15-90
 15.10.10 Tie-Rods .. 15-93
15.11 Soil Nail Walls ... 15-93
 15.11.1 General Considerations ... 15-93
 15.11.2 Wall Footprint and Soil Nail Easement ... 15-94
 15.11.3 Design ... 15-95
 15.11.4 Facing ... 15-97
 15.11.5 Corrosion Protection ... 15-97
 15.11.6 Load Testing .. 15-97
 15.11.7 Soil Nail Verification Test Schedule .. 15-98
 15.11.8 Soil Nail Proof Test Schedule ... 15-99
15.12 Tangent/Secant Pile Walls .. 15-100
15.13 Slurry/Diaphragm Walls .. 15-100
15.14 Micropile Walls .. 15-100
15.15 REFERENCES ... 15-102
Appendix 15-A General Requirements for Proprietary Retaining Wall Systems 15-104
 15-A.1 Overview .. 15-104
 15-A.2 Design and Construction Requirements: .. 15-105
 15-A.3 Responsibilities: .. 15-105
 15-A.3.1 Agency Responsibilities: .. 15-105
 15-A.3.2 Proprietary Retaining Wall System Manufacturer Responsibilities: 15-106
 15-A.7 System Updates .. 15-108
 15-A.8 Disqualification, and Requalification .. 15-108
Appendix 15-B Preapproval Process and Submittal Requirements for Proprietary Retaining Wall Systems .. 15-109
 15-B.1 Preapproval Process: ... 15-109
 15-B.2 Application for Preapproval of Retaining Wall System: 15-111
 15-B.3 Submittal Requirements for Proprietary MSE Retaining Wall Systems 15-114
 15-B.4 Submittal Requirements for Proprietary Prefabricated Modular Retaining Wall Systems: .. 15-119
 15-B.5 Proprietary Retaining Wall System Example Problems (by Preapproval Category): .. 15-123
 15-B.6 Requirements for Proprietary Retaining Wall System Detail Drawings (by Preapproval Category): .. 15-138
Appendix 15-C Guidelines for Review of Proprietary Retaining Wall System Working Drawings and Calculations ... 15-140
 15-C.1 Design Issues ... 15-140
 15-C.2 External stability design ... 15-141
 15-C.3 Internal stability design .. 15-142
 15-C.4 Wall Construction Sequence Requirements 15-145
Appendix 15-D Preapproved Proprietary Retaining Wall Systems 15-146

List of Figures
Figure 15-1. Bridge Zone .. 15-5
Figure 15-2. Minor Retaining Wall .. 15-6
Figure 15-3. Pay Area .. 15-19
Figure 15-4. Definition of Wall Angle (Batter) .. 15-23
Figure 15-5. Unfactored Static Lateral Earth Pressure with Residual Horizontal Compaction Pressures on Non-deflecting CIP Semi-Gravity and Rigid Gravity Retaining Walls ... 15-29
Figure 15-6. Calculation of Ultimate (Nominal) Sliding Resistance, CIP Cantilever Wall with Base Key .. 15-45
Figure 15-7. Fixed Type “F” 32” Bridge Rail on Self Supporting (Moment) Slab – MSE Wall 15-55
Figure 15-8. MSE Bridge Retaining Wall (Geogrid Reinforcement) 15-60
Figure 15-9. Temporary Geotextile-Reinforced MSE Wall 15-62
Figure 15-10. Non-Gravity (Cantilever) Soldier Pile and Sheet Pile Wall Heights 15-78
Figure 15-11. Anchored Walls: External, Internal, Global and Facing Failure Modes 15-84
Figure 15-12. Effect of Anchor Block Location, Active/Passive Earth Pressure and Tie-Rod Resistance .. 15-91
Figure 15-13. Effect of Anchor Block Spacing on Tie-Rod Resistance, Continuous and Individual Anchor Blocks .. 15-92
Figure 15-14. Soil Nail Walls: External, Internal, Global, and Facing Failure Mode ... 15-96
Figure 15-15 Problem # 1 ... 15-126
Figure 15-16 Problem # 2 ... 15-129
Figure 15-17 Problem # 3 ... 15-132
Figure 15-18 Problem # 4 ... 15-135
Figure 15-19 Problem # 5 ... 15-137

List of Tables
Table 15-1. Maximum Tolerable Total Foundation Settlement Magnitudes .. 15-32
Table 15-2. Maximum Tolerable Differential Foundation Settlement Magnitudes 15-33
Table 15-3. In-Place Porosity vs. Bulk Density, Gabion Basket Rock Fill .. 15-72
Table 15-4. Proof tests for unsupported anchors or no excessive anchor creep 15-88
Table 15-5. Proof tests for supported anchors or problem design .. 15-88
Table 15-6. Test Load Cycle ... 15-89
Table 15-7. Verification Tests .. 15-90
Table 15-8. Soil Nail Verification Tests ... 15-98
Table 15-9. Soil Nail Proof Test Schedule ... 15-99
15 Retaining Structures

15.1 Introduction

Retaining structures are an important part of Oregon's transportation system. They are included in projects to minimize right of way needs, to reduce bridge lengths at water crossings and grade separations, to minimize construction in environmentally sensitive areas, and to accommodate construction on slopes.

Design of retaining structures requires specialized knowledge of both geotechnical and structural engineering, and shall be sealed and performed under the responsible charge of a Professional Engineer licensed in the State of Oregon. The Oregon Laws and Rules governing the practice of engineering are available on-line at the Oregon State Board of Examiners for Engineering and Land Surveying website: http://www.osbeels.org/laws_rules.htm.

The requirements described in Chapter 15 are based on the Design-Bid-Build method of contracting. ODOT also delivers projects with other contracting methods, such as Design-Build. While there may be differences in how a project is delivered, the standards used should be consistent. Retaining structure performance specifications should reference Chapter 15, with modifications as necessary to fit the contracting method being used.

The Chapter is organized as follows (also see GDM Table of Contents for a complete list of section headings):

- **15.1 Introduction**: General information, and implementation.
- **15.2 Retaining Wall Practices and Procedures**: Retaining wall categories and definitions, general steps in a retaining wall project, selection of retaining wall system types, proprietary designs, nonproprietary designs, unique wall designs, and details of contract documents.
- **15.3 Design Requirements: General Wall Design**: Design methods, wall face batter, horizontal and vertical alignment, tiered walls, back-to-back walls, walls-on-slopes, overall stability, static lateral earth pressure, compaction loads, construction loads, seismic design, minimum embedment, wall settlement, wall drainage, underground utilities, design life, corrosion, and Minor retaining wall systems.
- **15.4-15.14 Design Guidance: Specific Wall Types**: Design guidance specific to each type of retaining wall. For each specific wall type, topics such as geotechnical investigation requirements, selection criteria, wall location, geometry, and design requirements are covered.
- **15.15 REFERENCES**: A list of useful references.
- **Appendix 15-A General Requirements for Proprietary Retaining Wall Systems**: General Requirements for Proprietary Retaining Wall Systems
- **Appendix 15-B**: Preapproval Process and Submittal Requirements for Proprietary Retaining Wall Systems
- **Appendix 15-C**: Guidelines for Review of Proprietary Retaining Wall System Working Drawings and Calculations
15.1.1 Implementation

Chapter 15 includes new procedural and design requirements for retaining wall systems and will supersede the ODOT Retaining Structures Manual in accordance with 15.1.1. The adoption of Chapter 15 will have a “ripple” effect, requiring updates to retaining wall construction specifications, retaining wall standard drawings, and preapproved proprietary retaining wall systems.

To assure compatible design, construction, and preapproval requirements, the following implementation schedule and milestones have been established:

A. **November 14, 2008**: Chapter 15 becomes available for limited use (as described in milestone “B”).

B. **January 5, 2009**: Manufacturers of proprietary retaining wall systems begin submitting applications for preapproval in accordance with Appendix 15-B. Manufacturers of proprietary retaining wall systems are encouraged to seek preapproval for their systems under the new requirements as soon as possible. Once preapproved under the requirements of the GDM, preapproved proprietary retaining wall systems will be listed in Appendix 15-D, however their effective date will be post-dated to July 1, 2010 to ensure that they are not used on bid lettings until that time.

C. **July 1, 2009**: All ODOT projects with a DAP (Design Acceptance Phase) completion date on or after this date are required to meet the requirements of Chapter 15 and the requirements of the updated retaining wall construction specifications. Proprietary retaining wall systems considered for use on these projects shall also meet the new requirements, and shall be selected from Appendix 15-D. Also refer to milestone “F” to evaluate how projects bid let date may apply.

D. **July 1, 2010**: Preapproval status of proprietary retaining wall systems listed in Appendix 15-D become effective See Appendix 15-B.

E. **July 1, 2010**: Preapproval status of proprietary retaining wall systems not listed in Appendix 15-D expires See Appendix 15-B.

F. **July 1, 2010**: All ODOT projects with bid letting on or after this date are required to meet the requirements of Chapter 15 and the requirements of updated retaining wall construction specifications that become effective on this date. Proprietary retaining wall systems considered for use on projects shall also meet these new requirements, and shall be selected from Appendix 15-D. Also refer to milestone “C” to evaluate how the project DAP completion date may apply.

There may be isolated instances where there is a problem meeting this implementation schedule. To work out a solution to this problem, please contact the ODOT Retaining Structures Program at (503) 986-4200.
15.2 Retaining Wall Practices and Procedures

15.2.1 Retaining Wall Categories and Definitions

15.2.1.1 Retaining Wall Categories

The following retaining wall categories are used in this chapter: Bridge Abutment, Bridge Retaining Wall, Highway Retaining Wall, and Minor Retaining Wall. These categories provide the retaining wall EOR (Engineer of Record) with criteria and guidance in making decisions regarding retaining wall function, consequences of failure, design, asset management, drafting, and other ODOT practices and procedures. These criteria and guidance based on wall category are not intended to replace engineering analysis or sound engineering judgment - but only to ensure that wall design decisions are consistent, straightforward, and applied equally on all ODOT projects statewide.

The retaining wall categories presented above include “Bridge Retaining Walls” whose performance could adversely influence the stability of a bridge structure. The “Bridge Zone” is a simplified conservative boundary intended to allow quick and easy categorization of retaining walls for a variety of purposes Figure 15.1 Retaining walls located partially or fully within the limits of the bridge zone shall by default be defined as “Bridge Retaining Walls” and subject to all applicable requirements in this chapter.

If the Agency EOR for the retaining wall determines that a retaining wall defined as a “Bridge Retaining Wall,” by virtue of being located within the “Bridge Zone,” does not actually influence the stability of the bridge, he/she may override this default definition by clearly identifying the retaining wall as a “Highway Retaining Wall” on the Project Plans. This change in wall category shall be adequately supported by calculations in the retaining wall calculation books.

The retaining wall categories and default definitions are included below:

Bridge Abutment: A structural element at the end of the bridge that supports the end of the bridge span, and provides lateral support for fill material on which the roadway rests immediately adjacent to the bridge. A bridge abutment provides vertical, longitudinal, and/or transverse restraint through bridge bearings, shear keys, and/or an integral connection with the bridge superstructure.

A bridge abutment is considered to be part of the bridge, and is designed according to applicable sections of the ODOT Bridge Design and Drafting Manual (BDDM), the ODOT Geotechnical Design Manual (GDM), and the AASHTO LRFD Bridge Design Specifications (AASHTO LRFD).

Wing walls that are monolithic with the bridge abutment are part of the bridge abutment.

In Chapter 15, the terms “end bent” and “abutment” are used interchangeably. On ODOT bridge drawings, however, all bridge support locations are referred to as “bents” and abutments are referred to as “end bents”.

Bridge Retaining Wall: A retaining wall that meets all of the following conditions:

1. The retaining wall is located partially or entirely within the Bridge zone Figure 15-1.

2. The retaining wall does not meet the definition of bridge abutment.

Design and construction requirements for Bridge retaining walls must be consistent with those for the bridge, unless the Agency EOR for the Bridge retaining wall determines that the retaining wall does not influence the stability of the bridge, as noted above.
The **Agency EOR for the bridge** has primary responsibility for stability of the bridge, and the **Agency EOR for the Bridge retaining wall** shall consult with the Bridge EOR regarding bridge stability. Both the bridge EOR and the EOR for the Bridge retaining wall should consult the geotechnical engineer regarding geotechnical design issues. The role of the geotechnical engineer is discussed in **Chapter 21**.

Highway Retaining Wall: A retaining wall that meets all of the following conditions:

1. The wall is located entirely outside of the bridge zone see **Figure 15-1**.
2. The wall does not fully meet the definition of a Minor retaining wall.

Highway retaining walls shall not be located inside the Bridge Zone unless the **Agency EOR for the Bridge retaining wall** determines that the retaining wall does not influence the stability of the bridge, as noted above.

Minor Retaining Wall: A retaining wall that meets all of the following conditions:

1. The wall is located entirely outside of the bridge zone see **Figure 15-1**.
2. Wall height (H), does not exceed 4.0 feet at any point along the wall see **Figure 15-2**.
3. Wall fore slope and back slope are both flatter than 1V:4H within a horizontal distance of H, measured from the nearest point on the wall see **Figure 15-2**.
4. Surcharge loading is not allowed on the retaining wall back slope within a horizontal distance of H, measured from the nearest point on the wall see **Figure 15-2**.
Figure 15-1. Bridge Zone
Figure 15-2. Minor Retaining Wall
15.2.1.2 Definitions

In order to describe ODOT practices and procedures for retaining wall systems, the following terms are defined, as used in Chapter 15:

Agency Engineer of Record (EOR) for Retaining Wall System: Agency engineer or Agency consultant engineer who is responsible for the project plans and specifications for the retaining wall system, and who’s signed engineering seal appears on the plans.

Retaining Wall System Type: See Section 15.2.4.2.

Retaining Wall System: An engineered system of interacting structural and geotechnical retaining wall elements and components designed to restrain a mass of earth, and satisfying all applicable design requirements. The terms retaining wall system, retaining structure, and retaining wall are used interchangeably throughout Chapter 15.

Standard Drawing Retaining Wall System: A non-proprietary retaining wall system for which a standard design is provided in the Oregon Standard Drawings (look in “Bridge 700 Walls” on the following web page):

Internal and external stability have been designed in accordance with AASHTO Standard Specifications for Highway Bridges, except for bearing capacity, settlement, and overall stability, which are site specific and are the responsibility of the Agency EOR. The Agency EOR is responsible for applying the standard drawing to a specific site, and for verifying all engineering assumptions stated on the standard drawing.

Proprietary Retaining Wall System: A patented or trademarked retaining wall system for which the proprietary owner retains the sole exclusive right to design the retaining wall system (i.e. the Agency EOR is not allowed to design the retaining wall system). See Section 15.2.5, Appendix-15A, Appendix 15-B, Appendix 15-C, and Appendix 15-D.

Nonproprietary Retaining Wall System: A retaining wall system that is fully designed by the Agency EOR.

Retaining Wall Elements and Components: Elements and components used in the design or construction of either a proprietary retaining wall system or a nonproprietary retaining wall system.

Retaining Wall Proprietary Elements and Components: Retaining wall elements and components that are protected by a brand name, trademark, or patent. Also see Sole Source Specification.

Retaining Wall Generic Elements and Components: Retaining wall elements and components that are not protected by a brand name, trademark, or patent.

Proprietary Product: General term including proprietary retaining wall systems and proprietary retaining wall elements and components.

Generic Specification: A specification that does not specify proprietary products either by name or by specifying requirements that only one proprietary product can meet.

Sole Source Specification: Plans or specifications that require proprietary products either by name or by a requirement that only one proprietary product can meet. Sole source specifications are not allowed in the project plans or specifications, unless a sole source
specification is justified by an approved Public Interest Finding. To assure competitive bidding when proprietary products are specified, as many acceptable proprietary products as possible should be listed. See Section 15.2.8.3 for proprietary items (including sole sourcing).

Public Interest Finding: Agency process that can be used by the EOR to justify the specification of less than three specific proprietary products. See Section 15.2.6.2.

Cost Reduction Proposal: Agency procedure that can be used by the Contractor to propose an alternate proprietary retaining wall system (See SS00140.70 in the Oregon Standard Specifications for Construction).

Preapproved Proprietary Retaining Wall System: A proprietary retaining wall system that has been granted “preapproved” status by the ODOT Retaining Structures Program, and which may be considered for use on ODOT projects, subject to the “Conditions of Preapproval” for the proprietary system in Appendix 15-D.

Elements and components of Preapproved Proprietary Retaining Wall Systems: See Section 15.2.5.3.

Conditions of Preapproval for Proprietary Retaining Wall Systems: Appendix 15-D describes the conditions of preapproval for each proprietary retaining wall system. Other uses are not allowed. See Appendix 15-A, General Requirements for Proprietary Retaining Wall Systems.

ODOT Qualified Product List:

http://www.oregon.gov/ODOT/HWY/CONSTRUCTION/QPL/QPindex.shtml

Manufacturer: The proprietary owner of a retaining wall system or proprietary retaining wall component. Used interchangeably in Chapter 15 with Vendor.

Pre-cast Concrete Small Panel Facing: MSE wall pre-cast concrete facing panel with a face area of 30 square feet or less.

Pre-cast Concrete Large Panel Facing: MSE wall pre-cast concrete facing panel with a face area greater than or equal to 30 square feet.

Control Plans: Plans preparation method used for proprietary retaining wall systems. Control plans can be either “Conceptual” or “Semi-detailed”. See Section 15.2.5.2 and Section 15.2.8.1.

DAP: Design Acceptance Phase. See Section 15.2.3

Preapproved Proprietary Retaining Wall System Options: When a fully detailed retaining wall system is not shown on the Agency plans, the Agency EOR lists acceptable preapproved proprietary retaining wall OPTIONS in project special provision SP00596.

Preapproved Proprietary Retaining Wall System Alternates: When a fully detailed retaining wall system is shown on the agency plans, the Agency EOR lists acceptable preapproved proprietary retaining wall ALTERNATES in project special provision SP00596.

Bridge Abutment: See Section 15.2.1.1.

Bridge Retaining Wall System: See Section 15.2.1.1.

Highway Retaining Wall System: See Section 15.2.1.1.
15.2.2 General Steps in a Retaining Wall Project

1. **Consider whether a retaining wall is the best solution.**
 Consider alternatives such as acquiring additional right of way or flattening the slope.

2. **Determine suitable retaining wall system type.**
 The ODOT EOR for the retaining wall system determines which wall system type or types are suitable for a given wall location. See Sections 15.2.4.1 and Section 15.3 for general selection criteria, and see Sections 15.4 through Section 15.14 for specific wall type selection criteria. Section 15.2.4.2 lists retaining wall system types that may be considered for use on ODOT projects.

3. **Select Option**
 Option 1: Nonproprietary Design
 Under Option 1, the ODOT EOR completely designs the retaining wall system, and provides fully detailed plans for one type of retaining wall system. See Section 15.2.6 for more information on nonproprietary retaining wall systems.
 Option 2: Proprietary Design
 Under Option 2, the Agency EOR provides control plans, rather than a complete retaining wall system design, and the retaining wall system Manufacturer completes the design. See Section 15.2.5 for more information on proprietary retaining wall systems. Before selecting this option, verify that a sufficient number of preapproved proprietary retaining wall systems are available for competitive bidding of the retaining wall system type selected. Alternatively, a request to use a sole source specification may be submitted to the Agency. See Section 15.2.8.3 for competitive bidding of proprietary items, including sole sourcing.

4. **Perform design calculations as required.**
 See AASHTO LRFD Bridge Design Specifications and ODOT exceptions and additions to AASHTO in Section 15.3 and Sections 15.4 through Section 15.14. For proprietary retaining wall system design responsibilities, see Appendix 15-A.3.

5. **Prepare contract plans.**
 See Section 15.2.8.1 “Elements of Contract Plans for Retaining Wall Systems”.

6. **Prepare contract special provisions.**
 Edit “Boilerplate” special provision SP00596, as appropriate, for the selected retaining wall system types and selected contract letting. For nonproprietary designs, include estimated quantities for the items listed in SP00596. For proprietary designs details of the system are not know until after contract letting, so do not include estimated quantities in SP00596. See Section 15.2.8.3 for more information on special provisions.
7. **Prepare estimates.**
 The Agency EOR for the retaining wall system is responsible for estimating quantities for retaining wall bid items, and providing them to the project specifications writer. See Section 15.2.8.4 for more information on quantity estimates for retaining wall systems.

 The Agency EOR for the retaining wall system is also responsible for estimating bid item unit prices. Include cost factors for location, size of wall, inflation, and complexity. Do not include cost factors for mobilization, engineering, and contingencies, all of which will be included by the specifications writer on a project wide basis see Section 15.2.8.4.

 Also provide an estimate for the time required for construction using a graph format showing all critical stages of the construction, and for the cost of design assistance during construction.

8. **Prepare calculation book**, as required See Section 15.2.8.5.

15.2.3 Retaining Wall Project Schedule

The ODOT Resource Management System (RMS) includes predefined project activities and timelines for project development. The project leader uses MS Project Professional and the appropriate schedule template to create and maintain the project schedule. See the project schedule for activity start and finish dates. For information on RMS, see:

http://www.oregon.gov/ODOT/HWY/PDU/resources_management_system.shtml

Retaining wall design deliverables:
- DAP Retaining Wall Design (RMS Activity ID 316)
- Preliminary Retaining Wall Plans, Specs, and Estimate (RMS Activity ID 317)
- Advance Retaining Wall Plans, Specs, and Estimate (RMS Activity ID 318)

Geotechnical exploration and geotechnical reporting deliverables for retaining walls:
- Geotechnical Exploration (RMS Activity ID 280)
- Preliminary Geotechnical Report (RMS Activity ID 295)
- Final Retaining Wall Plans, Specs, and Estimate (RMS Activity ID 319)

15.2.4 Selection of Retaining Wall System Type

15.2.4.1 General Criteria for Selection of Retaining Wall System Type

When preparing a list of acceptable wall types for a specific project, the wall designer must consider Sections 15.3 through Section 15.14, as well as the general considerations listed below:

General Considerations include:

1. **Project Category**
 - Permanent or temporary wall. A temporary wall must meet the physical requirements with very little concern for aesthetics or long term design life.
 - Bridge retaining wall, Highway retaining wall, or Minor retaining wall.
2. Site Conditions Evaluation
 a. Cut or fill: This condition needs to be evaluated because some wall types do not work well for one or the other. Determine if top down construction is required for a cut.
 b. Soil profile and site geology: Evaluate the project for variations in wall height and blending the wall to the site.
 c. Foundation conditions and capacity: The foundation soil must be evaluated for capacity to support the wall system.
 d. Foundation soil mitigation required/feasible: While certain soil conditions may not support certain wall types, it may be economical to mitigate foundation soil problems to accommodate these wall types.
 e. Ground water table location: Consider whether ground water will increase lateral soil pressure on the wall or increase the corrosion potential.
 f. Underground utilities and services: If utilities interfere with soil reinforcement or other wall elements, consider other wall systems.
 g. Other structures adjacent to site: Determine if adjacent structures may be affected by wall construction such as pile driving or lack of lateral support.
 h. Corrosive environment and effect on structural durability: Evaluate the site for conditions that may cause accelerated corrosion or degradation of the retaining wall system.

3. Performance Criteria
 a. Height limitations for specific systems: Check the height limits for the wall systems as well as practical design limits.
 b. Limit on radius of wall on horizontal alignment: Evaluate wall system to accommodate any radius situation or adjust radius to meet wall system.
 c. Allowable lateral and vertical movements, foundation soil settlements, differential movements: Determine allowable movements and choose wall systems that will accommodate the movements.
 d. Resistance to scour: Be sure wall is not susceptible to scour if the condition exists.
 e. Wall is located near a bridge: Determine which wall systems are compatible with the bridge.

4. Constructability Considerations. The following items should be considered when evaluating the constructability of each wall system for a specific project:
 a. Scheduling considerations (e.g. weather, preloads wait times)
 b. Formwork, temporary shoring
 c. Right of way boundaries
 d. Complicated horizontal and vertical alignment changes
 e. Site accessibility (access of material and equipment for excavation and construction)
 f. Maintaining existing traffic lanes and freight mobility
g. Vibrations
h. Noise
i. Availability of materials (e.g., MSE backfill)

5. Environmental Considerations
a. Minimum environmental damage or disturbance: Consider the impact of wall systems on environmentally sensitive areas.
 b. Consider the impact of wall type on the environmental permitting process.

6. Cost
a. Right of way purchase requirements: Evaluate the cost of additional right of way if it is required to use a given wall system.
b. Consider total costs, rather than on cost of wall systems alone.

7. Aesthetic Considerations
a. Determine if wall type meets aesthetic requirements at the site.

8. Mandates by Other Agencies
a. Determine whether wall type complies with mandates by other agencies.

9. Requests made by the Public
a. Determine if wall type is consistent with public input for the site.

10. Traffic Barrier
a. Determine whether wall type can accommodate traffic barrier if required at the site.

11. Protective Fencing
a. Determine whether wall type can accommodate protective fencing if required at the site.

15.2.4.2 Retaining Wall System Types

Retaining wall system types for which adequate design guidance is available are listed in this section. This list will be updated as new guidance becomes available.

Only the wall types listed below, or walls designed in accordance with Section 15.2.7, shall be considered for use on Agency projects:

- Type 1A: CIP Concrete Rigid Gravity Retaining Wall System
- Type 2A: Pre-cast Concrete Crib Prefabricated Modular Retaining Wall System
- Type 2B: Pre-cast Concrete Bin Prefabricated Modular Retaining Wall System
- Type 2C: Metal Bin Prefabricated Modular Retaining Wall System
- Type 2D: Gabion Prefabricated Modular Retaining Wall System
- Type 2E: Dry Cast Concrete Block Prefabricated Modular Retaining Wall System
- Type 2F: Wet Cast Concrete Block Prefabricated Modular Retaining Wall System
- Type 3A: MSE Retaining Wall System with Dry Cast Concrete Block Facing
15.2.5 Proprietary Retaining Wall Systems

See Appendix 15-A General Requirements for Proprietary Retaining Wall Systems.

15.2.5.1 Agency Control Plans for Proprietary Retaining Wall Systems

The ODOT EOR prepares “Control Plans” to show requirements for proprietary retaining wall systems. The specific details shown on control plans depend on the retaining wall system types selected by the Agency EOR.

If the EOR determines that multiple dissimilar (proprietary) retaining wall system types are acceptable (e.g., Types 2A-2F and Types 3A-3G in Section 15.2.4.2), the plans should only show details that are generally applicable to all selected retaining wall system types. Plans showing only general details for multiple dissimilar wall system types are considered “Conceptual” control plans.

It is sometimes necessary to use conceptual control plans, but this option is generally not recommended. With this option, the system type is not known until after bid letting, which can lead to difficulties in coordination between design disciplines.

The primary advantage of this plan preparation method is increased competitive bidding as a result of specifying several proprietary wall types in a set of plans.
If the ODOT EOR determines that only very similar retaining wall system types are acceptable, the plans should show as many details as possible without infringing on proprietary details and without creating a sole source specification. See Section 15.2.8.3 for more information on sole source specifications.

Minimum information required on control plans is listed in Section 15.2.8.1.

15.2.5.2 Elements of Preapproved Proprietary Retaining Wall Systems

Elements and components of preapproved proprietary retaining wall systems are preapproved as part of a specific retaining wall system. Approval of a specific system does not constitute approval of individual elements and components for other use in other systems. Non-system approval of individual elements and components may be a prerequisite to system approval (as in the case of geogrids) but the component must still be specifically approved for use in a specific proprietary system.

15.2.6 Nonproprietary Retaining Wall Systems

Nonproprietary retaining wall systems shall be fully designed by the Agency EOR, and shall meet the design requirements of Sections 15.3 through Section 15.14. Also see Section 15.2.4.2.

15.2.6.1 Agency Detailed Plans for Nonproprietary Retaining Wall Systems

Project plans for nonproprietary retaining wall systems shall include all details that are needed to complete the work. Minimum information required on nonproprietary retaining wall systems is listed in Section 15.2.8.1.

15.2.6.2 Components of Nonproprietary Retaining Wall Systems

Nonproprietary retaining wall systems may contain both proprietary and nonproprietary elements and components. Clearly specify all requirements for both proprietary and nonproprietary elements and components of a nonproprietary retaining wall system in the project plans and specifications. Also see Section 15.2.8.3.

15.2.7 Unique Nonproprietary Wall Designs

Nonproprietary retaining wall systems not listed in Section 15.2.4.2 are considered “Unique” retaining wall system types. These walls are not specifically addressed by AASHTO, FHWA, or Agency design manuals. It is recognized, however that unique retaining wall system types are sometimes needed. Unique retaining wall system types may be considered for use on ODOT projects if all of the following requirements are met:

- The wall is a nonproprietary retaining wall system fully designed by the Agency EOR.
• Qualifications of the retaining wall EOR shall include prior experience as EOR designing the specific retaining wall system type being considered.

• The Agency EOR for the retaining wall system shall provide both system design and construction support.

• The retaining wall EOR shall be a registered professional engineer licensed in the State of Oregon.

15.2.8 Details of Contract Documents

In Design-Bid-Build construction projects, bidding is very competitive, and it should be assumed that the contractor will base the bid strictly on the contract documents. To avoid costly claims, contract documents should show as much detail as possible.

15.2.8.1 Elements of Contract Plans for Retaining Wall Systems

Fully detailed plans used for nonproprietary retaining wall systems Section 15.2.6 should include all information and details needed to bid and build the wall. Control Plans used for proprietary retaining wall systems Section 15.2.5 are either “Conceptual” or “Semi-Detailed”:

• “Conceptual” control plans should include information that is generally applicable to all specified retaining wall system types."

• “Semi-Detailed” control plans should include as many details as possible without infringing on proprietary rights and without creating a sole source specification.

See Section 15.3.23 for proprietary Minor retaining walls. See Section 15.3.24 for nonproprietary Minor retaining walls.

Contract Plans Checklist

The following items should be included (as applicable) on all contract plans regardless of plan preparation method involved, unless noted otherwise:

• Plan
• Elevation
• Typical Section
• General Notes
• Calculation book number (if required in Section 15.2.8.5)
• Structure number (if required in Section 15.2.8.6).
• Vicinity Map

• Retaining wall category (Bridge, Highway, or Minor retaining wall)

• Wall control line
• Right of way and easement limits
• Existing utilities and existing drainage facilities
• A grade line diagram at the wall control line, including curve data, if applicable
• Stations at beginning and end of the retaining wall and at all profile break points along the wall control line
• Elevations at beginning and end of the retaining wall and at all profile break points along the top of the retaining wall at the wall control line
• Elevations along bottom of wall (if not footings), along top of footing (if footings), along top of leveling pad (if leveling pad)
• Original and final ground elevations in front of and back of retaining wall
• At stream locations, extreme high water and ordinary high water elevations
• Foundation data or geotechnical data
• Location, depth, and extent of any unsuitable material to be removed and replaced, and any ground improvement details
• Minimum wall embedment
• Minimum/Maximum front face batter
• Minimum reinforcement length for external stability (MSE walls)
• Retaining wall loading diagram
• Magnitude, location and direction of applicable external loads including dead load surcharge, live load surcharge, construction loads (e.g., crane loads, material stockpile loads), barriers (vehicle, bicycle, and/or pedestrian), luminaire and sign supports, bridge end panels, and bridge abutments.

• Seismic design parameters
• Geotechnical design parameters
• Material requirements
• Design standards
• Aesthetic requirements
• Structural details
• Pay Limits for bid items.
• Construction sequence requirements, if applicable, including traffic control, access, stage construction sequences, temporary shoring, and ground improvement.
• Details of applicable retaining wall appurtenances including utilities and drainage facilities (e.g., storm sewer pipes), copings, barriers or rails (e.g., vehicle, bicycle, and/or pedestrian), guardrail posts, luminaire and sign supports (including conduit locations), fencing, bridge end panels, and bridge abutments. See Section 15.3.23 for proprietary Minor retaining walls. See Section 15.3.24 for nonproprietary Minor retaining walls.

Note:
Because of the interaction between bridges and Bridge retaining walls, bridge plans should show the locations of Bridge retaining walls as well as the wall structure number. Bridge retaining wall plans should show the location of bridge, as well as the bridge structure number.
Drafting Related Items
For more information on drafting related items, see:

- Retaining Walls chapter in the Contract Plans Development Guide (most current version)
- Geo-Environmental drafting web page:
 http://www.oregon.gov/ODOT/HWY/GEOENVIRONMENTAL/drafting.shtml

15.2.8.2 Standard Specifications
Standard construction specifications for permanent retaining walls are currently located in SS00596 of the Oregon Standard Specifications. Beginning on July 1, 2010, SS00596 will be split into three separate specifications: MSE Retaining Walls, Cast-in-Place Retaining Walls, and Prefabricated Modular Retaining Walls (new specification numbers to be determined). Additional specifications are planned for Soil Nail Retaining Walls, Soldier Pile Retaining Walls, and Sheet Pile Retaining Walls in the near future. Specifications for Temporary Retaining Walls are located in SS00256.

15.2.8.3 Special Provisions
Include applicable retaining wall special provisions on all projects containing retaining walls. Always download the latest version of the applicable “boiler plate special provisions”, edit as required, and include in the contract documents.

The “boiler plate special provisions” include the latest updates to Standard Specifications, as well as sections to be included on a project-specific basis (e.g., acceptable preapproved proprietary retaining wall system options and alternates). Also include related special provisions, such as SP00330, SP00350, SP00430, SP00440, SP00510, SP00530, SP00540, and SP2320, as applicable.

Download Boilerplate Special Provisions from the following Website:

For nonproprietary retaining wall systems, include estimated quantities for the retaining wall bid item. For proprietary retaining wall systems, where details of the wall construction are not known until after the construction contract is awarded, do not include estimated quantities for the retaining wall bid item.

When specifying proprietary retaining wall systems or elements and components, competitive bidding practices are required. Competitive bidding requirements (including sole sourcing) are discussed under “Proprietary Items” in the following web document:

15.2.8.4 Quantity and Cost Estimates

Each project that goes to bid letting includes a schedule of bid items. The schedule of bid items is a list of items that the Contractor must bid on, and includes the standard bid item number, standard description, and quantity for each bid item. The list of standard bid items is posted on the following web page:

http://www.oregon.gov/ODOT/HWY/SPECS/bid_item_list.shtml

The unit of measure for retaining walls is the area of the wall front face, projected onto a vertical plane. This theoretical “pay area” is typically bounded by the beginning and end of the wall, the top of the wall, and top of the footing or top of leveling pad. The top of the wall should be the top of the wall without the coping. If there is no footing or leveling pad, the bottom of the wall is used. The limits of the “pay area” should be shown on the project plans. The bid item quantity for retaining wall systems is FT², but field measurement is not required unless ODOT requires changes to the wall limits. The quantity for payment will be the theoretical area shown in the schedule of bid items, unless changes are ordered by the Engineer. If changes are ordered, adjustment to the theoretical “Pay Area” will be made only for the quantity difference involved in the ordered plan changes.

Shoring, excavation, reinforced backfill, leveling pads, wall drainage/filter systems, and standard coping are incidental to the wall bid item, but appurtenances such as non-standard copings, railings, and fencing are included as separate bid items.

Estimated quantities for incidental items are not included in the schedule of bid items, but are sometimes included in the project special provisions. See Section 15.2.8.3 for information on “estimated quantities”.

Historical cost data is posted on the following web page:

The format of the quantity estimate and responsibility for estimating costs and cost factors such as inflation, job location, mobilization, engineering, and contingencies should be determined on a project specific basis by talking with the project specifications writer.
15.2.8.5 Calculation Books

This section contains calculation book guidelines for bridge abutments and retaining wall systems. Retaining walls that require calculation books:

- **Bridge Abutments**: Bridge abutments are considered to be part of the bridge calculations, and bridge abutment calculations shall be included in the bridge calculation book. Bridge calculation books are covered in the ODOT *Bridge Design and Drafting Manual (BDDM)*.
• **Bridge Retaining Walls:** Calculations for each retaining wall structure number shall be located in a separate calculation book or in a separate section of a calculation book. Because of the interaction between the bridge and the associated Bridge retaining wall(s), the bridge calculation book and the Bridge retaining wall calculation books should reference one another.

• **Highway Retaining Walls:** Calculations for each retaining wall structure number shall be located in a separate calculation book or section of a calculation book.

• **Minor Retaining Walls:** Calculation books are not required for Minor retaining walls.

Calculation Book Numbers
To obtain retaining wall calculation book numbers, send an email request to:

bridge@odot.state.or.us.

Calculation Book Contents
The following items should be included in calculation books:

- **Title Page:** Title page with structure number, drawing numbers, calculation book number, key number, and construction contract number.

- **Table of Contents**

- **Agency EOR Design Calculations:** Structural and geotechnical calculations performed by (or under the control of) the Agency EOR. Show all of your design assumptions, design steps and design methods. Include detailed explanations and sample hand calculations for all computer printouts.

- **Design Check:** Design check of Agency EOR design calculations. The level of detail to be checked varies with the complexity of the project and the experience levels of the Designer and Checker.

- **Design Calculations (by Manufacturer):** Calculations submitted by the Manufacturer for proprietary retaining wall systems, along with Agency review comments.

- **Geotechnical Report:** Include a copy of the Geotechnical Report.

- **Special Provisions:** Include *Special Provisions* that are applicable to retaining walls.

- **Cost Estimates**
Calculation Book Submittal
Submit the completed calculation book to the Retaining Wall Program for archiving:
Oregon Department of Transportation
Retaining Structures Program
355 Capitol St. NE, Room 301
Salem, OR 97301
(503.986.4200)

Calculation Book Responsibilities
The Agency Engineer of Record (EOR) for the retaining wall is responsible for obtaining the calculation book number, preparing the calculation book, and submitting the completed calculation book.

For proprietary retaining wall systems, the Agency EOR for the retaining wall is also responsible for including a copy of the stamped design calculations submitted by the Manufacturer, as well the Agency review comments for the design calculations submitted by the Manufacturer of the proprietary retaining wall system.

15.2.8.6 Structure Numbers

Structure numbers are required for Bridge retaining wall systems and Highway retaining wall systems, but are not required for Minor retaining wall systems.

A single structure number shall be used for walls meeting all of the following conditions (as applicable):
- The wall must be continuous. Note that continuous walls may contain construction joints, expansion/contraction joints, slip joints, angle points, and steps.
- The wall must consist of a single retaining wall system type.
- For proprietary retaining wall systems, the wall must consists of a single proprietary retaining wall system.
- The wall must be constructed at the same time as part of one project.

Separate structure numbers shall be used for walls meeting any of the following conditions (as applicable):
- Individual tiers of tiered walls.
- Walls separated by gaps (except as noted above).
- Walls constructed at different times.
- Walls that are not part of the same retaining wall system type.
- Proprietary retaining walls that are not part of the same proprietary retaining wall system.
The drafter typically obtains structure numbers along with drawing numbers using the ODOT Bridge Data System (BDS). See the BDS users guide for BDS help:

The ODOT EOR for the retaining wall system should provide the drafter with BDS input as needed. Also see Section 15.2.8.1.

15.3 Design Requirements: General Wall Design

15.3.1 Design Methods

Retaining structures shall be designed using the Load and Resistance Factor Design (LRFD) method whenever possible. Retaining structures shall be designed in accordance with the following documents:

- ODOT Geotechnical Design Manual (GDM); and
- AASHTO LRFD Bridge Design Specifications

The most current versions or editions of the above referenced documents shall be used, including all interim revisions and technical bulletins modifying these documents. In case of conflict or discrepancy between documents listed above, those documents listed first shall supersede those listed below in the list. The references listed in this chapter provide additional design and construction guidance for retaining walls - but should be considered supplementary to the ODOT and AASHTO documents listed above.

Most FHWA manuals listed as ODOT design references were not developed for LRFD design. Wall types for which LRFD procedures are not currently available shall be designed using Allowable Stress Design (ASD) or Load Factor Design (LFD) procedures as indicated (in-full or by reference) in this chapter. The following subsections describe ODOT exceptions and additions to the referenced standards for general retaining wall design, and also include discussions of special design topics applicable to general retaining wall design.

15.3.2 Wall Facing Considerations

The wall facing must meet all project requirements, including appearance (aesthetics), face angle or batter, horizontal alignment, internal and external stability requirements, environmental conditions (e.g. UV exposure, corrosion, freeze-thaw, and runoff effects), and compatibility with the retaining wall system.

Typical MSE retaining wall facing options include the following:

- Dry cast concrete block (MSE and gravity wall systems)
- Wet cast concrete block (MSE and gravity wall systems)
- Pre-cast concrete panel (small, large, and full-height units)
- Welded wire
- Gabion (tied wire baskets filled with rock)
- Cast-in-place concrete
- Geotextile sheet (wrapped face construction)
15.3.3 Wall Face Angle (Batter)

The design wall face angle or batter is defined in Figure 15-4.

Wall face batter should take into consideration several factors, including constructability, maintenance, appearance, and the potential for negative batter. Negative batter typically results from poor construction practice, heavy construction loads near the wall face, and/or excessive post-construction differential foundation settlements. Typical design wall face batters for conventional retaining walls are as follows:

15.3.3.1 CIP Gravity and Cantilever Walls:

The finish face batter is typically designed no steeper than approximately 5° (12v: 1h). Steeper face batters have been used, however, for walls up to approximately 20ft in height and transitional wall sections that match existing vertical walls.

15.3.3.2 Mechanically Stabilized Earth (MSE) Walls:

The finish face batter of pre-cast concrete panel MSE walls is typically designed to be as steep as 0° (vertical). This may require a positive batter allowance during construction to prevent a negative wall face batter due to normal wall construction deformation, post-construction foundation settlement, and/or heavy surcharge loads.
The finish face batter of MSE retaining walls with dry cast concrete block facing units is typically designed to be no steeper than approximately $\frac{1}{2}^\circ$ (128v: 1h).

The finish face batter of MSE retaining walls with wet cast concrete block facing units is typically designed to be as steep as 3$^\circ$ (19v: 1h) to 6$^\circ$ (10v: 1h).

Temporary wrapped-face type geotextile MSE walls, where a small negative batter would not impair wall stability or function, are typically designed at a finish batter as steep as 0$^\circ$ (vertical).

15.3.3.3 Prefabricated Modular Walls:

Prefabricated modular (gravity) retaining walls, which include crib, bin, gabion, dry cast concrete block, and wet cast concrete block walls, are typically battered between approximately 3$^\circ$ (19v: 1h) and 10$^\circ$ (6v: 1h).

15.3.4 Horizontal Wall Alignment

Retaining wall selection should consider project-specific horizontal alignment requirements. Smaller facing units, such as dry cast concrete blocks, typically can be constructed to meet a more stringent (smaller) radius of curvature requirement. Conversely, larger facing units, such as wet cast concrete blocks, typically require a larger radius of curvature. Typical horizontal alignment criteria, including minimum radius of curvature, for conventional retaining walls are as follows:

15.3.4.1 CIP Gravity and Cantilever Walls

Gravity and cantilever retaining walls can be formed to a very tight radius of curvature to meet almost any project-specific horizontal (or vertical) wall alignment requirement.

15.3.4.2 Mechanically Stabilized Earth (MSE) Walls

The horizontal alignment requirements of MSE walls depends on several factors:
- Facing element dimensions (length, height and thickness)
- Facing panel layout of larger block facing units
- The selection/availability of special facing shapes to meet wall alignment requirements.

MSE retaining walls with small pre-cast concrete panel facing (5-foot wide units) are typically designed with a radius of curvature of 50ft, or greater. This assumes a joint width of at least $\frac{3}{4}$-inch.

MSE retaining walls with dry cast concrete block facing can be formed to a tight radius and are typically designed assuming a radius of curvature of 10ft, or greater.

15.3.4.3 Prefabricated Modular Walls

- Crib, bin, and gabion retaining walls are not well suited for alignments requiring a tight radius of curvature. AASHTO Article 11.11.1 (AASHTO LRFD Bridge Design Specifications) recommends design using a radius of curvature of at least 800ft - unless the horizontal curve can be substituted by a series of chords.
- Dry cast concrete block gravity retaining walls (single block thickness) can be formed to a tight radius and are typically designed assuming a radius of curvature of 10ft, or greater.
- Wet cast concrete block gravity retaining walls arranged in a single row configuration are typically designed using a radius of curvature of 75 to 100ft.
- Wet cast concrete block gravity retaining walls, more than one block in thickness, should be designed with a radius of curvature at least 800ft.

15.3.5 Tiered or Superimposed Walls

A tiered or superimposed retaining wall consists of a lower tier retaining wall that supports the surcharge or load from an upper wall.

Tiered or superimposed retaining wall stability analysis and design shall consider the effects of the loads from the upper tier wall (including seismic loads) on the lower retaining wall. The internal, external, compound, and overall stability of the lower tier wall, including foundation settlement and wall deformation, shall be evaluated for these additional loads.

Analysis of the combined tiered wall system shall include investigating internal, compound, and overall failure surfaces through walls, foundation soils, backfill materials, embankments, and/or slopes between, above, and/or below the tiered retaining walls. Perform overall stability analysis using a state-of-the-practice slope stability computer program, such as the most current versions of Slope/W® (Geo-Slope International), and ReSSA® (ADAMA Engineering, Inc.). Overall stability analysis of tiered wall systems shall be in accordance with the requirements of AASHTO Article 11.6.2.3.

Design guidance for tiered MSE walls is provided in Section 15.6.13.

15.3.6 Back-to-Back Walls

The face-to-face distance between sheet pile walls, such as waterfront bulkhead structures, shall exceed the maximum exposed sheet pile wall height. Bulkhead walls may require tie-rods or deadmen anchorage to resist lateral forces, including earth pressure, compaction/construction loads, temporary and permanent surcharges, hydrostatic and seismic loads.

Design guidance for back-to-back MSE walls is provided in Section 15.6.14.

15.3.7 Wall Bench

AASHTO Article 11.10.2.2 requires a horizontal bench with a minimum width of 4.0ft in front of MSE walls founded on slopes. Where practical, a 4.0ft wide bench should be provided at the base of all retaining walls to provide access for inspection, maintenance, and/or repair. The bench shall be 1:6 (v: h), or flatter, and sloped to direct surface water to properly designed water collection facilities.

15.3.8 Wall Back Slope

AASHTO Article 11.6.2.3 requires retaining wall back slopes be designed using a resistance factor for global (overall) stability ranging from \(\phi = 0.75 \) (where geotechnical parameters are well defined and the slope does not contain or support a structural element) to \(\phi = 0.65 \) (where geotechnical parameters are based on limited information or the slope contains or supports a structural element).

Global (overall) slope stability analysis in accordance with AASHTO Article 11.6.2.3, assuming homogenous, unsaturated, cohesionless backfill, indicates that a 1:2 (v: h) wall back slope requires a soil friction angle of at least 34° to provide adequate stability, while a 1:1½ wall back slope requires a soil friction angle of at least 42°. In view of these high soil strength requirements to maintain slope stability, and the seismic stability concerns reviewed in Section 15.3.13, retaining wall back slopes shall be designed at 1:2 (or flatter) unless a steeper back slope can be justified based on a project-specific geotechnical investigation and design.
15.3.9 Wall Stability

Design retaining walls for internal stability, external stability (overturning, sliding, bearing capacity and settlement), and overall (global) stability in accordance with the AASHTO LRFD Bridge Design Specifications and the ODOT GDM.

Overall slope stability shall be assessed using conventional limit equilibrium methods and shall investigate all potential internal, compound, and overall shear failure surfaces that penetrate the wall, foreslope, bench, backfill, back-cut, backslope, and/or foundation zone as shown in AASHTO Figures C11.6.2.3-1, 11.10.2-1, and 11.10.4.3-1. Overall stability design shall be performed using a state-of-the-practice slope stability computer program, such as the most current versions of Slope/W® (Geo-Slope International) and ReSSA® (ADAMA Engineering, Inc.).

15.3.10 Lateral Earth Pressures

Active, at-rest, and passive lateral earth pressures for retaining wall design shall be calculated based on project-specific geotechnical data such as the subsurface profile, water head/groundwater levels, geotechnical soil properties (based on project-specific lab data), backslope/foreslope profiles, and soil-wall movement considerations as discussed below. Calculate lateral earth pressures on walls in accordance with AASHTO Article 3.11.

15.3.10.1 Active Earth Pressure

Calculate the lateral active earth pressure thrust on MSE retaining walls with a broken backslope, point load(s) or surcharge(s), groundwater effects, and/or with a non-uniform soil (backfill) profile, using the Culmann or Trial Wedge methods such as presented in Soil Mechanics in Engineering Practice (Terzaghi and Peck, 1967), Principles of Geotechnical Engineering, 2nd Edition (B. M. Das, 1990), or Foundation Analysis and Design, 5th Edition (J. E. Bowles, 1996).

The actual earth pressure acting behind a retaining wall will depend on the ability of the wall to rotate and/or translate laterally (see AASHTO Article 3.11.1). An active earth pressure coefficient is appropriate when the top of the retaining wall can displace laterally at least 0.001*H (dense sand backfill) to 0.004*H (loose sand backfill) in accordance with AASHTO Table C3.11.1-1, where H is the height of the wall. CIP concrete gravity and cantilever walls, MSE walls, dry cast and wet cast concrete block gravity walls, soldier pile and sheet pile walls, and soil nail walls are typically considered flexible enough to justify using an active earth pressure coefficient.

Active lateral earth pressures on retaining walls shall be increased to include the effects of a sloping backfill in accordance with AASHTO Article 3.11.5.3.

15.3.10.2 At-Rest Earth Pressure

The at-rest earth pressure coefficient shall be used to calculate the lateral earth pressure for non-yielding retaining walls restrained from rotation and/or lateral translation in accordance with AASHTO Article C3.11.1. Non-yielding walls include, for example, integral abutment walls, wall corners, cut-and-cover tunnel walls, and braced walls or walls that are cross-braced to another wall or structure. Where bridge wing walls join the bridge abutment, at-rest earth pressures should also be used.
15.3.10.3 Passive Earth Pressure

Neglect any contribution from passive earth pressure in stability calculations unless the base of the wall extends below the depth to which foundation soil or rock could be weakened or removed by freeze-thaw, shrink-swell, scour, erosion, construction excavation, or any other means. In wall stability calculations, only the embedment below this depth, known as the effective embedment depth, shall be considered when calculating the passive earth pressure resistance. This is in accordance with AASHTO Article 11.6.3.5.

Lateral wall footing displacements of approximately 0.01*H (dense sand) to 0.04*H (loose sand) and 0.02*H (low plasticity silt) to 0.05*H (high plasticity clay) are required to mobilize the maximum passive earth pressure resistance, where H is the effective embedment depth below foundation soils which could be weakened or removed as defined above. This is in accordance with AASHTO Article C3.11.1. Passive earth pressure resistance assumed in wall stability analysis shall be reduced or neglected, unless the wall footing has been designed to translate the minimum distances provided in AASHTO Table C3.11.1-1.

Calculate the lateral passive earth pressure thrust against a wall footing or base key adjacent to a brokenback foreslope, point load(s) or surcharge(s), and/or with a non-uniform soil profile, using the Culmann or Trial Wedge methods such as presented in Soil Mechanics in Engineering Practice (Terzaghi and Peck, 1967), Principles of Geotechnical Engineering, 2nd Edition (B. M. Das, 1990), or Foundation Analysis and Design, 5th Edition (J. E. Bowles, 1996).

When Culmann or Trial Wedge methods are used the wall interface friction angle shall not be greater than 50 percent of the peak soil friction angle of internal friction in accordance with AASHTO Article 3.11.5.4.

15.3.11 Compaction Loads

Compaction equipment operated behind non-deflecting (restrained) semi-gravity cantilever and rigid gravity retaining walls can cause lateral earth pressures acting on the wall to exceed at-rest lateral earth pressures. The closer the compaction equipment operates to the wall, and the larger the total (static plus dynamic) compaction force, the higher will be the compaction induced lateral earth pressures on the wall.

For non-deflecting walls, permanent "residual" lateral earth pressures remain after compaction. The magnitude of residual lateral earth pressures is higher than at-rest lateral earth pressures, and should be considered in both internal stability (structural) design and external stability design.

Figure 15-5 shows a lateral earth pressure diagram which includes the combined effects of residual lateral earth pressures from compaction and at-rest lateral earth pressures on non-deflecting semi-gravity (cantilever) and rigid gravity retaining walls.

Residual lateral earth pressure from compaction need not be considered in external stability design of walls that can deflect sufficiently to develop active earth pressures, but should be considered for internal stability (structural) design when residual lateral earth pressures may cause overstress in structural elements before sufficient deflection associated with the active state occurs.
Consider the lateral earth pressures from a compacted backfill to be “EH” loads, and use the corresponding load factors.

In order to limit lateral earth pressures caused by compaction, the total (static plus dynamic) compaction force of compaction equipment operating within three feet of the back of the wall must not exceed 5,000 pounds, and the static weight must not exceed 1,000 pounds.

See the sections on specific wall types for further guidance on designing for compaction effects.
Figure 15-5. Unfactored Static Lateral Earth Pressure with Residual Horizontal Compaction Pressures on Non-deflecting CIP Semi-Gravity and Rigid Gravity Retaining Walls.
15.3.12 Construction Loads

Design retaining walls for increased lateral earth pressures due to typical construction loads in accordance with AASHTO Article 3.11.6 and the ODOT GDM.

Retaining walls shall be designed for increased lateral earth pressures resulting from construction equipment operation and storage loads behind the wall if the ground surface behind the wall is sloped at 1:4 (v: h), or flatter. Apply a uniform live load surcharge of at least 250 pounds per square foot (psf) along the ground surface behind the wall to represent typical construction loads. Additionally, design walls for lateral earth pressures resulting from any anticipated special construction loading condition, such as the operation of a large or heavily-loaded crane, materials storage, or soil stockpile near the top of the wall.

Design shall assume that seismic loads do not act concurrently with temporary construction loads.

15.3.13 Seismic Design

Seismic design of retaining walls shall be in accordance with the AASHTO LRFD Bridge Design Specifications, as modified by the ODOT GDM. See Chapter 6 for the seismic design performance objectives for Bridge retaining walls and Highway retaining walls.

In general, the Mononobe-Okabe (M-O) method is recommended for seismic design of retaining walls, subject to the limitations listed in this section. The M-O method is described in many references, including:

- AASHTO LRFD Appendix A11.

The M-O equation is strictly applicable only where the active wedge is composed entirely of homogeneous, unsaturated, cohesionless soils and the retaining wall can yield sufficiently to allow a lower seismic active earth pressure condition to develop.

When used to design retaining walls with backslopes greater than approximately 1v:3h in high seismic zones, the M-O method may produce unrealistically large seismic active earth pressure coefficient values, and may not be applicable. The M-O method also does not account for the deformation response of the structure that may occur during large earthquake seismic loading.

When the M-O method is applicable, AASHTO LRFD Equation C11.6.5-1 may also be applicable. Article 11.6.5 provides a simplified equation based on the Newmark sliding block method (Equation C11.6.5-1) for reducing retaining wall external seismic lateral loads determined using the M-O method. The value of “d” used in Equation C11.6.5-1 should not exceed 2.0 inches. Equation C11.6.5-1 is only applicable if all of the following conditions are met:

- The wall system and any structures supported by the wall can tolerate lateral movement resulting from sliding of the structure.
- The wall base is unrestrained against sliding, other than soil friction along its base and minimal soil passive resistance.
- If the wall functions as an abutment, the top of the wall must also be unrestrained (e.g., the superstructure is supported by sliding bearings).
- The wall is not a tiered wall.
- The wall is not a “narrow back-to-back” wall (“narrow back-to-back” walls are defined as walls (or reinforced zones for MSE walls) separated by a distance of less than one-half the height of the taller wall).
- The total wall height does not exceed 50 feet.
- The seismic acceleration coefficient, A_s, does not exceed 0.29g

The Agency EOR for the retaining wall shall determine the applicability of the M-O method and the applicability of Equation C11.6.5-1, and shall indicate on the project plan whether or not the M-O method and Equation C11.5.4-1 are applicable. If the M-O method is applicable, the Agency EOR shall also provide the values of A_s and k_h, on the project plans.

When the M-O method is not applicable and it is not possible to change the wall geometry, the Agency EOR may use the General Limit Equilibrium (GLE) method described in FHWA (2009). Additional background information about the GLE method is provided in NCHRP Report 611.

When the M-O method is not applicable and external seismic lateral loads are determined using the GLE method, the Agency EOR shall be responsible for determining the external seismic lateral thrust and showing the external seismic thrust on the retaining wall plans.

See the sections on specific wall types for further guidance on designing for seismic effects.

15.3.14 Minimum Footing Embedment

Unless otherwise indicated, retaining wall footing embedment shall be no less than 2.0ft below lowest adjacent grade in front of the wall.

The final footing embedment depth shall be based on the required geotechnical bearing resistance, wall settlement limitations, and all internal, external, and overall (global) wall stability requirements in AASHTO LRFD and the ODOT GDM. Additionally, footing embedment shall meet requirements in the ODOT BDDM.

The minimum wall footing embedment depth shall be established below the maximum depth foundation soils (or rock) could be weakened or removed by freeze-thaw, shrink-swell, scour, erosion, construction-excavation, or any other means. The potential scour elevation shall be established in accordance with AASHTO LRFD, the ODOT BDDM, and the ODOT Hydraulics Manual.

15.3.15 Wall Foundation Settlement

Retaining wall structures shall be designed for the effects of the maximum total and differential foundation settlements at the Service I limit state, in accordance with AASHTO LRFD and the ODOT GDM. Maximum foundation settlements shall be calculated along longitudinal and transverse lines through retaining walls.

Maximum tolerable retaining wall total and differential foundation settlements are controlled largely by the potential for cosmetic and/or structural damage to facing elements, copings, barrier, guardrail, signs, pavements, utilities, structure foundations, and other highway construction supported on or near the retaining wall.
The following table provides typical maximum tolerable total foundation settlement magnitudes (Δh) for selected retaining wall types1:

Table 15-1. Maximum Tolerable Total Foundation Settlement Magnitudes

<table>
<thead>
<tr>
<th>Wall Type</th>
<th>Total Settlement (Δh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE walls with cast-in-place facing or large pre-cast concrete panel facing (panel front face area $\geq 30\text{ft}^2$)</td>
<td>$\Delta h=1\text{-}2\text{in}$</td>
</tr>
<tr>
<td>Crib walls (pre-cast concrete)</td>
<td>$\Delta h=1\text{-}2\text{in}$</td>
</tr>
<tr>
<td>CIP concrete gravity and semi-gravity cantilever walls</td>
<td>$\Delta h=1\text{-}2\frac{1}{2}\text{in}$</td>
</tr>
<tr>
<td>Non-gravity cantilever walls and anchored walls</td>
<td>$\Delta h=1\text{-}2\frac{1}{2}\text{in}$</td>
</tr>
<tr>
<td>Bin or gabion walls</td>
<td>$\Delta h=2\text{-}4\text{in}$</td>
</tr>
<tr>
<td>MSE walls with small pre-cast concrete panel facing (panel front face area $< 30\text{ ft}^2$)</td>
<td>$\Delta h=2\text{-}4\text{in}$</td>
</tr>
<tr>
<td>MSE walls with dry cast concrete block facing units</td>
<td>$\Delta h=2\text{-}4\text{in}$</td>
</tr>
<tr>
<td>MSE Walls with geotextile/welded-wire/gabion basket facing</td>
<td>$\Delta h=4\text{-}12\text{in}$</td>
</tr>
</tbody>
</table>

1 Δh is the maximum vertical foundation settlement estimated within the footprint of the wall. Note that more stringent tolerances may be required to meet project-specific requirements for walls.
The following table provides typical maximum tolerable differential foundation settlements based on the permissible \(\Delta h:L \) for selected retaining wall types:

Table 15-2. Maximum Tolerable Differential Foundation Settlement Magnitudes

<table>
<thead>
<tr>
<th>Wall Type</th>
<th>Total Differential Settlement ((\Delta h:L))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIP concrete gravity and semi-gravity cantilever walls</td>
<td>(\Delta h:L = 1:500)</td>
</tr>
<tr>
<td>MSE Walls with cast-in-place facing, full-height pre-cast facing panels, or large pre-cast concrete panel facing (panel front face area (\geq 30 \text{ ft}^2))</td>
<td>(\Delta h:L = 1:500)</td>
</tr>
<tr>
<td>Crib walls (pre-cast concrete)</td>
<td>(\Delta h:L = 1:500)</td>
</tr>
<tr>
<td>Wet and dry cast concrete block gravity retaining walls</td>
<td>(\Delta h:L = 1:200-1:300)</td>
</tr>
<tr>
<td>Bin (pre-cast concrete or metal)</td>
<td>(\Delta h:L = 1:200)</td>
</tr>
<tr>
<td>MSE walls with small pre-cast concrete panel facing (panel front face area < 30ft²)</td>
<td>(\Delta h:L = 1:100-1:300)</td>
</tr>
<tr>
<td>MSE walls with dry cast concrete block facing units</td>
<td>(\Delta h:L = 1:100-1:300)</td>
</tr>
<tr>
<td>MSE Walls with geotextile/welded-wire/gabion basket facing</td>
<td>(\Delta h:L = 1:50-1:60)</td>
</tr>
<tr>
<td>Gabion</td>
<td>(\Delta h:L = 1:50)</td>
</tr>
</tbody>
</table>

Select a retaining wall type that meets both the total and differential foundation settlement tolerance criteria provided above. If the selected wall type doesn’t meet the settlement tolerance criteria, then select a more settlement-tolerant wall type. For example, an MSE wall with dry cast concrete block facing is more tolerant of foundation settlement than an MSE wall with large pre-cast concrete facing.

When project requirements dictate the use of a specific retaining wall type, irrespective of foundation settlement tolerance considerations, then the following options should be considered for accommodating or reducing excessive foundation settlements:

- Use of a two-stage MSE wall system. A relatively flexible geotextile or welded-wire face MSE wall (first-stage wall) is built to near final grade and a surcharge used as-needed to reduce long-term foundation settlements. MSE wall stability and settlement is carefully evaluated for all stages of construction in accordance with the ODOT GDM. After monitoring indicates the time-rate of foundation settlement has been adequately reduced, settlement-sensitive, cast-in-place or pre-cast wall facing elements, coping and appurtenances are installed for the completed (second-stage) MSE wall.

- Partial to complete removal of the compressible soil layer(s) and replacement with granular structure backfill meeting the requirements of 00510.

- Ground improvement techniques to reduce foundation settlements. Chapter 11 in the ODOT GDM provides guidance for selection of an appropriate ground improvement method and preliminary ground improvement design criteria.

 - Use of lightweight retaining wall backfill to reduce the wall surcharge.

 - Deep foundation support of the retaining wall.

2 \(\Delta h:L \) is the ratio of the difference in vertical settlement between two points along the wall base (\(\Delta h \)) to the horizontal distance between the two points (\(L \)). Note that more stringent tolerances may be required to meet project-specific requirements for walls.
• Where longitudinal differential settlement up to $\Delta h:L=1:100$ is anticipated, consider use of full-height, slip joints along MSE walls with pre-cast concrete panel facing.

15.3.16 Groundwater Monitoring

Install at least one piezometer at each retaining wall site to monitor fluctuations in groundwater elevations. This data is required for the following reasons:

- **Seismic hazard assessment and mitigation design - liquefaction\lateral spread**;
- Foundation design - bearing resistance and settlement;
- Design lateral earth pressure(s);
- Internal, external, compound and global (overall) stability analysis;
- Seepage analysis for design of retaining wall subdrainage system;
- Evaluate construction dewatering requirements; and
- Analysis and design of temporary excavation (back-cut) and long-term slope stability.

15.3.17 Seismic Hazards

The geotechnical designer shall assess liquefaction, lateral spread, and other seismic hazards at the wall site in accordance with AASHTO LRFD and ODOT GDM Chapter 6, Chapter 8, and Chapter 15. Analysis and design for assessment and mitigation of seismic hazards shall be in accordance with AASHTO LRFD and the ODOT GDM.

15.3.18 Wall Subsurface Drainage

Retaining walls shall include an adequate wall subsurface drainage system designed to resist the critical combination of water pressures, seepage forces, and backfill lateral earth pressure(s) in accordance with AASHTO LRFD and the ODOT GDM.

Inadequate wall subdrainage can cause premature deterioration, **reduced stability, and failure** of a retaining wall. A properly designed wall subdrainage system is required to control potentially damaging hydrostatic pressures and seepage forces behind and around a wall. Redundancy in the subdrainage system is required where subsurface drainage is critical for maintaining retaining wall stability. Properly designed and constructed wall subdrainage systems provide the following benefits:

- Improve appearance and reduce deterioration rates of retaining wall components subject to wetness;
- Protect MSE wall steel and geosynthetic reinforcements from exposure to aggressive subsurface and surface water;
- Increase density and strength of wall backfill materials;
- Increase wall backfill resistance to liquefaction and loss of strength under seismic loads;
- Increase wall foreslope, backslope, and global stability; and
- Increase density and strength of wall foundation soils.

The sizing of subdrainage system components (i.e., permeable layers, collector\outlet pipes, and drainage ditches) shall be based on project-specific calculated seepage volumes. Design the

Provide retaining wall drainage for conventional cast-in-place concrete (CIP), semi-gravity (cantilever) and gravity retaining walls in accordance with AASHTO Article 11.6.6. Drainage for CIP cantilever and gravity retaining walls typically consists of a positive-flow, perforated collector drain pipe installed in a permeable layer along the wall heel. The collector pipe is typically connected to a solid outlet pipe at a sag (or the low end) of the collector pipe. The solid pipe discharges water to an approved, maintained drainage ditch or storm drain system. Provide clean outs at the high end of the collector pipe, or at other suitable locations. A drainage geotextile shall encapsulate the collector pipe and surrounding permeable layer to prevent the migration of surrounding soils into the subdrainage system which could result in clogging of the collector pipe and/or permeable layer(s) and reduce wall subdrainage capacity.

Drainage for soldier pile/lagging, sheet pile, soil nail, and other non-gravity cantilever and anchored retaining wall systems shall meet all the requirements in AASHTO Article 11.8.8 and Chapter 15.

Drainage for permanent soldier pile/lagging or soil nail walls typically includes vertical strip drains (prefabricated composite drainage material) and/or vertical chimney drains (gravel-size permeable material) to transport drainage to weep holes and/or drainage collector pipes located near the base of the wall. The collector pipe is connected to a solid outlet pipe which should discharge into an approved drainage ditch or storm drain system. Provide properly located clean outs for the collector and outlet pipes.

Perforated collector and solid pipes shall be Schedule 40 PVC pipe meeting all applicable ASTM requirements, including D1784 and D1785. The PVC pipe shall be at least 6in diameter to allow for periodic pipe flushing and cleaning, irrespective of discharge capacity requirements. Pipe discharge and clean out locations shall be readily accessible to maintenance personnel. Provide metal screens or secure caps at pipe ends to prevent rodent entry.

Pore water pressures shall be added to effective horizontal earth pressures to determine total lateral pressures on retaining walls in accordance with AASHTO Article C3.11.3. Pore water pressures behind the retaining wall can be approximated using flow net procedures such as those in Soil Mechanics NAVFAC DM7.01 (U.S. Navy, 1986), Soil Mechanics in Engineering Practice (Terzaghi and Peck, 1967), Seepage Analysis and Control for Dams EM1110-2-2502 (U.S. Army, 1989), or Seepage, Drainage, and Flow Nets, 3rd Edition (H. R. Cedergren, 1989). Lateral wall pressures resulting from seepage forces can be estimated using the methods in Foundation Engineering Handbook, 2nd Edition (H. F. Winterkorn and H. Fang, 1979) or Soil Mechanics NAVFAC DM7.01 (U.S. Navy, 1986).

The potential for piping instability and loss of soil strength from seepage forces, can be analyzed using the methods such as those presented in Soil Mechanics in Engineering Practice (Terzaghi and Peck, 1967), Soil Mechanics NAVFAC DM7.01 (U.S. Navy, 1986), Retaining and Flood Walls EM1110-2-1901 (U.S. Army, 1986), or Seepage, Drainage, and Flow Nets, Third Edition (H. R. Cedergren, 1989).

To prevent subsurface erosion, design retaining wall subdrainage systems to limit hydraulic gradients in accordance with AASHTO Article 11.6.3.4.

Surface runoff above and below wall shall be directed to suitable collection facilities, including maintained ditches, gutters and storm drain systems. Outlets shall be provided at sags, terminus points (low ends) and other suitable locations.
A geotextile filter layer is required to retain soil particles and prevent clogging of the subdrainage system while permitting adequate groundwater flow through the geotextile filter into the drain over the typical 75-year wall design life. Design the geotextile filter layer in accordance with Section 2.0 (Geosynthetics in Subsurface Drainage Systems) in the Federal Highway Administration publication: Geosynthetic Design and Construction Guidelines, Participant's Notebook, FHWA HI-95-038, April 1998. FHWA publication HI-95-038 is available at the following website:

http://www.fhwa.dot.gov/engineering/geotech/library_listing.cfm?TitleStart=G

15.3.19 Underground Utilities

Mechanically stabilized earth (MSE) walls, soil nail or any type of anchored retaining wall should be avoided when existing or future (planned) underground utilities are located within or below the reinforced backfill or anchorage zone behind walls. Utilities encapsulated within the reinforced or anchored zone will not be accessible for replacement or maintenance. Removal (cutting) of ground support elements for new utility construction could result in wall failure. Soil nail and anchor installation could damage in-place utilities.

15.3.20 Design Life

The minimum design life for Highway Retaining Walls shall be 75 years. The design life of Bridge Retaining Walls shall be consistent with the structures they stabilize, but not less than 75 years.

15.3.21 Corrosion Protection

Corrosion protection consistent with the intended design life of the retaining wall is required for all permanent retaining walls and for temporary walls (design life of three years or less) located in an aggressive environment based on the criteria in AASHTO Articles 11.10.6.4.2a or 11.10.6.4.2b. The level of effort to prevent corrosion of metallic components in retaining wall systems depends mainly on the potential for exposure to a corrosive environment. In Oregon, retaining wall sites with aggressive corrosive environments are typically snow/ice removal zones or marine environment zones as described below.

15.3.21.1 Snow/Ice Removal Zones

Snow/ice removal zones are sections of highway where seasonal snow and ice removal requires the use of de-icing materials containing aggressive compounds that may come in contact with retaining walls. Provide appropriate corrosion protection consistent with the recommendations in Section 15.3.21.2 and the design guidance in Section 15.3.21.3.

15.3.21.2 Marine Environment Zones

Marine environment zones are sections of highway in close proximity to the ocean, a saltwater bay, river or slough, where airborne saltwater spray or saline precipitation could come in contact with the wall.

For the purposes of determining when special corrosion protection is required, a Marine Environment is defined as any of the following:

- A location in direct contact with ocean water, salt water in a bay, or salt water in a river or stream at high tide.
• A location within ½ mile of the ocean or a salt water bay with no physical barrier such as hills and forests to prevent strong winds from carrying salt spray generated by breaking waves.

• A location crossing salt water in a river or stream where there are no barriers such as hills and forests to prevent strong winds from generating breaking waves.

Provide the following minimum protection system for concrete retaining walls and concrete components of retaining walls in a Marine Environment:

• Minimum 2in cover on all cast-in-place members.

• HPC (High-Performance Concrete), also known as Microsilica, to be used for all pre-cast and cast-in-place concrete elements.

For retaining walls in a Marine Environment, consider using retaining wall systems that do not use steel soil reinforcements, components, and connections, or provide additional corrosion protection for steel in order to achieve the specified design life. Corrosion protection measures shall consider the following:

• Increase concrete cover

• Isolate dissimilar metals

• Use increased corrosion rates for design and increase sacrificial steel thickness accordingly

• Prevent entry of corrosive runoff into the reinforced backfill

• Use stainless steel

• Use cathodic protection

• Encapsulate steel components

• Concrete sealers

15.3.21.3 Corrosion Protection Design Guidance

AASHTO Articles 11.8.7 (Non-Gravity Cantilever walls), 11.9.7 (Anchored walls), and 11.10.2.3.3 (MSE walls) provide design guidance for corrosion protection.

Subsequent sections of Chapter 15 provide selection and design guidance for corrosion protection of specific retaining wall types.

Corrosion protection should be reviewed with the Corrosion Specialist on a project-by-project basis.

15.3.22 Traffic Railing

Drop-offs greater than six feet in height at the top of retaining walls shall be protected with traffic railing. As a minimum, traffic railing located at the top of retaining walls on ODOT projects shall meet Test Level 3 (TL-3) requirements. A higher Test Level may be required for high speed freeways, expressways, and interstates where traffic includes a mix of trucks and heavy vehicles, or when unfavorable conditions justify a higher level of rail resistance. Traffic railing options for protection of retaining wall drop-offs include:

• Fixed Bridge Rail on Self Supporting (Moment) Slab: This option consists of a Type “F” 32” Bridge rail (BR200) on a self supporting (moment) slab. The Type “F” 32” railing has been crash tested and satisfies TL-4 test criteria in AASHTO LRFD Chapter 13 Railings. The
moment slab must be designed in accordance with AASHTO LRFD and the GDM, and must be strong enough to resist the ultimate strength of the railing. The moment slab must also be designed to resist overturning and sliding by its own mass when subjected to a 10 kip static equivalent design load in accordance with AASHTO LRFD 11.10.10.2. ODOT also has a Type “F” 42” railing that has been crash tested and satisfies TL-5 criteria, but the static equivalent design load has not been determined.

• Anchored Precast Wide Base Median Railing: Where TL-3 traffic railing is acceptable, anchored precast wide base median barrier (ODOT Standard Dwg. RD500) may be used when designed in accordance with AASHTO LRFD and the GDM. Anchored precast barriers shall be located at least 3.0 feet clear from the back of the wall face, and each precast section shall be anchored with four vertical anchors as shown on the “Median Installation” option on ODOT Standard Dwg. RD515, and ODOT Standard Dwg. RD516.

• Guardrail: Where TL-3 traffic railing is acceptable, standard guardrail (ODOT Standard Dwg. RD400) may be used when designed in accordance with AASHTO LRFD and the GDM. Locate guardrail posts at least 3.0 ft clear from the back of the wall face, drive or place posts at least 5.0 ft below grade, and place at locations which do not conflict with retaining wall elements and components.

See sections of Chapter 15 on specific wall types for wall type specific guidance on design of traffic railings.

15.3.23 Proprietary Minor Retaining Wall Systems

Proprietary minor retaining wall systems are defined in Section 15.2.

Design proprietary minor retaining wall systems in accordance with Chapter 15, except as follows:

• Proprietary Minor retaining wall systems shall be one of the following wall types:
 • Dry cast concrete block prefabricated modular retaining wall systems
 • Wet cast concrete block prefabricated modular retaining wall systems
 • Gabion prefabricated modular retaining wall systems

• Walls shall include adequate subdrainage to maintain ground water level below bottom of wall and the wall backfill (show on control plans). The sub drainage system shall include a perforated drainage pipe (6-inch diameter PVC) installed near the heel of the retaining wall.

• The retaining wall shall be embedded at least 12 in below the lowest grade in front of the wall, measured to the bottom of the leveling pad.

• Passive pressure resistance shall be neglected when calculating sliding resistance of the wall.

• Seismic design is not required.

• A geotechnical investigation is not required.

• Assume foundation soil bearing resistance is adequate at all applicable limit states.
• Assume settlement is tolerable for all applicable limit states.
• Assume backfill soil friction angle (ϕ) = 32°.
• Assume backfill cohesion (c) = 0psf.
• Assume backfill moist unit weight (γ_{wet}) = 120pcf.
• Assume backfill active earth pressure coefficient (k_a) = 0.31.
• Assume base coefficient of friction = 0.45 when designing sliding stability.
• Assume only minor cut-and-fill grading for wall construction, as shown in Figure 15-2, that will have no significant effect on overall (global) stability.
• On the project plans, label the wall as a "Minor Retaining Wall".

15.3.24 Nonproprietary Minor Retaining Wall Systems

Nonproprietary minor retaining wall systems are defined in Section 15.2.

Design nonproprietary minor retaining wall systems in accordance with Chapter 15, except as follows:

• Nonproprietary Minor retaining wall systems shall be one of the following wall types:
 - Cast-in-place concrete gravity retaining wall systems
 - Cast-in-place concrete semi-gravity retaining wall systems
 - Dry cast concrete block prefabricated modular retaining wall systems
 - Wet cast concrete block prefabricated modular retaining wall systems
 - Gabion prefabricated modular retaining wall systems

• Walls shall include adequate subdrainage to maintain ground water levels below the bottom of wall and the wall backfill (show on control plans). The subdrainage system shall include a perforated drainage pipe (6-inch diameter PVC) installed near the heel of the retaining wall.

• The retaining wall shall be embedded at least 12in below the lowest grade in front of the wall, measured to the bottom of the foundation or leveling pad.

• Passive pressure resistance shall be neglected when calculating sliding resistance of the wall.

• Seismic design is not required.

• A geotechnical investigation is not required.

• Assume foundation soil bearing resistance is adequate at all applicable limit state.
• Assume settlement is tolerable at all applicable limit states.
• Assume backfill soil friction angle (ϕ) = 32°.
• Assume backfill cohesion (c) = 0psf.
• Assume backfill moist unit weight (γ_{wet}) = 120pcf.
• Assume backfill active earth pressure coefficient (k_a) = 0.31.
• Assume base coefficient of friction = 0.45 when designing sliding stability.
15.4 CIP Concrete Rigid Gravity Walls

15.4.1 General Considerations

Cast-in-place (CIP) gravity retaining walls are reinforced concrete structures that rely on self-weight to resist overturning and sliding forces. Internal stability and external stability (overturning, sliding, bearing capacity, and settlement), and overall (global) stability design of gravity retaining walls shall be performed in accordance with the AASHTO LRFD Bridge Design Specifications and the ODOT GDM.

15.4.2 Geotechnical Investigation

Design of CIP concrete rigid gravity retaining walls requires a geotechnical investigation to explore, sample, characterize and test foundation soils and measure site ground water levels. Geotechnical investigation requirements for wall foundation design are outlined in Chapter 3.

15.4.3 Wall Selection Criteria

The decision to select a CIP concrete rigid gravity retaining wall should be based on project specific criteria. This decision should also consider the general wall design requirements contained in Section 15.3. CIP concrete rigid gravity walls can be formed to meet the most demanding vertical and horizontal alignment requirements. CIP concrete rigid gravity walls are not recommended for soft ground sites, or at any location where significant foundation settlements are anticipated. As indicated in Section 15.3.15, CIP concrete rigid gravity walls may experience damage when differential foundation settlements exceed magnitudes of $\Delta h:L = 1:500$.

15.4.4 Wall Height, Footprint and Construction Easement

CIP concrete rigid gravity retaining walls are typically designed to a maximum height of 12ft. Preliminary CIP concrete rigid gravity retaining wall design may assume a base width of between 0.5*H to 0.7*H (H=wall height). CIP cantilever walls typically require an additional lateral construction easement of at least 1.5*H behind the wall to accommodate open-cut construction, drainage installation, backfill placement and compaction behind the wall. A lateral easement restriction and/or the presence of an existing roadway, structure, or utility within the construction limits could require shoring, underpinning and/or right-of-way acquisitions which can impact the construction budget and/or schedule.

15.4.5 Design Requirements

1. CIP concrete rigid gravity retaining walls shall include adequate subdrainage, including drainage blankets, chimney drains, perforated collector pipes and/or weep holes, to relieve hydrostatic pressures and seepage forces on walls in accordance with AASHTO Article 11.6.6 and Section 15.3.18. Additionally, provide adequate surface drainage facilities,

$\Delta h:L$ is the ratio of the difference in vertical settlement between two points along the wall base (Δh) to the horizontal distance between the two points (L). Note that more stringent tolerances may be required to meet project-specific requirements for walls.
including ditches, gutters, curbs and drop inlets, to intercept and direct water to suitable surface water disposal facilities.

2. The active lateral earth pressure coefficient (k_a) for CIP concrete rigid gravity wall design should be calculated using Coulomb earth pressure theory in accordance with AASHTO Article 3.11.5.3 and Section 15.3.10. Unless otherwise noted, CIP concrete rigid gravity retaining wall analysis and design shall assume the following geotechnical properties for the wall backfill:

- Friction angle of backfill: \(\varphi = 34^\circ \)
- Backfill Cohesion: \(c = 0 \text{ psf} \)
- Wet unit weight of backfill: \(\gamma_{\text{wet}} = 125.0 \text{pcf} \)
- Coefficient of active earth pressure: \(k_a = 0.28 \)

3. CIP concrete rigid gravity wall design shall assume the maximum wall-backfill friction angle in accordance with AASHTO Article 3.11.5.3 and AASHTO Table 3.11.5.3-1.

4. Development of an active lateral earth pressure assumes the top of the wall can move outward (translate or rotate about the wall base) a distance of at least 0.001*H (dense sand backfill) to 0.004*H (loose sand backfill), where H is the wall height. CIP concrete rigid gravity walls restrained from adequate movement are considered to be non-deflecting walls. Design non-deflecting CIP concrete rigid gravity retaining walls for the at-rest lateral earth pressures and compaction induced lateral earth pressures shown on Figure 15-5 in Section 15.3.11.

5. Calculate base sliding resistance in accordance with AASHTO Article 10.6.3.4. In sliding, calculate lateral resistance using the following parameters:

- Sliding Resistance (Table 11.5.6-1): \(\varphi_{sl} = 1.00 \)
- Passive Resistance (Table 10.5.5.2.2-1): \(\varphi_{ep} = 0.50 \)

6. In sliding, lateral resistance shall neglect any contribution from passive earth pressure resistance against the embedded portions of the wall if the soil in front of the wall can be removed or weakened by scour, erosion, construction-excavation, freeze-thaw, shrink-swell, or any other means.

7. Assess external stability (overturning, bearing resistance, sliding, and settlement) and overall (global) slope stability for CIP concrete rigid gravity walls in accordance with the AASHTO LRFD Bridge Design Specifications and the requirements of the ODOT GDM.

8. CIP concrete rigid gravity walls shall have backfill slopes no steeper than 1:2 (v: h).

9. Where practical, a minimum 4.0ft wide horizontal bench shall be provided in front of CIP concrete rigid gravity walls.

10. Seismic design forces shall include wall inertial forces in addition to the external seismic loads. Also see Section 15.3.13.
15.4.6 ODOT CIP Gravity Retaining Wall Standard Drawing

ODOT has developed the following standard drawing for cast-in-place (CIP) concrete rigid gravity retaining walls:

- Standard Drawing BR 720: Standard Gravity Retaining Wall, General Details

Standard Drawing BR 720 is available online at the following website:

15.5 CIP Concrete Semi-Gravity Cantilever Walls

15.5.1 General Considerations

Cast-in-place (CIP) semi-gravity cantilever retaining walls are reinforced concrete structures that rely on wall base reaction and friction to resist overturning and sliding forces. Internal stability and external stability (overturning, sliding, bearing capacity, and settlement) and overall stability design of CIP cantilever walls shall be performed in accordance with the AASHTO LRFD Bridge Design Specifications and the ODOT GDM.

15.5.2 Geotechnical Investigation

The design of CIP cantilever retaining walls requires a geotechnical investigation to explore, sample, characterize and test the wall foundation soils and measure site groundwater levels. Geotechnical investigation requirements are outlined in Chapter 3.

15.5.3 Wall Selection Criteria

The decision to select a CIP cantilever retaining wall should be based on project specific criteria. This decision should also consider the general wall design requirements contained in Section 15.3. CIP cantilever retaining walls can be formed to meet the most demanding vertical and horizontal alignment requirements. A major disadvantage of the CIP cantilever wall is the relatively low tolerance to post-construction foundation settlements. Cantilever walls are not well suited for soft ground sites - or any location where significant foundation settlements are anticipated. As indicated in Section 15.3.15, CIP cantilever walls may experience damage when differential foundation settlements exceed magnitudes of $\Delta h : L^4 = 1:500$.

15.5.4 Wall Height, Footprint and Construction Easement

CIP semi-gravity cantilever retaining walls are typically designed to a maximum height (H) of 30ft. Preliminary CIP cantilever retaining wall design may assume a wall base width of between 0.4*H and 0.7*H. CIP cantilever walls typically require an additional lateral construction easement of at least 1.5*H behind the wall heel to accommodate open-cut construction, drainage installation, backfill placement and compaction behind the wall.

$\Delta h : L^4$ is the ratio of the difference in vertical settlement between two points along the wall base (Δh) to the horizontal distance between the two points (L). Note that more stringent tolerances may be required to meet project-specific requirements for walls.
A lateral easement restriction and/or the presence of a roadway, structure, or utility within the construction limits could require shoring, underpinning and/or right-of-way acquisitions with impacts to the construction budget and/or schedule.

15.5.5 Design Requirements

1. CIP concrete semi-gravity cantilever retaining walls shall have an adequate subdrainage system, including drainage blankets, chimney drains, perforated collector pipes and/or weep holes, to relieve hydrostatic pressures and seepage forces. The subdrainage system shall be designed based on project-specific data and requirements in accordance with AASHTO Article 11.6.6 and Section 15.3.18. Additionally, provide adequate surface drainage facilities, including ditches, gutters, curbs and drop inlets, to intercept and direct water to suitable surface water disposal facilities.

2. The active lateral earth pressure coefficient (k_a) for design of CIP concrete semi-gravity cantilever walls should be calculated using either Coulomb or Rankine earth pressure theory in accordance with the criteria presented in AASHTO Article 3.11.5.3. Coulomb theory applies to cantilever walls with a relatively short (or narrow) heel where friction along the back of the wall interferes with the full development of the Rankine active wedge. Rankine theory applies to cantilever walls with a relatively long (wide) heel. Guidance on application of Coulomb and Rankine theories to cantilever wall design is presented in Figure C3.11.5.3-1 (AASHTO Article 3.11.5.3).

3. Unless otherwise noted, CIP concrete semi-gravity cantilever retaining wall analysis and design shall assume the following geotechnical properties for the wall backfill:
 - Friction angle of backfill: $\phi=34^\circ$
 - Backfill Cohesion: $c=0$ psf
 - Wet unit weight of backfill: $\gamma_{wet}=125.0$pcf
 - Coefficient of active earth pressure: $k_a=0.28$

4. CIP concrete semi-gravity cantilever wall design shall assume the maximum wall-backfill friction angle in accordance with AASHTO Article 3.11.5.3 and AASHTO Table 3.11.5.3-1.

5. CIP concrete semi-gravity cantilever walls restrained from sufficient movement to achieve the active earth pressure condition in accordance with AASHTO Article 3.11.5.3., such as walls bearing directly on bedrock or supported on a deep foundation, are considered to be non-deflecting walls. Design non-deflecting CIP concrete semi-gravity cantilever retaining walls to satisfy internal and external stability under the combined effects of at-rest lateral earth pressure and compaction lateral earth pressure using Figure 15-5 (Section 15.3.11).

6. Design stems of all CIP concrete semi-gravity cantilever retaining walls (deflecting and non-deflecting) to satisfy internal and external stability under the combined effects of at-rest lateral earth pressure and compaction lateral earth pressure using Figure 15-5 (Section 15.3.11) to provide for the case where the wall can slide and/or rotate, but the stem is rigid.

7. CIP concrete semi-gravity cantilever wall design shall consider lateral earth pressures from compaction and construction loads in accordance with Section 15.3.11 and Section 15.3.12, respectively.

8. Assess external stability (overturning, bearing resistance, sliding, and settlement) and overall (global) slope stability of CIP concrete semi-gravity cantilever walls in accordance with the AASHTO LRFD Bridge Design Specifications and the ODOT GDM.
9. CIP concrete semi-gravity cantilever walls shall have backfill slopes no steeper than 1:2 (v: h).

10. Where practical, a minimum 4.0ft wide horizontal bench shall be provided in front of CIP concrete semi-gravity cantilever walls.

11. Seismic design forces shall include wall inertial forces in addition to the external seismic loads. Also see Section 15.3.13.

15.5.5.1 Sliding Resistance

Calculate base sliding resistance in accordance with AASHTO Article 10.6.3.4. In sliding, calculate lateral resistance using the following parameters:

- Sliding Resistance (Table 11.5.6-1): $\varphi_{sr} = 1.00$
- Passive Resistance (Table 10.5.5.2.2-1): $\varphi_{ep} = 0.50$

In sliding, lateral resistance shall neglect any contribution from passive earth pressure resistance if the soil in front of the wall can be removed or weakened by scour, erosion, construction-excavation, freeze-thaw, shrink-swell, or any other means.

If wall base sliding resistance is inadequate, increase the base width. If this does not produce adequate sliding resistance, increase the contribution from passive earth pressure resistance by increasing wall embedment.

A shear key (base key) may be installed along the base of CIP cantilever walls to provide additional sliding resistance. Sliding resistance may include passive earth pressure resistance in front of the base key for foundation materials consisting of stiff to hard, cohesive soil or “extremely soft” to “soft” rock or granular soils in accordance with Figure 10-20, Section 10.5.5 of Soils and Foundations, Reference Manual – Volume II, FHWA NHI-06-089 (FHWA, 2006) as shown in Figure 15-6.

In using Figure 15-6, neglect any contribution to sliding resistance from passive earth pressure against the base key (P_p) unless the wall footing embedment (D) is at least 3.0ft below subgrade and the ground in front of the footing will not be weakened or removed by freeze-thaw, shrink-swell, scour, erosion, construction excavation, or any other means. Calculate P_p against the base key in accordance with AASHTO LRFD and the ODOT GDM.

5 “Extremely soft” and “soft” rock refers to the scale of relative rock hardness in accordance with the ODOT Soil and Rock Classification Manual (1987). An “extremely soft” rock has an unconfined compressive strength of less than 100psi, while “soft” rock has an unconfined compressive strength of between 1,000 and 4,000psi.
Figure 15-6. Calculation of Ultimate (Nominal) Sliding Resistance, CIP Cantilever Wall with Base Key
15.5.6 ODOT CIP Semi-Gravity Cantilever Retaining Wall Standard Drawing

ODOT has developed the following standard drawing for cast-in-place (CIP) semi-gravity cantilever retaining walls:

- Standard Drawing BR 705: Standard Retaining Walls (Front Face Battered 1in per Foot), Uniform Bearing

Standard Drawing BR 705 is available online at the following website:

15.6 Mechanically Stabilized Earth (MSE) Walls

Mechanically stabilized earth (MSE) walls shall be designed (in order of precedence) in accordance with the following:

- 2007 AASHTO LRFD Bridge Design Specifications (as modified by the ODOT Geotechnical Design Manual (GDM));
- Design of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes, NHI-10-024 and NHI-10-025 (FHWA, 2009).

Unless otherwise noted, MSE wall analysis and design shall assume the following geotechnical properties for the reinforced MSE wall backfill:

- Friction angle of backfill: $\varphi = 34^\circ$
- Backfill Cohesion: $c = 0$ psf
- Wet unit weight of backfill: $\gamma_{wet} = 130.0$pcf
- Coefficient of active earth pressure: $k_a = 0.28$ (wall face batter of less than 10°)
- Coefficient of active earth pressure: $k_a = 0.25$ (wall face batter $\geq 10^\circ$)

15.6.1 General Considerations

MSE walls are internally stabilized by the frictional resistance of layers of steel (inextensible) or geosynthetic (extensible) reinforcement layers embedded within well-compacted, gravel (crushed rock) backfill. MSE walls rely on self-weight to resist overturning and sliding forces. MSE walls are relatively flexible compared to other wall systems and can tolerate relatively large lateral deformations and differential vertical settlements. MSE walls are potentially better suited for earthquake loading effects than other wall systems because of their inherent flexibility and energy absorbing capacity.

MSE wall facing options include small (face area < 30 ft²) to large (face area \geq 30 ft²) square or cruciform-shaped pre-cast concrete panels, full-height pre-cast concrete panels, cast-in-place concrete facing, dry cast and wet cast concrete blocks, welded-wire facing, and rock-filled gabion baskets. Geotextile-reinforced, wrapped-faced MSE walls are frequently used for construction staging and other temporary works.

15.6.2 Geotechnical Investigation

Design of MSE walls requires a geotechnical investigation to explore, sample, characterize and test wall foundation soils and the adjacent ground conditions. Geotechnical investigation requirements
are outlined in Chapter 3. At a minimum, the geotechnical information required for wall design includes SPT N-values (depth intervals of 5ft, or less), soil profile, unit weight, natural water content, Atterberg limit, sieve analysis, soil corrosivity tests (i.e., pH, resistivity, organic content, chloride and sulfate concentrations), shear strength, consolidation parameters, foreslope and back slope inclinations, and groundwater levels.

15.6.3 Wall Selection Criteria

Most MSE wall types are relatively tolerant of foundation settlement as indicated in ODOT GDM Section 15.3.15. MSE walls with small, pre-cast concrete panels can tolerate differential wall foundation settlements up to 1:100, while MSE walls with cast-in-place concrete facing or large pre-cast facing panels can only tolerate differential wall foundation settlements up to 1:500. MSE walls with geotextile or welded-wire mesh facing typically can tolerate large differential wall foundation settlements up to 1:50.

MSE walls are relatively wide and heavy structures which frequently require large backcuts, shoring, and/or right-of-way acquisitions.

MSE walls are not recommended at locations where erosion or scour may undermine or erode the leveling pad, facing or MSE reinforced backfill.

Do not place underground utilities in the reinforced backfill zone behind MSE walls. Excavations for utility construction could damage or rupture MSE wall reinforcements - reducing wall stability and causing a failure or collapse of the retaining wall. Fluids from leaking or ruptured utilities could damage or destroy steel or geosynthetic MSE reinforcements and/or wash out of the retaining wall backfill.

15.6.4 Wall Height, Footprint and Construction Easement

MSE wall heights, including the total wall height of tiered or superimposed MSE walls (Section 15.4.3.13), shall not exceed 50ft.

Preliminary reinforcement length (AASHTO Article 11.10.2.1) shall be at least 0.70*H (where H is the wall height shown in AASHTO Figure 11.10.2-1), but not less than 8.0ft. The minimum AASHTO reinforcement lengths are frequently increased for the following reasons:

- Meet internal, external, compound, and global stability requirements;
- Resist loads from high embankments or sloping backfills, heavy surcharges (both temporary and permanent), and bridge footing or minor structure loads; and
- Meet additional or special requirements for tiered or superimposed walls Section 15.6.13, back-to-back walls Section 15.6.14, and MSE bridge retaining walls with geogrid-reinforced backfill Section 15.6.16.

MSE wall backfill slopes shall be no steeper than 1:2 (v: h).

A minimum 4.0ft wide horizontal bench shall be provided in front of MSE walls in accordance with AASHTO Article 11.10.2.2. AASHTO Figure 11.10.2-1 provides a sectional view showing a typical MSE wall leveling pad, front face embedment and the required horizontal bench.

15.6.5 Minimum Wall Embedment

The minimum wall embedment depth to the bottom of the MSE wall reinforced backfill zone (top of the leveling pad shown in AASHTO Figure 11.10.2-1) shall be based on external stability analysis.
(sliding, bearing resistance, overturning, and settlement) and the global (overall) stability requirements in AASHTO LRFD Chapters 10 and 11 and the ODOT GDM.

Minimum MSE wall leveling pad (and front face) embedment depths below lowest adjacent grade in front of the wall shall be in accordance with AASHTO Article 11.10.2.2, including the minimum embedment depths indicated in Table C11.10.2.2-1. As indicated in this table, the minimum required embedment increases substantially with foreslope inclination.

The embedment depth of MSE walls along streams and rivers shall be at least 2.0ft below the potential scour elevation in accordance with AASHTO Article 11.10.2.2. The potential scour elevation shall be established in accordance with AASHTO LRFD, the ODOT BDDM, and the ODOT Hydraulics Manual.

15.6.6 External Stability Analysis

External stability analysis shall be in accordance with the following:

- **2007 AASHTO LRFD Bridge Design Specifications (as modified by the ODOT GDM).**

External stability analysis shall include calculation of sliding resistance, soil bearing resistance, overturning, and settlement at the applicable LRFD load factor combinations and resistance factors. External stability analysis shall also consider compound stability failure surfaces which pass through the MSE wall reinforced backfill, as shown in AASHTO Figure 11.10.4.3-1. Overall (global) stability shall be in accordance with Section 15.6.6.3.

15.6.6.1 Sliding Resistance

Sliding resistance along the base of the MSE wall shall be calculated using the procedures in AASHTO Article 10.6.3.4.

In sliding, lateral resistance shall neglect any contribution from passive earth pressure resistance against embedded portions of the MSE wall (wall facing, leveling pad, and reinforced backfill zone as shown in AASHTO Figure 11.10.2-1).

Sliding resistance shall neglect any resistance provided by MSE wall facing elements.

Calculate sliding resistance using the following Sliding Resistance Factor (Table 11.5.6-1): \(\phi_{sr} = 1.00 \)

Neglect any beneficial effect of external loads on MSE walls (such as live load traffic surcharge) which increase sliding resistance.

15.6.6.2 Soil Bearing Resistance, Overturning, and Settlement

Soil bearing resistance design shall be in accordance with Chapter 10 in AASHTO LRFD and the ODOT GDM. The effective footing dimensions of eccentrically-loaded MSE walls shall be evaluated in accordance with AASHTO Article 10.6.1.3. Calculate foundation settlement in accordance with AASHTO Article 10.6.2.4 and Chapter 6 and Chapter 8.

Excessive MSE wall foundation settlement can result in damage to the wall facing, coping, traffic barrier, bridge superstructure, bridge end panel, pavement, and/or other settlement-sensitive elements supported on or near the wall. Techniques to reduce damage from post-construction settlements and deformations include:
• A “two-stage” MSE wall system where the first stage is a flexible-faced MSE wall (e.g.,
geotextile wrapped face or welded-wire) to preload and/or surcharge the foundation, followed
by the permanent wall facing in front of the first-stage MSE wall. A wall minimum “wait
period” is required after construction of the first-stage MSE wall to allow enough time for soil
consolidation to reduce or eliminate damaging, long-term (post-construction) foundation
settlements.

• Prefabricated vertical drains or wick drains may be appropriate to accelerate the time-rate of
foundation soil consolidations and reduce total construction time. Prefabricated Vertical
Drains, Volume I, Engineering Guidelines, FHWA/RD-86/168 (FHWA, 1986) provides
detailed guidance for the planning, design and construction of prefabricated vertical drains.
Material and construction requirements for wick drains are provided in Section 00435.

• Full-height vertical sliding joints through the rigid wall facing elements and appurtenances.

• Ground improvement or reinforcement techniques as described in Chapter 11. Staged
preload/surcharge construction, using suitable onsite materials and/or imported fill, may be a
relatively cost-effective method to increase MSE wall stability and/or reduce settlement.

15.6.6.3 Global Stability

The overall (global) stability of MSE walls shall be evaluated in accordance with AASHTO Articles
11.6.2.3 and 11.10.4.3, and ODOT GDM Chapter 6, Chapter 8, and Chapter 15. The mass of the
MSE wall (or the “foundation load”) may be assumed to contribute to the overall stability of the slope.
MSE wall stability analysis shall consider the internal, compound, and overall stability failure surfaces
shown in AASHTO Figures 11.10.2-1 and 11.10.4.3-1.

15.6.6.4 Seismic External Stability

MSE walls have performed relatively well during earthquakes - tolerating large lateral deformations
and differential vertical settlements without failure or collapse. MSE walls are potentially better suited
for earthquake loading than other retaining wall types because of their inherent flexibility and energy
absorbing capacity.

Where the Agency EOR determines that the M-O method is applicable, design MSE wall seismic
external stability in accordance with AASHTO Article 11.10.7.1, except as noted in this subsection.
The methods presented in AASHTO Article 11.10.7.1 for external stability design of MSE walls are a
variation of the Mononobe-Okabe (M-O) method. The M-O method uses a combined static and
dynamic seismic design coefficient, whereas the AASHTO method separates the static and dynamic
components, with separate load factors and points of application. AASHTO Eq. 11.10.7.1-2 has the
following limitations: It is only valid for level backslope walls with a retained backfill soil friction angle
of 30°.

Where the Agency EOR determines that the M-O method is applicable, calculate the dynamic
(seismic) thrust (P_{AE}) on MSE retaining walls for both level and sloping backfills using the following
procedure:

1. Calculate the active (static) lateral earth pressure thrust (P_a) along the back of reinforced
backfill of MSE retaining walls in accordance with AASHTO Article 3.11.5. Lateral earth
pressure shall be calculated using a coefficient of active lateral earth pressure (k_a) based
on Coulomb earth pressure theory in accordance AASHTO Article 3.11.5.3.

2. The Agency EOR shall determine the value of k_h. If the Agency EOR determines that Eq.
C11.6.5-1 is not applicable, then
\[k_h = A_s, \text{ where:} \]

\[A_s = \text{peak seismic ground acceleration coefficient (PGA) modified by short-period site factor in accordance with AASHTO LRFD Article 3.10.3.2} \]

If the Agency EOR determines that Eq. C11.6.5-1 is applicable, then:

\[k_h = 0.74 A_s (A_g/d)^{0.25} \quad (\text{AASHTO Eq. C11.6.5-1), where:} \]

\[d = 2.0 \text{ inches (assumed tolerable movement)} \]

3. Calculate \(A_m = (1.45-k_h) k_h \) (AASHTO Eq. C11.10.7.1-1)

Use \(k_h \) determined in step 2 above to calculate \(A_m \), except if \(k_h \) is greater than 0.45g, then set \(A_m \) equal to the value of \(k_h \) determined in step 2 above.

4. Calculate the total seismic active lateral thrust (\(E_{AE} \)) on MSE retaining walls using the Mononobe-Okabe (M-O) method (AASHTO Equation A11.1.1.1-1), with the horizontal acceleration (\(k_h \)) set equal to the value of \(A_m \) calculated in step 3, above.

5. Calculate dynamic horizontal thrust \(P_{AE} \) on MSE retaining walls, as the difference between \(E_{AE} \) and \(P_a \):

\[P_{AE} = E_{AE} - P_a \]

For global (overall) and compound stability analysis, use a reduced horizontal acceleration coefficient (\(k_h \)) calculated as follows:

\[k_h = A_s/2 \]

Where the Agency EOR determines that the M-O method is not applicable, design MSE wall seismic external stability using the GLE method, in accordance with FHWA (2009).

Also see Section 15.3.13 for additional guidance on design of MSE walls for seismic external stability.

15.6.7 Internal Stability Analysis

MSE wall internal stability analysis shall be in accordance with the following:

- 2007 AASHTO LRFD Bridge Design Specifications (as modified by the ODOT GDM).

15.6.7.1 Loading

The maximum factored tension loads in MSE wall reinforcements (\(T_{\text{max}} \)) shall be calculated at each reinforcement level using either the Simplified Method or Coherent Gravity Method approach in accordance with AASHTO Article 11.10.6.2. The factored load applied to the reinforcement-facing connection (\(T_o \)) shall be equal to the maximum factored tension reinforcement load (\(T_{\text{max}} \)) in accordance with AASHTO Article 11.10.6.2.2.

15.6.7.2 Reinforcement Pullout

Calculate MSE wall reinforcement pullout capacity in accordance with AASHTO Article 11.10.6.3.

The location of the maximum surface of stress for steel (inextensible) and geosynthetic (extensible) reinforced MSE walls shall be determined in accordance with AASHTO Figure 11.10.6.3.1-1.
Reinforcement pullout shall be checked at each reinforcement level in accordance with AASHTO Article 11.10.6.3.2 and the effective pullout length in the reinforcement zone shall be calculated using AASHTO Equation 11.10.6.3.2-1.

The pullout friction factor (F*) for geosynthetic reinforcement shall be from product-specific laboratory testing which measures the interface friction by direct shear method in accordance with ASTM D5321-02. The rate of horizontal displacement shall be adjusted to result in drained shearing conditions during the test. Alternatively, F* may be estimated using conservative values from AASHTO Figure 11.10.6.3.2-1. The scale effect correction factor (α) may be estimated from AASHTO Table 11.10.6.3.2-1.

15.6.7.3 Reinforcement Strength

Design steel and geosynthetic reinforcement strength in accordance with AASHTO Article 11.10.6.4.

In accordance with AASHTO Article 11.10.6.4, the maximum factored reinforcement loads shall be calculated at each reinforcement level in the MSE wall based on AASHTO Equation 11.10.6.4.1-1. The maximum factored load at reinforcement-facing connections shall be calculated based on AASHTO Equation 11.10.6.4.1-2.

The nominal, long-term reinforcement design strength shall be calculated at each reinforcement level in accordance with AASHTO Articles 11.10.6.4.3a (steel reinforcement) and 11.10.6.4.3b (geosynthetic reinforcement) except values for RF_{ID}, RF_{CR}, and RF_D for design strength of geogrids in permanent MSE walls shall be determined in accordance with the State of Washington Department of Transportation Standard Practice T 925 (WSDOT 2010), which can be found in the WSDOT Materials Manual.

The ultimate wide width tensile strengths of geotextile and geogrid reinforcements shall be determined from product-specific laboratory test data in accordance with ASTM D 4594-05 and ASTM D 6637-01, respectively.

15.6.7.4 Reinforcement-Facing Connection Strength

The nominal, long-term reinforcement-facing connection design strength (T_{mc}) shall be calculated as specified in AASHTO Article 11.10.6.4.4a (steel reinforcement) and AASHTO Article 11.10.6.4.4b (geosynthetic reinforcement).

The reinforcement-facing connection strength of MSE walls shall be designed to resist lateral loads on the facing from the following factors:

- Lateral earth pressure and water pressure loads;
- Compaction and construction loads;
- Live loads and surcharges, including traffic loads;
- Dead loads and surcharges, including backslope and approach fill;
- Structure foundation loads; and
- Seismic loads.

The reinforcement-facing connection strength of MSE walls shall also be designed to resist stresses due to differential movement between the facing and the reinforcement resulting from backfill compaction, differential settlement between the wall facing and reinforced backfill, or other effects.
15.6.7.5 Sliding Stability

Calculate sliding resistance using parameters in AASHTO Table 11.5.6-1 and 10.5.5.2.2-1. At a minimum, sliding stability analysis shall determine the minimum resistance along the following potential failure surfaces in the zones shown in AASHTO Figure 11.10.2-1:

- Sliding within the reinforced backfill; and
- Sliding along the reinforced backfill-reinforcement interface for continuous, sheet-type reinforcement (e.g., geotextile reinforcement).

In sliding, neglect any contribution to stability from passive earth pressure resistance.

Neglect any benefit the wall facing elements provide to sliding stability.

15.6.7.6 Seismic Internal Stability

Design MSE wall seismic internal stability in accordance with AASHTO Article 11.10.7.2. A_m for internal stability design shall not be reduced for wall movement.

15.6.8 Corrosion

Corrosion protection is required for all permanent MSE walls and for temporary MSE walls (design life of three years or less) in aggressive environments as defined in AASHTO Article 11.10.6.4.2. AASHTO Article 11.10.2.3.3 provides design guidance for corrosion protection of MSE walls.

As discussed in Section 15.3.21, aggressive environmental conditions in Oregon are typically associated with snow or ice removal zones and marine environment zones. In snow/ice removal zones, where aggressive deicing materials are likely to be used, protect MSE wall steel reinforcements from the corrosive effects of aggressive runoff with a properly designed and detailed impervious membrane layer placed below the pavement and above the first level of backfill reinforcement. The membrane shall be sloped to quickly move runoff seepage to a drainage collector pipe located behind the reinforced backfill zone.

Figure 5.14 in NHI-10-024 (FHWA, 2009) shows a common impervious membrane layer-drainage collector pipe detail for MSE walls.

15.6.9 Wall Internal Drainage

MSE walls shall include an internal drainage system that meets the following requirements:

- Subsurface drainage design requirements in ODOT GDM Section 15.3.18, AASHTO LRFD, and NHI-10-024 (FHWA, 2009);
- Prevents infiltration of aggressive runoff, seepage and/or groundwater into the facing or reinforced backfill zone - avoiding the resulting damage from corrosion or degradation effects; and
- Intercepts surface and subsurface water from around and beneath the MSE wall, including the reinforced backfill zone, and rapidly removes the water to a suitable discharge location.

MSE wall subdrainage typically consists of a suitable-placed trench, chimney, and/or blanket drain with perforated collector drain pipes to intercept and remove groundwater seepage and percolating surface runoff. The collector pipe is connected to a solid pipe which should discharge into an
approved drainage ditch or storm drain system. Provide properly located clean outs for the collector pipe. Permeable materials used in drainage systems shall be encapsulated in a drainage geotextile (geotextile filter) layer. The drainage system shall be designed to maintain groundwater levels below the base of the MSE wall reinforced backfill zone.

Perforated collector and solid pipes shall be at least 6in diameter to allow for periodic pipe flushing and cleaning, irrespective of discharge capacity requirements. Pipe discharge points shall be readily accessible to maintenance personnel. Provide metal screens or secure caps at pipe ends to prevent rodent entry.

Design of walls along rivers or creeks shall apply a 3.0ft (min.) differential hydrostatic head to the MSE wall to simulate rapid drawdown conditions in accordance with AASHTO Article 11.10.10.3. A greater hydrostatic head should be used to model larger river or tidal level fluctuations if supported by hydraulics data.

See Section 5.3 Drainage, in NHI-10-024 (FHWA, 2009) for examples of common drainage detail for MSE walls.

15.6.10 Traffic Railing

The requirements of this section are for traffic railing on MSE walls, and are supplemental to the requirements of Section 15.3.22.

Fixed Bridge Rail on Self Supporting (Moment) Slab for MSE walls:

Self supporting (moment) slabs with Type “F” 32” bridge railing should be designed in accordance with all of the following bullets:

1. Meet the requirements of AASHTO Article 11.10.10.2.
2. Be externally stable when subjected to a static equivalent vehicle collision force of 10.0 kips.
3. The minimum total length of the moment slab should be 30.0 feet. For moment slabs longer than 30.0 feet, a length of moment slab assumed to be effective in resisting overturning and sliding should not exceed 30.0.
4. Moment slab overturning calculations should assume that the slab rotates about “Point A” shown on Figure 15-7. Please note that in order to satisfy eccentricity limits, the required width of a moment slab with 12 inch thick facing will be greater than the required width of a moment slab with 6 inch thick facing.
5. Be in conformance with ODOT Standard Drawing BR200 Type “F” 32” Bridge Railing.
6. Live load should be neglected when it acts to resist eccentricity (AASHTO 10.6.4.2).
7. Moment slab eccentricity under Extreme Event II (EEII) limit state should not exceed 0.33*B, where B is the width of the moment slab (measured perpendicular to wall) bearing on the reinforced backfill. The method used in AASHTO Article 11.6.5 to calculate the eccentricity limit for Extreme Event I (seismic) is assumed to also be applicable to Extreme Event II.
8. The moment slab should be isolated from the MSE wall facing so that loads from the moment slab are not transferred directly to the MSE wall facing. Isolate slab by placing a 1-inch minimum thickness of compressible neoprene foam between slab and wall facing.
9. Provide ¾” transverse expansion joints (perpendicular to wall face) in the moment slab at a maximum spacing of 90 feet. Provide coinciding expansion or open joints in the Type “F” bridge rail in accordance with BR200. Moment slab expansion joint design should include
corrosion resistant shear transfer dowels designed to transfer moment slab forces to adjacent moment slabs, and designed to accommodate moment slab longitudinal expansion. For slabs covered by asphalt, the asphalt should be saw cut at the location of the expansion joint and filled with poured rubber-asphalt joint filler. For slabs not covered with asphalt, the top 1 1/2 inches of the slab joint should be filled with poured rubber-asphalt joint filler. Stop slab longitudinal reinforcing bars 3 inches from joint.

10. Provide transverse contraction joints in the moment slab at a maximum spacing of 30 feet, equally spaced between expansion joints, and provide coinciding contraction joints in the Type “F” bridge rail in accordance with BR200. Moment slab contraction joint design should include corrosion resistant shear transfer dowels designed to transfer moment slab shear forces to adjacent moment slabs. Moment slab contraction joints should be formed or should include joints saw cut to a depth of one third of the slab depth. For slabs covered by asphalt, the asphalt should be saw cut at the location of the contraction joint and the joint filled with poured rubber-asphalt joint filler. For slabs not covered with asphalt, the slab joint should be filled with poured rubber-asphalt joint filler. Stop longitudinal reinforcing bars 3 inches from joint.

11. Design slab reinforcement in accordance with AASHTO LRFD Chapter 5 Concrete Structures.

12. Figure 15-7 shows the dimensions for a self supporting (moment) slab with Type “F” 32” bridge rail. Figure 15-7 is based on 12 inch thick MSE wall facing and is in accordance with the recommendations in numbers 1 through 8, above. Figure 15-7 does not provide details for the recommendations in numbers 9 through 11, above.
Precast Median Barrier:
Where TL-3 traffic railing is acceptable, anchored precast wide base median barrier (RD500) may be used when designed in accordance with AASHTO LRFD and the GDM. Anchored precast barriers shall be located at least 3.0 feet clear from the back of the wall face, and shall be anchored with two vertical anchors on each side of each precast section, in accordance with the “Median Installation” option shown on ODOT Standard Drawings RD515 and RD516.
Guardrail:

Where TL-3 traffic railing is acceptable, standard guardrail (BR400) may be used when designed in accordance with AASHTO LRFD and the GDM.

Design MSE wall soil reinforcement in accordance with AASHTO Articles 11.10.10.2 and 11.10.10.4, and the ODOT GDM.

Where guardrail posts are required to be constructed in MSE Walls, the posts shall be placed at a minimum horizontal distance of 3.0 ft from the back of the wall face to the back of the guardrail post, driven or placed at least 5.0 ft below grade and spaced at locations to miss the reinforcement materials where possible. Installation of the guardrail shall not damage any portion of the retaining wall. If the reinforcement can’t be missed, the wall shall be designed accounting for the presence of an obstruction in the reinforced soil zone using one of the following methods:

1. Assuming the reinforcement must be partially or fully severed in the location of the guardrail post, design the surrounding reinforcement layers to carry the additional load which would have been carried by the severed reinforcements. The portion of the wall facing in front of the guardrail post shall be made stable against a toppling (overturning) or sliding failure. If this can’t be accomplished, the soil reinforcements between the guardrail post and the wall face can be structurally connected to the obstruction such that the wall face does not topple, or the facing elements can be structurally connected to adjacent facing elements to prevent this type of failure.

2. Place a structural frame around the guardrail post capable of carrying the load from the reinforcements connected to the structural frame in front of the obstruction to the reinforcements connected to the structural frame behind the obstruction.

3. If the soil reinforcements consist of discrete, inextensible (steel) strips and depending on the size and locations of the guardrail posts, it may be possible to splay the reinforcements around the guardrail posts. The splay angle, measured from a line perpendicular to the wall face, shall be small enough that the splaying doesn’t generate moment in the reinforcement or the connection of the reinforcement to the wall face. The tensile resistance of the splayed reinforcement shall be reduced by the cosine of the splay angle.

Method 3 above would be effective if guardrail posts are installed at the same time as the MSE wall is constructed (i.e., the wall is built around the guardrail posts). If the guardrail posts are installed after the wall is constructed, it is possible that the splayed reinforcements were installed in the wrong location and the guardrail post installation could damage them. It may also be possible to build the wall around casings or guides, such as Corrugated Metal Pipe (CMP), into which the guardrail posts could be installed after the wall is completed.
15.6.11 Reserved for Future Use

15.6.12 Reserved for Future Use

15.6.13 Tiered or Superimposed Walls

Design tiered or superimposed MSE walls in accordance with the methodologies and procedures presented in Section 6.2 Superimposed (Tiered) MSE Walls, in Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes (FHWA, 2009).

The total height (H) of a tiered or superimposed MSE retaining wall shall be the sum of the heights of the lower tier wall (H_2) and the upper tier (H_1) as shown on Figure 6.7, Section 6.2 (FHWA, 2009). The total height (H) of a tiered MSE retaining wall height shall not exceed 50ft. In accordance with FHWA (2009), where the face-to-face distance (D) between the lower and upper MSE wall tiers exceeds at least 1.5*H_2, these walls are not considered tiered and may be designed independently.

Perform seismic external stability design of tiered MSE walls according to Section 15.6.6.4. Perform seismic internal stability design of tiered MSE walls according to Section 15.6.7.6.

15.6.14 Back-to-Back Walls

Design MSE walls with back-to-back MSE wall configurations in accordance with the methodologies and procedures presented in Section 6.4 Back-to-Back MSE Walls, in Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes, (FHWA, 2009).

15.6.15 MSE Bridge Retaining Walls (Steel-Reinforced Backfill)

MSE walls with steel reinforcements may be designed to support bridge abutments with spread footing or pile foundations.

Design MSE walls with steel (or inextensible) reinforcements that support bridge abutments in accordance with the following:

- Section 6.1.1 (MSEW Abutments on Spread Footings) in Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes, (FHWA, 2009);

Use the following values of bearing resistance of the reinforced zone:

- For Service Limit State, bearing resistance = 4000 psf
- For Strength Limit State, factored bearing resistance = 6000 psf
- For Extreme Event Limit State, factored bearing resistance = 8000 psf

A clear distance of 18in is required between the back of the MSE wall facing and the front edge of the bridge abutment footing.

For pile foundations through MSE walls, provide a clear distance of at least 18in between the back of MSE wall facing and the front edge of the nearest pile. Additionally, provide a clear distance of at least 6in between the back of the wall facing and the pile cap.

Facing shall be cast-in-place reinforced concrete, reinforced pre-cast concrete panels, dry cast concrete blocks, or wet cast concrete blocks. Installing one of these facing types in front of a wire-faced MSE system complies with this requirement.
15.6.16 MSE Bridge Retaining Walls (Geogrid-Reinforced Backfill)

MSE walls with geogrid reinforcements may be designed to support bridge abutments with spread footings or pile foundations. Figure 15.6 provides a typical sectional view of a geogrid-reinforced MSE wall supporting a bridge abutment spread footing.

Design MSE walls with geogrid (extensible) reinforcements that support bridge abutments in accordance with the following:

- Section 6.1.1 (MSEW Abutments on Spread Footings) in Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes, (FHWA, 2009);

The following requirements, conditions, and limitations of use apply to geogrid-reinforced MSE walls supporting bridge abutments:

- The design requirements in Section 15.6.16 only apply to geogrid-reinforced MSE walls supporting bridge abutments.

- Geogrid-reinforced MSE walls supporting bridge abutments shall use a geogrid reinforcement product listed under the product category name Type 1 MSEW Geogrid on the ODOT Qualified Products List (QPL) which can be found at the following webpage.

- Do not place integral abutment bridge foundations on top of, or through, geogrid-reinforced MSE walls.

- The geogrid-reinforced MSE wall height (H₁ in Figure 15-8) shall not exceed 23ft.

- The bridge abutment height (H₂ in Figure 15-8) shall not exceed 10ft.

- Total wall height (H' in Figure 15-8) shall not exceed 33ft.

- Facing shall be cast-in-place reinforced concrete, reinforced pre-cast concrete panels, dry cast concrete blocks, or wet cast concrete blocks.

- Geogrid-reinforced MSE walls supporting bridge abutment spread footings shall not be used if any of the following statements are true:

 - Post-construction foundation settlement (end of MSE wall construction through end of the bridge design life) is calculated to exceed 2.0in;

 - Total cumulative foundation settlement, from start of MSE wall construction through end of the bridge design life - including post-construction foundation settlement, is calculated to exceed 3.0in; or
Differential foundation settlement between bridge bents is calculated to exceed a tolerable angular distortion ratio ($\Delta h/L$) of 0.005 (simple span) and 0.004 (continuous span) from the end of spread footing construction through the bridge design life.

- ODOT may install and monitor settlement survey control points at selected locations along the approaches, end panels, bridge footings, pile caps and superstructure to measure movement at and around geogrid-reinforced MSE walls supporting bridge abutments. Survey control points may also be established along the MSE wall face to measure horizontal movements.

$\Delta h/L$, the tolerable angular distortion ratio, if the difference in vertical settlement between the two bridge bents (Δh) divided by the horizontal distance between the two bridge bents (L). Note that more stringent tolerances may be required to meet project-specific requirements for walls.
Figure 15-8. MSE Bridge Retaining Wall (Geogrid Reinforcement)
15.6.16.1 Design Requirements

The following design requirements apply to geogrid-reinforced MSE walls supporting bridge spread footing abutments:

1. Geogrid reinforcement vertical spacing (S_v) shall not exceed 16in between layers. MSE walls shall be reinforced with uniformly-spaced, horizontal geogrid layers along the entire height of the wall as indicated in Figure 15-8.

2. The vertical distance between the uppermost geogrid reinforcement layer and the top surface grade behind the wall facing shall not exceed 16in.

3. The depth of wall facing below the lowest reinforcement layer shall not exceed 8in.

4. The width of the bridge abutment spread footing, supported on the geogrid-reinforced MSE wall, shall be at least 2.0ft, but not greater than 15.0ft.

5. The base of the bridge abutment spread footing shall be embedded no less than 12in below adjacent sub-grade behind the wall facing.

6. Maintain a horizontal clear distance from the MSE wall backface to the front of the bridge spread footing of at least 3ft as shown on Figure 15-8.

7. Maintain a vertical clearance distance of at least 4ft in this zone between the top surface grade behind the MSE wall facing and the low point of the bridge superstructure. Additionally, maintain minimum clearances to meet inspection and maintenance requirements in accordance with Section 1.4.4.2 of the ODOT BDDM.

8. Design bridge abutment spread footings, supported on geogrid-reinforced MSE walls, using the following values of bearing resistance of the reinforced zone:

 • For Service Limit State, bearing resistance = 4000 psf
 • For Strength Limit State, factored bearing resistance = 6000 psf
 • For Extreme Event Limit State, factored bearing resistance = 8000 psf

15.6.17 Temporary Geotextile-Reinforced MSE Wall

This section presents design and construction requirements for temporary wrapped-face, geotextile-reinforced MSE walls. Temporary geotextile walls consist of continuous, sheet-type geotextile reinforcement layers constructed alternatively with horizontal layers of compacted MSE wall backfill. The wall face is formed by wrapping each geotextile layer around and back into the overlying lift of backfill. A typical temporary geotextile wall is shown in Figure 15-9.
SECTION VIEW

7. Reset form and repeat sequence.

6. Complete backfilling until the compacted backfill layer thickness is equal to the required lift thickness.

5. Place the fabric "tall" over the windrow and lock into place with backfill, while applying tension to the fabric.

4. Place a windrow to slightly greater than full lift height against the form.

3. Place backfill to about half of the total lift height.

2. Unroll fabric and position so that a "tall" drapes over the form. Insure the tall is long enough to meet the L_0 criteria.

1. Set form on completed lift or levelling surface base.

WRAPPED-FACE WALL CONSTRUCTION PROCEDURE

Figure 15-9. Temporary Geotextile-Reinforced MSE Wall
7. The minimum wall geotextile embedment or tail length (L_o shown in Figure 15-9) shall be the greater dimension of the following:
 - 3.0ft in accordance with AASHTO Article 11.10.6.4b; or
 - L_o calculated using Equation 11.10.6.3.2-1 in AASHTO Article 11.10.6.3.2.

8. Design the wrapped-face wall finish batter to be as near to vertical as possible accounting for wall face movements from foundation settlement and internal wall deformations. Wall movements shall be based on foundation settlements during construction and through the anticipated wall service life in accordance with Section 10 of the 2007 AASHTO LRFD Bridge Design Specifications.

9. Temporary geotextile walls shall have uniformly-spaced, horizontal geotextile reinforcement layers from wall bottom to top as indicated in Figure 15-9. The geotextile reinforcement vertical spacing (S_v) shall not exceed 16in between adjacent layers.

10. Fill construction along the top of temporary geotextile-reinforced MSE walls shall be set back a horizontal distance of at least distance 2.0ft from the top of the wall as indicated in Figure 15-9.

11. Calculate the lateral stress \(\sigma_{h}(\text{max}) \) and associated geotextile reinforcement loads for temporary geotextile wall internal stability design using the Simplified Method in accordance with AASHTO Article 11.10.6.2.1.

12. Internal and external stability design of temporary geotextile walls shall be performed using the most current version of the computer program MSEW3.0\(^\circ\) (ADAMA Engineering, Inc.) in accordance with 2007 AASHTO LRFD Bridge Design Specifications. Wall sliding (external stability consideration) frequently controls the minimum required wall reinforcement length (L_r).

13. Design submittal and construction drawings shall indicate design geotechnical properties assumed for the reinforced MSE backfill, wall backfill and/or back-cut materials, and wall foundation soils. Also provide the following information: design minimum and maximum groundwater levels; type, size, and location of wall subdrainage system(s); geotextile reinforcement properties; assumed location and magnitude of wall surcharge and fill; live and dead loads assumed in internal and external stability design.

14. External, internal and global stability design shall evaluate all applicable limit states in accordance with AASHTO LRFD during construction and over the design service life of the temporary geotextile wall. External, internal and global stability design shall consider potential impacts on the wall stability, including:
 - Loss of ground support in front or adjacent to the temporary wall from excavation or any construction activity;
 - High point load or surcharge from the operation of heavy construction equipment operation or material storage within a horizontal distance H from the wall (H=wall height);
 - Effects of full hydrostatic pressures and seepage forces on wall due;
 - Damage or removal of geotextile reinforcement layers from construction activities; and
 - Damage or removal of portions or all geotextile wall facing from vandalism, vehicle impact, debris impact, fire, and/or other reason.
15. Global stability design shall include investigation of internal, compound, and overall shear failure surfaces that penetrate the MSE wall reinforced backfill, cover fill, backfill or back-cut, and/or foundation soils. Global (overall) stability design shall be performed using any state-of-the-practice computer program, such as the most current versions of Slope/W® (Geo-Slope International), or ReSSA® (ADAMA Engineering, Inc.).

16. Evaluation of sliding resistance (external stability) shall neglect any contribution from passive earth pressure resistance provided by embedment of temporary geotextile walls.

17. Calculate foundation bearing capacity and settlement of geotextile-reinforced MSE walls in accordance with Chapter 10 of AASHTO LRFD and the ODOT GDM. Design ground improvement for temporary geotextile wall construction, as needed, to mitigate inadequate foundation support conditions.

15.7 Prefabricated Modular Walls

Prefabricated modular walls without soil reinforcement, such as metal and pre-cast concrete bins, pre-cast concrete cribs, dry cast concrete blocks, wet cast concrete blocks, and gabions shall be considered prefabricated modular walls. Design prefabricated modular walls as gravity retaining structures in accordance with AASHTO LRFD and the ODOT GDM.

Contrary to the recommendations in AASHTO Article 11.11.7 (Abutments), prefabricated modular walls shall not be used as a Bridge Abutment or Bridge Retaining Wall.

15.7.1 Metal and Pre-cast Concrete Bin Retaining Walls

15.7.1.1 General Considerations

Metal and pre-cast concrete bin retaining walls are typically rectangular, interlocking, prefabricated concrete modules or bolted lightweight steel members stacked like boxes to form retaining walls. The bin wall modules are filled with well-graded, compacted gravel (crushed rock) to create heavy gravity structures with sufficient mass to resist overturning and sliding forces. Metal and concrete bin walls come in a variety of dimensions.

15.7.1.2 Geotechnical Investigation

Design of metal and pre-cast concrete bin walls requires a geotechnical investigation to explore, sample, characterize and test the wall foundation soils and measure site groundwater levels. Geotechnical investigation requirements are outlined in Chapter 3.

15.7.1.3 Wall Selection Criteria

Metal bin walls are subject to corrosion damage from exposure to aggressive surface water runoff, infiltration or seepage typically associated with snow/ice removal or marine environment zones see Section 15.3.21, or potentially from exposure to aggressive backfill materials, in-place soils along wall back-cuts, or in-place foundation soil or rock.

- Open-faced bin walls are subject to damage from erosion (backfill loss through face) where the wall face is exposed to flowing water, excessive hydrostatic pressures and/or seepage forces.
- Bin walls are relatively settlement intolerant with a limiting differential settlement in the longitudinal direction of approximately 1: 200 Section 15.3.15.
15.7.1.4 Layout and Geometry

The wall base width of bin walls shall not be less than 3.0ft. An additional horizontal easement is required behind the wall to accommodate the wall backcut. Bin walls are not recommended for applications that require a radius of curvature less than 800ft. The wall face batter shall not be steeper than 10° or 6:1 (v: h).

15.7.1.5 Design Requirements

1. Metal and pre-cast concrete bin retaining walls shall be designed in accordance with the AASHTO LRFD Bridge Design Specifications and the ODOT GDM.
2. The minimum wall embedment depth shall meet all requirements in AASHTO LRFD and the ODOT GDM.
3. Wall backfill slopes shall be no steeper than 1:2 (v: h).
4. Where practical, a minimum 4.0ft wide horizontal bench shall be provided in front of walls.
5. Unless otherwise noted, external and internal stability analysis and design of metal and pre-cast concrete bin retaining walls shall assume the following geotechnical properties for bin module fill and wall backfill:
 - Friction angle of backfill: $\phi=34^\circ$
 - Backfill Cohesion: $c=0$psf
 - Wet unit weight of backfill: $\gamma_{wet}=125.0$pcf
 - Coefficient of active earth pressure: $k_a=0.28$

15.7.1.6 External Stability Analysis

Active earth pressures shall be calculated using Coulomb earth pressure theory in accordance with AASHTO LRFD. Lateral earth pressures shall be calculated in accordance with AASHTO Article 3.11.5.3 and 3.11.5.9. Apply calculated lateral earth pressure along the back of bin walls in accordance with AASHTO Article 3.11.5.9 (Figures 3.11.5.9-1 and 2). Use maximum wall friction angles in Table C3.11.5.9-1.

Calculate the lateral active earth pressure thrust on metal and pre-cast concrete bin retaining walls with a broken backslope, point load(s) or surcharge(s), groundwater effects, and/or with a non-uniform soil (backfill) profile, using the Culmann or Trial Wedge methods such as presented in Section 5 - Retaining Walls, Bridge Design Specifications (Caltrans, 2004), Soil Mechanics in Engineering Practice (Terzaghi and Peck, 1967), or Foundation Analysis and Design, 5th Edition (J. E. Bowles, 1996).

Unless project specific data are available, assume a wall-backfill interface friction angle (δ) from AASHTO Article 3.11.5.9 (Table 3.11.5.9-1). Note that the wall friction angle is negative when the wall moves downward relative to the backfill.

Bin walls require a properly designed subdrainage system in accordance with Section 15.3.18, including a drainage geotextile layer along the backside of metal and pre-cast concrete bin walls to prevent the intrusion of fine-grained soil into or through the bin modules.

External stability analysis shall include sliding, overturning, soil bearing resistance, settlement, and overall (global) stability based on the applicable AASHTO LRFD load factor combinations and
resistance factors. Additionally, evaluate bin wall sliding and overturning stability at each module level of the wall. The wall base may be slightly sloped into the backfill to improve overturning stability in accordance with AASHTO Article 3.11.5.9.

Calculate sliding lateral resistance in accordance with AASHTO Article 10.5.5.2.2 (Table 10.5.5.2.2-1) using the following parameters:

- Sliding Resistance (Pre-cast Concrete Bin on Sand): $\varphi_{sr} = 0.90$
- Sliding Resistance (Soil on Soil): $\varphi_{sr} = 0.90$

The maximum eccentricity limits of the resultant force acting on the base shall meet the requirements of AASHTO Article 10.6.3.3. These requirements apply to each module level of the wall.

The effective footing dimensions of eccentrically loaded bin walls in overturning shall be evaluated in accordance with AASHTO LRFD Specifications. Design shall assume no greater than 80 percent of the weight of the bin module backfill is effective in resisting bin wall overturning forces in accordance with AASHTO Article 11.11.4.4.

Soil bearing resistance design shall be in accordance with AASHTO Article 10.6.3.1. The soil bearing resistance design shall assume at least 80 percent of the bin module backfill weight is transferred to the bin module shell “support points” in accordance with AASHTO Article 11.11.4.3, unless the bin structural elements and module backfill are supported on a properly designed, full width, spread footing.

Calculate foundation settlement in accordance with AASHTO Article 10.6.2.4. Longitudinal differential settlement of bin walls shall not exceed 1:200 see Section 15.3.15. Pre-cast concrete modular walls are susceptible to damage from transverse differential settlement.

The overall (global) stability shall be evaluated in accordance with AASHTO Article 11.6.2.3 and the ODOT Geotechnical Design Manual (GDM), with the exception that the mass of the bin wall (or the “foundation load”), may be assumed to contribute to the overall stability of the slope.

External stability analysis shall also meet seismic design requirements in accordance with AASHTO Article 11.6.5 and Chapter 6, Chapter 8 and Chapter 15. Seismic active lateral earth pressures acting on bin walls should be calculated using the Mononobe-Okabe (M-O) theory in accordance with Appendix A11 of the AASHTO LRFD Bridge Design Specifications and Section 15.3.13. Calculate the horizontal seismic acceleration coefficient (k_h) using Equation C11.6.5-1 in accordance with the methodology in AASHTO Article 11.6.5.

15.7.2 Pre-cast Concrete Crib Retaining Walls

15.7.2.1 General Considerations

Pre-cast concrete crib walls are interlocking, concrete stretcher and header elements cross-stacked to form rectangular modules. The front and rear stretchers form the front and rear sides of the wall with headers placed transverse to the stretcher units. Crib wall modules are filled with well-graded, compacted gravel (crushed rock) backfill to create a gravity wall with sufficient mass to resist overturning and sliding forces. Pre-cast concrete crib walls come in a variety of dimensions.

15.7.2.2 Geotechnical Investigation

Design of pre-cast concrete crib walls requires a geotechnical investigation to explore, sample, characterize and test the wall foundation soils and measure site groundwater levels. Geotechnical investigation requirements are outlined in Chapter 3.
15.7.2.3 Wall Selection Criteria

Open-faced crib walls are subject to damage from loss of backfill materials through the face and developing root systems which can cause uplift, cracking or separation of bin modules. Open-faced crib walls are also subject to damage from erosion (backfill loss through face) where the wall face is exposed to flowing water, excessive hydrostatic pressures and/or seepage forces.

Crib walls are relatively settlement intolerant with a limiting differential settlement in the longitudinal direction of approximately 1:500, see Section 15.3.15.

15.7.2.4 Layout and Geometry

The crib wall base width shall not be less than 3.0ft. An additional horizontal easement is required behind the wall to accommodate the wall backcut. Crib walls are not recommended for applications that require a radius of curvature less than 800ft. The wall face batter shall not be steeper than 15° or 4:1 (v: h).

15.7.2.5 Design Requirements

1. Pre-cast concrete crib retaining walls shall be designed in accordance with the AASHTO LRFD Bridge Design Specifications and the ODOT GDM. Minimum wall embedment depth shall meet all requirements in AASHTO LRFD.
 - Wall backfill slopes shall be no steeper than 1:2 (v: h).
 - Where practical, a minimum 4.0ft wide horizontal bench shall be provided in front of walls.
 - The length to width ratio of crib module shall not exceed 2.
2. Pre-cast concrete bin retaining walls shall meet all seismic design requirements in AASHTO LRFD and the ODOT GDM.
3. Unless otherwise noted, external and internal stability analysis and design of pre-cast concrete crib retaining walls shall assume the following geotechnical properties for crib module fill and wall backfill:
 - Friction angle of backfill: $\phi=34°$
 - Backfill Cohesion: $c=0$psf
 - Wet unit weight of backfill: $\gamma_{wet}=125.0$pcf
 - Coefficient of active earth pressure: $k_a=0.28$

15.7.2.6 External Stability Analysis

Active earth pressures for single-cell crib walls shall be calculated using Coulomb earth pressure theory in accordance with AASHTO LRFD, and Rankine earth pressure theory shall be used for multi-depth walls. Lateral earth pressures shall be calculated in accordance with AASHTO Article 3.11.5.3 and 3.11.5.9. Apply calculated lateral earth pressure along the back of crib walls in accordance with AASHTO Article 3.11.5.9 (Figures 3.11.5.9-1 and 3.11.5.9-2). Use maximum wall friction angles in Table C3.11.5.9-1.
Calculate the lateral active earth pressure thrust on pre-cast concrete crib retaining walls with a broken backslope, point load(s) or surcharge(s), groundwater effects, and/or with a non-uniform soil (backfill) profile, using the Culmann or Trial Wedge methods such as presented in Section 5 - Retaining Walls, Bridge Design Specifications (Caltrans, 2004), Soil Mechanics in Engineering Practice (Terzaghi and Peck, 1967), or Foundation Analysis and Design, 5th Edition (J. E. Bowles, 1996).

Unless project specific data are available, assume a wall-backfill interface friction angle (δ) from AASHTO Article 3.11.5.9 (Table 3.11.5.9-1). Note that the wall friction angle is negative when the wall moves downward relative to the backfill.

Crib walls require a properly designed subdrainage system in accordance with Section 15.3.18, including a drainage geotextile layer along the back stretcher and end header units of crib walls to prevent fine-grained soil intrusion into or through the modules.

External stability analysis shall include sliding, overturning, soil bearing resistance, settlement, and overall (global) stability based on the applicable LRFD load factor combinations and resistance factors.

The maximum eccentricity limits of the resultant force acting on the crib wall base shall meet the requirements of AASHTO Article 10.6.3.3. These requirements apply to each module level of the wall.

Check crib wall sliding stability along the following potential failure planes:

- Interface between foundation base (gravel or concrete leveling pad) and the subsoil;
- Between lowest crib base stretcher and header elements and the leveling pad; and
- Within the crib structure (including all changes in wall section for multi-depth walls).

Ignore benefit from lugs, interlocking dowels, or other crib wall modifications when assessing sliding resistance between crib elements.

In sliding, lateral resistance shall neglect any contribution from passive earth pressure resistance.

Calculate sliding lateral resistance in accordance with AASHTO Article 10.5.5.2.2 (Table 10.5.5.2.2-1) using the following parameters:

- Sliding Resistance (Pre-cast Concrete Header\Stretcher on Sand): $\varphi_{sr} = 0.90$
- Sliding Resistance (Soil on Soil): $\varphi_{sr} = 0.90$

Check crib wall overturning stability at the following points:

- Toe of the crib wall (stretcher or header);
- Toe of the rigid concrete leveling pad (crib wall foundation) below the crib wall; and
- Any joint between crib wall elements at the wall face - including changes in wall section for multi-depth walls.

Check crib wall for toppling failure above joints between crib wall elements – including changes in wall section for multi-depth walls.

The wall base may be slightly sloped into the backfill to improve overturning stability in accordance with AASHTO Article 3.11.5.9.
The effective footing dimensions of eccentricity loaded crib walls in overturning shall be evaluated in accordance with AASHTO LRFD Specifications. Design shall assume no greater than 80 percent of the weight of the crib module backfill is effective in resisting crib wall overturning forces in accordance with AASHTO Article 11.11.4.4.

Soil bearing resistance design shall be in accordance with AASHTO Article 10.6.3.1. The soil bearing resistance design shall assume at least 80 percent of the crib module backfill weight is transferred to the crib stretcher elements in accordance with AASHTO Article 11.11.4.3.

Longitudinal differential settlement of crib walls shall not exceed 1:500. Calculate foundation settlement in accordance with AASHTO Article 10.6.2.4. Pre-cast concrete modular walls are susceptible to damage from transverse differential settlement.

The overall (global) stability shall be evaluated in accordance with AASHTO Article 11.6.2.3 and the ODOT GDM - with the exception that the mass of the crib wall (or the “foundation load”) may be assumed to contribute to the overall stability of the slope.

External stability analysis shall also meet seismic design requirements in accordance with AASHTO Article 11.6.5 and the ODOT GDM. Seismic active lateral earth pressures acting on crib walls should be calculated using the Mononobe-Okabe (M-O) theory in accordance with Appendix A11 of the AASHTO LRFD Bridge Design Specifications and Section 15.3.13. Calculate the horizontal seismic acceleration coefficient \(k_h \) using Equation C11.6.5-1 in accordance with the methodology in AASHTO Article 11.6.5.

15.7.2.7 Internal Stability Analysis

Design crib wall headers and stretchers as beams with fixed ends supported at their intersections and subjected to loads and pressures from the module fill, wall backfill, and base reactions. Design shall consider any potential failure mode, including tension, compression, shear, bending, and torsion.

Crib wall members shall be designed for lateral pressures as indicated on Figure 5.10.4.1-1 in Section 5 - Retaining Walls, Bridge Design Specifications (Caltrans, 2004). Design forces on front, intermediate and rear stretchers, headers and base members shall be in accordance with Figure 5.10.4.1-1 through 6.

15.7.3 Gabion Walls

15.7.3.1 General Considerations

Gabion walls consist of heavy wire mesh baskets filled with hard, durable stone to form rectangular modules referred to as gabion baskets. The standard ODOT gabion basket unit has a depth, height and length of 36in.

Gabion walls are typically less than 18ft in height and are designed as gravity structures in accordance with AASHTO LRFD.

15.7.3.2 Geotechnical Investigation

Design of gabion walls requires a geotechnical investigation to explore, sample, characterize and test the wall foundation soils and the adjacent ground conditions. Geotechnical investigation requirements are outlined in Chapter 3.
15.7.3.3 Wall Selection Criteria
Gabion walls are vulnerable to corrosion damage from aggressive foundation soils and backfill and where runoff, stream or river water is acidic or aggressive. Gabions are also vulnerable to damage due to abrasion from rock impacts and debris in flowing water.

Gabion baskets are subject to corrosion damage from exposure to aggressive surface water runoff, infiltration or seepage typically associated with snow/ice removal or marine environment zones see Section 15.3.21, or potentially from exposure to aggressive in-place soils along wall back-cut or foundation areas. Corrosion protection for gabion baskets typically requires the use of stainless steel materials or galvanized metal materials with polyvinyl chloride (PVC) coating. Project specific conditions should be assessed to determine the required level of corrosion protection for gabion basket walls.

Gabions are most economical if there is a local source of suitable stone for basket fill. Gabion walls are well suited for developing vegetation cover.

Gabion walls are relatively settlement tolerant with a limiting differential settlement in the longitudinal direction of 1: 50 see Section 15.3.15.

Gabion walls are relatively free-draining and well suited for stream and river bank applications. A drainage geotextile layer is typically required behind between gabion modules and the surrounding backfill and foundation soil to prevent the intrusion of finer-grained soil particles through the open stone gabion basket fill.

15.7.3.4 Layout and Geometry
The wall base width shall not be less than 3.0ft. An additional horizontal easement is required behind the wall to accommodate the backcut. The wall face batter shall not be steeper than 6° or 10: 1 (v: h).

15.7.3.5 Design Requirements
1. Gabion walls shall be designed as gravity structures in accordance with the AASHTO LRFD Bridge Design Specifications and the ODOT Geotechnical Design Manual (GDM).
2. Wall backfill slopes shall be no steeper than 1:2 (v: h).
3. Where practical, a minimum 4.0ft wide horizontal bench shall be provided in front of walls.
4. Gabion baskets shall be arranged so vertical seams are staggered and not aligned. The gabion steel wire mesh material shall have adequate strength, flexibility, and durability for the project site conditions and intended use. Gabion walls shall meet all seismic design requirements in accordance with the AASHTO LRFD and the ODOT GDM.
5. To prevent internal erosion and excessive migration of soil particles through the gabion units, place drainage geotextile filter (or drainage geotextile) layers around portions of gabion units in contact with soil.

15.7.3.6 External Stability Analysis
Active earth pressures for gabion wall design shall be calculated using Coulomb earth pressure theory in accordance with AASHTO LRFD Specifications. Lateral earth pressures shall be calculated in accordance with AASHTO Article 3.11.5.3 and 3.11.5.9.
Apply calculated lateral earth pressure along the back of gabion walls in accordance with AASHTO Article 3.11.5.9 (Figures 3.11.5.9-1 and 2). Use maximum wall friction angles in Table C3.11.5.9-1. Groundwater conditions creating unbalanced hydrostatic pressures shall be considered in external stability analysis.

Calculate the lateral active earth pressure thrust on gabion walls with a broken backslope, point load(s) or surcharge(s), groundwater effects, and/or with a non-uniform soil (backfill) profile, using the Culmann or Trial Wedge methods such as presented in Section 5 - Retaining Walls, Bridge Design Specifications (Caltrans, 2004), Soil Mechanics in Engineering Practice (Terzaghi and Peck, 1967), or Foundation Analysis and Design, 5th Edition (J. E. Bowles, 1996).

Unless otherwise noted, gabion wall analysis and design shall assume the following geotechnical properties for the wall backfill:

- Friction angle of backfill: $\varphi = 34^\circ$
- Backfill Cohesion: $c = 0 \text{ psf}$
- Wet unit weight of backfill: $\gamma_{\text{wet}} = 125.0 \text{pcf}$
- Coefficient of active earth pressure: $k_a = 0.28$

The wall face batter shall not be steeper than 6° or $10:1$ (v: h) to maintain the resultant wall force towards the back of the wall.

Calculate lateral sliding resistance in accordance with AASHTO Article 10.5.5.2.2 (Table 10.5.5.2.2-1).

In sliding, lateral resistance shall neglect any contribution from passive earth pressure resistance.

Provide well-graded, 4in to 10in diameter rock fill material for gabion baskets meeting the requirements of 00390.11(b). Gabion basket material shall consist of suitable rock materials (i.e. Basalt, Sandstone, or Granite) meeting the requirements of Section 00390 (Riprap Protection), except suitable rounded rock material is permitted.

Unless project specific data are available, external stability analyses shall assume the rock-filled gabion baskets have a bulk density (total unit weight) in accordance with the following table.

<table>
<thead>
<tr>
<th>Rock Type</th>
<th>Rock Specific Density (pcf)</th>
<th>Gabion Basket Rock Fill Porosity (n)7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=0.30</td>
<td>n=0.35</td>
</tr>
<tr>
<td>Basalt</td>
<td>170.0</td>
<td>119.0</td>
</tr>
<tr>
<td>Sandstone</td>
<td>150.0</td>
<td>105.0</td>
</tr>
<tr>
<td>Granite</td>
<td>160.0</td>
<td>112.0</td>
</tr>
</tbody>
</table>

The in-place bulk density (γ_g) is calculated from rock specific density (γ_s) and in-place porosity (n) based on the following relationship: $\gamma_g = \gamma_s(1-n)$.
Rock filled gabion baskets require a properly designed geotextile filter fabric material to prevent the intrusion of fine-grained soil into the stone filled baskets.

External stability analysis shall include sliding, overturning, soil bearing resistance, settlement, and overall (global) stability based on the applicable LRFD load factor combinations and resistance factors.

Soil bearing resistance design shall be in accordance with AASHTO LRFD and the ODOT GDM. Calculate foundation settlement in accordance with AASHTO Article 10.6.2.4. Longitudinal differential settlement of crib walls shall not exceed 1:50.

The overall (global) stability shall be evaluated in accordance with AASHTO Article 11.6.2.3 and the ODOT GDM. The mass of the gabion wall (or the “foundation load”) may be assumed to contribute to the overall stability of the slope.

Seismic active lateral earth pressures acting on gabion walls should be calculated using the Mononobe-Okabe (M-O) theory in accordance with Appendix A11 of the AASHTO LRFD Bridge Design Specifications and Section 15.3.13. Calculate the horizontal seismic acceleration coefficient (k_h) using Equation C11.6.5-1 in accordance with the methodology in AASHTO Article 11.6.5.

15.7.4 Dry Cast Concrete Block Gravity Walls

15.7.4.1 General Considerations

Dry cast concrete block gravity retaining walls consist of a single row of dry stacked blocks (without mortar) that resist overturning, base sliding, and shear forces through self-weight of the blocks and the retained backfill. Design of dry cast concrete block gravity retaining walls shall be performed in accordance with the 2007 AASHTO LRFD Bridge Design Specifications.

15.7.4.2 Geotechnical Investigation

Design of dry cast concrete block gravity retaining walls requires a geotechnical investigation to explore, sample, characterize and test foundation soils and measure groundwater levels. Geotechnical investigation requirements for wall foundation design are outlined in Chapter 3.

15.7.4.3 Wall Selection Criteria

The decision to select a dry cast concrete block gravity retaining wall should be based on project specific criteria. This decision should consider the general wall design requirements contained in Section 15.3. Dry cast concrete block gravity retaining walls can be formed to a tight radius of curvature of 10ft or greater see Section 15.3.4.

Dry cast walls are relatively settlement sensitive and may experience damage when differential foundation settlements exceed a magnitude based on $\Delta h:L^8 = 1:200$ to 300.

Dry cast concrete block gravity retaining walls shall only be considered if used in conjunction with properly designed surface water drainage facilities and a subdrainage system see Section 15.3.18 that prevents surface water runoff or groundwater seepage contact with the dry cast concrete face and maintains groundwater levels below the base of the wall.

$\Delta h:L$ is the ratio of the difference in vertical settlement between two points along the wall base (Δh) to the horizontal distance between the two points (L). Note that more stringent tolerances may be required to meet project-specific requirements for walls.
15.7.4.4 Wall Height, Footprint and Construction Easement

Dry cast concrete block gravity walls are typically designed to a maximum height of 10ft. Dry cast concrete block gravity retaining walls typically require an additional lateral construction easement of at least 1.5*H (H=wall height) behind the wall heel to accommodate open-cut construction, drainage installation, backfill placement and compaction behind the wall. A lateral easement restriction and/or the presence of an existing roadway, structure, or utility within the construction limits could require shoring, underpinning and/or right-of-way acquisitions which can impact the construction budget and/or schedule.

15.7.4.5 Design Requirements

1. Dry cast concrete block gravity retaining walls shall include adequate subdrainage, including drainage blankets, chimney drains, and/or perforated collector pipes to relieve hydrostatic pressures and seepage forces on walls in accordance with Section 15.3.18. Additionally, provide adequate surface drainage facilities, including ditches, gutters, curbs and drop inlets, to intercept and direct water towards suitable discharge locations as described below.

2. Dry cast gravity retaining walls shall have backfill slopes no steeper than 1:2 (v: h).

3. Where practical, a minimum 4.0ft wide horizontal bench shall be provided in front of dry cast gravity walls.

4. The dry cast wall subdrainage system and surface drainage facilities shall prevent surface water runoff or groundwater seepage contact with the dry cast concrete face and maintain groundwater levels below the base of the wall.

5. Assess internal stability, external stability (soil bearing resistance, settlement, eccentricity and sliding), and overall (global) slope stability for dry cast concrete block gravity retaining walls in accordance with the 2007 AASHTO LRFD Bridge Design Specifications and the ODOT Geotechnical Design Manual (GDM).

6. Active earth pressures acting on dry cast concrete block gravity retaining walls should be calculated using Coulomb earth pressure theory in accordance with AASHTO Article 3.11.5.3 and Section 15.3.10.

7. Conservatively ignore interface friction (δ=0°) between the dry cast blocks and the backfill when calculating the active earth pressure coefficient in accordance with AASHTO Article 3.11.5.3.

8. Calculate the lateral active earth pressure thrust on dry cast concrete block walls with a broken backslope, point load(s) or surcharge(s), groundwater effects, and/or with a non-uniform soil or backfill profile, using the Culmann or Trial Wedge methods such as presented in Section 5 - Retaining Walls, Bridge Design Specifications (Caltrans, 2004), Soil Mechanics in Engineering Practice (Terzaghi and Peck, 1967), or Foundation Analysis and Design, 5th Edition (J. E. Bowles, 1996).

9. Unless otherwise noted, dry cast concrete block gravity wall analysis and design shall assume the following geotechnical properties for the wall backfill:

10. Friction angle of backfill: \(\phi = 34° \)

11. Backfill Cohesion: \(c = 0 \text{psf} \)

12. Wet unit weight of backfill: \(\gamma_{\text{wet}} = 125.0 \text{pcf} \)
13. Coefficient of active earth pressure: \(k_a = 0.28 \)

14. Sliding stability shall be checked at each dry cast concrete block level from the lowest block to the top of wall. Dry cast facing must have sufficient interface shear capacity to transfer lateral loads to the base of the structure without excessive wall translation, bulging, or damage. Interface sliding resistance between dry cast concrete blocks shall be calculated using the corrected wall weight based on the calculated hinge height in accordance with AASHTO Figure and Equation 11.10.6.4.4b-1. Dry cast block interface friction resistance parameters shall be based on product-specific data using NCMA Test Method SRWU-2 (Determination of Shear Strength between Segmental Concrete Units) in accordance with Appendix C.2 in NCMA (2002).

15. Calculate bearing resistance in accordance with AASHTO Article 10.6.3.1.

16. Calculate base sliding resistance in accordance with AASHTO Article 10.6.3.4. The total vertical force used to calculate sliding resistance shall be corrected based on the corrected height of the dry cast column (hinge height) calculated in accordance with AASHTO Equation 11.10.6.4.4b-1. The calculated hinge height shall not exceed the wall height.

17. In sliding, lateral resistance shall neglect any contribution from passive earth pressure resistance.

15.7.5 Wet Cast Concrete Block Gravity Walls

15.7.5.1 General Considerations

Wet cast concrete block gravity retaining walls consist of a single row or multiple rows of stacked concrete blocks that resist overturning, base sliding, and shear forces through self-weight of the blocks and the retained backfill. Design of wet cast concrete block gravity retaining walls in accordance with the 2007 AASHTO LRFD Bridge Design Specifications and the ODOT Geotechnical Design Manual (GDM).

15.7.5.2 Geotechnical Investigation

Design of wet cast concrete block gravity retaining walls requires a geotechnical investigation to explore, sample, characterize and test foundation soils and measure groundwater levels. Geotechnical investigation requirements for wall foundation design are outlined in Chapter 3.

15.7.5.3 Wall Selection Criteria

The decision to select a wet cast concrete block gravity retaining wall should be based on project specific criteria. This decision should consider the general wall design and performance requirements contained in Section 15.3 and in the Oregon Standards Specifications for Construction.

15.7.5.4 Wall Height, Footprint and Construction Easement

Wet cast concrete block gravity walls are typically designed to a maximum height of 12ft. Wet cast concrete block gravity retaining walls typically require an additional lateral construction easement of at least 1.5*H (H=wall height) behind the wall heel to accommodate open-cut construction, drainage installation, backfill placement and compaction behind the wall. A lateral
easement restriction and/or the presence of an existing roadway, structure, or utility within the construction limits could require shoring, underpinning and/or right-of-way acquisitions which can impact the construction budget and/or schedule.

15.7.5.5 **Design Requirements**

1. Wet cast concrete block gravity retaining walls shall include adequate subdrainage, including drainage blankets, chimney drains, and/or perforated collector pipes to relieve hydrostatic pressures and seepage forces on walls in accordance with Section 15.3.18. Additionally, provide adequate surface drainage facilities, including ditches, gutters, curbs and drop inlets, to intercept and direct water towards suitable discharge locations. Follow these guidelines:

2. Wet cast gravity retaining walls shall have backfill slopes no steeper than 1:2 (v: h).

3. Where practical, a minimum 4.0ft wide horizontal bench shall be provided in front of wet cast gravity walls.

4. Assess internal stability, external stability (soil bearing resistance, settlement, eccentricity and sliding), and overall (global) slope stability for wet cast concrete block gravity retaining walls in accordance with the 2007 AASHTO LRFD Bridge Design Specifications and the ODOT GDM.

5. Active earth pressures acting on wet cast concrete block gravity retaining walls should be calculated using Coulomb earth pressure theory in accordance with AASHTO Article 3.11.5.3 and Section 15.3.10.

6. Unless otherwise noted, wet cast concrete block gravity wall analysis and design shall assume the following geotechnical properties for the wall backfill:

7. Friction angle of backfill: $\varphi=34^\circ$

8. Backfill Cohesion: $c=0$psf

9. Wet unit weight of backfill: $\gamma_{wet}=125.0$pcf

10. Coefficient of active earth pressure: $k_a=0.28$

11. Sliding stability shall be checked at each wet cast concrete block level from the lowest block to the top of wall. Wet cast facing must have sufficient interface shear capacity to transfer lateral loads to the base of the structure without excessive wall translation, bulging, or damage. Interface sliding resistance between wet cast concrete blocks shall be calculated using the corrected wall weight based on the calculated hinge height in accordance with AASHTO Figure and Equation 11.10.6.4.4b-1. Wet cast block interface friction resistance parameters shall be based on product-specific data using NCMA Test Method SRWU-2 (Determination of Shear Strength between Segmental Concrete Units) in accordance with Appendix C.2 in NCMA (2002).

12. Calculate bearing resistance in accordance with AASHTO Article 10.6.3.

13. Calculate base sliding resistance in accordance with AASHTO Article 10.6.3.4. The total vertical force used to calculate sliding resistance shall be based on the corrected height of the wet cast column (hinge height) calculated in accordance with AASHTO Equation 11.10.6.4.4b-1. The calculated hinge height shall not exceed the wall height.

15.8 Non-Gravity (Cantilever) Soldier Pile\Lagging and Sheet Pile Walls

15.8.1 General Considerations

Non-gravity (cantilever) soldier pile\lagging and sheet pile walls are typically used in temporary construction applications, but can also be used as permanent retaining walls. These wall systems are typically limited to a maximum height (H_w) of 15ft or less due to inadequate stability, overstress of wall elements, and/or excessive lateral and vertical ground movements behind the wall cause by wall rotation and/or translation (H_w shown in Figure 15-10). Greater wall heights can be achieved using ground anchors or deadmen Section 15.9 and Section 15.10.

Greater wall heights can be achieved using ground anchors or deadmen Section 15.9 and Section 15.10.
15.8.2 Design Requirements

1. Design of soldier pile/lagging and sheet pile walls requires a detailed geotechnical investigation to explore, sample, characterize and test the retained soils and the foundation soils along each wall. Geotechnical investigation requirements are outlined in Chapter 3. At a minimum, the geotechnical information required for wall design includes SPT N-values (depth intervals of 5ft, or less), soil profile, unit weight, natural water content, Atterberg limit, sieve analysis, soil corrosivity tests (e.g., pH, resistivity,
organic content, chloride and sulfate concentrations), shear strength, consolidation parameters, foreslope and backslope inclinations, and groundwater levels.

2. Design soldier pile\lagging and sheet pile walls for lateral earth pressures from temporary and permanent surcharges, line or point loads, or any loading anticipated near the wall in accordance with AASHTO Articles 11.8.2, 11.6.1.2, and 3.11.6. Soldier pile\lagging and sheet pile wall design shall evaluate the anticipated combinations of lateral earth pressures, hydrostatic pressures and seepage forces, including heavy construction loads near the top of the wall and rapid groundwater drawdown during construction dewatering. Walls shall be designed to drain the retained earth or be designed for full hydrostatic pressures and seepage forces in accordance with AASHTO Articles 3.11.3 and 11.6.6 and Section 15.3.18.

3. Seismic active lateral earth pressures acting on non-gravity (cantilever) soldier pile\lagging and sheet pile walls shall be calculated using the Mononobe-Okabe (M-O) equation in accordance with Appendix A11 of the AASHTO LRFD Bridge Design Specifications and the ODOT Geotechnical Design Manual (GDM). Calculate the horizontal seismic acceleration coefficient (k_h) using AASHTO Equation C11.8.6 ($k_h=0.5*\text{AS}$) in accordance with AASHTO Article 11.8.6, Appendix A11, and the requirements below.

4. AASHTO Equation C11.8.6 assumes the non-gravity cantilever retaining wall can move at least 1 to 2 inches, and potentially up to 10*AS (inches), during an earthquake reducing the seismic lateral earth pressures. Non-gravity cantilever retaining walls are relatively flexible structures which have performed relatively well during earthquakes. If permanent wall movements of 1 to 2 inches or greater are judged acceptable, it is permissible to design using the M-O equation and AASHTO Equation C11.8.6. The wall designer shall confirm anticipated wall movements during an earthquake will not result in excessive wall stresses or damage to pavements, sidewalks, utilities, or other structures above or behind the wall.

15.8.3 Soldier Pile\Lagging Walls

Soldier pile walls shall be designed in accordance with the AASHTO LRFD Bridge Design Specifications, Foundation Engineering Handbook (H. F. Winterkorn and H. Fang, 1979), Foundation Analysis and Design, 5th Edition (J. E. Bowles, 1996), Foundations and Earth Structures, NAVFAC DM7.02 (U.S. Navy, 1986), and the requirements of the ODOT GDM. A state-of-the-practice soil-structure interaction computer program, such as LPILE Plus v5.0® (Ensoft Inc.), may also be used for design of soldier pile walls.

Soldier pile walls are used for both temporary and permanent applications. The spacing between soldier piles is typically 6ft to 8ft (center-to-center). Cantilever soldier pile wall heights (H_w in Figure 15-10) in excess of 15ft are usually feasible using ground anchors (tiebacks) or deadmen anchors.

Lagging members (timber, reinforced concrete, shotcrete, and/or steel plates) span between the soldier piles to provide soil retention as wall excavation proceeds (top-down construction).

Active earth pressures for soldier pile walls shall be calculated using Coulomb earth pressure theory in accordance with AASHTO Article 3.11.5.3. Design permanent or temporary cantilevered soldier pile walls using the unfactored simplified earth pressure distributed loads presented in AASHTO Article 3.11.5.6 (Figures 3.11.5.6-1, 2, 4 and 5). Apply lateral earth pressure load and resistance factors to calculate lateral earth pressures for soldier pile wall design using Tables 3.4.1-1 and 3.4.1-2 (load factors) and Table 11.5.6-1 (resistance factors).
Soldier pile/lagging walls shall be designed for shear, bending, and axial stresses in accordance with the design criteria in *AASHTO LRFD Bridge Design Specifications* and the *ODOT BDDM* and *GDM*.

For static loading, estimate the passive earth pressure resistance against the embedded portions of soldier piles in accordance with AASHTO Article 3.11.5.6. A maximum effective width for the soldier pile (concrete filled drill hole with steel pile) of three times the drill hole diameter can be assumed for calculation of the passive earth pressure resistance and should be appropriately reduced when any of the following conditions are present:

- The zones of passive earth pressure resistance in front of embedded soldier piles contains planes or zones of weakness;
- The zones of passive earth pressure resistance contain excessively weak and/or compressible foundation soil such as a very soft to soft silt or clay, organic silt, or peat; or
- The zones of passive earth pressure resistance from adjacent embedded soldier piles overlap.

If the zones of passive earth pressure from adjacent soldier piles embedded in cohesionless or cohesive soils overlap, calculate the nominal (ultimate) passive resistance for soldier piles using the *Wang-Reese Equations* presented in Appendix B of *Geotechnical Engineering Circular No. 4 – Ground Anchors and Anchorage Systems* (FHWA, 1999).

Permanent soldier piles (typically HP or wide flange sections) for soldier pile/lagging walls and anchored walls should be installed in drilled holes backfilled with Controlled Low Strength Material or CSLM (Section 00442), grout or concrete.

Soldier pile/lagging walls are frequently used for temporary shoring in cut applications. Impact or vibratory methods may be used to install temporary soldier piles, but installation in drill holes is preferred.

The passive resistance in front of the soldier pile wall is critical to the wall system stability. If the CLSM developed strength is less than the passive resistance foundation soil, the assumption that lateral soil bearing against the full diameter of the concrete-filled drill hole governs passive resistance in front of the wall is not valid. In this case, calculate the reduced passive resistance assuming bearing against the width of the HP or wide flange steel sections.

The geotechnical designer shall also reduce the passive resistance in front of the soldier pile wall in consideration of sloping ground, reduction in soil strength from seepage forces, limiting backslope movement criteria, and the weakening or removal of soil in front of the wall by freeze-thaw, shrink-swell, scour, erosion, construction excavation, or any other means.

15.8.4 Sheet Pile Walls

Sheet pile walls shall be designed in accordance with the requirements in the *AASHTO LRFD Bridge Design Specifications, Foundation Analysis and Design, 5th Edition* (J. E. Bowles, 1996), *Foundations and Earth Structures, NAVFAC DM7.02* (U.S. Navy, 1986), and the requirements of the ODOT GDM. Interlocking Z-type piles are typically used for sheet pile walls. Sheet pile walls are used for both temporary and permanent applications, including excavations, bulkhead walls, cofferdams and trenches. Cantilever sheet pile walls are relatively flexible and may not be well suited for areas with strict ground movement criteria.

Cantilever sheet pile wall heights (Hw) in excess of 15ft can be achieved with increased pile section modulus and/or the use of ground anchors or deadmen. Sheet pile wall embedment
can be designed to reduce seepage forces and groundwater inflow into excavations and are well suited for foundation or trench excavations below groundwater, or as braced cofferdams below the groundwater table and in open water. Articulated sheet pile wall connections allow for a wide variety of irregular-shaped walls.

Sheet pile walls shall not be used in areas with shallow bedrock or very dense and/or coarse soils (gravel, cobbles, or boulders), or where underground utilities, buried structures, debris or other obstructions may exist. Sheet piles are typically installed using vibratory pile hammers that can cause excavation slope failures or create damaging ground settlements and/or vibrations in a wide area around wall construction. Design of sheet pile walls shall include the consideration of construction vibration effects of sheet pile wall installation on adjacent features, including new concrete construction, steeper cuts/fills, underground utilities, pavements, roadways, bridges or other structures.

The steel sheet pile section shall be designed for the anticipated corrosion loss during the design life of the wall.

Reduce the passive resistance in front of the sheet pile wall in consideration of sloping ground, reduction in soil strength from seepage forces, limiting backslope movement criteria, and/or the anticipated removal of ground in front of the wall by scour, erosion, construction excavation or any other means.

Active earth pressures for sheet pile walls shall be calculated using Coulomb earth pressure theory in accordance with AASHTO Article 3.11.5.3. Design permanent or temporary cantilevered sheet pile walls using the unfactored simplified earth pressures presented on Figures 3.11.5.6-3, 6 and 7 in AASHTO Article 3.11.5.6. Apply lateral earth pressure load and resistance factors to calculate lateral earth pressures for sheet pile wall design using Tables 3.4.1-2 (load factors) and Table 11.5.6-1 (resistance factors).

If groundwater levels differ between the front and back of the wall, design shall consider the effects the unbalanced, hydrostatic pressure and seepage forces on wall stability, including the potential for backfill piping through interlock joints or other perforations in the sheet pile wall. Design shall consider upward seepage forces which could create a critical seepage gradient (boiling condition) in front of the wall. Boiling conditions typically develop in cohesionless soils (coarse silts and sands) subject to critical seepage gradients caused by a high water head.
15.9 Anchored Soldier Pile\Lagging and Sheet Pile Walls

15.9.1 General Considerations

Soldier pile\lagging and sheet pile walls over 15 ft in height typically require additional lateral resistance to maintain stability and/or limit wall movements. This lateral resistance can be provided using ground anchors or buried deadmen. For highway applications, anchored sheet pile walls are typically less than 33 ft in height due to excessive top of wall deflections, excessive sheet pile bending stresses, and high stresses at the wall-anchor connection.

Minimum anchor length and embedment guidelines are shown in AASHTO Figure 11.9.1-1. Anchor spacing is controlled by many factors including anchor (or deadmen) capacity, temporary (unsupported) cut slope stability, subsurface obstructions in the anchorage zone, and the structural capacity of lagging or facing elements. Anchors are typically spaced at 8-10 ft along the length of the wall.

Each ground anchor shall be load tested in accordance with the requirements in Section 15.10.

Excavation shall not proceed more than 3.0 ft below the level of ground anchors until the ground anchors have been accepted by the Engineer.

15.9.2 Design Requirements

1. Anchored soldier pile\lagging and sheet pile wall designs shall evaluate the anticipated combinations of lateral earth pressures, hydrostatic pressures, and seepage forces, including heavy construction loads near the top of the wall and rapid groundwater drawdown during construction dewatering. Walls shall either include a properly designed subdrainage system to drain the retained earth or be designed for hydrostatic pressures and seepage forces in accordance with the AASHTO LRFD Bridge Design Specifications and Section 15.3.18.

2. Design non-gravity anchored walls using unfactored apparent earth pressure distributions described in AASHTO Article 3.11.5.7. Apply lateral earth pressure load and resistance factors to calculate lateral earth pressures for soldier pile wall design using Table 3.4.1-2 (load factors) and Table 11.5.6-1 (resistance factors).

3. Calculate maximum ordinates of apparent earth pressure for cohesionless soils using Equation 3.11.5.7.1-1 (one row of anchors) and Equation 3.11.5.7.1-2 (multiple anchor levels).

4. For static loading, estimate the passive earth pressure resistance against the embedded portions of soldier piles in accordance with AASHTO Article 3.11.5.4. A maximum effective width for the soldier pile (concrete filled drill hole with steel pile) of three times the drill hole diameter can be assumed for calculation of the passive earth pressure resistance and should be appropriately reduced when any of the following conditions are present:

5. The zones of passive earth pressure resistance in front of embedded soldier piles contains planes or zones of weakness;
6. The zones of passive earth pressure resistance contain excessively weak and/or compressible foundation soil such as a very soft to soft silt or clay, organic silt, or peat; or

7. The zones of passive earth pressure resistance from adjacent embedded soldier piles overlap.

8. If the zones of passive earth pressure from adjacent soldier piles embedded in cohesionless or cohesive soils overlap, calculate the nominal (ultimate) passive resistance for soldier piles using the *Wang-Reese Equations* presented in Appendix B of *Geotechnical Engineering Circular No. 4 – Ground Anchors and Anchorage Systems* (FHWA, 1999).

9. Analyze overall (global) slope stability and settlement of non-gravity anchored walls in accordance with the *AASHTO LRFD Bridge Design Specifications* and the requirements of the *ODOT GDM*.

10. The stability of non-gravity anchor walls with respect to base bottom heave shall be verified in accordance with the methodology provided in Section 5.8.2 and elsewhere in *Geotechnical Engineering Circular No. 4 – Ground Anchors and Anchorage Systems* (FHWA, 1999). Base bottom heave is typically a concern with anchored walls supported in soft to medium stiff cohesive soil (clay or silt).

11. The influence of anchored wall movements shall be evaluated for all wall systems, especially walls located within 33ft from settlement-sensitive structures, including bridge foundations, wing walls, end-panels, traffic signals, pavements, utilities or developments near right-of-way boundaries.

12. A preliminary estimate of ground settlement behind anchored walls can be made using AASHTO Figure C11.9.3.1-1. Construction-induced movements of braced and tieback walls supported in soft to medium clays can cause vertical ground surface movements up to 0.02*D (D=maximum excavation depth) when the base heave ratio (R_{BH}) is 1.2 or less (AASHTO Article 11.9.3.1). Mitigation of excessive ground movements resulting from anchored wall construction is required.

13. The external and internal failure modes shall be analyzed for non-gravity anchored walls using the methodologies and procedures presented in *Geotechnical Engineering Circular No. 4 – Ground Anchors and Anchorage Systems* (FHWA, 1999). Non-gravity anchored walls shall be safe against all potential failure modes. Typical internal, external and anchorage failure modes are presented in Figure 11 (FHWA, 1999). This figure is reproduced below as Figure 15-11. Check stability along potential failure surfaces passing just behind ground anchors or buried deadmen, including failure surfaces which pass through the free length and/or bonded zones of ground anchors in the lower portion of the wall as shown in Figure 15-11.
Figure 15-11. Anchored Walls: External, Internal, Global and Facing Failure Modes
14. Seismic design of anchored soldier pile\lagging and sheet pile walls shall be in accordance with AASHTO Articles 11.9.6 and 11.8.6. Seismic active lateral earth pressures acting on anchored soldier pile\lagging and sheet pile walls shall be calculated using the Mononobe-Okabe (M-O) equation in accordance with Appendix A11 of the AASHTO LRFD Bridge Design Specifications and Section 15.3.

15.10 Ground Anchors, Deadmen, and Tie-Rods

15.10.1 General Considerations

Ground anchors are used for permanent and temporary retaining walls and in slope or landslide stabilization systems. The design of ground anchors shall be in accordance with the following:

- AASHTO LRFD Bridge Design Specifications;
- The ODOT GDM; and
- Geotechnical Engineering Circular No. 4 - Ground Anchors and Anchorage Systems (FHWA, 1999).

Design of ground anchors requires a detailed geotechnical investigation to explore, sample, characterize and test soil and rock conditions within and around the ground anchorage zone (ground anchors and deadmen). The geotechnical investigation shall determine the depth, limits and failure surface geometry of any existing or potential sliding plane, slope failure, or landslide within or near the ground anchorage zone.

Geotechnical investigation requirements are outlined in Chapter 3. At a minimum, the geotechnical information required for ground anchorage design includes SPT N-values (depth intervals of 5ft, or less), soil profile, unit weight, natural water content, Atterberg limit, soil corrosivity tests (e.g., pH, resistivity, organic content, chloride and sulfate concentrations), sieve analysis, shear strength, consolidation parameters, foreslope and backslope inclinations, and groundwater levels.

Conventional straight shaft, gravity-grouted ground anchors (bar tendons) are typically used. Ground anchors develop tensile (pullout) capacity from tendon-grout-ground bond stress along the anchor bond zone. Anchor capacity shall be determined based on the soil and rock conditions along the bonded anchor zone.

Highway Retaining Wall permanent ground anchors shall be designed for a minimum Design Life of 75 years. Bridge Retaining Wall permanent ground anchors shall be designed to have a design life consistent with the design life of the bridge - but not less than 75 years.

15.10.2 Anchor Location and Geometry

The geotechnical engineer shall define the no-load zone for anchors in accordance with Geotechnical Engineering Circular No. 4 – Ground Anchors and Anchorage Systems (FHWA, 1999) and AASHTO Article 11.9. The boundaries of the no-load zone limits shall be increased to include the failure surface of any existing or potential sliding plane, slope failure, or landslide. The unbonded anchor length shall extend a minimum distance of 5ft or 0.2*H_w (H_w=wall height) whichever is greater, beyond the defined no load zone.
Ground anchors shall have a minimum overburden depth of 15ft at the midpoint of the anchor bond zone to prevent grout leakage or ground heave during construction. Ground anchors are typically installed at angles of 15° to 30° below the horizontal. Steeper anchor inclinations (45° max.) may be required to avoid underground utilities, adjacent foundations, right-of-way restraints, or unsuitable soil or rock layers. In general gravity-grouted anchors should be installed as close to horizontal as possible, but not less than 10°.

15.10.3 Ground Anchor Design

Ground anchors shall have a minimum bond length of 10ft (rock) and 15ft (soil), although anchor bond lengths greater than approximately 40ft are not considered to be fully effective. All anchors shall have a minimum unbonded length of at least 15ft.

Estimate the nominal (ultimate) anchor bond resistance using the presumptive bond stress values in AASHTO Tables C11.9.4.2-1, -2 (Cohesionless Soils) and C11.9.4.2-3 (Rock). Designers should also consider the recommendations in Geotechnical Engineering Circular No. 4 – Ground Anchors and Anchorage Systems (FHWA, 1999) when selecting an anchor bond resistance. However, it is recommended that anchor bond stress be estimated from local ground anchor pullout test data, if available. Nominal bond stress is based on factors such as the consistency, density or strength of the soil and rock materials encountered within the ground anchorage zone, anchor overburden pressure, groundwater levels (hydrostatic pressures), and the anticipated ground anchor installation method and grouting pressure.

Apply a resistance factor to the nominal anchor bond resistance to estimate a factored pullout resistance (FPR) for preliminary anchor design. Resistance factors for “pullout resistance of anchors” are provided in AASHTO Table 11.5.6-1. The FPR is required to determine the number of ground anchors required to resist the factored loads. The contract documents shall include the ground anchor FPR requirement for the project. The Contractor shall use the recommended FPR to design and construct the ground anchor to meet this requirement. The Contractor will be responsible for determining the actual bond zone length, anchor diameter, drilling and grouting methods used for the anchors. Final anchor tension (pullout) capacities shall be based on the results of actual verification, performance and/or proof testing of ground anchors in accordance with Section 15.10.5.

Lateral earth pressure loads on anchored walls shall be designed using the apparent earth pressure diagrams in AASHTO Article 3.11.5.7, 11.9, and Geotechnical Engineering Circular No. 4 – Ground Anchors and Anchorage Systems (FHWA, 1999). Apparent earth pressure diagrams for stiff to hard fissured clays soils and stratified soils shall be developed, respectively, in accordance with Section 5.2.5 and Section 5.2.7 of FHWA (1999).
15.10.4 Corrosion Protection

Protection of the metallic components of the tendon against corrosion is necessary to assure adequate long-term performance of the ground anchor. Three levels of corrosion protection are commonly specified: Class I or Class II for all permanent ground anchor tendons; and Class III (no protection) for temporary ground anchors with “nonaggressive” corrosion conditions. Class I, II and III corrosion systems are described and shown in Geotechnical Engineering Circular No. 4 - Ground Anchors and Anchorage Systems FHWA (1999). Select, design, and detail ground anchor corrosion protection in accordance with the requirements of FHWA (1999).

15.10.5 Anchor Load Testing

All production ground anchors shall be proof tested, except for anchors that are subject to performance tests. A minimum of 5 percent of the total number of wall anchors (minimum of three anchors) shall be performance tested. Required ground anchor testing and the resulting test data shall be witnessed and recorded by the Engineer.

Specify the sequence of ground anchor stressing to prevent local overstress of the wale, sheet pile, and/or their connection device. Anchors shall be stressed in a uniform manner to prevent overstress as described below.

- No load greater than 10 percent of the factored design load (FDL) may be applied to the anchor prior to testing.
- Proof and performance tests shall be performed at 1.00 times the factored load (1.00FDL) for projects with anchorage in sands, gravels, or other soil or rock materials where excessive anchor creep is not anticipated.
- Proof and performance tests shall be performed at 1.15 times the factored design load (1.15FDL) for projects with anchorage in clays, silts, creep-susceptible or other soil or rock materials considered problematic from a design or construction standpoint.

A ground anchor verification test should be considered for projects with anchorage in clays, silts or other soil or rock material considered problematic from a design or construction standpoint. Verification testing, if conducted, should be done well in advance of production ground anchor construction to allow changes in anchor or wall design and construction. The reasons for verification testing include:

- Allows Contractor to modify/change anchor installation equipment or methods (or propose a different anchor type, if needed) prior to production anchor construction;
- Allows revision of anchor bond zone length design and/or selected anchor diameter to provide the specific resistance; and
- Allows extended load tests to evaluate anchor creep characteristics. If conducted, verification tests shall be performed to 1.50 times the factored design load (1.50FDL) for each anchor tested.

Proof, performance and verification ground anchor tests shall apply a load factor of 1.35 to the apparent earth pressure (AEP for anchored walls) used to design the anchored wall in accordance with AASHTO Table 3.4.1-2.
15.10.6 **Ground Anchor Proof Testing Schedules**

The following loading and unloading schedule shall be used for proof tests where anchors are supported in sands, gravels, or other soil or rock materials where excessive anchor creep is not anticipated:

Table 15-4. Proof tests for unsupported anchors or no excessive anchor creep

<table>
<thead>
<tr>
<th>Test Load</th>
<th>Hold Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>1 Min.</td>
</tr>
<tr>
<td>0.25FDL</td>
<td>1 Min.</td>
</tr>
<tr>
<td>0.50FDL</td>
<td>1 Min.</td>
</tr>
<tr>
<td>0.75FDL</td>
<td>1 Min.</td>
</tr>
<tr>
<td>1.00FDL</td>
<td>10 Min.</td>
</tr>
<tr>
<td>AL</td>
<td>1 Min.</td>
</tr>
</tbody>
</table>

The following loading and unloading schedule shall be used for proof tests where anchors are supported in clays, silts, creep-susceptible or other soil or rock materials considered problematic from a design or construction standpoint:

Table 15-5. Proof tests for supported anchors or problem design

<table>
<thead>
<tr>
<th>Test Load</th>
<th>Hold Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>1 Min.</td>
</tr>
<tr>
<td>0.25FDL</td>
<td>1 Min.</td>
</tr>
<tr>
<td>0.50FDL</td>
<td>1 Min.</td>
</tr>
<tr>
<td>0.75FDL</td>
<td>1 Min.</td>
</tr>
<tr>
<td>1.00FDL</td>
<td>1 Min.</td>
</tr>
<tr>
<td>1.15FDL</td>
<td>10 Min.</td>
</tr>
<tr>
<td>AL</td>
<td>1 Min.</td>
</tr>
</tbody>
</table>

The maximum proof test load shall be held for at least 10 minutes with anchor movements measured and recorded at 1 minute, 2, 3, 4, 5, 6, and 10 minutes. If anchor movements between one minute and ten minutes exceeds 0.040 inches, the maximum test load shall be held for an additional 50 minutes. If the load hold time is extended, anchor movements shall be measured and recorded at 15, 20, 25, 30, 45, and 60 minutes. The maximum proof test load shall be maintained within 2 percent of the intended load by use of the load cell.

15.10.7 **Ground Anchor Performance Testing Schedule**

Performance tests cycle the load applied to the anchor. Between load cycles, the anchor is returned to the alignment load (AL) before beginning the next load cycle. The following shall be used for performance tests.
Table 15-6. Test Load Cycle

<table>
<thead>
<tr>
<th>Test Load Cycle*</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4*</th>
<th>5*</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>AL</td>
<td>AL</td>
<td>AL</td>
<td>AL</td>
<td>AL</td>
<td>AL</td>
</tr>
<tr>
<td>0.25FDL</td>
<td>0.25FDL</td>
<td>0.25FDL</td>
<td>0.25FDL</td>
<td>0.25FDL</td>
<td>Lock-Off</td>
<td></td>
</tr>
<tr>
<td>0.50FDL</td>
<td>0.50FDL</td>
<td>0.50FDL</td>
<td>0.50FDL</td>
<td>0.50FDL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75FDL</td>
<td>0.75FDL</td>
<td>0.75FDL</td>
<td>0.75FDL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00FDL</td>
<td>1.00FDL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.15FDL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The 5th test load cycle shall be conducted if the anchor is installed in clays, silts, creep-susceptible or other soil or rock materials considered problematic from a design or construction standpoint. Otherwise the load hold is conducted through 1.00FDL (4th cycle) and the 5th cycle is eliminated.

The anchor load shall be raised from one load increment to another immediately after a deflection reading. The maximum test load (4th or 5th load cycle) in a performance test shall be held for ten minutes. If the anchor movement between one minute and ten minutes exceeds 0.040 inches, the maximum test load shall be held for an additionally 50 minutes. If the load hold is extended, the anchor movement shall be recorded at 15, 20, 25, 30, 45 and 60 minutes. The maximum performance test load shall be maintained within 2 percent of the intended load by use of the load cell.

After the final load hold, the anchor shall be unstressed to the alignment load (AL) then jacked to the lock-off load. The lock-off load for all ground anchors shall be 60 percent of the factored design load (FDL) for the ground anchor. The structural engineer shall specify the magnitude of the lock-off load in the contract documents.
15.10.8 Ground Anchor Verification Testing Schedule

The following shall be used for verification tests:

<table>
<thead>
<tr>
<th>Test Load</th>
<th>Hold Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>1 Min.</td>
</tr>
<tr>
<td>0.25FDL</td>
<td>10 Min.</td>
</tr>
<tr>
<td>0.50FDL</td>
<td>10 Min.</td>
</tr>
<tr>
<td>0.75FDL</td>
<td>10 Min.</td>
</tr>
<tr>
<td>1.00FDL</td>
<td>10 Min.</td>
</tr>
<tr>
<td>1.15FDL</td>
<td>60 Min.</td>
</tr>
<tr>
<td>1.25FDL</td>
<td>10 Min.</td>
</tr>
<tr>
<td>1.50FDL</td>
<td>10 Min.</td>
</tr>
<tr>
<td>AL</td>
<td>1 Min.</td>
</tr>
</tbody>
</table>

The test load shall be applied in increments of 25 percent of the factored design load (FDL). Measurements of anchor movement shall be obtained at each load increment. Each test load increment shall be held for at least 10 minutes with anchor movements measured and recorded at 1 minute, 2, 3, 4, 5, 6, 10, 15, 20, 30, 45, and 60 minutes. The load-hold period shall start as soon as the test load is applied. The maximum performance test load shall be maintained within 2 percent of the intended load by use of the load cell.

The factored design load (FDL) shall not exceed 60% of the specified minimum tensile strength (SMTS) of the ground anchor. The lock-off load shall not exceed 70% of the SMTS of the ground anchor. The test load shall no exceed 80% of the SMTS of the ground anchor.

15.10.9 Deadmen or Anchor Blocks

Design deadmen or anchor blocks using passive earth pressure resistance and active earth pressure loads in accordance with the AASHTO LRFD Bridge Design Specifications, Foundations and Earth Structures, NAVFAC DM7.02 (U.S. Navy, 1986) and Section 5 - Retaining Walls, Bridge Design Specifications (Caltrans, 2004). The deadmen location shall have sufficient embedment within the passive earth pressure zone, beyond the wall active earth pressure zone, as described in Section 4, Figures 20 and 21 in NAVFAC DM7.02 (U.S. Navy, 1986). Figures 20 and 21 have been reproduced as Figure 15-12 and Figure 15-13, respectively.
Figure 15-12. Effect of Anchor Block Location, Active\Passive Earth Pressure and Tie-Rod Resistance
EFFECT OF DEPTH AND SPACING OF ANCHOR BLOCKS

ANCHORAGE RESISTANCE FOR $h_1 > \frac{h}{2}$

1. CONTINUOUS WALL;
 ULTIMATE $A_{pc} = P'_{d} = P_A$ WHERE A_{pc}/d IS ANCHOR RESISTANCE AND $P_P = P_A$ TAKEN PER LINEAL FOOT OF WALL.

2. INDIVIDUAL ANCHORS;
 IF $d > b + h$, ULTIMATE $A_{d} = b(P'_{d} - P_A) + 2P_A \tan \phi$, WHERE $P_0 = \text{RESULTANT FORCE OF SOIL AT REST ON VERTICAL AREA } cde OR C'$ de.
 IF $d < h$, A_{d} / d IS 70% OF A_{pc} / d FOR CONTINUOUS WALL.
 L FOR THIS CONDITION IS $L' AND L'' = h$.
 IF $d < b$, $A_{d} / d + A_{pc} / d = A_{pc} / d - L' (0.3 A_{pc} / d)$, $L'' = h$.

ANCHOR RESISTANCE FOR $h_1 < \frac{h}{2}$
ULTIMATE A_{d} / d OR A_{pc} / d EQUALS BEARING CAPACITY OF STRIP FOOTING OF WIDTH h_1 AND SURCHARGE LOAD $y(h - \frac{h}{2})$, SEE FIGURE 1, CHAPTER 4, NAVFAC DM 7.02 (1986).
USE FRICTION ANGLE ϕ'; WHERE $\tan \phi' = 0.6 \tan \phi$.

GENERAL REQUIREMENTS:

1. ALLOWABLE VALUE OF A_p AND $A_{pc} = \text{ULTIMATE VALUE} / 2$, FACTOR OF SAFETY OF 2 AGAINST FAILURE.
2. VALUES OF K_A AND K_P ARE FOR COHESIONLESS MATERIALS. IF BACKFILL HAS BOTH ϕ AND c STRENGTHS, COMPUTE ACTIVE AND PASSIVE FORCES ACCORDING TO FIGURES 7 AND 9, Chapter 3, NAVFAC DM7.02 (1986). FINE GRAINED SOILS OF MEDIUM TO HIGH PLASTICITY SHOULD NOT BE USED AT THE ANCHORAGE.
3. SOILS WITHIN PASSIVE WEDGE OF ANCHORAGE SHALL BE COMPACTED TO AT LEAST 100 PERCENT OF RELATIVE MAXIMUM DENSITY PER AASHTO T99.
4. TIE ROD IS DESIGNED FOR ALLOWABLE A_p OF A_{pc}. TIE ROD CONNECTIONS TO WALL AND ANCHORAGE ARE DESIGNED FOR 1.2 (ALLOWABLE A_p OF A_{pc}).
5. TIE ROD CONNECTION TO ANCHORAGE IS MADE AT THE LOCATION OF THE RESULTANT EARTH PRESSURES ACTING ON THE VERTICAL FACE OF THE ANCHORAGE.

Figure 15-13. Effect of Anchor Block Spacing on Tie-Rod Resistance, Continuous and Individual Anchor Blocks
15.10.10 Tie-Rods

Tie rods shall be designed in accordance with the AASHTO LRFD Bridge Design Specifications, Foundations and Earth Structures, NAVFAC DM7.02 (U.S. Navy, 1986), Section 5 - Retaining Walls, Bridge Design Specifications (Caltrans, 2004), and the requirements of the ODOT GDM.

Anchored sheet pile wall failures have occurred in the tie-rod as a result of damage from excessive differential vertical settlement along the tie-rod, especially at the connection to the wall face. The tie-rod shall be isolated from the adverse effects of excessive settlement of the wall and/or backfill, including excessive bending, shear or tension in the tie-rod. Perform ground improvement to reduce post-construction foundation settlement to reduce settlement magnitudes if isolation of the tie-rod is not feasible.

Specify the sequence of tie-rod stressing to prevent local overstress of the wale, sheet pile, and/or their connection device. Corrosion protection of the tie-rod, wale and their connection device is necessary to assure adequate long-term wall performance.

15.11 Soil Nail Walls

15.11.1 General Considerations

Soil nail walls consist of passive reinforcement of the ground behind an excavation face by drilling and installing closely-spaced rows of grouted steel bars (i.e., soil nails). The soil nails are subsequently covered with a reinforced-shotcrete layer (temporary facing) used to stabilize the exposed excavation face, support the subdrainage system (i.e., composite strip drain, collector and drainage pipes), and distribute the soil nail bearing plate load over a larger area. A permanent facing layer, meeting both structural and aesthetic requirements, is constructed directly on the temporary facing.

The principal components of a typical soil nail wall system are presented in Figure 4.1 of Geotechnical Engineering Circular No. 7 - Soil Nail Walls (FHWA, 2003). Soil nail walls are typically used to stabilize excavations where top-down construction, without the effects of drilling or pile installation (impact hammer or vibratory methods), is a significant advantage compared to other retaining wall systems.

Conventional soil nail wall systems are best suited for sites with dense to very dense, granular soil with some apparent cohesion (sands and gravels), stiff to hard, fine-grained soil (sилts and clays) of relatively low plasticity (PI<15), or weak, weathered massive rock with no adversely-oriented planes of weakness. Soil nail wall construction requires that open excavations stand unsupported long enough to allow soil nail drilling and grouting, subdrainage installation, reinforcement, and temporary shotcrete placement.
Design of soil nail wall systems requires a detailed geotechnical investigation to explore, sample, characterize and test soil and rock conditions within and around the soil nail reinforced zone behind each wall. The geotechnical investigation shall determine the depth, limits and failure surface geometry of any existing or potential shear failure surface, slope failure, or landslide within or near the soil nail reinforced zone.

Geotechnical investigation requirements are outlined in Chapter 3. At a minimum, the geotechnical information required for ground anchorage design includes SPT N-values (depth intervals of 5ft, or less), soil profile, groundwater levels, unit weight, natural water content, Atterberg limit, soil corrosivity tests (e.g., pH, resistivity, organic content, chloride and sulfate concentrations), sieve analysis, shear strength, consolidation parameters, foreslope and backslope inclinations, and groundwater levels. Additionally, shallow test pit(s) should be advanced to depths up to 10ft along the line of the wall face to evaluate excavation stability and stand-up time for temporary excavations required for soil nail wall construction.

15.11.2 Wall Footprint and Soil Nail Easement

The soil nail design length, spacing and inclination shall be based on site-specific soil and rock conditions in the soil nail reinforced zone, geometric constraints, and stability requirements. Soil nails shall be at least 12 feet in length, or 60 percent of the wall height, whichever is greater. Uniform soil nail lengths are typically used when backwall deformations are not a concern for the project, such as when soil nails are supported in competent ground and/or structures are not present within the zone of influence behind the wall. Wall deformations can be effectively controlled by using longer soil nails in the upper portions of the wall. Preliminary soil nail design typically assumes a minimum soil nail length of 70 percent of the wall height, which is frequently increased due to factors such as wall heights greater than 33ft, large surcharge loads, overall (global) stability, seismic loads, and/or strict wall deformation requirements.

The horizontal and vertical spacing of soil nails are typically the same: between 4 and 6½ft for conventional drilled soil nail wall systems. The maximum soil nail spacing meeting design requirements shall be used to improve wall constructability. Soil nails may be arranged in a square, row-and-column pattern or an offset, diamond-pattern. Horizontal nail rows are preferred, but sloping rows may be used to optimize the nail pattern. Soil nail rows should be linear to the greatest extent possible - so each individual nail location elevation can be easily interpolated from a reference nail(s). Nails along the top row shall have at least 1 foot of soil cover over the nail drill hole during installation. Soil nails are installed at angles of 10 to 30 degrees below the horizontal. To prevent voids in the grout, soil nails shall not be installed at inclination less than 10 degrees. Steeper anchor inclinations may be required to avoid underground utilities, adjacent foundations, right-of-way restraints, or unsuitable soil or rock layers.

The soil nail wall face batter typically varies between 0 and 10 degrees.
15.11.3 Design

1. The AASHTO LRFD Bridge Design Specifications do not currently provide design standards for soil nail walls. Until an AASHTO design standard is available, it is recommended that soil nail walls be designed using the methodology in Geotechnical Engineering Circular No. 7 – Soil Nail Walls (FHWA, 2003).

2. The external, internal, and facing connection failure modes shall be analyzed for soil nail walls using the methodologies and procedures presented in Sections 5.1 through 5.6 of Geotechnical Engineering Circular No. 7 – Soil Nail Walls (FHWA, 2003). Horizontal and vertical soil nail wall deformations (static and seismic) shall be checked using the methods provided in Section 5.7 of the same reference.

3. The soil nail wall system must be safe against all potential failure modes. Typical external, internal and facing failure modes presented in Figure 5.3 of Section 5.9 (FHWA, 2003) which has been reproduced as Figure 15-14.
Figure 15-14. Soil Nail Walls: External, Internal, Global, and Facing Failure Mode
There is no standard laboratory strength testing procedure to accurately measure the bond resistance of a grouted soil nail. Nominal (ultimate) soil nail bond stress values are typically estimated using the values presented in Table 3.1 in *Geotechnical Engineering Circular No. 7 – Soil Nail Walls* (FHWA, 2003). Given the uncertainties in accurately estimating soil nail bond strength, it is recommended that pre-production soil nail tests (verification tests) be required to verify the bond strengths included in the construction specifications.

Highway Retaining Wall permanent soil nail walls are designed to have a minimum Design Life of 75 years. Bridge Retaining Wall permanent soil nail walls shall be designed to have a minimum design life consistent with the bridge, but not less than 75 years.

15.11.4 Facing

A permanent wall facing is required for all permanent soil nail walls. In addition to meeting aesthetic requirements and providing adequate corrosion protect to the steel soil nail, design facing for all facing connection failure modes, including but not limited to those indicated in *Figure 15-14*. The soil nail wall face batter typically varies between 0 and 10 degrees.

15.11.5 Corrosion Protection

Corrosion protection is required for all permanent soil nail wall systems. Protection of the metallic components of the soil nail wall against corrosion after construction is necessary to assure adequate long-term wall durability.

Two levels of corrosion protection (*Class I* and *Class II*) are commonly specified for soil nail walls depending on the wall design life (e.g., temporary or permanent wall system) and the electrochemical properties of the site soils. *Class I* corrosion protection consists of a grout-coated bar inside PVC sheathing; encapsulated in an outer grout layer (“double-corrosion” protection system). *Class I* corrosion protection is required for all permanent soil nail walls. *Class II* corrosion protection consists of a grouted, epoxy-coated bar – typically used for non-permanent, soil nail walls. *Class I* and *Class II* corrosion systems are described in detail and shown in *Geotechnical Engineering Circular No. 7 – Soil Nail Walls* (FHWA, 2003).

The level of corrosion protection required should be determined on a project-specific basis based on factors such as wall design life, structure criticality and the electrochemical properties of the supporting soil and rock materials. Criteria for classification of the supporting soil and rock materials as “aggressive” or “non-aggressive” are provided in Table 3.9 of *Geotechnical Engineering Circular No. 7 – Soil Nail Walls* (FHWA, 2003). This classification shall be used in Appendix C.5 of FHWA (2003) to determine if *Class I* or *Class II* corrosion protection is required.

15.11.6 Load Testing

Soil nails are field tested to verify nail design loads can be supported without excessive movement and with an adequate margin of safety. Perform both verification and proof testing of designated test nails.

Perform preproduction verification tests on sacrificial test nails at locations shown on the plans and/or described in the Special Provisions. Preproduction verification testing shall be performed prior to installation of production soil nails to verify the Contractor’s installation methods, proposed drill hole diameter and pullout resistance. Perform a minimum of two verification tests in each principal soil or rock unit providing soil nail support and for each different drilling/grouting method proposed to be used, at each wall location. Verification test soil nails will be sacrificial and not incorporated as production nails. Creep tests are performed as part of the verification tests.
Verification test nails shall have both bonded and unbonded lengths. Prior to testing only the bonded length of the test nail shall be grouted. The unbonded length of the test soil nail shall be at least 3.0 feet. The bonded length of the test nail shall be determined based on the production nail bar grade and size such that the allowable bar structural load is not exceeded during testing and shall not be less than 10 feet. Verification test nails shall be incrementally loaded to a maximum test load of 200 percent of the Design Load (DL) in accordance with the loading schedule in Section 15.11.7.

The soil nail bar shall be proportioned such that the maximum stress at 200 percent of the design load (2.00DL) does not exceed 80 percent of the yield strength of the steel.

Soil nail capacity is sensitive to the Contractor’s drilling, installation, and grouting methods and changes in soil and rock support conditions. Therefore, additional soil nail verification testing is required at any time the Contractor changes construction equipment or methods, or if there is a change in soil or rock support conditions.

15.11.7 Soil Nail Verification Test Schedule

The following shall be used for verification tests:

Table 15-8. Soil Nail Verification Tests

<table>
<thead>
<tr>
<th>Test Load</th>
<th>Hold Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>1 Min.</td>
</tr>
<tr>
<td>0.25DL</td>
<td>10 Min.</td>
</tr>
<tr>
<td>0.50DL</td>
<td>10 Min.</td>
</tr>
<tr>
<td>0.75DL</td>
<td>10 Min.</td>
</tr>
<tr>
<td>1.00DL</td>
<td>10 Min.</td>
</tr>
<tr>
<td>1.25DL</td>
<td>10 Min.</td>
</tr>
<tr>
<td>1.50DL</td>
<td>60 Min.</td>
</tr>
<tr>
<td>1.75DL</td>
<td>10 Min.</td>
</tr>
<tr>
<td>2.00DL</td>
<td>10 Min.</td>
</tr>
</tbody>
</table>

- **Alignment Load:** The alignment load (AL) should be the minimum load required to align the testing apparatus and should not exceed 5 percent of the design load (DL). Dial gauges should be set to "zero" after the alignment load has been applied. The test load shall be applied in increments of 25 percent of the design load to 2.00DL. Measurements of soil nail movement shall be obtained at each load increment. Each test load increment shall be held for at least 10 minutes. All load increments shall be maintained within 5 percent of the intended load.

- **Verification Test:** The verification test soil nail shall be monitored for creep at the 1.50DL load increment. Nail movements during the creep portion of the test shall be measured and recorded at 1 minute, 2, 3, 5, 6, 10, 20, 30, 50, and 60 minutes. The load during the creep test shall be maintained within 2 percent of the intended load by use of the load cell. If the soil nail fails in creep, retesting will not be allowed.

- **Proof Tests:** Perform proof tests on production soil nails at locations selected by the Engineer. Proof testing is typically done on 5 percent of the production nails in each nail row (minimum of one soil nail per row). Required soil nail test data shall be recorded by the Engineer. A verification test nail, successfully completed during production work, shall be
considered equivalent to a proof test nail - and counted as a proof test nail in determining the number of proof tests required for any row.

Production proof test nails shall have both bonded and temporary unbonded lengths. Prior to testing, only the bonded length of the test nail shall be grouted. The temporary unbonded length of the test nail shall be at least 3 feet. The bonded length of the test nail shall be determined based on the production nail bar grade and size such that the allowable bar structural load is not exceeded during testing, but shall not be less than 10 feet in length. Production proof test nails shorter than 13 feet in length may be constructed with less than the minimum 10 foot bond length with the unbonded length limited to 3 feet. Proof tests shall be performed by incrementally loading the proof test nail to a maximum test load of 150 percent of the Design Load (DL).

- **Soil Nail Bar:** The soil nail bar shall be proportioned such that the maximum stress at 200 percent of the design load (2.00DL) does not exceed 80 percent of the yield strength of the steel.

15.11.8 Soil Nail Proof Test Schedule

The following shall be used for proof tests:

<table>
<thead>
<tr>
<th>Test Load</th>
<th>Hold Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>1 Min.</td>
</tr>
<tr>
<td>0.25DL</td>
<td>1 Min.</td>
</tr>
<tr>
<td>0.50DL</td>
<td>1 Min.</td>
</tr>
<tr>
<td>0.75DL</td>
<td>1 Min.</td>
</tr>
<tr>
<td>1.00DL</td>
<td>1 Min.</td>
</tr>
<tr>
<td>1.25DL</td>
<td>1 Min.</td>
</tr>
<tr>
<td>1.50DL</td>
<td>10 Min.</td>
</tr>
</tbody>
</table>

The alignment load (AL) should be the minimum load required to align the testing apparatus and should not exceed 5 percent of the design load (DL). Dial gauges should be set to "zero" after the alignment load has been applied. The test load shall be applied in increments of 25 percent of the design load to 1.50DL. Measurements of soil nail movement shall be obtained at each load increment. Each test load increment shall be held for at least 10 minutes. All load increments shall be maintained within 5 percent of the intended load.

Depending on the following performance criteria, either 10 minute or 60 minute creep tests shall be performed at the maximum test load (1.50 DL). The creep period shall start as soon as the maximum test load is applied and the nail movement shall be measured and recorded at 1 minutes, 2, 3, 5, 6, and 10 minutes. If nail movement exceeds 1 mm between 1 minute and 10 minute readings, the maximum test load shall be maintained an additional 50 minutes and movements shall be recorded at 20 minutes, 30, 50, and 60 minutes.

The load during the creep test shall be maintained within 2 percent of the intended load by use of the load cell. If the soil nail fails in creep, retesting will not be allowed.
15.12 Tangent/Secant Pile Walls
Tangent/secant pile walls shall be designed as non-gravity (cantilever) or anchored retaining walls in accordance with ODOT Section 15.8, except as noted in this section. Selection, design, and construction criteria for tangent/secant pile walls are provided in Geotechnical Engineering Circular No. 2 - Earth Retaining Systems, FHWA (1997) and Geotechnical Engineering Circular No. 8 - Design and Construction of Continuous Flight Augers, FHWA (2007).

Tangent/secant pile walls consist of rows of cast-in-place, reinforced concrete drilled shafts (typically 24-48in diameter) which are tangentially touching (tangent piles) or overlapping (secant piles) to create a continuous retaining wall. Maximum cantilever tangent and secant pile wall heights are typically 15 to 33ft. Greater wall heights can be achieved using ground anchors (tiebacks). Tangent/secant pile walls are typically used in permanent excavation applications. Tangent/secant pile wall construction is a relatively noise-free and vibration-free alternative to sheet pile and soldier pile wall installations.

Tangent/secant pile walls with ground anchors are very stiff wall systems which can reduce ground movements to a strict tolerance. Anchored walls have been successfully used for underpinning building foundations and other settlement-sensitive structures near excavations. Tangent/secant pile walls also create an effective groundwater seepage barrier and have cofferdam applications. Walls shall either be designed to drain the retained earth or be designed for hydrostatic pressures in accordance with AASHTO Articles 3.11.3 and 11.6.6 of the AASHTO LRFD Bridge Design Specifications.

15.13 Slurry/Diaphragm Walls
Slurry/diaphragm walls shall be designed as non-gravity (cantilever) or anchored retaining walls as indicated in Section 15.8, except as noted in this section. Selection, design, and construction criteria for slurry/diaphragm walls are provided in Geotechnical Engineering Circular No. 2 - Earth Retaining Systems, FHWA (1997).

Slurry/diaphragm walls are typically used for permanent applications and consist of cast-in-place, reinforced concrete panels constructed in a trench using mineral or polymer slurry to maintain trench stability. The walls are well suited for sites where flexible sheet pile walls would have potential installation problems due to high penetration resistance in very dense and/or coarse soils (gravel, cobbles, or boulders). Slurry/diaphragm walls have a very high section modulus and are well suited for applications with strict wall movement criteria. The walls also provide a highly effective seepage barrier which allows for rapid excavation dewatering and long-term, watertight construction. Other advantages include relatively high vertical and lateral load capacities and minimal construction vibration effects. New trench cutting equipment has headroom requirements of less than 20ft.

Slurry/diaphragm walls should include a properly designed subdrainage system or be designed as a watertight structure with hydrostatic pressures (AASHTO Articles 3.11.3 and 11.6.6 of the AASHTO LRFD Bridge Design Specifications). Since slurry/diaphragm walls can have a very high section modulus, consider wall movement magnitudes to reach active earth pressures conditions (Table C3.11.1-1 in AASHTO Article 3.11.1). Design for at-rest earth pressures (AASHTO Article 3.11.5.2) if wall movement is restrained.

15.14 Micropile Walls
Micropiles are small diameter (approximately 5in-12in diameter) drilled, grouted and reinforced piles (single center steel bar) installed with a casing system. The casing installation system allows pile installation in difficult ground conditions. Micropiles can be installed at any batter between vertical to
horizontal. Micropile installation minimizes foundation construction vibration and noise, and has low-overhead capabilities. Micropiles develop very high grout/ground bonds strengths and can be designed for substantial axial capacities.

15.15 REFERENCES

Caltrans, 2004, Section 5 - Retaining Walls, Bridge Design Specifications, California Department of Transportation, Sacramento, California.

ODOT, 2000, Retaining Structures Manual, Oregon Department of Transportation, Salem, Oregon.

2002 Design Manual for Segmental Retaining Walls (most current version), National Concrete Masonry Association (NCMA, 2002).

ReSSA3.0® (ADAMA Engineering, Inc.).

MSEW3.0® (ADAMA Engineering, Inc.).

LPILEPlus5.0® (Ensoft, Inc.)

Appendix 15-A General Requirements for Proprietary Retaining Wall Systems

15-A.1 Overview

Proprietary retaining wall systems shall be designed and supported by the wall Manufacturer in accordance with the requirements of ODOT project plans, ODOT specifications, preapproved manufacturer details, and this Manual (see Section 15.2.1.2 for the definition of proprietary retaining wall system).

Proprietary retaining wall systems shall be preapproved by the Agency before being considered for use on Agency projects. Note that preapproval of a Manufacturer’s retaining wall system does not imply preapproval of any other system from the Manufacturer. The Agency preapproves specific retaining wall systems and does not approve the Manufacturer.

Preapproval shall not be regarded as project specific design acceptance. The Manufacturer must also submit project specific design according to Agency requirements. Submittal requirements for project specific designs are specified in the contract documents.

Submit proprietary retaining wall systems for preapproval according to Appendix 15-B.

Preapproval will be based on an extensive technical audit by the Agency. This review examines system theory, Manufacturer design methods, details, materials, QA/QC plan, and construction methods. Constructability, Manufacturer support, and system performance on previous projects will also be considered.

The example calculations required in Appendix 15-B.3 are intended to demonstrate that the proposed proprietary retaining wall system is capable of satisfying loading requirements for the proposed uses, and that the Manufacturer’s design methods are in accordance with Agency requirements. The detail drawings required in Appendix 15-B.4 are intended to demonstrate that manufacturer plans and details adequately address typical wall construction requirements.

Proprietary retaining wall systems are pre-approved by category. There are three retaining wall pre-approval categories, corresponding to the three retaining wall definitions see Section 15.2.1.1:

- Bridge retaining walls
- Highway retaining walls
- Minor retaining walls

The Conditions of Preapproval and Preapproved Manufacturer Details for specific preapproved proprietary retaining wall systems may limit the use of preapproved proprietary retaining wall systems. See Appendix 15-D for specific Conditions of Preapproval and Preapproved Manufacturer Details for each preapproved proprietary retaining wall system.
15-A.2 Design and Construction Requirements:

Proprietary retaining wall systems shall meet the requirements of AASHTO LRFD Bridge Design Specifications, as modified by the ODOT GDM, and the Oregon Standard Specifications for Construction. See Section 15.1.1 for an implementation schedule.

15-A.3 Responsibilities:

This section establishes responsibilities for both ODOT and the proprietary retaining wall system Manufacturer.

15-A.3.1 Agency Responsibilities:

15-A.3.1.1 Agency Standards and Practices Responsibilities

• ODOT Geotechnical Design Manual.
• Oregon Standard Specifications for Construction.
• Preapproval of Proprietary Retaining Wall systems.

15-A.3.1.2 Agency Design Responsibilities

• Select proprietary retaining wall systems that are appropriate for the project, and list them in the Project Special Provisions.
• Perform retaining wall overall (global) stability analysis (including preliminary compound stability analysis) and provide minimum requirements for overall and compound stability (i.e. minimum dimensions for overall and compound stability) in the project plans and/or special provisions.
• Perform preliminary external stability analysis (sliding, eccentricity, bearing), and provide minimum requirements for external stability (i.e. minimum dimensions for external stability) in the project plans and/or special provisions.
• Perform retaining wall settlement analysis for the Service Limit State and provide nominal and factored settlement limited bearing resistance and settlement estimates in the project plans and/or special provisions.
• Perform retaining wall bearing resistance analysis for the Strength and Extreme Event Limit States and provide nominal and factored bearing resistances in the project plans and/or special provisions.
• Perform retaining wall drainage analysis and provide drainage design in the project plans and/or special provisions.
• Perform liquefaction analysis and provide liquefaction mitigation design for the retaining wall in the project plans and/or special provisions when applicable.
• Provide scour prevention design in the project plans and/or specification when applicable.
• Provide geotechnical properties and design values needed by the Manufacturer for
design of the proprietary retaining wall system in the project plans and/or special
provisions.

• Determine applicability of the Mononobe-Okabe (M-O) method in accordance with the
GDM. Provide a note on the project plans stating whether or not the M-O method is
applicable:

 o If the M-O method is applicable, also determine applicability of AASHTO
Equation C11.6.5-1, and provide the design values of A_s and k_h on the project
plans.

 o If the M-O method is not applicable, use the GLE method in accordance with
FHWA (2009) to determine the external seismic thrust P_{AE} and show this load on
the project plans.

• Provide minimum required embedment depths for the retaining wall in the project plans.
• Provide special notes in the project plans and/or special provisions as applicable.
• Provide geotechnical /foundation data sheet in project plans.
• Provide a Final Geotechnical Report for the retaining wall to the Project Manager for use
by the Manufacturer of the proprietary retaining wall system.
• Select acceptable preapproved proprietary retaining wall systems and list them in the
project special provisions as “Options” or “Alternates”.
• Provide a wall loading diagram or loading table with sufficient detail for the Manufacturer
of the proprietary retaining wall system to design the wall.
• Prepare control plans see Section 15.2.8.1.
• Prepare Special Provisions.

15-A.3.1.3 Agency Construction Assistance Responsibilities

• Review Manufacturer working drawings and calculations for conformance with
contract documents, Conditions of Preapproval in Appendix 15-D, and preapproved
Manufacturer details in Appendix 15-D. Also verify that all previous design
assumptions are still valid for the specific proprietary retaining wall system proposed
by the contractor.
• Construction consultation.

15-A.3.2 Proprietary Retaining Wall System Manufacturer Responsibilities:

• Obtain preapproval for the proprietary retaining wall system from the ODOT
Retaining Structures Program before bidding on projects.

• Submit annual system updates see Appendix 15-A.7.

• Design the proprietary retaining wall system to satisfy internal stability, external
stability (bearing, sliding, and overturning), and compound stability under all
applicable limit states. The design shall be in accordance with the project plans and
specifications, the ODOT GDM, the Conditions of Preapproval for the specific
proprietary retaining wall system in Appendix 15-D, and the preapproved Manufacturer details in Appendix 15-D.

- Submit stamped working drawings and stamped calculations, according to the contract documents, for Agency review.
- Provide proprietary product (materials).
- Provide proprietary product installation training and expertise in accordance with the contract documents.
- Satisfy all other applicable Agency requirements.

15-A.4 Preapproval Process and Submittal Requirements for Proprietary Retaining Wall Systems:

See Appendix 15-B Preapproval Process and Submittal Requirements for Proprietary Retaining Wall Systems.

15-A.5 Responsibility for Preapproval:

Preapproval of proprietary retaining wall systems is the responsibility of the ODOT Retaining Structures Program. In special cases, proprietary retaining wall systems may also be preapproved on a project specific basis by the local Region Tech Centers. All project specific preapprovals of proprietary retaining wall systems shall be in accordance with the ODOT GDM, and must be reported to the ODOT Retaining Structures Program.

15-A.6 Conditions of Preapproval for Specific Proprietary Retaining Wall Systems:

The Conditions of Preapproval for each preapproved proprietary retaining wall system are included in Appendix 15-D. Conditions of Preapproval are developed during the detailed technical audit of proprietary retaining wall systems.

The Conditions of Preapproval include, but are not limited to:

- Preapproved Manufacturer detail drawings shown in Appendix 15-D:
 - See the Conditions of Preapproval for Agency comments and requirements regarding the preapproved Manufacturer detail drawings.
 - Details not shown on the preapproved Manufacturer detail drawings are not considered preapproved.
- General comments about the system
- Categories preapproved (Bridge, Highway, Minor)
- Preapproval effective date
- Preapproved maximum wall height
• Specific requirements intended to point out and correct Manufacturer practices that do not meet ODOT requirements. The ODOT EOR for the retaining wall system, and Agency personnel performing construction inspection and other Agency QA/QC functions, shall consider the Conditions of Preapproval to be mandatory requirements.

15-A.7 System Updates

The Manufacturer is required to submit an annual system update for each system. System updates are also required before making changes to preapproved design methods, construction methods, or system formulation.

System updates shall provide the following information:

• Manufacturer name
• Retaining Wall System Name(s)
• Contact Person name and signature
• Contact Phone
• Contact Address
• Contact email
• Description of proposed changes to preapproved design and construction methods, or confirmation that preapproved design and construction methods have not changed
• Description of changes to formulation of the preapproved system, or confirmation that formulation of the preapproved system has not changed

Send the annual update to:

ODOT Retaining Walls Program
301 Capitol St. NE, Room 301
Salem, OR 97301

15-A.8 Disqualification, and Requalification

Disqualification:
The Retaining Structures Program reserves the right to disqualify proprietary retaining wall systems (remove from "preapproved" status) for:

• Non-conformance with preapproved design and construction methods
• Nonconformance with Agency requirements
• Documented history of poor field performance
• Failure to submit the annual system update

Requalification:
The Retaining Structures Program will re-evaluate a product which has been disqualified (removed from "preapproved" status) only after submission of a formal request along with acceptable evidence that the problems causing the disqualification have been resolved.
Appendix 15-B Preapproval Process and Submittal Requirements for Proprietary Retaining Wall Systems

As noted in Section 15.1.1, “Preapproved” status of proprietary retaining wall systems that were preapproved prior to January 5, 2009 will expire on July 1, 2010. Proprietary retaining wall system preapprovals obtained prior to January 5, 2009 were based on the ODOT Retaining Structures Manual, and do not meet current requirements of the ODOT GDM. Proprietary retaining wall systems must obtain “preapproved” status or “preapproved-temporary” status based on the ODOT GDM, and be listed in Appendix 15-D, to be considered on Agency projects with bid dates occurring after July 1, 2010.

To apply for ODOT GDM based preapproval of retaining wall systems that were not preapproved by the Agency prior to January 5, 2009 (“new systems”), submit an application for preapproval according to Section 15-B.2.1. To apply for ODOT GDM based preapproval of retaining wall systems that were preapproved by the Agency prior to January 5, 2009 (“existing systems”), submit an application for preapproval according to Section 15-B.2.2.

Preapproval of both “new systems” and “existing systems” will be based on a detailed system review in accordance with the ODOT GDM. Once preapproved, proprietary retaining wall systems will be listed as “preapproved” in Appendix 15-D. During system review, (after Agency acceptance of their preapproval application), “existing systems” will also be listed as “preapproved-temporary”.

The “conditions of preapproval” for walls with either “preapproved” or “preapproved-temporary” status will be listed in Appendix 15-D. The “conditions of preapproval” for “existing systems” with “preapproved-temporary” status will be consistent with prior Agency preapproval.

“Preapproved-temporary” status will only remain effective until the Agency determines that an adequate number of proprietary retaining wall systems have undergone a detailed system review, and been preapproved in accordance with the ODOT GDM, at which time all proprietary retaining wall systems with temporary preapproval will be removed from the list of preapproved retaining wall systems until they obtain “preapproved” status from the agency.

15-B.1 Preapproval Process:

Step A: Manufacturer Submits Application

Conditions for acceptance of applications:

- The application for preapproval must be for a single proprietary retaining wall system. A single wall system may include only one wall type (wall types are listed in Section 15.2.2). A single MSE wall system may include only one batter, one facing type, and one facing connection type.

- Applicant must own the proprietary retaining wall system or act as the sole representative of the proprietary retaining wall system owner for the purpose of obtaining Agency preapproval. Applicant must also provide system design and support.

Applications shall be submitted according to Appendix 15-B.2.1 for “new systems”, or according to Appendix 15-B.2.2 for “existing systems”.

Manufacturers may submit applications to the Agency at the address shown below.

Oregon Department of Transportation
Step B: Agency Reviews Application

Written acknowledgement is sent to the applicant upon receipt of application. Agency reviews the application, and does one of the following:

- Agency sends written notice to the Manufacturer that the application is accepted and provides any supplemental information and/or direction required for the manufacturer to prepare detailed system information for the proprietary retaining wall system described in the application.

- Agency sends written notice to the Manufacturer stating that the application has not been accepted, along with an explanation of why the application has not been accepted. The notice may request more information or clarification about the proprietary retaining wall system described in the application.

Step C: Manufacturer Submits Detailed Information

After the Agency accepts the manufacturer application the Manufacturer submit five sets of the detailed information required in Appendix 15-B.3 (for MSE walls) Appendix 15-B.4 (for prefabricated modular walls).

To help ODOT understand the functioning and performance of the technology and thereby facilitate the technical audit, applicants are urged to spend the time necessary to provide clear, complete and detailed responses. Missing or incomplete information will delay the Agency technical audit.

A response on all items that could possibly apply to the system or its elements and components, even those where evaluation procedures have not been fully established would be of interest to ODOT. Any omissions should be noted and explained.

Responses should be organized in the order shown and referenced to the given numbering system. Duplication of information is not needed or wanted. A simple statement referencing another section is adequate.

Prior to beginning the technical audit (Step D), the Agency will verify completeness of the submittal. The technical audit will not be started until the submittal is complete.

Step D: Agency Performs System Technical Audit

ODOT performs a technical audit of the manufacturer submittals. Preapproval will be based on the compliance with ODOT GDM requirements. Additional system information may be required from the system manufacturer during the system technical audit if needed to complete the technical audit.

Step E: Agency Issues Findings

Based on the findings of the Agency technical audit, the wall system will be preapproved in one or more of the three categories (Bridge, Highway, Minor), or it will be rejected. Rejected systems will be provided an explanation of items warranting the finding. If preapproved, the findings will be sent to the Manufacturer and posted in Appendix 15-D.
15-B.2 Application for Preapproval of Retaining Wall System:

15-B.2.1 “New System” Application:

This option is only available for proprietary retaining wall systems that did not have Agency “preapproved” status prior to January 5, 2009. This application process places the system in the queue for full preapproval. “New systems” are not eligible for temporary approval.

Provide answers to the following questions, as applicable. Answers should follow the order of the questions, and each answer should reference the question number.

A. Applicant Identification
 1. Company name
 2. Name and title of authorized representative
 3. Street Address
 4. Email Address
 5. Phone
 6. Fax
 7. Signature and date

B. Product Identification
 1. Product or trade name (only one system per application)
 2. Description. As part of the description, identify the retaining wall system type from the list in Section 15.2.4.2, and describe the system. Indicate batter of the wall face.
 3. Indicate which of the following categories of preapproval is being requested - See Appendix 15-A General Requirements for Proprietary Retaining Wall Systems.
 a. Bridge Retaining Wall System (also indicate proposed maximum wall height).
 b. Highway Retaining Wall System (also indicate proposed maximum wall height).
 c. Minor Retaining Wall System.
 4. Indicate whether preapproval for tiered wall applications is being requested.

C. Performance Criteria and History
 1. Please write a brief history of the product’s development, introduction, and acceptance to date. Where applicable, include a description of any predecessor products.
 2. Summarize any tests/evaluations already performed on the product, including the place, date, and result of testing. Attach copies of any available reports.
 3. Are there any issues other than functional performance which might be of significant interest or concern to a potential user (e.g. environmental acceptability, safety performance)?
D. Proprietary Rights

1. Does the product involve proprietary technology?
2. Is the product patented, copyrighted, or otherwise protected?
3. If proprietary or patented technology is involved, please provide a summary description of the proprietary/protected features. Also indicate the date patented and the date the patent expires.
4. If there is any specific information regarding your firm, the product, your application for preapproval, or any other matter which you wish to be treated as strictly confidential, please describe by categories or subject of confidential data how you would like the Agency to treat this data. Also, where appropriate, please describe any measures or safeguards which have been applied (or could be applied) to protect the confidentiality of the data.

E. Organizational Structure

1. Please provide a brief description of the size, organizational structure, and technical resources of your company.

F. HITEC

1. Please provide *Highway Innovative Technology Evaluation Center (HITEC) Technical Evaluation Report* for the retaining wall system, if available.

15-B.2.2 “Existing System Application”:

This option is only available for proprietary retaining wall systems that had Agency “preapproved” status prior to January 5, 2009. This application process places the system in the queue for full preapproval. “Existing systems” will also be listed as “preapproved-temporary” upon Agency acceptance of their preapproval application.

Please provide answers to the following questions, as applicable. Answers should follow the order of the questions, and each answer should reference the question number.

A. Applicant Identification

1. Company name
2. Name and title of authorized representative
3. Address
4. Phone
5. Fax
6. Signature and date

B. Product Identification

1. Product or trade name (only one system per application)
2. Description. As part of the description, identify the retaining wall system type from the list in Section 15.2.4.2 and describe the system. Indicate batter of the wall face.
3. Indicate which of the following categories of preapproval is being requested - See Appendix 15-A General Requirements for Proprietary Retaining Wall SystemsDuring
 a. Bridge Retaining Wall System (also indicate proposed maximum wall height).
 b. Highway Retaining Wall System (also indicate proposed maximum wall height).
 c. Minor Retaining Wall System.

4. Indicate whether preapproval for tiered wall applications is being requested.

C. Acknowledgement of ODOT GDM Implementation
 1. In your application for preapproval, include a statement acknowledging that proprietary retaining wall systems with “preapproved-temporary” must meet all requirements of the ODOT Geotechnical Design Manual (GDM).

D. Performance Criteria and History
 1. Please indicate the ODOT “index number” of the retaining wall system used in the ODOT Retaining Structures Manual, and date of preapproval.
 2. Please indicate any changes that have been made to the retaining wall system since preapproval.
 3. Please describe and explain any performance problems that have occurred with the retaining wall system.

E. Proprietary Rights
 1. Does the product involve proprietary technology?
 2. Is the product patented, copyrighted, or otherwise protected?
 3. If proprietary or patented technology is involved, please provide a summary description of the proprietary/protected features. Also indicate the date patented and the date the patent expires.
 4. If there is any specific information regarding your firm, the product, your application for preapproval, or any other matter which you wish to be treated as strictly confidential, please describe by categories or subject of confidential data how you would like the Agency to treat this data. Also, where appropriate, please describe any measures or safeguards which have been applied (or could be applied) to protect the confidentiality of the data.

F. Organizational Structure
 1. Please provide a brief description of the size, organizational structure, and technical resources of your company.

G. HITEC
 1. Please provide Highway Innovative Technology Evaluation Center (HITEC) Technical Evaluation Report for the retaining wall system, if available.
15-B.3 Submittal Requirements for Proprietary MSE Retaining Wall Systems

Instructions:
To expedite the evaluation of the MSE Retaining Wall system, applicants must furnish information as indicated in the Checklist. The Checklist items should be referenced to assure that the submittal package includes all of the listed information. The submittal package should be organized according to the numbered items in the Checklist. The completed Checklist should be included with the submitted package.

Part One:
Identify material specification designations that govern the materials that are used in furnishing the wall system elements and components. Provide product literature that describes the wall system, its elements and components and adequately addresses the checklist items. Identify pre-cast concrete facilities that have experience with fabricating the concrete elements and components of the wall system.

1.1 Concrete Facing Unit

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>(a) Standard dimensions and tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(b) Joint sizes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(c) Concrete strength</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(d) Wet cast concrete % air (range)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(e) Moisture absorption (percent by weight)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(f) Scaling resistance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(g) Freeze thaw durability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(h) Facing unit to facing unit shear resistance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(i) Bearing pads (joints)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(j) Spacers (pins, etc.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(k) Joint filter requirements: geotextile or graded granular</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(l) Aesthetic choices (texture, relief, color, graffiti treatment)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m) Other facing materials</td>
</tr>
</tbody>
</table>

1.2 Earth reinforcement

1.2.1 Metallic

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>(a) Type identified (welded wire, steel bars, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(b) Ultimate and yield strength of steel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(c) Minimum galvanization thickness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(d) Corrosion resistance test data</td>
</tr>
</tbody>
</table>
1.2.2 Geosynthetic

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Polymer type and grade
(b) HDPE: resin type, class, grade & category
(c) Minimum intrinsic viscosity correlated to number of average molecular weight and maximum carboxyl end groups
(d) Weight per unit area
(e) Minimum average roll value for ultimate strength
(f) Creep reduction factor for 75 and 100 year design life, including effect of temperatures
(g) Durability reduction factor (chemical, hydrolysis, oxidation)
(h) Additional durability reduction factor for high biologically active environments
(i) Installation damage reduction factor for range of backfill (select backfill, course aggregate)
(j) UV resistance

1.3 Facing Connection(s)

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Mode (structural, frictional or combined)
(b) Connection strength as a % of reinforcement strength at various confining pressures for each reinforcement product and connection type submitted
(c) Composition of devices, dimensions, tolerances
(d) Full scale connection test method/results

1.4 Range of Backfill

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Soil classification, graduation, unit weight, friction angle for reinforcement method
(b) Soil classification, graduation, unit weight, friction angle for facing type

1.5 Leveling Pad

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Cast-in-place
(b) Pre-cast
(c) Granular
1.6 Drainage Elements

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- (a) Weep holes
- (b) Base
- (c) Backfill
- (d) Surface

1.7 Coping

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- (a) Pre-cast
- (b) Pre-cast attachment method/details
- (c) Cast-in-place

1.8 Traffic Barrier

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- (a) Pre-cast
- (b) Cast-in-place

1.9 Connections to Appurtenances

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- (a) Pre-cast

Part Two: Design

Clearly identify that the design conforms to the *AASHTO LRFD Bridge Design Specifications* and the GDM. Identify design assumptions and procedures with specific references (e.g., design code sections) for each of the listed items.

2.1 *AASHTO LRFD Provisions*

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- (a) Sliding
- (b) Overturning (including vehicle collision)
- (c) Bearing resistance
- (d) Compound stability
- (e) Seismic
- (f) Movement at service limit state
- (g) Passive resistance and sliding
- (h) Safety against structural failure
- (i) Drainage
2.2 Performance Criteria

Yes No N/A
___ ___ ___ (a) Erection tolerances
___ ___ ___ (b) Horizontal/vertical deflection limits

2.3 Drawings

Provide representative drawings showing all standard details along with any alternate details, as required in Appendix 15-B.6.

Yes No N/A
___ ___ ___ (a)

2.4 Specifications

Provide sample specifications for:

Yes No N/A
___ ___ ___ (a) Wall system component materials

2.5 Calculations

Provide detailed calculations for the example problems in Appendix 15-B.5. Explain all assumptions and calculations. Example problem calculations, including computer assisted analyses, shall be sealed and performed under the responsible charge of a Professional Engineer licensed in the State of Oregon.

Yes No N/A
___ ___ ___ (a)

2.6 Computer Support

If a computer program is used to support vendor MSE wall designs, it shall be the latest version and latest update of MSEW (Adama Engineering, Inc.).

Yes No N/A
___ ___ ___ (a)

Part Three: Construction

Provide the following information related to the construction of the system:

3.1 Fabrication of Facing Units

Yes No N/A
___ ___ ___ (a) Curing methods
___ ___ ___ (b) Concrete surface finish requirements
3.2 Field Construction Manual

Provide a documented field construction manual describing in detail and with illustrations as necessary the step-by-step construction sequence, including requirements for:

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3 Contractor or Subcontractor Prequalification Requirements

List any contractor or subcontractor pre-qualifications.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Part Four: Performance

Provide the following information related to the performance of the system:

4.1 Project Performance History

Provide a well-documented history of performance (with photos, where available), including:

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15-B.4 Submittal Requirements for Proprietary Prefabricated Modular Retaining Wall Systems:

Instructions:
To expedite the evaluation of the Prefabricated Modular Retaining Wall system, applicants must furnish information as indicated in the Checklist. The Checklist items should be referenced to assure that the submittal package includes all of the listed information. The submittal package should be organized according to the numbered items in the Checklist. The completed Checklist should be included with the submitted package.

Part One:
Identify material specification designations that govern the materials that are used in furnishing the wall system elements and components. Provide product literature or other documentation that describes the wall system, its elements and components and adequately addresses the checklist items. Identify pre-cast concrete facilities that have experience with fabricating the concrete elements and components of the wall system.

1.1 Concrete Facing Unit

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>(a) Standard dimensions and tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(b) Joint sizes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(c) Concrete strength</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(d) Wet cast concrete % air (range)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(e) Moisture absorption (percent by weight)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(f) Scaling resistance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(g) Freeze thaw durability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(h) Facing unit to facing unit shear resistance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(i) Bearing pads (joints)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(j) Spacers (pins, etc.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(k) Joint filter requirements: geotextile or graded granular</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(l) Aesthetic choices (texture, relief, color, graffiti treatment)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m) Other facing materials</td>
</tr>
</tbody>
</table>

1.2 Leveling Pad

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>(a) Cast-in-place</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(b) Precast</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(c) Granular</td>
</tr>
</tbody>
</table>
1.3 Drainage Elements

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(a) Weep holes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(b) Base</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(c) Backfill</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(d) Surface</td>
</tr>
</tbody>
</table>

1.4 Coping

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(a) Precast</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(b) Precast attachment method/details</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(c) Cast-in-place</td>
</tr>
</tbody>
</table>

1.5 Traffic Barrier

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(a) Precast</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(b) cast-in-place</td>
</tr>
</tbody>
</table>

1.6 Connections to Appurtenances

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(a) Precast</td>
</tr>
</tbody>
</table>

Part Two: Design

Clearly identify that the design conforms to the AASHTO LRFD Bridge Design Specifications. Identify design assumptions and procedures with specific references (e.g., design code sections) for each of the listed items.

2.1 AASHTO LRFD Provisions

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(a) Sliding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(b) Overturning (including vehicle collision)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(c) Bearing resistance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(d) Overall stability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(e) Seismic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(f) Movement at service limit state</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(g) Passive resistance and sliding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(h) Safety against structural failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(i) Drainage</td>
</tr>
</tbody>
</table>
2.2 Performance Criteria

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>(a)</td>
<td>Erection tolerances</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>(b)</td>
<td>Horizontal/vertical deflection limits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3 Drawings

Provide representative drawings showing all standard details along with any alternate details, as required in Appendix 15-B.6.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>(a)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.4 Specifications

Provide sample specifications for:

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>(a)</td>
<td>Wall system component materials</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.5 Calculations

Provide detailed calculations for the example problems in Appendix 15-B.5. Explain all assumptions and calculations. Example problem calculations, including computer assisted analyses, shall be sealed and performed under the responsible charge of a Professional Engineer licensed in the State of Oregon.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>(a)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.6 Computer Support

If a computer program is used for design of Agency projects, provide hand calculations for the required example problems demonstrating the reasonableness of computer results.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>(a)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Part Three: Construction

Provide the following information related to the construction of the system:

3.1 Fabrication of Facing Units

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>(a)</td>
<td>Curing methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
<tr>
<td>(b)</td>
<td>Concrete surface finish requirements</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2 Field Construction Manual

Provide a documented field construction manual describing in detail and with illustrations as necessary the step-by-step construction sequence, including requirements for:

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Foundation preparation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) Special tools required</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) Leveling pad</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) Facing erection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) Facing batter for alignment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f) Steps to maintain horizontal and vertical alignment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g) Retained and backfill placement/compaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h) Erosion mitigation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(i) All equipment requirements</td>
</tr>
</tbody>
</table>

3.3 Contractor or Subcontractor Prequalification Requirements

List any contractor or subcontractor pre-qualifications.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(a)</td>
</tr>
</tbody>
</table>

Part Four: Performance

Provide the following information related to the performance of the system:

4.1 Project Performance History

Provide a well-documented history of performance (with photos, where available), including:

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Oldest</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) Highest</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) Projects experiencing maximum measured settlement (total and differential) measurements of lateral movement/tilt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) Demonstrated aesthetics possibilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) Maintenance history</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15-B.5 Proprietary Retaining Wall System Example Problems (by Preapproval Category):

Introduction:

This appendix includes example problems that are referenced in Appendix 15-B.3 and Appendix 15-B.4.

Submit all calculations in LRFD format, in accordance with the AASHTO LRFD Bridge Design Specifications, as modified by the ODOT GDM, unless specified otherwise. Investigate all applicable limit states (load combinations), with load factors selected to produce the total extreme force effects. Loads stated in the example problems are all unfactored loads (unless noted otherwise), and require the Manufacturer to apply appropriate load factors.

Calculations and computer output for each example problem shall include or be accompanied by a design narrative. The design narrative shall define all variables, state and justify all design assumptions and interpretations, describe all design steps performed, show the results of each design step, and show that the results satisfy all applicable design requirements. Include references to all applicable GDM, AASHTO, and FHWA sections. Also provide dimensioned plans, details, and sectional views showing the retaining wall design for each example problem. Once a proprietary retaining wall system is preapproved, the solved example problems will become the standard for preparation of all project specific proprietary retaining wall submittals, as well as for Agency review of the Manufacturer submittals.

The example problems show an MSE retaining wall system. If the proposed proprietary retaining wall system is not an MSE retaining wall system, the Manufacturer should substitute the proposed wall type, in accordance with the requirements of the example problems.

Unless specified otherwise in the example problems, the Manufacturer shall select the wall height to be used in the example problem calculations (subject to AASHTO and ODOT GDM requirements). The wall height used in the example problems, if preapproved by ODOT, will become the maximum wall height allowed for the specific retaining wall system on Agency projects.

Required example problems (by category):

- Highway retaining walls: Submit calculations for Retaining Wall Example Problems #1 and #2. Also submit Example Problem #4 when requesting preapproval for tiered Highway retaining wall applications.

- Bridge retaining walls: In addition to the calculations required for Highway retaining walls, submit calculations for Example Problem #3. Since the GDM does not allow the use of prefabricated modular bridge retaining walls, do not submit Example Problem #3 for proprietary prefabricated modular walls.

- Minor retaining walls: Submit calculations for Retaining Wall Example Problem #5 only.

Retaining Wall Example Problem #1:

- See Figure 15-15 Problem # 1.

- Wall is parallel to roadway

- Wall height: Maximum wall height for which preapproval is requested
• Design life: 75 years
• Backslope: Level
• Foreslope: Level
• EH Lateral earth pressure: Yes
• ES Earth surcharge load: No
• EV Vertical pressure from dead load of earth fill: Yes
• DC Component Dead Loads: Yes
• DW Dead load of future wearing surface: Assume DW = 50 psf
• LS Live load surcharge: Assume LS is present on the surface of the backfill within a distance equal to one-half the wall height behind the back face of the wall.

• EQ Earthquake loading:
 Assume the site adjusted seismic coefficient “A_s” = 0.30g.
 Assume the Agency EOR has determined that the M-O method is applicable but that Equation C11.6.5-1 is not applicable. Assume no reduction of k_h, i.e., k_h = “A_s”.

• CT Vehicular collision force for MSE walls - For this example problem:
 Assume type “F” 32” traffic barrier coping with self supporting base slab as shown in Figures 15-15 and Figure 15-7 is in Section 15.6.10).
 Assume no load is transferred directly from the moment slab to the wall facing.
 Assume traffic barrier coping/moment slab is designed by the Agency.
 The vehicular collision force shall be as specified in AASHTO LRFD 11.10.10.2 and the ODOT GDM.

• CT Vehicular collision force for prefabricated modular walls - For this example problem:
 Assume type 2A Guardrail (see ODOT Standard Drawing RD400) with 5.0 feet of embedment, and located at least three feet clear from the back of the wall.
 The vehicular collision force shall be as specified in AASHTO LRFD 11.10.10.2 and the ODOT GDM.

 Assume drained conditions for the reinforced soil, retained soil, and foundation soil.

 Assume reinforced backfill soil friction angle (\(\Phi_2 \)) = 34° (for MSE walls)

 Assume reinforced backfill cohesion (\(C_2 \)) = 0 psf (for MSE walls)
• **Assume** reinforced backfill unit weight (γ_2) = 130 pcf (for MSE walls)

• **Assume** retained soil friction angle (Φ_1) = 32°

• **Assume** retained soil cohesion (C_1) = 0 psf

• **Assume retained** soil unit weight (γ_1) = 120 pcf

• **Assume foundation soil friction angle (Φ_3) = 30°

• **Assume foundation soil cohesion (C_3) = 0 psf

• **Assume foundation soil unit weight (γ_3) = 120 pcf

• **Assume** wall embedment = H/20 or 2.0 feet (whichever is greater)

• **Assume** bearing resistance and settlement of foundation soils is acceptable for all limit states

• Assume overall stability is acceptable

• **Assume** overall stability does not govern reinforcement length (for MSE walls)
Figure 15-15 Problem #1.
Retaining Wall System Example Problem #2:

- See Figure 15-16 Problem # 2.
- Wall is parallel to roadway
- Wall height: Assume the maximum wall height for which preapproval is requested
- Design life: 75 years
- Backslope (β): 1V:2H (assume length of slope is 100 feet)
- Foreslope: Level
- EH Lateral earth pressure: Yes
- ES Earth surcharge load: No
- EV Vertical pressure from dead load of earth fill: Yes
- DC Component Dead Loads: Yes
- DW Dead load of future wearing surface: No
- LS Live load surcharge: No
- EQ Earthquake load:

 Assume the site adjusted seismic coefficient “A_s” = 0.30g.

 Assume the Agency EOR has determined the M-O method is not applicable.

 Assume the total seismic thrust coefficient (K_AE) was obtained using the GLE method in accordance with FHWA, 2009.

 Assume the total seismic thrust coefficient (K_AE) equals 1.00. Use K_AE to calculate the total seismic thrust (P_AE) which includes both the active (static) thrust and the dynamic (seismic) thrust.

 Calculate P_AE based on the height H_2 = H + [(0.5H*Tan(β))/(1-0.5*Tan(β))], where H is shown in Figure 15-6.

 Assume the total seismic thrust (P_AE) is applied at a height of H_2/2 at the same inclination of the backslope (1V:2H).

 Assume the total horizontal inertial force of the reinforced wall P_w = \frac{1}{2}A_s*W, where W is the full weight of the reinforced backfill plus the permanent slope above the reinforced soil mass. The inertial force is assumed to act at the dynamic center of mass of the combined reinforced soil mass and the overlying slope.

 Assume a load factor for EQ loads (γ_EQ) of 1.00 to calculate total seismic thrust (P_AE) and inertial forces (P_{IR}).
• CT Vehicular collision force (on barrier): No
• Traffic Barrier at top of wall on barrier coping: No
• Standard cast in place concrete coping at top of wall: Yes
• Assume drained conditions in reinforced soil, retained soil, and foundation soil
• Assume reinforced backfill soil friction angle (ϕ_2) = 34° (for MSE walls)
• Assume reinforced backfill cohesion (C_2) = 0 psf (for MSE walls)
• Assume reinforced backfill unit weight (γ_2) = 130 pcf (for MSE walls)
• Assume retained soil friction angle (ϕ_1) = 32°
• Assume retained soil cohesion (C_1) = 0 psf
• Assume retained soil unit weight (γ_1) = 120 pcf
• Assume foundation soil friction angle (ϕ_3) = 30°
• Assume foundation soil cohesion (C_3) = 0 psf
• Assume foundation soil unit weight (γ_3) = 120 pcf
• Assume wall embedment = $H/20$ or 2.0 feet (whichever is greater)
• Assume soil bearing resistance and settlement of foundation soils is acceptable for all limit states
• Assume overall stability is acceptable
• Assume overall stability does not govern reinforcement length (for MSE walls)
Figure 15-16 Problem # 2.
Retaining Wall System Example Problem #3:

- See Figure 15-17 Problem # 3.
- Wall is transverse to upper roadway (not “U” or “L” shaped).
- Assume wall height “H”=22.0 feet
- Design life: 75 years
- Backslope: Level
- Foreslope: Level
- EH Lateral earth pressure: Yes
- ES Earth surcharge load: Unfactored bridge reactions on spread footing are as follows:
 - P_v (dead) = 3.00 k/(ft of wall)
 - P_v (live) = 3.50 k/(ft of wall)
 - P_h (seismic, normal to wall) = 1.00 k/(ft of wall)
- EV Vertical pressure from dead load of earth fill: Yes
- DC Component Dead Loads: Yes
- DW Dead load of future wearing surface: DW = 50 psf
- LS Live load surcharge: LS is present on the surface of the backfill, within a distance equal to one-half the wall height behind the back face of the wall.
- EQ Earthquake load

 Assume the site adjusted seismic coefficient $A_s = 0.30g$.
 Assume the Agency EOR has determined that the M-O method is applicable but that Equation C11.6.5-1 is not applicable. Assume no reduction of k_h, i.e., $k_h = A_s$.
- Assume drained conditions in reinforced soil, retained soil, and foundation soil
- Assume reinforced backfill soil friction angle $(\Phi_2) = 34^\circ$ (for MSE walls)
- Assume reinforced backfill cohesion $(C_2) = 0$ psf (for MSE walls)
- Assume reinforced backfill unit weight $(\gamma_2) = 130$ pcf (for MSE walls)
- Assume retained soil friction angle $(\Phi_1) = 32^\circ$
- Assume retained soil cohesion $(C_1) = 0$ psf
• Assume retained soil unit weight (γ_1) = 120 pcf
• Assume foundation soil friction angle (Φ_3) = 30°
• Assume foundation soil cohesion (C_3) = 0 psf
• Assume foundation soil unit weight (γ_3) = 120 pcf
• Assume wall embedment = $H/10$ or 2.0 feet (whichever is greater)
• Assume the bearing resistance and settlement of foundation soil is acceptable for all limit states
• Assume overall stability is acceptable

• Assume overall stability does not govern reinforcement length (for MSE walls)
Figure 15-17 Problem #3.
Retaining Wall System Example Problem #4

- See Figure 15-18 Problem # 4

- Walls are parallel to roadway

- Wall heights:

 Assume total wall height “H” is the maximum wall heights for which preapproval is requested.

 Assume H1 = H2 = H/2

- Design life: 75 years

- Backslope (upper wall): 1V:2H (assume length of slope is 100 feet)

- Backslope (lower wall): Level

- Foreslope (lower wall): Level

- EH Lateral earth pressure: Yes

- ES Earth surcharge load: Upper wall on lower wall

- EV Vertical pressure from dead load of earth fill: Yes

- DC Component Dead Loads: Yes

- DW Dead load of future wearing surface: No

- LS Live load surcharge: No

- EQ Earthquake load:

 Assume the site adjusted seismic coefficient “A_s” = 0.30g.

 Assume the Agency EOR has determined the M-O method is not applicable.

 Assume the total seismic thrust coefficient (K_{AE}) was obtained using the GLE method in accordance with FHWA, 2009.

 Assume the total seismic thrust coefficient (K_{AE}) equals 1.00. Use K_{AE} to calculate the total seismic thrust (P_{AE}) which includes both the active (static) thrust and the dynamic (seismic) thrust.

 Calculate P_{AE} based on the height H_3 = H + [(0.5H_1 * Tan(\beta))/(1-0.5*Tan(\beta))], where H and H_1 are shown in Figure 15.18.
Assume the total seismic thrust (P_{AE}) is applied at a height of $H_3/2$ at the same inclination of the backslope (1V:2H).

Assume the total horizontal inertial force of the reinforced wall $P_{IR} = \frac{1}{2}A_sW$, where W is the full weight of the reinforced backfill plus the permanent slope above the reinforced soil mass. The inertial force is assumed to act at the dynamic center of mass of the combined reinforced soil mass and the overlying slope.

Assume a load factor for EQ loads (γ_{EQ}) of 1.00 to calculate total seismic thrust (P_{AE}) and inertial force (P_{IR}).

- CT Vehicular collision force (on barrier): No
- Traffic Barrier at top of wall on barrier coping: No
- Standard cast in place concrete coping at top of walls: Yes
- Assume drained conditions for reinforced soil, retained soil, and foundation soil
- **Assume reinforced** backfill soil friction angle (Φ_2) = 34° (for MSE walls)
- **Assume reinforced** backfill cohesion (C_2) = 0 psf (for MSE walls)
- **Assume reinforced** backfill unit weight (γ_2) = 130 pcf (for MSE walls)
- **Assume retained** soil friction angle (Φ_1) = 32°
- **Assume retained** soil cohesion (C_1) = 0 psf
- **Assume retained** soil unit weight (γ_1) = 120 pcf
- **Assume foundation soil friction angle (Φ_3) = 30°
- **Assume foundation soil cohesion (C_3) = 0 psf
- **Assume foundation soil unit weight (γ_3) = 120 pcf
- Assume lower wall embedment = $H/20$ or 2 feet, whichever is greater
- Assume upper wall embedment = 1.0 feet
- **Assume foundation soil bearing resistance and settlement are acceptable at all applicable limit states.**
- Assume overall stability is acceptable
- Assume overall stability does not govern reinforcement length (for MSE walls)
Problem #4

Figure 15-18 Problem # 4
Retaining Wall System Example Problem #5:

- See Figure 15-19 Problem #5.

- See Section 15.3.23 for wall types that may be used for proprietary minor walls.

- Wall is parallel to roadway

- Wall height: 4.0 feet

- Design life: 75 years

- Backslope: Level

- Foreslope: Level

- EH Lateral earth pressure: Yes

- ES Earth surcharge load: No

- EV Vertical pressure from dead load of earth fill: Yes

- EQ Earthquake load: No

- DC Component Dead Loads: Yes

- DW Dead load of future wearing surface: No

- LS Live load surcharge: No

- CT Vehicular collision force: No

- Assume drained conditions in retained and foundation soil

- Assume retained soil friction angle (Φ_1) = 32°

- Assume retained soil cohesion (C_1) = 0 psf

- Assume retained soil unit weight (γ_1) = 120 pcf

- Assume wall embedment: 0.5 feet

- Assume foundation soil bearing resistance and settlement are acceptable for all limit states

- Assume overall stability is acceptable

- Assume the active earth pressure coefficient (k_a) = 0.31

- Base coefficient of friction = 0.45 when designing sliding stability
Problem #5

Figure 15-19 Problem # 5.
15-B.6 Requirements for Proprietary Retaining Wall System Detail Drawings (by Preapproval Category):

Provide the following drawings for proprietary retaining wall systems (as a minimum):

15-B.6.1 Bridge Retaining Wall Systems
- Wall elements
- Connection details
- Details at bridge abutment
- Appurtenance connection details
- Obstruction avoidance details
- Corrosion protection details
- Basic wall construction details
- Roadway drainage inlet details
- Drainage swale at top of wall
- Typical drainage details behind wall
- Culverts through wall
- Sidewalk at top of wall
- Pedestrian rail at top of wall
- Fencing at top of wall
- Traffic barrier at top of wall
- Guardrail at top of wall
- Standard coping
- Barrier coping
- Leveling pad or other base details
- Backfill reinforcement details (MSE walls)

15-B.6.2 Highway Retaining Wall Systems
- Wall elements
- Connection details
- Appurtenance connection details
- Obstruction avoidance details
- Corrosion protection details
- Basic wall construction details
- Roadway drainage inlet details
• Drainage swale at top of wall
• Typical drainage details behind wall
• Culverts through wall
• Sidewalk at top of wall
• Pedestrian rail at top of wall
• Fencing at top of wall
• Traffic barrier at top of wall
• Guardrail at top of wall
• Standard coping
• Barrier coping
• Sidewalk coping
• Leveling pad or other base details
• Backfill reinforcement details (MSE walls)

15-B.6.3 Minor Retaining Wall Systems

• Basic wall construction details
• Typical drainage details at heel of wall
Appendix 15-C Guidelines for Review of Proprietary Retaining Wall System Working Drawings and Calculations

Review contract plans, special provisions, applicable Standard Specifications, any contract addendums, Appendix 15-D for the specific wall system proposed in the shop drawings, and Appendix 15-A as preparation for reviewing the shop drawings and supporting documentation. Also review Chapter 15 and the applicable AASHTO LRFD design specifications as needed to be fully familiar with the design requirements. If a HITEC report is available for the wall system, it should be reviewed as well.

The shop drawings and supporting documentation should be quickly reviewed to determine whether or not the submittal package is complete. Identify any deficiencies in terms of the completeness of the submittal package. The shop drawings should contain wall plans for the specific wall system, elevations, and component details that address all of the specific requirements for the wall as described in the contract documents. The supporting documentation should include calculations supporting the design of each element of the wall (i.e., soil reinforcement density, corrosion design, connection design, facing structural design, external wall stability, special design around obstructions in the reinforced backfill, etc., and example hand calculations demonstrating the method used by any computer printouts provided and that verify the accuracy of the computer output. The contract will describe specifically what is to be included in the submittal package.

15-C.1 Design Issues

The following design issues should have already been addressed by the Geotechnical designer of record in the development of the contract requirements:

- Design parameters are appropriate for the site soil/rock conditions
- Wall is stable for overall stability and compound stability (service and extreme event limit states)
- Settlement is within acceptable limits for the specific wall type(s) allowed by the contract (service limit state)
- The design for any mitigating measures to provide adequate bearing resistance, overall stability, compound stability, to address seismic hazards such as liquefaction consistent with the policies provided in Chapter 6 of the ODOT GDM, and to keep settlement within acceptable tolerances for the allowed wall is fully addressed (service, strength and extreme event limit states)
- The design for drainage of the wall, both behind and within the wall, has been completed and is implemented to insure long-term drainage
15-C.2 External stability design

15-C.2.1 Structure Geometry
Are the structure dimensions, design cross-sections, and any other requirements affecting the design of the wall consistent with the contract requirements? As a minimum, check wall length, top elevation (both coping and barrier, if present), finished ground line elevation in front of wall, horizontal curve data, and locations and size of all obstructions (e.g., utilities, drainage structures, sign foundations, etc.) in the reinforced backfill, if any are present.

15-C.2.2 Design Procedure
Has the correct design procedure been used, including the correct earth pressures, earth pressure coefficients, and any other input parameters specified in the contract, both for static and seismic design?

15-C.2.3 Load Combinations
Have appropriate load combinations for each limit state been selected?

15-C.2.4 Load Factors
Have the correct load factors been selected, both in terms of magnitude and for those load factors that have maximum and minimum values, has the right combination of maximum and minimum values been selected?

15-C.2.5 Live Load
Has live load been treated correctly regarding magnitude and location (over reinforced zone for bearing, behind reinforced zone for sliding and overturning)?

15-C.2.6 Seismic
Have the correct PGA, A_s, k_h, and k_v, been used for seismic design for external stability?

15-C.2.7 Resistance Factors
Have the correct resistance factors been selected for each limit state, and is the wall stable against sliding?

15-C.2.8 Soil Properties
Have the correct soil properties been used in the analysis (reinforced zone properties and retained fill properties)?

15-C.2.9 External Loads
Have the required external loads been applied in the analysis (external foundation loads, soil surcharge loads, etc.)?
15-C.2.10 Wall Widths
Have minimum specified wall widths (i.e., AASHTO LRFD specified minimum reinforcement lengths, ODOT GDM, Chapter 15 specified minimum reinforcement lengths, and minimum reinforcement lengths specified to insure overall stability), in addition to those required for external and internal stability, been met in the final wall design?

15-C.2.11 Wall Embedment
Does the wall embedment meet the minimum embedment criteria specified?

15-C.2.12 Bearing Stresses
Are the maximum factored bearing stresses less than or equal to the factored bearing resistance for the structure for all limit states (service, strength, and extreme event)?

15-C.2.13 Computer Output Checks
Has the computer output been hand checked to verify the accuracy of the computer program calculations (compare hand calculations to the computer output; also, a spot check calculation by the reviewer may also be needed if the calculations do not look correct for some reason)?

15-C.2.14 Special Design Requirements
Have all the special design requirements specified in the contract that are in addition to the ODOT GDM and AASHTO LRFD Specification requirements been implemented in the Manufacturer’s design?

15-C.2.15 Design Documents and Plan Details
Have the design documents and plan details been certified in accordance with the contract?

15-C.3 Internal stability design

15-C.3.1 Design Procedure
Has the correct design procedure been used, including the correct earth pressures and earth pressure coefficients?

15-C.3.2 Load Combinations
Have the appropriate load combinations for each limit state been selected?

15-C.3.3 Load Factors
Have the correct load factors been selected?

15-C.3.4 Live Load
Have live load been treated correctly regarding magnitude and location (over reinforced zone for bearing, behind reinforced zone for sliding and overturning)?
15-C.3.5 External Surcharge Loads
Have the effects of any external surcharge loads, including traffic barrier impact loads, been taken into account in the calculation of load applied internally to the wall reinforcement and other elements?

15-C.3.6 Seismic
Have the correct seismic parameters been used for seismic design for internal stability?

15-C.3.7 Resistance Factors
Have the correct resistance factors been selected for design for each limit state?

15-C.3.8 Reinforcement and Connector Properties
Have the correct reinforcement and connector properties been used?

- For steel reinforcement, have the steel reinforcement dimensions and spacing been identified?

- For steel reinforcement, has it been designed for corrosion using the correct corrosion rates, correct design life (75 years, unless specified otherwise in the contract documents)?

- Have the steel reinforcement connections to the facing been designed for corrosion, and has appropriate separation between the soil reinforcement and the facing concrete reinforcement been done so that a corrosion cell cannot occur, per the AASHTO LRFD Specifications?

- For geosynthetic reinforcement products selected, are the long-term design nominal strengths, Tal, used for design consistent with the values of Tal provided in the ODOT Qualified Products List (QPL)?

- Are the soil reinforcement - facing connection design parameters used consistent with the connection plan details provided? For steel reinforced systems, such details include the shear resistance of the connection pins or bolts, bolt hole sizes, etc. For geosynthetic reinforced systems, such details include the type of connection, and since the connection strength is specific to the reinforcement product (i.e., product material, strength, and type) – facing unit (i.e., material type and strength, and detailed facing unit geometry) combination, and the specific type of connector used, including material type and connector geometry, as well as how it fits with the facing unit. Check to make sure that the reinforcement – facing connection has been previously approved and that the approved design properties have been used.

- If a coverage ratio, R_c, of less than 1.0 is used for the reinforcement, and its connection to the facing, has the facing been checked to see that it is structurally adequate to carry the earth load between reinforcement connection points without bulging of facing units, facing unit distress, or over stressing of the connection between the facing and the soil reinforcement?

- Are the facing material properties used by the wall supplier consistent with what is required to produce a facing system that has the required design life and that is durable in light of the environmental conditions anticipated? Have these properties been backed up with appropriate supporting test data? Is the facing used by the supplier consistent with the aesthetic requirements for the project?
15-C.3.9 Limit States
Check to make sure that the following limit states have been evaluated, and that the wall internal stability meets the design requirements:

- Reinforcement resistance in reinforced backfill (strength and extreme event)
- Reinforcement resistance at connection with facing (strength and extreme event)
- Reinforcement pullout (strength and extreme event)

15-C.3.10 Obstructions
If obstructions such as small structure foundations, culverts, utilities, etc., must be placed within the reinforced backfill zone (primarily applies to MSE walls), has the design of the reinforcement placement, density and strength, and the facing configuration and details, to accommodate the obstruction been accomplished in accordance with the ODOT GDM, and AASHTO LRFD Specifications?

15-C.3.11 Computer Output
Has the computer output for internal stability been hand checked to verify the accuracy of the computer program calculations (compare hand calculations to the computer output; also, a spot check calculation by the reviewer may also be needed if the calculations do not look correct for some reason)?

15-C.3.12 Specific Requirements
Have the specific requirements, material properties, and plan details relating to internal stability specified in the sections that follow been used?

15-C.3.13 Structural Design and Detail Review
Note that for structural wall facings for MSE walls, design of prefabricated modular walls, and design of other structural wall systems, a structural design and detail review should be conducted in accordance with the AASHTO LRFD Specifications).

- Compare preapproved wall details to the shop drawing regarding the concrete facing panel dimensions, concrete cover, rebar size, orientation and location. This also applies to any other structural elements of the wall (e.g., steel stiffeners for welded wire facings, concrete elements and components of modular walls whether reinforced or not, etc.).
- Do the geometry and dimensions of any traffic barriers or coping shown on shop drawings match with what is required by contract drawings (may need to check other portions of contract plans for verification? Has the structural design and sizing of the barrier/reaction slab been done consistently with the AASHTO specifications? Are the barrier details constructible?
- Do notes in the shop drawings state the date of manufacture, production lot number, and piece mark be marked clearly on the rear face of each panel (if required by special the contract provisions)?
15-C.4 Wall Construction Sequence Requirements

Wall construction sequence and requirements provided in shop drawings should follow the guidelines defined in the next sections.

15-C.4.1 Construction Sequence

Make sure construction sequence and notes provided in the shop drawings do not conflict with the contract specifications (e.g., minimum lift thickness, compaction requirements, construction sequence and details, etc.). Any conflicts should be pointed out in the shop drawing review comments.

15-C.4.2 Preapproved Details and Contract Requirements

Make sure any wall/slope corner or angle point details are consistent with the preapproved details and the contract requirements, both regarding the facing and the soil reinforcement. This also applies to overlap of reinforcement for back-to-back walls.
Appendix 15-D Preapproved Proprietary Retaining Wall Systems

Appendix 15-D is now located on the ODOT Retaining Structures Web Page:

http://www.oregon.gov/ODOT/HWY/GEOENVIRONMENTAL/retaining_structures.shtml
Table of Contents

16. Foundation Design for Signs Signals, Luminaires, Sound Walls and Buildings ... 16-1
 16.1. General ... 16-1
 16.2. Site Reconnaissance .. 16-2
 16.3. Field Investigation ... 16-2
 16.4. Foundation Design .. 16-2
 16.5. Traffic Structures .. 16-3
 16.5.1. Traffic Structures Standard Drawings ... 16-3
 16.5.2. Foundation Design of Traffic Structures ... 16-3
 16.6. Soundwalls ... 16-13
 16.6.1. Soundwall Standard Drawings ... 16-13
 16.6.2. Foundation Design of Soundwalls ... 16-14
 16.7. Foundation Construction Considerations .. 16-16
 16.8. Buildings ... 16-16
 16.8.1. Overview ... 16-16
 16.8.2. Design Requirement for Buildings .. 16-17
 16.9. References ... 16-20

17. Culverts and Trenchless Technology Design ... 17-1
 17.1. General ... 17-1

18. Construction Recommendations and Report ... 18-1
 18.1. General ... 18-1
 18.2. Roadway Construction Support ... 18-2
 18.3. Bridge Construction Support ... 18-2
 18.3.1. Spread Footing Construction ... 18-2
 18.3.2. Driven Pile Construction .. 18-2
 18.3.3. Drilled Shaft Construction .. 18-4
 18.4. References ... 18-7
Appendix 18-A: Pile Inspector Graph ... 18-8
Appendix 18-B: Hammer Approval Letter .. 18-9

19. Unstable Slope Management ... 19-1
 19.1. General ... 19-1

20. Material Source Investigation and Report .. 20-1
 20.1. General ... 20-1
 20.2. Material Source and Disposal Site Definitions ... 20-2
 20.3. Material Source and Disposal Site Project Scoping 20-3
 20.4. Material Source and Disposal Site Project Reconnaissance 20-3
 20.5. Right-of-Way Needs for Material and Disposal Sites 20-4
 20.6. Environmental Clearances for Material Sources and Disposal Sites 20-5
 20.7. Material Source and Disposal Site Investigation 20-5
 20.8. Material Source and Disposal Site Sampling and Testing 20-7
 20.9. Material Source and Disposal Site Exploration Logging 20-7
 20.10. Material Source and Disposal Site Mapping .. 20-8
 20.11. Design and Development of Material Sources and Disposal Sites 20-9
List of Figures
Figure 16-1. Rock Installation Requirements ... 16-9
Figure 16-2. Soil types and design criteria for Cantilever Sign Supports (from ODOT Drawing TM626) ... 16-9
Figure 16-3. Rutledge Nomograph for Estimating Post Embedment under Lateral Loads (AASHTO, 2001) ... 16-12
Figure 16-4. Design chart for proportioning shallow footings on dry sand (redrafted from Peck, et al., 1974) ... 16-19
Figure 21-1. Example presentation of bearing resistance recommendations 21-16
Figure 21-2. Example presentation of pile bearing resistance and uplift 21-17
Figure 21-3. Typical shaft bearing resistance plots (all limit states) 21-23
Figure 21-4. Example of bearing resistance recommendations for gravity walls 21-26
Figure 21-5. Example of lateral earth pressures for gravity wall design 21-27
Figure 21-6. Example presentation of lateral earth pressures for non-gravity cantilever and anchored wall design .. 21-28

List of Tables
Table 16-1. Relationship of SPT 'N60' value, internal friction angle and unit weight of cohesionless soils ... 16-6
Table 16-2. Relationship of SPT 'N60' value and soil properties for cohesive soils 16-7
Table 16-3. Footing width and depths for Standard Luminaire Supports 16-11
Table 16-4. Allowable Foundation and Lateral Pressure, (2003 IBC, Table 1804.2) 16-17
Table 16-5. Minimum factors of safety for ASD foundation design 16-17
Table 21-1. Example presentation of soil design parameters for sliding and eccentricity calculations ... 21-15
Table 21-2. Example presentation of resistance factors for footing design 21-15
Table 21-3. Example presentation of bearing resistance recommendations 21-16
Table 21-4. Example presentation of resistance factors for pile design 21-17
Table 21-5. Pile Resistances & Estimated Lengths (Br. 12345) 21-18
Table 21-6. Soil Parameters for Lateral Load Analysis (non-liquefied soil condition) . 21-19
Table 21-7. Example of a completed table ... 21-21
Table 21-8. Example presentation of soil design parameters for design of non-gravity cantilever walls and anchored walls 21-27
16. Foundation Design for Signs, Luminaires, Sound Walls and Buildings

16.1. General

This chapter covers the geotechnical design of traffic structures, soundwalls, and small buildings. Traffic structures include sign bridges, cantilevered signs, signal supports, strain poles, illumination and camera poles. Sound walls (also referred to as Sound Barriers, Noise Walls, and Noise Barriers) are walls that are used to mitigate traffic noise effects. Small buildings typically include single story structures such as those required for ODOT maintenance facilities, park and ride lots or rest areas.

AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals and AASHTO Guide Specifications for Structural Design of Sound Barriers both currently refer to AASHTO Standard Specifications for Highway Bridges (which uses Allowable Stress Design, and in some cases Load Factor Design). The design approach used for the foundation design must be consistent with the design approach used for the structure.

Standard drawings have been developed for most of the traffic structures and soundwalls and many (but not all) of these drawings include standard foundation designs as well. Either shallow spread footings or short drilled shafts are the typical foundation types used to support these structures. Each foundation design shown on a standard drawing is based on a certain set of foundation material properties, groundwater conditions and other factors which must be met in order to use the foundation design shown on the standard drawing. These foundation material properties, groundwater and other conditions are described on the standard drawings.

For standard foundation designs with assumed geotechnical conditions, the geotechnical designer will determine whether actual site conditions are consistent with the assumed conditions. Based upon the recommendations of the geotechnical designer, the structural designer will either specify the use of a standard foundation or will design a special (non-standard) foundation.
16.2. Site Reconnaissance

General procedures for site reconnaissance are presented in Chapter 2. Prior to the site reconnaissance, the location of the structures should be staked in the field, or an accurate and up-to-date set of site plans identifying the location of these structures should be available. An office review of all existing data pertinent to the site and the proposed foundations should also be conducted prior to the site reconnaissance. The geotechnical designer should have access to detailed plan views showing existing site features, utilities, proposed construction and right-of-way limits.

With this information, the geotechnical designer can review structure locations, making sure that survey information agrees reasonably well with observed topography.

During the site reconnaissance consider the following:

- Existing slopes (natural and cut) in the immediate vicinity of the structures should be inspected and their performance evaluated.
- Observation of existing slopes should include types of vegetation that may indicate wet or unstable soil. Equisetum (horsetail), cattails, blackberry and alder may be indicative of wet or possibly unstable soils.
- It is especially important to establish the presence of high ground water and any areas of soft soil, unstable ground or exposed bedrock.
- Potential geotechnical hazards such as landslides that could affect the structures should be identified.
- The identification and extent/condition (i.e., thickness) of existing man-made fills should be noted.
- Surface and subsurface conditions that could affect constructability of the foundations, such as the presence of utilities, shallow bedrock, or cobbles and boulders, should be identified.

Many of these structures have very shallow foundations and the investigation may only consist of general site reconnaissance with minimal subsurface investigation.

16.3. Field Investigation

All new soundwalls, traffic structures or buildings require some level of subsurface investigation. Considerable judgment is needed to determine which structures will need site-specific field investigations such as borings or test pits. If the available geotechnical data and information gathered from the site reconnaissance and/or office review is not adequate to make an accurate determination of subsurface conditions, then site specific subsurface data should be obtained through a more extensive subsurface investigation. Refer to Chapter 3 for details regarding the investigation requirements for these types of structures.

16.4. Foundation Design

Standard foundation designs for these structures typically consist of spread footings (continuous or individual) or short drilled shafts. These standard drawings are typically used at sites where the soil conditions are relatively uniform with depth. Lateral loads such as wind and seismic usually govern the foundation designs for these structures. The foundation designs provided on the Standard Drawings have been developed over many years, using a variety of foundation design methods.
Therefore, the foundation design method used for each of the standard drawings is discussed separately in the following sections. The standard drawings can be obtained from the following ODOT web site:

16.5. Traffic Structures

16.5.1. Traffic Structures Standard Drawings

Refer to the ODOT Roadway Engineering Services web site for a list of all the standard drawings for traffic structures. The traffic standard drawings that have standard foundation designs are summarized as follows:

- VMS Bridges;
 - TM611: Standard Truss Type VMS Bridge 50’ to 167’ Span Range; Foundation Type: Spread Footing.

- Sign Bridges;
 - TM619: Standard Truss Type Sign Bridge 50’ to 167’ Span Range; Foundation Type: Spread Footing.

- Cantilever Signs;
 - TM626: Standard Monotube Cantilever Sign Support, Foundation Type: Spread Footing.

- Luminaire Supports;
 - TM 630: Slip Base and Fixed Base Luminaire Supports; Foundation Type: Square or Round Footing/Shafts

Standard foundation designs for traffic signal supports (cantilever signal poles and strain pole foundations) are no longer on standard drawings. These are typically short drilled shafts and the shaft foundation diameters and depths are determined based on site specific designs.

High Mast Luminaire Supports are rarely used and therefore standards are now available only as a roadway detail drawing. These structures are typically supported on drilled shafts.

16.5.2. Foundation Design of Traffic Structures

Traffic structures are designed using the procedures described in the ODOT Traffic Structures Design Manual. In addition to the ODOT Traffic Structures Design Manual, the design of mast arm signal poles, strain poles, monotube cantilever sign supports, sign and VMS truss bridges, luminaire poles, high mast luminaire supports and camera poles shall be performed in accordance with the most current version of the AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals.

The foundation conditions should be investigated in accordance with Section 16.3. Some additional considerations regarding the characterization of soil conditions are as follows:

Volume 3 ODOT Geotechnical Design Manual April 2010
Standard Foundation Designs

Use these drawings for sites with soils consistent with those described on the standard drawings. Consider the soil throughout the entire depth of the proposed foundation. Where the foundation soil is stratified, a weighted average SPT “N” value, \(\overline{N} \), should be used to design the foundation. An exception to this would be where soft or organic soils are encountered at the ground surface (or at depth), in which case the use of a weighted average is not appropriate and non-standard designs may be needed.

\(\overline{N} \) can be calculated based on the following equation:

\[
\overline{N} = \frac{\sum_{i=1}^{n} d_i N_i}{\sum_{i=1}^{n} d_i}
\]

- \(N_i \) = standard penetration resistance as measured directly in the field, uncorrected blow count, of \(\text{“ith” soil layer} \) (not to exceed 100 blows per foot)
- \(d_i \) = thickness of \(\text{“ith” soil layer} \) (ft.)
- \(n \) = total number of distinctive soil layers within the depth of the shaft or within 2B below the bottom of footings (B = footing width)
- \(i \) = any one of the layers between 1 and \(n \)

In general, sign, signal, and luminaire structure dead loads are relatively small, but wind loads on the structure can still lead to high vertical and lateral soil bearing pressures. Where soil bearing pressures could lead to unacceptable deflection or settlement of the structure or foundation, consideration should be given to a special foundation design.

Non-Standard Foundation Designs

Special foundation designs are required for sites where the site conditions do not meet the requirements of the standard drawings. These include sites with poor soils and any of the following:

- soil, rock or groundwater conditions are present that are not suitable for using the standard foundations,
- multiple soil layers within the foundation depth (or depth of influence) with extreme contrasting strength and soil characteristics (such that the weighted average SPT approach is not applicable),
- slopes are too steep or other site conditions are marginally stable,
- non-standard loads are applied.

If the foundation soil consists of very soft clays, silts, organic silts, or peat it may be possible to over-excavate the very soft compressible soils and replace with higher quality material if the soft layer is fairly shallow. If not, deeper and/or larger diameter foundations are typically required.

For foundations on rock, a special design is typically required. Fracturing and jointing in the rock, and its effect on the foundation resistance, must be evaluated carefully on a case-by-case basis.
For shafts in rock, lateral resistance should be estimated based on the procedures provided in Chapter 8. This means that for special lateral load designs of shaft foundations, the geotechnical designer will need to develop soil input data for developing P-y curves for modeling the bedrock condition.

For drilled shaft type foundations in soil, the Broms’ Method as specified in the AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals (AASHTO, 2001) or the procedures specified in Chapter 8 for lateral load analysis of deep foundations (e.g., P-y or strain-wedge type analysis) should typically be used for these special cases unless otherwise noted in this chapter.

For spread footing design, the design methods referenced in Chapter 8 to estimate nominal bearing resistance and settlement should be used. However, instead of the referenced load groups and resistance factors for AASHTO LRFD design, the AASHTO Standard Specifications for Highway Bridges (2002) combined with a minimum bearing capacity safety factor of 2.3 for Load Factor Design (LFD), or 3.0 for allowable stress or service load design (ASD) should be used for static conditions. A safety factor of 1.1 should be used for seismic conditions, if seismic conditions are applicable.

Note:

Note that in general, foundations for traffic structures are not designed for seismic loads nor mitigated for liquefaction.

Sloping Ground Conditions

The footing dimensions and shaft depths provided on the standard drawings typically assume relatively flat ground surface conditions or a certain setback distance back from a slope break. Most of the standard drawings for traffic structures require a minimum of 3 feet of cover over the top of the footing. Refer to the individual drawings for guidance on these restrictions.

Always evaluate whether or not the local geometry will affect the foundation design.

If sloping ground is present, or does not otherwise meet the requirements of the drawing, some special considerations in determining the foundation depth are needed. For spread footings constructed on slopes refer to Article 4.4.7.1 of AASHTO (2002). Consult with the traffic structure designer to determine the design requirements for these non-standard cases. When a non-standard foundation design is required, the geotechnical designer must identify the soil units, soil layer elevations and groundwater data and provide soil design properties for each soil unit for use in preparing the non-standard foundation design.

16.5.2.1 Mast Arm Signal and Strain Poles

The standard drawings for Mast Arm Signal Poles are TM650 through TM653. The Strain Pole standard drawings are TM660 and TM661. These structures generally consist of a single vertical metal pole member (mast arm pole or strain pole) of various heights. The cantilever signal poles support a horizontal signal (or mast) arm. Lights, signals and/or cameras will be suspended or supported from the mast arm. For strain poles, cables extend horizontally from the poles across the roadway and signals and/or lights are attached to the cables. Both types of poles may have luminaires attached to the top.

Foundation support for both the standard mast arm signal poles and strain poles are typically drilled shafts ranging in diameter from 36 to 42 inches. Typical shaft depths range from about 6'-6" to 18'-
depending on the signal pole required (loading condition), the properties of the foundation materials and groundwater conditions.

The foundation conditions at the signal pole site should be investigated and characterized in terms of soil type, soil unit weight, and soil friction angle or undrained shear strength. The unit weight and internal friction angle (or undrained shear strength) may be determined by standard subsurface investigation techniques such as using the Standard Penetration Test (SPT) or other approved methods.

In addition to the soil conditions, the groundwater conditions also affect soil strength and the depth of shaft embedment. The groundwater depth at the site needs to be determined and provided in the Geotechnical Report. Groundwater monitoring using piezometers may be needed as appropriate to detect and record seasonally fluctuations in groundwater levels. Refer to AASHTO (1988) for guidance in groundwater monitoring. The highest groundwater depth expected at any time during the life of the structure should be reported in the Geotechnical Report and used in the analysis.

Approximate relationships between SPT ‘N’ values, unit weights, soil friction angles and undrained shear strength are provided in Table 16-1 and Table 16-2. All field SPT ‘N’ values should be adjusted to a hammer energy of 60% (N'60). Only the ‘N’ values used in Table 16-1 are corrected (normalized) for overburden pressure (N'60). For the majority of signal and strain pole projects these approximations, combined with engineering judgment, will suffice for classifying the foundation soils and determining the appropriate properties for foundation design. In soft cohesive materials, ‘N’ values are not reliable for determining engineering properties for design and field or laboratory testing is recommended.

For granular soils, Table 16.1 may be used to estimate soil properties for design. This table is based on data for relatively clean sands. Therefore, selected values of φ' based on SPT ‘N’ values should be reduced by 5° for clayey sands and the value from the table should be increased by 5° for gravelly sands.

Table 16-1. Relationship of SPT ‘N60’ value, internal friction angle and unit weight of cohesionless soils

Note:

<table>
<thead>
<tr>
<th>Description</th>
<th>SPT N’60* value (blows/ft.)</th>
<th>Approximate Angle of Internal Friction (Φ)**</th>
<th>Moist Unit Weight (pcf)</th>
<th>Field Approximation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Loose</td>
<td>0 – 4</td>
<td>< 30</td>
<td>70 – 100</td>
<td>Easily penetrated many inches (>12) with ½ inch rebar pushed by hand.</td>
</tr>
<tr>
<td>Loose</td>
<td>4 – 10</td>
<td>30 – 35</td>
<td>90 – 115</td>
<td>Easily penetrated several inches (>12) with ½ inch rebar pushed by hand.</td>
</tr>
<tr>
<td>Medium</td>
<td>10 – 30</td>
<td>35 – 40</td>
<td>110 – 130</td>
<td>Easily to moderately penetrated with ½ inch rebar driven by 5 lb. hammer.</td>
</tr>
<tr>
<td>Dense</td>
<td>30 – 50</td>
<td>40 – 45</td>
<td>120 – 140</td>
<td>Penetrated one foot with difficulty using ½ inch rebar driven by 5 lb. hammer.</td>
</tr>
</tbody>
</table>
| Very Dense | > 50 | > 45 | 130 – 150 | Penetrated only a few inches with ½
For cohesive soils, the approximate undrained shear strength and soil unit weight may be estimated from Table 16-2, based on SPT "N" values or visual observations. Field tests such as the vane shear or pocket penetrometer should also be considered to aid in estimating the strength of cohesive soils. Note that SPT "N" values are typically unreliable for estimating soil shear strength, especially in soft soil conditions. The strength values obtained from Table 16-2 should only be used for approximate estimations for soil strength and additional field or laboratory testing, or other verification of soil strength, is required for final design.

Table 16-2. Relationship of SPT 'N60' value and soil properties for cohesive soils

Note:

Modified from ODOT (1987), FHWA (1993) and AASHTO (1988).

<table>
<thead>
<tr>
<th>Consistency</th>
<th>SPT N60 value (blows/ft.)</th>
<th>Approximate Undrained Shear Strength (psf)</th>
<th>Moist Unit Weight (pcf)</th>
<th>Field Approximation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Soft</td>
<td>< 2</td>
<td>< 250</td>
<td>100 – 120</td>
<td>Squeezes between fingers when fist is closed; easily penetrated several inches by fist.</td>
</tr>
<tr>
<td>Soft</td>
<td>2 – 4</td>
<td>250 – 500</td>
<td>110 – 130</td>
<td>Easily molded by fingers; easily penetrated several inches by thumb.</td>
</tr>
<tr>
<td>Medium Stiff</td>
<td>5 – 8</td>
<td>500 – 1000</td>
<td>120 – 140</td>
<td>Molded by strong pressure of fingers; can be penetrated several inches by thumb with moderate effort.</td>
</tr>
<tr>
<td>Stiff</td>
<td>9 – 15</td>
<td>1000 – 2000</td>
<td></td>
<td>Dented by strong pressure by fingers; readily indented by thumb but can be penetrated only with great effort.</td>
</tr>
<tr>
<td>Hard</td>
<td>31 – 60</td>
<td>4000 - 8000</td>
<td>130 – 140</td>
<td>Indented with difficulty by thumb nail</td>
</tr>
<tr>
<td>Very Hard</td>
<td>> 60</td>
<td>> 8000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For shaft type foundations in soil, the Broms’ Method as specified in the AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals (AASHTO, 2001) is generally used to determine the foundation depth. The Rutledge Method described in the AASHTO specifications should not be used for the design of signal pole drilled shaft foundations. If site conditions are suitable for use of the Broms’ method, refer to the ODOT Traffic Structures Manual for additional design guidance for designing mast arm and strain pole foundations using the soil properties and groundwater conditions identified at the site. Also, consult with and coordinate this work with the traffic structure designer in these cases.
The Broms’ method is based on uniform soil and level ground conditions and should suffice for foundation design in the majority of cases. However, the geotechnical engineer should review the soils data and decide whether or not the foundation conditions are suitable for use with the Broms’ method of analysis.

If the Broms’ method does not apply, then the procedures specified in Chapter 8 for lateral load analysis of deep foundations (e.g., P-y or strain-wedge type analysis) should be used for these special cases. For these special cases, the shaft design is based on a soil-structure analysis using either the LPile or DFSAP soil-structure interaction programs. A maximum lateral deflection of 0.50” is allowed at the top of the shaft (ground line) under service loads. Provide recommendations as necessary for the following special design cases:

- **Soft soils:** If the soils at the site are very soft ($s_u < 600$ psf or $\Phi < 25^\circ$) then a special design is required. If possible, consideration should be given to relocating the pole to a more favorable soil site where standard design methods could be used. If the soft soils at the site are relatively shallow, then sub-excavation and replacement with high quality, compacted granular soil should be considered. Otherwise, the geotechnical engineer should provide the soil properties necessary to develop a special foundation design.

- **Solid bedrock:** If solid bedrock is expected to be encountered within the depth of the shaft foundation, then the rock should be characterized in terms of its unconfined compressive strength (q_u) and overall rock mass quality. In general, if the bedrock can be classified with a hardness of at least R1 (100 psi) and is unfractured with tight joints then a minimum shaft embedment depth of 5 feet can be used, as shown in Figure 16.1, for all mast arm pole types specified on TM650 through TM653, TM660 and TM661.

Often bedrock is not encountered right at the ground surface but at some shallow depth below the surface. If the rock quality requirements are satisfied then the shaft must penetrate at least 5 feet into the rock, unless the required footing depth based on the properties of the soil above the rock, is reached first.
Figure 16-1. Rock Installation Requirements

If the rock is weaker than R1, moderately weathered or contains open fractures, then the properties of the rock mass should be more thoroughly investigated and a special foundation design should be performed based on the procedures specified in Chapter 8. For allowable stress design of drilled shafts in rock use a minimum factor of safety of 2.5 (for both side shear and end bearing) in determining allowable axial capacity. Use the soil-structure interaction (p-y) methods described in AASHTO 2004 for lateral load analysis of drilled shafts in rock.

16.5.2.2 Monotube Cantilever Sign Supports

Cantilever signs consist of large metal posts up to 31 feet in height supporting a cantilevered metal arm which carries various types and sizes of signs and luminaires. Standard Drawings TM622 – TM627 cover the entire standard for this type of traffic structure. There are currently 10 different structure designs based on arm length, post length, sign area and other factors.

The standard foundation used for supporting cantilever signs is a rectangular spread footing, as shown on Drawing TM626. The dimensions of the spread footings range from 7’- 6” by 15’- 0” up to 15’- 0” by 30’- 0”. All footings are 2’- 3” thick with a minimum 3’-0” of cover over the top of the footing. Footing dimensions are based on the Structure Design Number (1 – 10) and whether the footing is constructed on non-buoyant (Type A) or buoyant (Type B) soil conditions. Drawing TM626 contains soil descriptions for these two soil types and other geotechnical design criteria as shown in Figure 16.2.

| The Standard Monotube Cantilever Sign Support Spread Footing drawing contains two standardized designs, based on Type A or Type B assumed soil conditions. The assumed soil will be verified by the Engineer of Record before referencing Dwg.® TM626 on the Project Plans. Verification of assumed soil conditions will be based on a site-specific geotechnical study to be preformed by ODOT. The assumed allowable equivalent uniform bearing pressure is based on the methodology described in the references listed below. The assumed soil conditions are as follows:
| Type A designs assume non-buoyant conditions for stability calculations (compacted soil density of soil over footing = 120 lb/ft³, concrete density = 150 lb/ft³). Type A designs assume allowable equivalent uniform bearing pressures of 1000 psf for Group I Loads, and 1333 psf for Group II and Group III Loads.
| Type B designs assume buoyant conditions for stability calculations (compacted soil density of soil over footing = 48 lb/ft³, concrete density = 88 lb/ft³). Type B designs assume allowable equivalent uniform bearing pressures of 1000 psf for Group I Loads, and 1333 psf for Group II and Group III Loads.
| Both Type A and Type B designs assume that permanent rotation of the footing will not exceed 0.1 degree, and uniform settlement of the footing will not exceed 2 inches.

Reference:

Figure 16-2. Soil types and design criteria for Cantilever Sign Supports (from ODOT Drawing TM626)
Both Type A and Type B soil conditions require an allowable equivalent uniform bearing pressure (capacity) of 1000 psf, for Group 1 loads, the footing dimensions shown on the drawing and the 3'-0" minimum cover requirement. This is a relatively low bearing capacity which can usually be provided by the foundation soils except under very poor soil conditions. The difference between Type A and Type B soils is Type B soils assume the groundwater table can rise up above the top of the footing and fully saturate the minimum 3 foot soil cover depth overlying the footing. If so, this reduces the effective unit weight of the overlying soils and the uplift resistance of the footing. The footing dimensions then have to be increased to compensate for this effect.

The geotechnical engineer is required to check that the following conditions are met for each proposed cantilever sign support footing:

- The foundation soils will provide an allowable equivalent uniform bearing capacity of at least 1000 psf (1.0 ksf) for the proposed sign support design.
- Footing settlement under the 1.0 ksf uniform load will not exceed 2 inches of total settlement.
- The unit weight of the soil overlying the footing will be at least 120 pcf (Type A) or 48 pcf (Type B)

It can generally be assumed that if the allowable bearing capacity is at least 1000 psf then the foundation soils can also provide at least 1333 psf allowable bearing capacity under Group II & III (transient) loadings.

The soil designation (as either Type A or B), should be provided in the Geotechnical Report for each monotube cantilever sign support structure and shown on the plans at each sign location for bidding purposes.

16.5.2.3 Sign and VMS Truss Bridges

Standard sign and VMS bridges consist of two large end truss posts supporting a bridge truss system that spans over the roadway. The bridge truss then supports the signs and luminaires. Span lengths can reach up to 167 feet. Standard Drawings TM614 - TM620 cover the entire standard for this type of traffic structure. There are currently 6 different structure designs based on span length, sign area and other factors.

The standard foundations for sign bridges (TM619) and VMS bridges (TM611) are rectangular spread footings. The same foundation design requirements and procedures described in Section 16.5.2.2 (“Monotube Cantilever Sign Supports”) should be used for the design of sign and VMS bridge footings.

Spread footings for sign and VMS bridges are much larger than footings for cantilever sign supports. Footings range in size from 12'-6" by 25'-0" up to 20'-6" by 41'-0", depending on soil type and truss span length. Minimum embedment over the top of the footing is 3'-0". All footings are 2'-6" thick. Additional differential settlement criteria apply to these structures as noted on the drawings. Differential settlement between footings on opposite ends of the bridge should not exceed 2 inches. Footings are to be constructed on undisturbed soil or compacted granular structure backfill.

16.5.2.4 Luminaire Supports

Standard luminaire poles consist of metal poles typically 30' to 70' high with a luminaire mast arm attached at the top. Standard foundations for luminaire supports are shaft foundations. Shafts may be either drilled shafts or constructed with concrete forms, backfilled, and compacted. These footings are either 30" or 36" in diameter or width and range from 6 feet to 11.5 feet in depth. Drawing TM630
provides a table for footing width and depth as a function of Base to Luminaire height ("BL") and Luminaire Arm length ("LA"). This table is reproduced as **Table 16-3**.

Table 16-3. Footing width and depths for Standard Luminaire Supports (from Drawing TM630)

<table>
<thead>
<tr>
<th>Pole & Arm Dimensions</th>
<th>Anchor Rod Diameter</th>
<th>Anchor plate size</th>
<th>Footing Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>"BL"</td>
<td>"LA"</td>
<td>Diameter</td>
<td>Length</td>
</tr>
<tr>
<td>≤30’ or less</td>
<td>4’ or less</td>
<td>1½” A307</td>
<td>16½”</td>
</tr>
<tr>
<td>>30’ Through 40’</td>
<td>1½” A307</td>
<td>18”</td>
<td>6½”</td>
</tr>
<tr>
<td>>40’ Through 50’</td>
<td>2” A307</td>
<td>19½”</td>
<td>7“</td>
</tr>
<tr>
<td>>50’ Through 60’</td>
<td>2” A307</td>
<td>19½”</td>
<td>7“</td>
</tr>
<tr>
<td>>60’ Through 70’</td>
<td>2¼” A307</td>
<td>21“</td>
<td>7½”</td>
</tr>
<tr>
<td>>70’ Through 80’</td>
<td>2¼” A307</td>
<td>21“</td>
<td>7½”</td>
</tr>
<tr>
<td>>80’ Through 90’</td>
<td>2½” A307</td>
<td>22½”</td>
<td>8“</td>
</tr>
<tr>
<td>≤50’ or less</td>
<td>2’ or less</td>
<td>1½” (A449)</td>
<td>*15“</td>
</tr>
</tbody>
</table>

Drawing TM630 also indicates that footings may be round only if the luminaire arm “LA” is ≤ 20 feet. This means that some of the footings may be constructed as drilled shafts (round footings) and some have to be constructed by excavating, placing reinforcement and concrete (with or without forms), backfilling, and compacting the area (square footings).

The standard footing design shown on Drawing TM630 is based on a soil parameter $S_1 = 1500$ psf. S_1 is termed the “allowable soil pressure” in Section 13.10 of the AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals. It is equated to the “allowable average soil stress” term (also, S_1) shown in the nomograph in **Figure 16-3**, which was originally developed by Professor P. C. Rutledge.
The allowable average soil stress (S_1) is related to a series of field pullout tests using a 1½" diameter auger, installed to various depths in different soil types (Patterson, 1962 and Ivey 1966). The auger pullout force was related to the allowable average soil stress (S_1) and five general soil classifications, which range from “very soft” to “very hard”. The required S_1 value of 1500 psf (1.5 ksf) for the standard drawing correlates to an average SPT ‘N’ value of about 10 for either noncohesive (granular) soil or cohesive soils. This ‘N’ value is not corrected for overburden pressure. If soils are present that do not meet the minimum strength requirements, special designs will be required.

If bedrock is expected to be encountered at shallow depths then a special design should be considered. If the bedrock is relatively hard, difficult to excavate or drill through, and would greatly impact the time required to construct the foundation excavation then develop a special foundation design, taking into account the higher foundation material strengths.

Refer to Chapter 8 for further design guidance for these cases. If the bedrock is relatively soft and can be excavated or drilled through with conventional equipment, such as to not significantly impact foundation construction time, then the standard drawing may still be appropriate.

16.5.2.5 High Mast Luminaire Support

High Mast Luminaire Supports are not regularly used on ODOT projects. If they are required, the foundations for these structures are typically drilled shafts ranging from 4'-0" to 5'-0" in diameter and ranging from about 6'-3" to 20'-4" in depth. If required, then the foundation design should be developed based on site specific soils investigation and a full soil-structure interaction analysis as...
described in Chapter 8. The traffic structures designer should be consulted for design loads and other special design requirements for these structures.

16.5.2.6 Camera Poles

Camera poles consist of metal poles that are typically 50’ high with a short arm that supports a camera at the top. Foundation supports for camera poles are similar to luminaire supports and the general design guidelines from **Section 16.5.2.4** should be followed.

16.6 Soundwalls

16.6.1 Soundwall Standard Drawings

ODOT currently has three standard designs for soundwalls (see **ODOT Standard Drawings**):

- Standard Reinforced Concrete Masonry Soundwall; Drawing No. BR730
 - Foundation Type: Continuous Spread Footing
- Standard Precast Concrete Panel Soundwall; Drawing No. BR740
 - Foundation Type: 2’ to 3’ diameter drilled shafts
- Standard Masonry Soundwall on Pile Footing; Drawings No. BR750 & BR751
 - Foundation Type: 2’ to 3’ diameter drilled shafts

The size of the spread footings and lengths of the drilled shafts vary as a function of wall height, wind speed and soil type. Footing widths for the continuous spread footing design range from 2’-3” to 5’-6” and shaft lengths range from 4’-0” up to 8’-7”.

The footings for Drawings BR 740 and BR 750 (drilled shafts) are designed by Load factor design. The footing (shaft) embedment lengths for these walls were designed by AASHTO and the Rutledge Equation using S1 = RL/3, where “S1” is the Allowable Ultimate Lateral Soil Capacity. “R” equals the Ultimate Lateral Soil capacity obtained by the log-spiral method increased by a 1.5 isolation factor and includes a 0.90 soil strength reduction factor.

All of the standard drawings for soundwalls are based on the same set of foundation soil descriptions and designations. These are described as follows:

- **GOOD SOIL**: Compact, well graded sand or sand and gravel. Design $\phi = 35^\circ$, density 120 pcf, well drained and not located where water will stand.

- **AVERAGE SOIL**: Compact fine sand, well drained sandy loam, loose coarse sand and gravel, hard or medium clay. Design $\phi = 25\phi$, density = 100 pcf. Soil should drain sufficiently so that water will not stand on the surface.

- **POOR SOIL**: (Soil investigation required) Soft clay, loams, poorly compacted sands. Contains large amounts of silt or organic material. Usually found in low lying areas that are subject to standing water.

The foundation soils at each soundwall site should be investigated and the soils classified into one of the above three designations. **Table 16-1** and **Table 16-2** may be used to estimate soil properties for use in classifying the foundation soils. For spread footings the soil classification should take into account the soil within a depth of 2.0 times the footing width below the bottom of the footing. For
drilled shafts, the soils within the estimated depth of the shaft should be classified. If more than one
soil type is present along the length of a soundwall, these areas should be clearly delineated either
by stationing and offset or on a plan map. The soil category for each soundwall should be
documented in the Geotechnical Report and shown on the contract plans.

16.6.2. Foundation Design of Soundwalls

A non-standard, or special, foundation design will be required if the site, soil, or loading conditions are
not consistent with the conditions assumed for the standard foundation designs. This includes soils
classified as “Poor”, hard bedrock conditions and high groundwater conditions. The standard
drawings were developed assuming “dry” (unsaturated) soil conditions (dry total unit weights).
Therefore, if ground water is anticipated to be above the bottom of the design shaft tip elevation, or
within 2B of the bottom of the footing, a special design is required.

If non-standard foundation designs are required, the geotechnical designer should provide the
following information to the sound wall designer:

- Description of the soil units using the ODOT Soil & Rock Classification System.
- Ground elevation and elevations of soil/rock unit boundaries.
- Depth to the water table along the length of the wall.
- Soil design parameters. Soil unit strength parameters include effective unit weight, cohesion,
 φ, K_a, K_p.
- The allowable bearing capacity for spread footings and estimated wall settlement.
- Overall wall stability factor of safety.
- Any foundation constructability issues resulting from the soil/rock conditions.

The soundwall designer will use this information to develop a special foundation design for the
soundwall.

Seismic Design

Sound walls are also designed for seismic loading conditions as described in the AASHTO Guide
Specifications for Structural Design of Sound Barriers. The acceleration coefficient required for
design should be obtained from the 2002 USGS Seismic Hazard Maps for the 500-year return event
and provided in the Geotechnical Report. No liquefaction analysis or mitigation of ground instability is
required for sound walls.

Sloping Ground Conditions

The standard foundation designs used for the Standard Plan soundwalls are based on level ground
conditions. Level ground conditions are defined as follows:

- **Good Soils**: 10H:1V max.
- **Average Soils**: 14H:1V max.

Soundwalls are often constructed on sloping ground or near the edge of a steep break in slope.
When the ground slope exceeds the above limits, the foundation design must be modified to account
for slope effects. For the continuous spread footing design (BR730), a special design is necessary
since there is no standardized method of modifying the standard footing widths or depths shown on
the standard drawing. For the standard drilled shaft foundations (BR740 and BR751), methods are
shown on the drawings for adjusting the length of the shafts to account for slope effects. The maximum slope angle that shafts may be constructed on, using the standard drawings, are:

- **Good Soils:** 1½H : 1V max.
- **Average Soils:** 2H : 1V max.

For drilled shafts, the minimum horizontal setback distance is 3'-0" from the panel face to the slope break. Refer to *AASHTO (2002)* for the minimum setback distance for spread footings which takes slope effects into account in determining the footing bearing capacity. The 6" of cover over the top of the shaft is ignored in the computation of lateral earth passive pressure.

Backfill Retention

All Standard Drawing soundwall structures have been designed to retain a minimal amount of soil that must be no more than 2 feet in height with a level back slope. The retained soil above the soundwall foundation is assumed to have a friction angle of 34° and a wall interface friction of 0.67φ, resulting in a Ka of 0.26 for the retained soil, and a unit weight of 125 pcf. All standard and non-standard soundwall foundation designs shall include the effects of any differential fill height between the front and back of the wall.

16.6.2.1 Spread Footings

Continuous spread footings are required for the Standard Reinforced Concrete Masonry Soundwall (Drawing No. BR730). The footing dimensions shown on this drawing are all based on the “Average” soil conditions even though a description of “Good” soil is provided. Soundwall footings shall be located relative to the final grade to have a minimum soil cover over the top of the footing of 1 foot.

For sites that require specific foundation design, such as sloping ground, high groundwater, “poor” soils or hard rock the design methods described in the *AASHTO Guide Specifications for Structural Design of Sound Barriers* (1989) and the *AASHTO Standard Specifications for Highway Bridges* (2002) should be used for footing design. For static conditions, use a minimum bearing capacity safety factor of 2.3 for Load Factor Design (LFD) and 3.0 for Allowable Stress or Service Load Design (ASD). A safety factor of 1.1 should be used for seismic conditions, if seismic conditions are being considered.

The soundwall footing shall be designed to be stable for overturning and sliding. The methodology and safety factors provided in the *AASHTO Standard Specifications for Highway Bridges* (2002) applicable to gravity walls in general for overturning and sliding (FS of 2.0 and 1.5, respectively for static conditions, and 1.5 and 1.1 for seismic conditions), shall be used to assess soundwall stability for these two limit states, using service loads.

Settlement of soundwalls is usually not considered in design since the vertical loads associated with these structures are generally very low and settlement of previously constructed walls has never been an issue. However, if spread footings are used for foundation support and the foundation soils consist of very soft compressible material, settlement calculations may be necessary to confirm the required noise barrier height is maintained for the design life of the wall. The geotechnical designer will be responsible for estimating foundation settlement using the appropriate settlement theories and methods as outlined in Chapter 8. The estimated total and differential settlement should be provided in the Geotechnical Report. In these cases, the total allowable settlement and differential settlement of the soundwall should be obtained from the soundwall structure designer and checked against the estimated amount of wall settlement. If the allowable settlement criteria cannot be met, then sub-excavation and replacement of the compressible materials, or redesign of the foundation, may be necessary.
In addition to foundation design, an overall stability analysis of the soundwall should be performed when the wall is located on or at the crest of a cut or fill slope. The design slope model must include a surcharge load equal to the footing bearing stress. The minimum slope stability factor of safety of the structure and slope shall be 1.5 or greater for static conditions and 1.1 for seismic conditions.

16.6.2.2 Shaft Foundations

For special designs, such as for “poor” soil conditions, buoyant conditions, or hard rock the geotechnical designer needs to provide the soil properties necessary to perform the foundation design. Foundation designs for these conditions should be performed using the Broms’ method as described in *AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals* (Section 13.6).

16.7. Foundation Construction Considerations

Structures that require short round or square foundations could be easily formed in an open excavation. Following the removal of the concrete forms, backfill should be placed and compacted around the shaft footing to provide containment and lateral support. Footings constructed using forms and backfill should be backfilled using Granular Structure backfill material compacted to the requirements specified in Section 00510 of the *ODOT Standard Specifications*. The geotechnical designer should make sure the contract specifications clearly state the backfill and compaction requirements for the backfill material placed around the formed foundation and that the degree of compaction is verified in the field.

Drilled shafts supporting signal supports (cantilever signals or strain poles) are to be constructed in accordance with Section 00963 of the *ODOT Standard Specifications*. Drilled shafts for sign structures should be constructed in accordance with Section 00512. Refer to the *ODOT Traffic Structures Manual* for further details regarding specification requirements for traffic structures.

Shaft foundations greater than about 10 feet in length may require the use of temporary casing, drilling slurries or both. Generally in most cases, the temporary casing can be removed. The concrete in all shaft foundations has been designed to bear directly against the soils. Special foundation designs may require the use of permanent casing if recommended by the geotechnical designer, in which case, the concrete will not be in direct contact with the soils.

An example of this is where the foundation soils may be too soft and weak to allow for the removal of temporary casing. In this situation, the structural designer must be informed of this condition. The use of permanent casing alters the stiffness and strength of the shaft as well as the soil-shaft friction and torsional shaft capacity.

The presence of a high groundwater table could affect the construction of shaft foundations. The construction of soundwalls with shaft foundations would be especially vulnerable to caving if groundwater is encountered and there are loose clean sands or gravels present.

16.8. Buildings

16.8.1. Overview

The provisions of this section cover the design requirements for small building structures, such as required at ODOT rest areas or for maintenance buildings. It is assumed these buildings are not subject to scour or water pressure by wind or wave action. Typically, buildings may be supported on...
shallow spread footings or on pile or shaft foundations for conditions where soft compressible soils are present.

16.8.2. **Design Requirement for Buildings**

Foundations shall be designed in accordance with the provisions outlined in Chapter 18 of the 2003 *International Building Code (IBC, 2002)*. This design code specifies that all foundations be designed using allowable stress design methodology. Table 1804.2 from the IBC provides presumptive values for allowable foundation bearing pressure, lateral pressure for stem walls and earth pressure parameters to assess lateral sliding. Note that these presumptive values account for both shear failure of the soil and settlement or deformation, which has been limited to 1 inch.

Table 16-4. Allowable Foundation and Lateral Pressure, (2003 IBC, Table 1804.2).

<table>
<thead>
<tr>
<th>Materials</th>
<th>Allowable Foundation Pressure (psf)c</th>
<th>Lateral Bearing (psf/ft below natural grade)d</th>
<th>Coefficient of frictiona</th>
<th>Resistance (psf)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Crystalline Bedrock</td>
<td>12,000</td>
<td>1200</td>
<td>0.70</td>
<td>------</td>
</tr>
<tr>
<td>2. Sedimentary and foliated rock</td>
<td>4,000</td>
<td>400</td>
<td>0.35</td>
<td>------</td>
</tr>
<tr>
<td>3. Sandy gravel and/or gravel (GW & GP)</td>
<td>3,000</td>
<td>200</td>
<td>0.35</td>
<td>------</td>
</tr>
<tr>
<td>4. Sand, silty sand, clayey sand, silty gravel and clayey gravel (SW, SP, SM, SC, GM, and GC)</td>
<td>2,000</td>
<td>150</td>
<td>0.25</td>
<td>------</td>
</tr>
<tr>
<td>5. Clay, sandy clay, silty clay, clayey silt, silt and sandy silt (CL, ML, MH and CH)</td>
<td>1,500</td>
<td>100</td>
<td>-------</td>
<td>130</td>
</tr>
</tbody>
</table>

a. Coefficient to be multiplied by the dead load.
b. Lateral sliding resistance value to be multiplied by the contact area, as limited by Section 1804.3 of the 2003 IBC.c. Where the building official determines that in-place soils with an allowable bearing capacity of less than 1,500 psf are likely to be present at the site, the allowable bearing capacity shall be determined by a soils investigation.d. An increase of one-third is permitted when using the alternate load combinations in Section 16.3.2 of the 2003 IBC that include wind or earthquake loads.

In addition to using the 2003 IBC design code, the geotechnical designer should perform a foundation bearing capacity analyses (including settlement) using the methods outlined in *Chapter 8* to obtain nominal resistance values.

These design methods will result in ultimate (nominal) capacities. Normally, allowable stress design is conducted for foundations that support buildings and similar structures. Appropriate safety factors must be applied to determine allowable load transfer. Factors of safety to be used for allowable stress design of foundations shall be as follows:

Table 16-5. Minimum factors of safety for ASD foundation design.

<table>
<thead>
<tr>
<th>Load Group</th>
<th>Method</th>
<th>*Minimum Geotechnical Factor of Safety, FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spread Footings</td>
<td>Shafts</td>
<td>Piles</td>
</tr>
</tbody>
</table>

Volume 3 ODOT Geotechnical Design Manual April 2010
The results of the ASD foundation bearing capacity analyses, after reducing the foundation bearing capacity by the specified FS from Table 16-5, and further reduced to meet settlement criteria for the foundation (normally, no FS is applied for settlement analysis results), should be checked against the IBC design code, and the most conservative results used.

For allowable stress design, spread footings on dry sandy soils may alternatively be designed for bearing and settlement by using Figure 16-4. When using Figure 16-4, a FS from Table 16-5 does not need to be applied, as the bearing stresses in the figure represent allowable bearing resistances. A factor of safety of 2.0 has already been applied. The design bearing resistance in Figure 16-3 has been developed assuming no groundwater is present, no eccentricity in the footing and footing settlement will be limited to no more than 1 inch. The N-values needed to estimate bearing resistance in the figure should be determined from SPT blow counts that have been corrected for both overburden pressure and hammer efficiency, and hence represent N_{1(60)} values.
Figure 16-4. Design chart for proportioning shallow footings on dry sand (redrafted from Peck, et al., 1974)

Note that other issues may need to be addressed regarding the design of buildings and associated structures. For example, significant earthwork may be required including cut and fill design, stabilization of unstable ground, ground improvement or retaining walls. Refer to the relevant sections of this manual for design guidance on these types of work.

If septic drain field(s) are needed, local regulations will govern the geotechnical design, including who is qualified to perform the design (i.e., a special license may be required). In general, the permeability of the soil and the maximum seasonal ground water level will need to be assessed for septic system designs.

Note:

Note that in general, the foundations for the types of structures addressed in this chapter are not mitigated for liquefaction. However, for building foundations, liquefaction and other seismic hazards are at least assessed in terms of the potential impact to the proposed structures. Liquefaction and other seismic hazards are mitigated for building and other structures for which the International Building Code (IBC) governs and mitigation is required by the IBC.
16.9. References

17. Culverts and Trenchless Technology Design

17.1. General

This Chapter to be completed at a later date.
18. Construction Recommendations and Report

18.1. General

Most construction recommendations should be included in the project Special Provisions or shown on the plans if they are to be contractually recognized. Construction recommendations can also be included in the final geotechnical report as appropriate and may include discussions or recommendations on the following items:

- Temporary shoring requirements
- Control of groundwater in excavations
- Temporary excavation slopes
- Difficult pile driving conditions
- Boulders or other obstructions expected in the area of foundation construction or excavations
- Existing foundations in the area of proposed foundations or excavations
- Monitoring of adjacent structures or facilities (preconstruction surveys)
- Underwater acoustic monitoring of pile driving or “bubble curtains”
- Monitoring of fill settlement and excess pore pressure
- Existing utilities, drainage pipes or other feature that may influence foundation construction

Other unique construction recommendations or quality control issues should be appropriately addressed.
18.2. **Roadway Construction Support**

The geotechnical designer and/or project geologist should read, and be familiar with, the *ODOT Standard Specifications for Roadwork* (Section 00300) and specifically Section 00330, “Earthwork”. Also review all the *Standard Special Provisions for Section 00300*. Provide construction assistance for the following items as required:

- Review of material properties of proposed embankment,
- Review any embankment settlement monitoring data,
- Assist with assessment of unanticipated subgrade stabilization needs,
- Assist with solutions to drainage problems or other groundwater issues,
- Provide solutions and options for dealing with unstable cutslopes if they arise,
- Review of proposed blasting plans.

18.3. **Bridge Construction Support**

Provide review of contractor submittals and provide construction support as needed for the following general items related to bridge foundation construction:

- Review the stability of temporary excavation cutslopes and shoring submittals,
- Review of foundation designs for falsework,
- Review of foundations for temporary work bridges or detour bridges,
- Review cofferdam designs,
- Review and assist in approval of change orders regarding foundation related items such as changes to material specifications or foundation materials.

Refer to the *ODOT Bridge Design and Drafting Manual (BDDM)* for guidance and more details regarding specific design requirements for the above structures.

18.3.1. **Spread Footing Construction**

The geotechnical designer should be familiar with the *ODOT Standard Specifications for Structure Excavation and Backfill (Section 00510)*. Provide inspection services to the field as requested to verify that the foundation materials exposed at the footing foundation elevation are the same materials as assumed in design and suitable for foundation support. If the materials are not as assumed and are not suitable for footing construction, provide recommendations to the construction office regarding how to proceed with foundation construction. Consult with the structure designer and other project personnel, as necessary, if significant changes to footing elevations are required.

18.3.2. **Driven Pile Construction**

The geotechnical designer should be familiar with the *ODOT Standard Specifications for Driven Piles (Section 00520)* and the *Standard Special Provisions for Section 00520* which supplement the
Standard Specifications. The final pile record books should be sent to the HQ Bridge Engineering Section office at the completion of the project. These records are scanned into a data base for further reference.

Construction support for pile foundation projects typically consists of the following review process and documentation:

- Review and approval of the *Pile & Driving Equipment Data Form*.

 - The contractor is required to submit a completed *Pile & Driving Equipment Data Form*. If the form is not complete or unclear, request a resubmital from the PM office. This review consists of verifying that the contractor’s hammer meets the requirements of the standard specifications, which typically means the proposed hammer will provide sufficient field energy to drive the piles to the required minimum tip elevation and develop the required nominal resistance with a driving resistance within the allowable range of 3 to 15 blows per inch.

 - If the piles are driven to bearing based on the FHWA dynamic formula, simply check to see that, for the required nominal resistance, the estimated hammer field energy will result in a resistance between 3 and 15 blows per inch. The maximum rated hammer energy should not be used in this evaluation since hammers rarely reach this level of performance.

 - If the piles are accepted based on wave equation (WEAP) analysis, check the contractor’s WEAP analysis to see that the correct input values were used, the analysis was performed properly and the predicted pile stresses are below the maximum stresses allowed. Also, check to see that the predicted resistance is between 3 and 15 blows per inch.

 - If swinging leads are proposed there should be a clear method of bracing, anchoring or fixing the bottom of the leads to maintain proper hammer-pile alignment throughout the pile installation.

- Provide final pile driving criteria to the field.

 - If the hammer does not meet the requirements of the specifications, provide a letter to the PM office rejecting the hammer and documenting the reasons for the rejection. Once the hammer is accepted, a letter stating so is sent to the project manager along with the final driving criteria.

The final pile driving criteria usually consists of an inspectors graph showing the required resistance in blows per inch as a function of hammer stroke (for open end diesel hammers) or field energy. An example is attached in *Appendix 18-A: Pile Inspector Graph*. A table showing the required resistance as a function of hammer stroke (for a fixed nominal resistance) may also be provided.

At this time in the pile hammer review and approval process, any important pile installation problems or issues that might arise should be communicated to the project manager and the pile inspector in the pile hammer approval letter. The following issues should be discussed as applicable:

- Pile freeze (setup) period, if required, and proper procedures to follow,

- Any anticipated difficult driving conditions and damage potential,
• Potential for piles running long and possible solutions,
• Preboring requirements,
• Vibration monitoring,
• Dynamic pile testing requirements and procedures.

An example of a pile hammer approval letter is shown in Appendix 18-B: Hammer Approval Letter.

For open-end diesel hammers, the hammer stroke must be determined during pile driving for use in determining bearing resistance. A saximeter is a small hand-held device that measures and records hammer stroke and other pile driving information during driving. These devices are available for loan to the field from the HQ Bridge Engineering Section for use in measuring and monitoring the field hammer stroke and other data. Saximeters are primarily recommended for monitoring stroke for open-end diesel hammers and are helpful in assessing overall hammer performance.

18.3.3. Drilled Shaft Construction

The geotechnical designer should be familiar with the ODOT Standard Specifications for Drilled Shafts (Section 00512) and the Standard Special Provisions for Section 00512 which supplement the Standard Specifications. The project Special Provisions may contain several specifications pertaining to drilled shaft construction that are unique to a given project.

Proper inspection is a crucial element in the drilled shaft construction process. All drilled shaft inspectors should be certified in drilled shaft inspection procedures.

Construction support for drilled shaft projects typically consists of the following items:

• Review and approval of the drilled shaft installation plan and other submittals (see Section 0512.40 of the Standard Specifications). This review and approval should be coordinated closely with the structural designer. Shaft construction methods can affect both the structural and geotechnical capacity of drilled shafts and so both disciplines should be involved in this review.

• Attend drilled shaft preconstruction meetings with the drilled shaft subcontractor, prime contractor and construction staff,

• Review and approve crosshole sonic log test results. Coordinate the review and approval of CSL test results closely with the structural designer. See Section 18.3.3.1 for details regarding the CSL testing and evaluation procedures.

• Review proposed drilled shaft repair plans (as needed).
- Provide construction support and advice to the construction office during shaft construction regarding any difficulties in shaft construction or to answer any questions the inspector may have. Help insure the proper inspection is taking place and the proper inspection forms are being completed.

Work with the inspector to make sure the shaft is being constructed in the foundation materials that were assumed in design. If changes to the estimated shaft tip elevations are necessary, work with the structural designer and project staff to determined acceptable revised shaft tip elevations.

18.3.3.1 Crosshole Sonic Log (CSL) Testing & Evaluation Procedures

CSL testing, in combination with a quality field inspection, are the primary methods used by ODOT for the quality control and acceptance of drilled shafts. CSL testing is not always a conclusive test and the results often require interpretation and further in-depth review. The CSL test results by themselves can sometimes be misleading. Therefore, all inspection records and forms should be provided to the CSL reviewer to use in combination with the CSL test results in determining shaft acceptance. It is highly recommended that the foundation and bridge designers both understand, and be familiar with, CSL testing procedures and have training in the use and interpretation of CSL test results.

The following procedures should be used when conducting CSL testing for quality control of drilled shafts on ODOT projects.

18.3.3.2 CSL Field Testing

- Contractor provides the CSL subcontractor to do the testing. This is included in the contract with bid items for mobilization of equipment and the number of tests per bridge.

- CSL testing is performed according to ASTM D6760-02.

- CSL testing is performed on the first shaft constructed and others as described in Section 00512 of the special provisions.

- Additional shafts are tested if construction methods change or shaft construction results in questionable quality shafts. This is especially true for uncased shafts, excavated below the water level in soils.

18.3.3.3 CSL Test Results

- CSL test results should be forwarded to both the geotechnical engineer and the bridge designer for review, (regardless of what the CSL report says),

- Both engineers should concur that the shaft is acceptable or needs further investigation.

- Structural and/or geotechnical analysis may be necessary at this point to assess the load carrying capacity of the shaft based on interpretation of the CSL test results and inspection reports.
18.3.3.4 Further Testing/Inspection

If an anomaly or obvious defect is detected in the CSL testing, it may warrant further investigation to verify that it does indeed exist and to further quantify the extent and material properties of the material in the affected zone. If additional investigation appears necessary, review all the shaft inspection forms and confer immediately with the drilled shaft Inspector regarding all aspects of shaft construction to determine what could have happened at the depth of the anomaly.

Note:
This is a very important decision in that if, upon further investigation, there is no shaft defect found, ODOT may be responsible for paying the investigation costs along with additional compensation to the contractor for delaying drilled shaft construction due to the additional investigation work. If any defects are found, regardless of whether they are repaired or not, the full cost of the shaft investigation (coring and/or other work) is paid by the Contractor with no time extension.

If further investigation is deemed necessary, the following procedures should be considered to further quantify the affected zone:

- First, thoroughly review the inspection records of the drilled shaft in question and review the closest drill log to see if there is a correlation between the detected anomaly and something that occurred during the shaft construction process and/or related to the soils or groundwater conditions.

- Consider performing additional CSL testing after some period of time to see if the anomaly is the result of delayed concrete set or curing. Check concrete mix design to see if admixtures and retarders were used which could delay concrete set.

- If practical, excavate around the perimeter of the shaft to expose near-surface defects.

- Consider using CSL tomography (3D Imaging) at this time to try and better define the extent of the anomaly.

- If required, perform core drilling at the locations and depths of suspected defects.

- Insert downhole cameras (in drilled core holes) for visual examination of defects.

18.3.3.5 Core Drilling

If core drilling is necessary, the following procedures should be followed:

- The foundation or bridge designer should plan the number, location and depth of all core holes based on the CSL test results and inspection reports. Target the area(s) where the CSL results indicate possible defects. Do not allow the contractor to select core hole numbers, locations and depths.

- Use either double or triple tube coring equipment that will result in maximum recovery and minimal damage to the recovered concrete core.

- Carefully log all core holes using methods similar to those used for typical geotechnical bore holes, closely measuring depths, rate of advancement, any sudden drops in drill steel (indicating voids), percent recovery, concrete quality, breaks, fractures, inclusions and anything that does not indicate solid, good quality concrete.
- Core at least 3" away from any rebar, if possible, and do not core through any steel reinforcement without the clear, expressed approval of the structural designer.
- Take photos of the core recovery.
- Keep notes of any driller remarks regarding the nature and quality of the shaft concrete.
- Keep the contractor (or Drilled Shaft subcontractor) informed throughout this investigation. The core holes may be able to be used by the contractor for repairing any shaft defects.
- Cored holes could also be filled with water and used for additional CSL testing.
- If possible:
 - do core breaks (qu) on suspected core samples retrieved from defect area.
 - use down-hole cameras to help quantify the extent of defect area.

18.3.3.6 Shaft Defects and Repairs

Based on the results of the additional investigation work and an assessment of the shaft integrity, the bridge and foundation designers should confer and determine if a defect is present that requires repair. This determination should be based on an assessment of the effect the defect has on the shaft’s ability to perform as designed (both for geotechnical and structural purposes).

Note:
If a shaft defect is determined to be present, it is the contractor’s responsibility to submit a repair plan and repair the defect at no cost to ODOT.

All shaft repair proposals should be submitted to the foundation and bridge designers for review and approval. Shaft repair should not be allowed without written approval of the Engineer-of-Record. Grout repair of minor shaft voids may be allowed with approval of the Engineer-of-Record, if the CSL tubes are left open to verify shaft integrity after grouting. If shaft defects are severe enough to warrant complete shaft replacement or redesign, the contractor shall submit a plan for the redesign or replacement according to Section 00512.41.

18.3.3.7 Remaining Shafts

The cause of any defects should be ascertained, if at all possibly, so the contractor can use modified shaft construction procedures and avoid repeating the same defects in the remaining drilled shafts on the project. A modified drilled shaft installation plan, showing these modifications to the installation procedures, should be submitted for approval.

18.4. References

This section blank intentionally.
Appendix 18-A: Pile Inspector Graph

Geary Canal Bridge No. 18142; Bent 4
Qult = 295 kips
PP18x0.375, Delmag D25-32
L = 103', Qs = 95%

![Graph showing pile stresses and required resistance](image-url)

Volume 3 ODOT Geotechnical Design Manual April 2010
Appendix 18-B: Hammer Approval Letter

INTEROFFICE MEMO

September 18, 2008

TO: Joe Manager
 Project Manager

FROM: Bob Geotech, P.E.
 Geotechnical Engineer

SUBJECT: Fort Creek (Hwy 022) Bridge
 OR62: Fort Creek Fish Passage
 Bridge No. 20442
 Crater Lake Hwy, M. P. 92.32
 Klamath County
 Contract C13454

The Pile and Driving Equipment Data Sheet submitted for use in installing the permanent piling on the Fort Creek Bridge has been reviewed and is conditionally approved for use. The data sheet submitted shows a Delmag Model D19-32 diesel hammer, which should be adequate for driving the PP12.75x0.375 piles for this project. All piles should be driven to a nominal resistance of 350 kips, with a minimum pile tip elevation of 4122 feet. Hammer approval is conditional due to the large size of the hammer relative to the required nominal bearing resistance. For the end-of-driving resistance to be within the specified range of 3 – 15 blows per inch (bpi) the hammer must be operating at a stroke height no greater than 8.5 feet (corresponding to 3 bpi). At stroke heights greater than 8.5 feet the required resistance is below the minimum value of 3 bpi. The hammer should be operated with a stroke range of between 6.0 and 8.5 feet when determining bearing resistance.

End of driving criteria was based on the FHWA Gates Equation presented in the 2008 Oregon Standard Specifications for Construction and is summarized in the table below:

<table>
<thead>
<tr>
<th>STROKE (feet)</th>
<th>BLOWS/INCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>3</td>
</tr>
<tr>
<td>7.5</td>
<td>4</td>
</tr>
<tr>
<td>6.5</td>
<td>5</td>
</tr>
<tr>
<td>6.0</td>
<td>6</td>
</tr>
</tbody>
</table>

An inspector’s graph showing the required resistance (blows per inch) as a function of field hammer stroke is attached. A sizer should be obtained from the ODOT Bridge Section Headquarters office for use in measuring field hammer stroke. The Standard
Specifications state that the required blow count should be obtained for at least three consecutive inches unless “refusal” driving conditions occur (defined as 20 bpi or as determined by the Engineer).

If the piles do not attain the required bearing resistance when driven to the specified length, the piles should be allowed to stand for a “set period” as described in Section 00520.42(d).

The pile material certifications should be checked to make sure the piles are certified as ASTM A252, Grade 3 (45 ksi yield strength). All piles should be closely observed during installation in order to stop driving at any signs of impending damage.

Please contact me at 341-555-1234 if you have any questions.

Attachment:
Pile Inspector’s Graph

bc: Region X Geo/Bridge/Environmental Unit
PILE INSPECTOR’S GRAPH

Fort Creek (Hwy 022) Bridge
Bridge 20442, Bents 1&2
Rult = 330 kips
PF 12.75 x 0.375, ASTM 252, Gr 3

Field Stroke vs Required Resistance (BPI)

FHWA Gaies Equation
Demag D15-32

Field Stroke (feet)

BPI (bowes per inch)
19. Unstable Slope Management

19.1. General

This Chapter to be completed at a later date.
20. Material Source Investigation and Report

20.1. General

This chapter discusses the purpose for disposal site and material source exploration and design. Identification, design, development and permitting of material sources and disposal sites require nearly all the same elements that go into a large transportation project. Material sources and disposal sites require identification, investigation, environmental review, mining and land use permitting, right-of-way acquisition and/or delineation, topographic survey, CAD design, and reclamation.

Time lines associated with various tasks that go into site and source exploration, development, and reclamation generally do not follow along with project time lines associated with similar tasks (i.e., surveying, environmental surveys). In general, many of these tasks need to be completed for sources and disposal sites, in advance of when they would be scheduled for the project that the source(s) or disposal site(s) will be associated with.

Disposal sites and material sources are investigated and designed in conjunction with construction and maintenance of the transportation facilities.

Material source investigation: The purpose of a material source investigation is to identify and prove out sufficient quantities of material meeting the quality requirements for the intended use.

Design: The purpose of the design is to graphically represent the proposed development of the material source or disposal site in the contract plan sheets taking into account the property limits, site conditions, permitting requirements, most efficient extraction, current need and future use of the source and/or site. Detailed design and reclamation plans are also requirements for the permitting of material sources.

Throughout this chapter, various guidance documents and forms are identified and referenced. Document names will be shown in italicized font. Information that hyperlinks to other information such as tables, figures, other documents, forms or URLs will display underlined and in bold. In other sections, there is reference made to available information. These specific documents and referenced material can be found at the following web site:

[Highway - Geo-Environmental Section Geology/Geotechnical](#)
20.2. Material Source and Disposal Site Definitions

The following definitions and terms are used in this chapter.

- **ODOT Material Source:** A unique parcel or combination of parcels of land which are ODOT owned or controlled specifically identified as the location from which material can be removed for utilization in the construction of a highway project and the continued maintenance of the transportation facility. Material from an ODOT source may or may not require secondary processing prior to incorporation into a project.

- **ODOT Disposal Site:** A unique parcel or combination of parcels of land which are ODOT owned or controlled, specifically identified as the location where excess clean fill from a highway construction project, or generated through routine or emergency maintenance activities, can be temporarily stockpiled for future beneficial use or permanently placed as a secondary beneficial use.

 Note:

 Placement of material without a beneficial use, equates to the creation of a landfill requiring permitting through DEQ.

- **Material:** Material can either be in place naturally occurring earthen material (soil, cinder, hard rock, gravel) or earthen material which has been transported to this location from another site or sites and stockpiled for future use. In some situations, the term “material” can be used to refer to recycled material such as pavement grindings.

- **Clean Fill:** Rock, soil, concrete with or without rebar (provided the rebar is not exposed), brick, building block, tile, or asphalt paving (weathered and consolidated with no free oil) that does not contain contaminants that could adversely impact waters of the state or public health. Wood is not considered clean fill.

- **Quarry:** A term generally used to refer to a hard rock source which commonly will require blasting techniques to be utilized prior to extraction of the native material. In Oregon, this term is commonly associated with quarry operations located in igneous flow deposits.

- **Pit:** A term used to refer to a mine site that generally does not require blasting prior to extraction, and is commonly associated with gravel, cinder or soil sources.

- **Source / Site Designer:** In the context of this discussion, the Source / Site designer is defined as the Certified Engineering Geologist who ultimately will be the Professional of Record for the material source and/or disposal site design.
20.3. Material Source and Disposal Site Project Scoping

Project scoping is a key element of any project to assure a quality transportation solution and subsequently an efficient and economical design. Scoping related to material sources and disposal sites is critical at an early stage in the project development. As implied above, material sources and disposal site development should be viewed as small projects inside the larger transportation project. If the need for a source and/or disposal site and the subsequent identification of the site is not completed early in the process, there may be inadequate time and project funding to complete the required work tasks (especially if there is right-of-way acquisition or significant environmental requirements).

In the scoping phase of a project, it should be determined if there will be materials needed on the project. If the proposed project will have material needs, consider the following:

Estimate material quantity needed: An estimated quantity of the various types of material should be developed.

Evaluate: Evaluation of the project and the availability of the various material products needed should then be undertaken to determine what options are available to meet these project needs. It should be determined if the project needs can be met by existing commercial suppliers in the area or if there will be a need to pursue a publicly controlled material source. ODOT has developed a guidance document to assist in determining the potential need for a material source and/or a disposal site, titled *Material Source Use Criteria*.

The same process should be followed in regards to disposal sites for excess materials generated on a project. The potential need for a publicly controlled disposal site for placement of excess materials should be evaluated using the above mentioned guidance document. *PD-10, Project Delivery Leadership Team Operational Notice - 10*, provides additional guidance as to when a publicly controlled disposal site may be needed for a project. The *Geo-Environmental Bulletin GEO0804(B), Designating Construction Staging and Disposal Sites* document also provides additional information on this issue.

20.4. Material Source and Disposal Site Project Reconnaissance

During the project scoping phase, if it has been determined that a publicly controlled source of materials and/or a publicly controlled disposal site or both are needed, existing sources and properties will need to be evaluated. ODOT has developed guidance documents that generally outline the steps necessary for disposal site development and for source development titled, *ODOT Material Source Checklist*, and *ODOT Disposal Site Checklist*.

Evaluate existing database and file information to determine the existence of sources in the area and to identify those sites that may meet the project needs for both quantity and quality of material. Consider the following:

Additional information: Information related to survey data, land use zoning, ownership, environmental clearances, visual restrictions, land use and permits should also be reviewed. If the project is in need of a publicly controlled material source and no existing sources appear able to meet the demand, it is at this point that a new or alternative sources of material would be considered and additional reconnaissance be completed.
When evaluating potential sources a useful tool has been developed by ODOT to assist in gathering needed information. This tool is titled Material Source Field Inventory.

Notifications: If the proposed source or site is located near residential development or other potentially sensitive land use or environmental areas, it may be necessary to notify local property owners or groups of proposed activities in advance of on site work beginning. ODOT has developed a template that can be modified to fit the proposed activities that can be completed and used to notify interested parties in an effort to inform them of what is being proposed and in an attempt to eliminate unrealistic fear and objections related to misunderstandings and misinformation. This template is titled Material Source Public Communication Document.

Other Agency information: Valuable information on sources and source availability in the area of interest can be obtained by contacting the Department of Geology and Mineral Industries, the United States Forest Service, Bureau of Land Management as well as County Road / Public Works Departments.

Cost: Once a site or sites have been identified, the estimated cost for development will need to be compared with the anticipated value of the site to the project and future projects to determine a cost benefit evaluation prior to moving forward with the source development. ODOT has developed a tool to assist in estimating the cost of source or site development, titled Material Source Evaluation Form (on the second tab).

20.5. Right-of-Way Needs for Material and Disposal Sites

If it is determined that additional property is required at material sources or disposal sites to meet the proposed project, it is critical that this need is identified during the scoping phase. Right-of-Way acquisition takes time and when dealing with material source properties, it generally will require an extended timeline. Once the agreements or permits of entry allowing for additional work to be completed are in hand, a detailed evaluation and investigation can move forward.

If the evaluation and investigation does not identify any fatal flaws, the right-of-way acquisition or lease negotiations can be finalized. The normal time lines associated with project right-of-way acquisitions do not generally allow for the right-of-way work associated with a material source or disposal site to move forward on the same schedule.

Note:

Right-of-way activities related to material sources and disposal sites generally need to start earlier than they would for the project to allow for adequate evaluation of sites and permitting.

Due to permitting requirements associated with the mining or disposal activity, the right-of-way purchase or other occupancy agreement must be completed prior to moving forward with the permit process which generally starts at the preliminary plan phase of a project. The investigation work associated with the evaluation of the site or sites in advance of finalizing what property is needed and the subsequent permitting work combine to lengthen the normal right-of-way process and also force an earlier start to this effort than normal for project right-of-way work.
20.6. Environmental Clearances for Material Sources and Disposal Sites

Material source development, by nature of the activity, is a ground disturbing action. No source development can take place without first obtaining all of the necessary environmental clearances required by state and federal law. ODOT projects must follow the federal standards versus state requirements when obtaining environmental clearances due to frequent federal participation in the project funding. Even if the currently proposed project is not federally funded, ODOT still tries to meet federal standards related to material sources and disposal sites since the sources are long term investments and will likely be used for federally funded projects in the future.

Investigation

The investigation work for sources and disposal sites is considered invasive enough to require environmental clearances prior to the implementation of the investigation plans. As a result, it likely will be necessary to obtain preliminary, if not all, clearances for the investigation work. If there is a high level of confidence that the source contains the necessary material quality and quantity, it is a better use of the resources to environmentally clear the entire site for all activities at one time prior to the implementation of the investigation plan. If there is uncertainty or inadequate time to complete the environmental surveys for the entire site prior to investigation, it may be necessary to complete only the minimum amount of clearances required to conduct the investigation. If only partial clearances are obtained in the early stages, and the source or site is pursued for use, follow up comprehensive environmental work to survey and clear the entire area will be required.

In addition to the common environmental concerns related to archeological, historic, wetland and Threatened and Endangered Species resources, the issue of noxious weeds, invasive plants and migratory birds will need to be evaluated and addressed in all source and/or site related activities.

20.7. Material Source and Disposal Site Investigation

Investigation techniques that are common to geologic and geotechnical investigations are also used for materials sources. Common methods include test pits, auger borings and wire-line core sampling. Air track drill investigations are often used independently or in conjunction with core hole explorations.

Exploration methods: Test pits and auger hole explorations are the most common form of investigation in sources of common soil, cinder and gravel deposits. Air track drill and wire-line explorations are frequently used in investigating hard rock deposits. The selected method of investigation, and the number, location, and depth of holes or test pits planned and then completed will depend on the site and the existing information available on the site. When determining the method(s) to use in investigating the site, the proposed development strategy will also influence the method selected.
Investigating material source sites: When investigating material source sites, the investigation plan should be developed and carried out to identify the lateral and vertical extent of the deposit or deposits. Vertical and lateral variations in the deposits such as material type, gradation characteristics, coatings on the material, weathering, joint spacing, joint infilling and other characteristics that may impact the development and or material quality are important and should be noted on the logs. Overburden thicknesses, flow contacts and existence of water are also critical elements that need to be noted.

Air track drill investigations: Air track drill investigations are ideal for gathering information rather inexpensively over a large area. This method of investigation can be useful in determining overburden depths, existence of rock and some basic rock characteristics, but should not be used as the sole source of information on most hard rock quarries. Air track drill information does not generally provide enough detail to fully understand potential material variations and does not provide samples sufficient for determining rock quality. In most cases air track drill investigations are used to obtain basic and preliminary information and to identify areas requiring more detailed wire line exploration.

Wire line explorations: Wire line explorations provide the investigator the details necessary to adequately characterize the material and the various source and material characteristics that will influence the source development.

The Engineering Geologist working on the source development must use experience and professional judgment in determining the level and type of investigation necessary for the proposed source development. As a guide, there are several “rules of thumb” associated with source investigations. These guidelines are:

Sites with limited history and or complex geology will generally require a higher level of investigation.

New sites will generally require a much more detailed and comprehensive effort than an existing site with a long history of use with no associated problems.

In general, the larger the proposed operation the larger more detailed the investigation will likely be.

As mentioned earlier, if a site has rather simple geology or well defined geology and a long history of use and good information is available, the Engineering Geologist may decide not to complete additional subsurface investigation. If subsurface investigation is completed on a site, at least one if not more, of the exploration locations should be focused on and completed within the proposed excavation area for the upcoming project. Planned material source development should not exceed the depth of the investigation.

Investigations conducted for disposal sources are generally carried out to investigate for foundation stability concerns. See Chapter 3 for details. Coordination between the engineering geologist and the geotechnical engineer will be critical in the site evaluation and development of the investigation plan, if required.

In most situations, it will be necessary to have some form of land use agreement or permit and environmental clearances completed in advance of doing any investigation work.
20.8. Material Source and Disposal Site Sampling and Testing

The method of investigation and the sampling and testing program will be dependent on the site and the type of material that is needed for the project. Material proposed for use on an ODOT project must meet the requirements laid out in the Oregon Standards Specifications for Construction as well as the Special Provisions for the intended use or uses unless modified by the Special Provisions.

Samples from the proposed development area can be obtained from surface exposures for preliminary qualification information when completing initial site assessment or when no subsequent investigation will be completed. When obtaining surface samples from an existing site that has not been worked for many years, the sampler should create a fresh face from which to obtain a representative sample. Existing stockpiled material can also be sampled and tested to obtain quality information. If follow up investigation is completed in the area or areas of proposed development, representative qualification samples should be obtained and tested. Sampling and testing differing units or zones of material becomes more important and critical as the quality requirements become more stringent. A source of material proposed for use on a paving project will require a more detailed investigation and sampling and testing program than a source proposed for use as common borrow.

Depending on the intended use of the material, it may be necessary to employ specific sampling techniques to determine if the material or various material units will meet the project requirements beyond simply the quality of the material. An example would be the need to sample a quarry site using coring equipment to determine the joint spacing of the material if the project needs are for rip rap of a specified size and the site has little to no history that would allow for adequate site characterization.

Sampling guidelines for produced aggregate material or existing stockpiles is provided in AASHTO T2 (ASTM D 75).

20.9. Material Source and Disposal Site Exploration Logging

The proper technique and format for logging material source explorations is described in Chapter 4. ODOT utilizes gINT software for the production of exploration logs. Site and exploration photos should be taken in the field at the time of the investigation. Sample and core photos should also be taken. When logging material source explorations, it is very important to note variations in the material even if there is no change in material type or geologic unit.

In gravel and cinder sources, it should be noted where there is either a noticeable change in the size of the material or in the grading. In gravel sites, it is also important to note whether or not a coating exists on the gravel, and if so, what it consists of.

In quarries, where the overall material type may not change it is still important to note minor differences such as the percent of vesicles, RQD, joint spacing, whether or not the joints are open or closed, and what the in-filling material is if open jointed.

Unit weight changes can also be an important variation that should be noted.

Any groundwater encountered should be noted, and if possible, distinguished from core drill water through checks against draw down or slug tests.
All of these subtle, and in some cases seemingly minor, variations may impact the development of the site for the proposed material use, and will only be obtainable with the proper investigation and logging of the explorations.

Logging holes for proposed material source requires close attention to details.

Another element that differs between material sources and disposal site investigations versus the more common geotechnical hole logging procedures and processes is the locating of various explorations. It is common for material source exploration to take place in advance of any type of formal topographic or other site survey work at a source. In many sources, no identifiable features exist from which to reference hole locations. As such, it is common practice to number each hole, place a survey stake at each location and to obtain a GPS reading at each exploration hole at the time of exploration. This location information can be used later to assist the survey crew with locating or accurately placing the exploration locations on the overall site maps when surveyed with precise survey-grade equipment.

Note:

GPS receivers used in locating material sources, disposal sites, and exploration site locations should have the datum set to WGS 84 for latitude/longitude and elevation, and International feet for Northing and Easting. Coordinates should be displayed as decimal degrees (D.Dº) or degrees/minutes/seconds (DºM’S”) only.

In addition to the GPS readings at every exploration location, a sketch map should be produced showing each hole location and dimensions and direction between holes, again to assist in the accurate placement of hole locations on the detailed site map.

20.10. Material Source and Disposal Site Mapping

Detailed and accurate surface characterization is just as important in material source and disposal site development as the accurate subsurface geologic characterization. Therefore, it is very important to have a high quality, three-dimensional topographic map which includes site features such as drainages, springs, existing roads, fences and property boundaries, as well as the surface contours showing the general land form and any significant changes in slope gradient.

The survey will be based on the Local Datum Plane based on NAD83 and NAVD 88. At least one position, placed on site but out of any development area, will have 1983 Oregon State Plane Coordinates calculated and reported on the face of the map. This position will be a 5/8” x 30” iron rod or the equivalent. Accuracy shall be such as can be achieved by using the NGS OPUS positioning service. In addition, a narrative related to the survey needs to be included, which details who did the survey work, exactly what was done, where and when it was completed and how the work was performed. Included in this narrative should be information regarding which bench marks were used for elevation control, what was used to control the boundary work, and the any combined scale factor between the latitude/longitude and the surveyed local datum plane. The narrative should be placed on the produced map in the area where the north arrow and scale bar is located.

Source design and development plans completed without this level of mapping will result in substandard work and carry with it a much higher degree of risk, with a greater potential for construction claims resulting from the inaccurate portrayal of the site features and topography.

Volume 3 ODOT Geotechnical Design Manual

20-8

April 2010
20.11. Design and Development of Material Sources and Disposal Sites

The investigation work, survey work and environmental clearances come together in the design phase of the material source and disposal site development. A conceptual design should be formulated in advance of the investigation work, and then modified as needed based on the results of the investigation and clearances. With this information in hand, a source can be strategically developed to meet both the short term project needs and planned future utilization of the resource. Designing a material source requires the detailed analysis of both surface and subsurface information for maximum utilization of the resource in the most efficient and economical manner. Designing a source entry one project at a time without looking at future and long term development and reclamation will lead to poor utilization of the resources and generally lead to much higher cost in the long term. To assure best utilization of a source property or disposal site, the design should be developed and reviewed consistent with the appropriate Region’s Quality Control Plan.

Material source and disposal site designs must be stamped by a Certified Engineering Geologist (C.E.G.) as per DES 05-02, the ODOT Policy for Document Stamping Requirements for Registered Engineers, Land Surveyors, Geologist, and Landscape Architects. The registrant who stamps the material source design is the Professional of Record for the material source design.

20.11.1. Material Sources and Disposal Sites Slope Design

Slopes are a major consideration in all source and site developments. Final slope requirements by the Department of Geology and Mineral Industries are 1.5H:1V maximum. Slopes in gravel pits, cinder pits and most borrow sites can be developed steeper as working faces but should be reconstructed to 2H:1V or flatter for final slopes.

The flatter slopes will provide for better long term stability and for higher quality reclamation.

The maximum slope requirements imposed by DOGAMI do not differentiate between quarries and other sources, but they may allow for steeper final slopes if steep slopes occur naturally in the area and the construction of steep slopes is approved in advance.

The development of rock slopes in quarries differs slightly from those detailed in Chapter 12. Chapter 12 addresses rock slope development in and along transportation facilities, whereas most material source design will take place off highway, and generally will not require certain aspects of slope construction described in Chapter 12, such as controlled blasting. Occasionally, highway road cuts will be designated as sources of material. When this occurs, the direction and guidance contained in Chapter 12 takes precedence. In quarries, benches are often required, and multiple bench development scenarios are common. In quarries, the stability of the back slopes as well as the height of the slopes is an important consideration in the design of the development plan. In quarries, no working face should be designed steeper than 0.25H:1V in order to prevent overhanging faces. ODOT uses 12 meter or 40 feet as a target maximum height. Actual slope height and slope angle will vary depending on the geology and topography of the sites and at what stage the development of the site is in. In hard rock quarries, a standard “rule of thumb” is to design for 30 foot wide benches, 40 foot high slopes between benches, and 0.25H:1V slopes, which will produce an overall 1H:1V slope (top of high wall to outermost toe).
20.11.2. Material Sources and Disposal Sites Designed Safety Elements

Safety is a significant concern that needs to be factored into the development and reclamation scheme for every ODOT material source and disposal site. The key site specific safety elements are listed and addressed below.

Safety Berms: Axle high safety berms are a Mine Safety and Health Administration (MSHA) requirement along high walls and elevated roadways. The approved specifications call for safety berms in ODOT sites to be constructed a minimum of 1 meter (3 feet) high with side slopes of 2H:1V. The footprint of the safety berms need to be considered when identifying roadway widths or clear areas for overburden storage and working faces. The requirement for safety berms serves several purposes. They are required by MSHA, but in addition, when the operations are completed, they help to reduce potential liability by leaving the site with these safety features in place.

Ingress and Egress: Another key element in the safety of ODOT sources and disposal sites is site entrance/exits and their construction. Related to entrance/exit construction, the main concerns are sight distance, roadway width, safety berm construction and roadway grade. In quarry sites, access to benches should be designed to accommodate tracked vehicles, but prevent easy access to unauthorized rubber tired vehicles. Furthermore, entrance/exit closures should be considered after the operation is completed for the sake of public safety and reduced liability. This is to address the concern of unauthorized vehicle trespass. Restricting access is intended to reduce the possibility of accidents and illegal dumping; therefore, reducing ODOT’s liability. Construction of features to control unauthorized trespass including fences, gates and other forms of entrance/exit closures should be coordinated with the appropriate ODOT Maintenance personnel. If sites have a history or potential for illegal dumping problems, ingress/egress control should be addressed during site development. For example, if fences and gates exist provisions should be made for their maintenance or improvement. If there are no existing gates or fencing, the possibility of adding these features should be considered during site development.

Benches: Benches in quarry sites should be developed as working platforms. The minimum design standard for ODOT quarries should be 10 meters or 30 foot bench width. Narrower benches have been used in the past with mixed results. Frequently in quarry development, precision blasting is not used and outer edges of the benches are unstable and tend to break and fall off. With narrower bench designs, the potential for bench degradation often leads to unworkable benches for future operations. Using the wider design width allows for the inevitable degradation of the outer edge, provides room for placement of a safety berm and will provide a stable working platform for subsequent entries. If narrower benches are specified for some reason, it needs to be recognized that it is likely they will not be usable during future operations unless controlled blasting techniques are also implemented in the site development.
20.12. Drafting of Material Source and Disposal Site Development Plans

ODOT utilizes Microstation and Inroads computer programs to model and manipulate information gathered for material sources and disposal sites. Development plan maps are drawn in Microstation, while Inroads is used in cross-section development and for quantity calculations. Material source and disposal site drawings should follow the examples available in the ODOT Contract Plans Development Guide, Volumes 1 and 2.

20.13. Material Source and Disposal Site Operational Specifications

Boiler plate operational specifications have been developed for material sources and disposal sites and are included in Section 00235 of the 2008 Boiler Plate Special Provisions. The boiler plate specifications will need to be modified by the source or site designer to address project specifics and permit requirements.

In developing either material sources or disposal sites, it is important to obtain estimated project quantities from the project designers. Keep in mind as projects progress through various stages of design the quantity of material needed or in excess will likely fluctuate. It is important for the source designer to keep in contact with the project designer, especially at the various project milestones to be aware of the current project estimates. Quantity calculations and the design of a material source are intended to assure the source designer that there is adequate material available in the source to meet the anticipated material needs of the project.

The construction contractors are ultimately responsible for excavating adequate material to meet the project needs, factoring in the equipment that will be used, the way the products will be produced and the timing of the production.

There are many factors that influence the final quantity of material needed or generated as described below:

Shrink and swell factors: There are shrink and swell factors for the material that may or may not influence the design. Shrink and swell factors will be more of a critical element when designing a disposal site design or attempting to utilize material from a highway road cut as a material source.

Project materials: Regarding the materials being produced for a project, some of the factors that will influence the overall project quantities are the type of material being produced, the narrowness of the allowed gradational bands, the cleanliness requirements of the produced material, the number of different sizes of material being produced, as well as the characteristics of the native material. In addition, contractors will influence overall quantities required based on the equipment they bring in and how they opt to produce the required materials. These factors will all influence the overall volume of native material needed to produce the final project requirements. In general, the shrink/swell factors of the material is not a significant design consideration when designing an off-highway material sources where the contractor can, within reason, adjust the size of the excavation area based on material characteristics and the planned approach to meeting the project requirements.
Volume of material: There are several factors related to the native in-place material besides shrink/swell that need to be taken into consideration when calculating the volume of material needed for the project and designing the planned excavation area. In general, gravel sources will produce larger volumes of waste material than quarries due to increased scalping and fracture requirements. As such, when calculating quantities in a gravel pit, it is critical to have a representative sieve analysis of the native material to determine the estimated percent of loss due to the size characteristics of the native material. These factors will need to be evaluated when determining a target quantity for the designed excavation area.

Quarry sites generally produce lower volumes of waste products than gravel sites due to the natural characteristics of the material, but there are still factors that may be encountered in a quarry site that need to be taken into consideration. In some quarry sites the material infilling the joints may be of low quality and may force a contractor to scalp on a larger screen size resulting in extra waste product.

There may be zones within a flow or between different flows that are of lower quality which can be reasonably sorted and removed; these areas would need to be taken into consideration when calculating the overall quantity and source design.

Quantity calculations: Quantity calculations for material sources and disposal sites should be based on high quality three dimensional site models coupled with computer generated excavation / embankment design surfaces. For the final development concept which is used in the contract plans, there should be an accompanying computer generated design surface and text report showing the calculated quantities and which surfaces were used to develop these quantities.

In general, for both quarries and gravel pits, development plans should be designed for an additional 10 percent over the estimated material needs of the project. This extra 10 percent within the designed excavation area is intended to cover minor quantity variations in the project, as well as a minor amount of variations such as varying overburden depth, irregular rock contacts, or increased scalping requirements over and above what is anticipated based on test results, the subsurface investigation and the observations of the source designer.

20.15. Reclamation of Material Sources and Disposal Sites

Reclamation of material sources and disposal sites should not be considered an afterthought in the design process, and should not be viewed as an activity that will only take place when the site is ultimately depleted. Reclamation of mined sites is a requirement of Oregon state law [ORS 517](#). Commonly, reclamation plans for a site are a requirement in both the Department of Geology and Mineral Industries and local agency permitting process and are required prior to site use. How the laws and regulations are implemented and reflected in the source’s development is somewhat dependent on the ownership of the property, the long term and planned post mine beneficial use for the property, and the desire of the property owner. There are different requirements for federal lands versus those that are privately or publicly owned.

As with the design of the site, reclamation should be considered in both the short and long term source plan. Certain elements of the design should take into account elements of concurrent reclamation and planning for long term reclamation. Common elements of reclamation include the salvage of overburden and/or soils, re-vegetation plans for seeding and plantings, and planning for final slope configurations and drainage within property boundaries. The overall aesthetics of the reclaimed site should be considered when designing the development and reclamation scheme. In
quarry sites, reclamation blasting, coupled with redistribution of soils and subsequent seeding, can be an effective technique for reclaiming slopes.

In designing the reclamation of a disposal site, the post beneficial use of the site is a significant concern. If the future use of the site will be for the placement of a building, proper placement of the material, construction in lifts, and uniform compaction become critical in the site development. If the disposal site is in a rural area and there are no plans for use of the site for a structure, it is more desirable to leave the upper and outer several feet of the disposed of material un-compacted, irregularly shaped and blended into the surroundings topography. This shaping, blending and lack of compaction on the surface will allow for better re-vegetation and a more natural appearance.

The uneven, roughened surface will also help to reduce erosion. Avoid building a flat topped, rectangular shaped stockpile of disposed of material with long uniform slopes.

20.16. Material Source Blasting

Blasting is a common and necessary practice in quarry sites, and used less frequently in the development of gravel sources and disposal sites. Commonly when blasting is planned, concerns are raised by permitting agencies and neighboring land owners. When designing a material source where blasting will be required, special attention needs to be paid to the site’s surroundings. The standard blasting requirements contained in the operational specifications for the material sources should be adequate if no special concerns exist. If there are environmentally sensitive areas or sensitive uses in the vicinity of the blast site, such as nesting sites, wetlands, fish bearing streams, homes, wells, utilities, or other fly rock, vibration and/or noise sensitive facilities, special provisions may need to be added to the standard blasting specifications. Several guidance documents have been developed by ODOT related to blasting and specifically blasting in quarry sites which may provide additional and needed information which are available on the Geo-Environmental web site. These documents are Rock Blasting and the Community and Preparing for a Blast.

20.17. Material Source and Disposal Site Erosion Control

Erosion control at material sources and disposal sites represent a significant concern at some locations due to the ground disturbing nature of the activity and the potential for erosion within and off of the source. With any source or disposal site development, there will generally be large areas of disturbed soil which has the potential to result in erosion and sediment transport off of the site. Erosion control is a design element that should be considered and incorporated into the development plan for any material source or disposal site when appropriate. Storm water control is a federally mandated requirement that in Oregon is delegated to the State Department of Environmental Quality (DEQ). When storm water is specifically associated with material sources, regulation and oversight has been delegated from DEQ to the Department of Geology and Mineral Industries (DOGAMI). Erosion control measures associated with the material source or disposal site should be shown on the development plan maps for the source or site rather than the project erosion control plan sheets.

It may be necessary for the source designer to coordinate with an erosion control designer when developing the site specific erosion control elements.

20.18. Material Source and Disposal Site Permitting

Permitting of material sources is a critical element in the design, development, and use of material sources. With very few exceptions, the development and use of material sites will require permits.
Ownership of the property, site characteristics, and the proposed extent and quantities of the operation will determine what permit(s) will be required. Permit requirements and/or conditions can influence the way a site is designed and developed. Permitting agencies such as DOGAMI, local public agencies, as well as federal agencies, will require property set backs and/or buffer zones around drainage and other specific site features that will need to be taken into consideration when laying out the site development. Set back requirements will vary depending on the location of the site, other uses and property ownership issues. Concerns over visual and noise impacts may also influence the direction and depth of development or the placement of stockpiles and berms. Similarly, groundwater, surface water drainages, and erosion control may be concerns to permitting agencies and may influence various elements of the design such as the buffers around these features, depth of the mining and storm water control features. These concerns make it critical for a successful design to account for the site characteristics, the limitations of the site, and the likely permit restrictions while still in the design phase. If concerns are not taken into consideration early in the process, there will likely be the need for re-work of the design prior to obtaining final approval of the permits, which may lead to a delay in obtaining the permits and impact the project schedule.

Disposal sites may also need to be permitted due to added traffic, noise impacts, hours of operation or simply due to the current zoning and the proposed action. The source / site designer will need to verify what permits if any will be required for the proposed activity. ODOT planners and local agency planners can provide information on what permits are necessary for the proposed action and may assist in completing the applications and in obtaining the needed permits.

20.19. Material Source and Disposal Site Visual Concerns

In most situations, there will be no visual concerns to address, but in some areas, the overall visual impact of a material source or disposal site will become a critical element of the design and reclamation. If visuals are a significant concern due to the location of the site or the ability of the site to be viewed from a significant scenic corridor, the impacts or the requirements associated with the visuals will need to be factored into the design and reclamation of the source. In Oregon, there are numerous areas that have varying degrees of scenic value and restrictions. For example, the Columbia River Gorge Scenic Area, the numerous wild and scenic rivers corridors and the many scenic highway routes all have various levels of aesthetic protection. In addition to these nationally and state recognized scenic areas, there are also local scenic designations that may impact a site development. When looking at a site for proposed development, the elements of potential visual restrictions should be evaluated early in the process.

20.20. Material Source and Disposal Site Narrative Reports

Material Source or Disposal Site Narrative reports have multiple purposes. This report, stamped by a Certified Engineering Geologist, provides an opportunity to summarize all of the information that was taken into consideration as part of the site design. In the narrative, the following types of information should be included:

- location information
- existing utilities both underground and overhead
- topography
- drainage conditions
• vegetation
• climate
• development plan and cross section sheets from the Contract Plans
• operating specifications
• regional geology
• site specific geology
• exploration logs
• core or test pit photos
• site photos
• currently available lab test results
• groundwater conditions, springs, well locations
• permits and permit conditions

In addition, the narrative allows the source / site designer to describe both the plan for this particular operation as well as the long term development concept. Concerns related to material characteristics, operational history, past operational problems, design elements, restrictions, and reclamation strategies can all be explained in detail. The narrative provides detailed information as well as assumptions and concerns.

Narratives are part of the contract documentation and are a requirement outlined in the operational specifications for the sources and/or disposal site and are required to be sealed by a CEG stamp. Material source and disposal site narratives are intended to be distributed to all interested contractors who are potentially preparing their bids based on the use of these sites. Therefore, the narrative report should be factual, provide a presentation of data and design assumptions based on the information gathered and considered during site development. Speculative or non-supported assumptions should not be included in the narrative.

At this time, ODOT has no formal policy that requires that the material source or disposal site narratives be reviewed by others prior to being sealed by the Professional of Record (POR). It is currently recommended that all narratives be reviewed by a competent peer or other registered professional prior to final signatures and affixing a CEG stamp.

An example of a narrative report is available on the ODOT web site, titled Material Source Narrative Report Example.

Material Source Narratives and Disposal Site Narratives need to be prepared and given to the Construction Project Managers Office in advance of project advertisement. The narrative(s) will be distributed to all interested contractors by the Project Managers Office and a record of who requested the information, as well as when and how it was supplied to them, will be kept and become a part of the project records.

20.21. Material Sources and Disposal Sites and Construction

During construction, it is common for questions to arise regarding the source / site development. The Professional of Record (POR) should be available for source / site visits to review and decide upon proposed modifications to the design.
During construction, at a minimum, the POR or an alternate should plan to be involved with the on site Pre and Post work meetings. If blasting is required for source development, the POR or an alternate would be required for the review of the blast plan and any subsequent modifications of the blast plan. It may also be necessary, depending on how source or site development progresses, for the POR or an alternative to witness and document the actual blast or blasts and attend other on site meetings to address requested design changes.

The construction project manager should provide a written post construction source or site evaluation to the POR. Information contained within the evaluation should be quantities of material produced or disposed of. It should also include discussion of any problems encountered during site development and or issues related to the materials produced. If changes were made to source or site development due to conditions encountered, these changes and the reasons for the changes should be noted in the evaluation. A form is available on the web site, titled Material source Post-Construction Report for Public and Private Sources.

20.22. Material Source Numbering

ODOT has an established numbering system for material source sites. This source numbering system provides each and every site that has been or is currently recognized as a potential source of materials for ODOT projects with a unique material source number regardless of material type, ownership, or location. Source numbers are used to match site specific information with material quality information. These source numbers are used by the ODOT Materials Laboratory in Salem for connecting material test results to the source where the material came from. Matching of test results and source numbers allows for the tracking of site history.

The numbering convention used by ODOT is as follows: ODOT Source # OR - 07- 003 - 4

1st two characters are letters which represent the state in which the site is located, for example OR for Oregon, CA for California, WA for Washington, ID for Idaho and NV for Nevada.

2nd two characters are a numeric County code; a county code has been issued for each county in each state that ODOT has recognized sources in.

3rd is a three character unique numeric identifier. This three character identifier is automatically assigned to the source when placing the information into the Aggregate Source Information System (ASIS) database.

4th character represents the ODOT region in which the source exists or the region which is closest to the neighboring state where the site is located.

For the example shown above, the number given indicates that the site is located in the State of Oregon (OR) and in Crook County (07), with a unique source number of 003 (003) and is located in ODOT Region 4 (4).

Material Source numbers can only be issued by ODOT personnel who have been given computer privilege to do so. These permissions have been limited to those who work in the Geology Units assigned to each Region, and to the Statewide Material Source staff.

If a new Source Number is Needed

If a new site or an existing site that has not previously been issued a source number is identified, the process to get a number assigned to the site is rather simple. The appropriate Region geology staff should be contacted, at which time they will provide a list of information that will need to be supplied in advance of the issuance of a source number. Once the site specific information is supplied to the
Region Geology staff, the information can be entered into the system and a source number assigned to the site.

20.23. **Asset Management for Material Sources: Inventory, Evaluate and Record**

Asset Management has become a key focus for the Oregon Department of Transportation. Material sources and sites used for disposal have been recognized as extremely valuable assets in ODOT’s inventory. The Oregon Department of Transportation owns approximately 700 material sources located along or in close proximity to the State’s transportation system. Managing these resources is a multifaceted effort, starting with the inventory and evaluation of these sites. Information gathered about the State’s material sources is recorded into a database system, which represents the primary tool used in managing these assets.

The Aggregate Source Information System (ASIS) is a SQL Server database with a user friendly Intranet web based input front end. Each material source, based on their unique source number, is an individual record with approximately one hundred individual data fields available per record. Several data fields are identified as required in each record prior to the system allowing for the record to be saved. Most of the required fields are associated with ownership and location data. Other data fields in each record are optional and may not apply to each source.

Similar to the issuing of source numbers, data input and editing of the database information is restricted to a few within ODOT, primarily region Geology Unit staff members and Statewide Material Source staff, who have been given the responsibility for site evaluation, inventory and updating these records. Access to the information contained within the database is available for review and use by any and all ODOT employees. A link to the ASIS database is available on the ODOT web site Material Sources page but is only accessible to ODOT employees.

Individual source records contained in ASIS are constantly being updated whenever additional information is obtained for a source. The ASIS database is also undergoing periodic upgrades with additional data fields and functionality being added.

Additional tools have been developed to assist ODOT staff in completing site evaluations. One such tool is titled **Significant Site Evaluation Form**. Through the use of this tool and others, ODOT staff are able to evaluate an individual source or site for its’ individual value and the value of this site within the framework of the ODOT Material Source Network. From these evaluations, ODOT staff can determine if a source or site requires permitting work to protect it for current or future use, or if the property is a candidate to be disposed of. In addition to these efforts, ODOT staff can effectively identify areas around the state where the network of sources/sites is either deficient of sources/sites or deficient for specific needs and take the proper steps to correct these deficiencies.

Through effective Asset Management and proper development and permitting of material sources and disposal sites, ODOT can assure the wisest and most efficient use of these resource properties to the benefit of the traveling public and the tax payers.
20.24. References
This section intentionally blank
Chapter 21

21. Geotechnical Reporting and Documentation

21.1. General

ODOT geotechnical engineers, engineering geologists and consultants working on ODOT projects, produce geotechnical reports, engineering geology reports and other various design memorandums, documents and products in support of project definition, project design, and final PS&E development. Also produced are project specific Special Provisions, plan details, boring logs, Geotechnical and Foundation Data Sheets and the final project geotechnical documentation. Information developed to support these geotechnical documents are retained in the regional Tech Center files. The information includes project site data, regional and site specific geologic data, exploration logs, field and laboratory test results, instrumentation and monitoring data, interpretive drawings, design calculations, and construction support documents. This chapter provides standards for the development, content and review of these documents and records, with the exception of borings logs, which are covered in Chapter 4 and Materials Source Reports, which are covered in Chapter 20.

Project geotechnical documentation and records produced by ODOT staff, and consultants working on ODOT projects, shall meet, as applicable, the informational requirements listed in the following FHWA manual:

A copy of this manual can be obtained and downloaded from the Geo-Environmental web site. The FHWA manual includes “Geotechnical Report Review Checklists”, covering the main information and recommendations that should be addressed in project geotechnical reports. In addition to these FHWA checklists, the ODOT checklist provided in Appendix 21-A Geotechnical Report Review Checklist covers additional items that should be included in the review of all bridge foundation design projects. These checklists should be used as the basis for evaluating the completeness of the final geotechnical or engineering geology reports and products.
21.2. General Reporting Requirements

In general, all geotechnical design recommendations should be documented with either a hard copy to the project file or an email record. Verbal recommendations that influence contract plans or specifications or result in design changes should be followed up with a formal document. It is recognized that some geotechnical recommendations may involve very minor design or construction issues and therefore minimal review or documentation is required. The level of review and documentation depends on the type and complexity of the design or construction issue and the experience and qualifications of the engineer performing the work. It is the responsibility of each Region Technical Center to establish the quality control procedures and protocol, and the levels of review and documentation required, for all geotechnical work produced by its office.

A geotechnical document (either a design memorandum or standard report) is required for most highway projects involving any significant geotechnical design elements such as earthwork, landslides or rock slopes, or structure foundations. When geotechnical design is required for a project, this work should be documented in the form of either technical memoranda or reports which summarize the work performed and the resulting design recommendations and products. For reports that cover individual project elements, a geotechnical design memorandum may suffice, with the exception of bridge reports and major unstable slope repair projects, in which case a formal geotechnical report should be issued.

E-mail may be used for geotechnical reporting and for providing recommendations in certain circumstances. E-mails may be used to transmit review of construction submittals or to transmit preliminary foundation or other preliminary geotechnical recommendations. In both cases, a print-out of the e-mail should be included in the project file. For time critical geotechnical designs sent by e-mail that are not preliminary, the e-mail should be followed up with a stamped memorandum or report as soon as possible. A copy of the e-mail should also be included in the project file.

21.3. Quality Control

Quality control of geotechnical design work should be an ongoing process occurring regularly throughout the entire design process. Each Region Tech Center is responsible for the quality control of the geotechnical products produced in its region. These products should adhere to the ODOT geotechnical standards of practice established and defined in the ODOT Geotechnical Design Manual.

21.3.1. Quality Control for Bridge Foundation Design

For most routine bridge foundation design projects, the subsurface investigation program, materials classification and testing, recommended foundation type, design calculations, design recommendations, special provisions, reports and foundation data sheets should all be thoroughly reviewed by an independent geotechnical engineer with intimate knowledge of the project. This review should be thorough enough to verify and confirm all design assumptions and calculations leading to the recommendations made in the report. Important geologic interpretations made for foundation design purposes should be reviewed and approved by a Certified Engineering Geologist (CEG), and noted so by stamping and sealing the final geotechnical report. All design memorandum and geotechnical reports should be stamped and sealed by the appropriate Professional of Record (POR), registered in the state of Oregon, whose area of expertise is in geotechnical engineering. Each of these documents shall also be signed by the reviewer.
Foundation Data Sheets may be stamped by either a registered engineer (PE) or a Certified Engineering Geologist (CEG). All Foundation Data sheets must be independently checked by a qualified geotechnical engineer or engineering geologist familiar with the project. If the Foundation Data sheet is stamped by a CEG, it must be reviewed (checked) by the project geotechnical engineer. It should be understood that the Foundation Data Sheet is an important contract document that is sometimes used in the resolution of contract claims submitted by contractors under the Differing Site Conditions clause (Section 00140.40). Therefore, the person stamping the Foundation Data Sheet should have a complete understanding of what is being constructed based on the data sheet and how the data sheet information can effect the foundation construction, contract bidding and claim potential.

21.4. Geotechnical Report Content Requirements

The geotechnical information and types of recommendations that should be provided in geotechnical reports or memorandum is provided in the sections that follow. Both preliminary (TS&L) reports and final reports are addressed.

21.4.1. Preliminary Geotechnical Reports

Preliminary geotechnical reports are typically used to provide geotechnical input for the following:

- Developing the project definition,
- Development of TS&L bridge plans,
- Conceptual geotechnical studies for environmental permit development activities,
- Reconnaissance level corridor studies,
- Development of EIS discipline studies, and
- Rapid assessment of emergency repair needs (e.g., landslides, rockfall, bridge foundation scour, etc.).

Preliminary geotechnical reports are often developed primarily based on an office review of existing geotechnical data for the site, and generally consist of feasibility assessment, identification of geologic hazards and preliminary recommendations. Geotechnical design for preliminary reports is typically based largely on engineering judgment and experience at the site, or similar sites, combined with whatever existing geologic and geotechnical information is available. At this stage (especially for bridge projects), a geological reconnaissance of the project site has usually been conducted and in some cases a subsurface exploration program is in progress and some preliminary geotechnical analysis can be performed to characterize key elements of the design, assess potential hazards, evaluate potential design alternatives and estimate preliminary costs.

These preliminary geotechnical reports should contain the following information as applicable to the project. Refer to Section 21.4.1.1 for additional preliminary report requirements related to bridge foundations.

- A general description of the project, project elements, and project background.
- A brief summary of the regional and site geology. The amount of detail included here will depend on scope of the project. For example, a landslide repair project will require a more detailed discussion of the site and regional geology than a routine bridge replacement project.
- A summary of the available site data, including as-built information.
- A summary of the field exploration conducted, if applicable.
• A summary of the laboratory testing conducted, if applicable.

• A description of the project soil and rock conditions. The amount of detail included here will depend on the type of report. For projects in which new borings have been obtained, soil profiles for key project features (e.g., bridges, major walls, etc.) may need to be developed and tied to this description of project soil and rock conditions.

• A summary of geological hazards identified that may affect the project design (e.g., landslides, rockfall, debris flows, liquefaction, soft ground or otherwise unstable soils, seismic hazards, etc.), if any.

• A summary of the preliminary geotechnical recommendations.

• Appendices that include any boring logs and laboratory test data obtained (old or new), soil profiles developed, any field data obtained, and any photographs.

21.4.1.1 TS&L Geotechnical Reports for Bridge Foundation Projects

For bridge foundation design projects, a preliminary geotechnical report (TS&L Memo) should be provided to the bridge designer early on in the design process. Maintain close communication and coordination with the bridge designer to see when this information is required. As a general rule, the memo should be provided no later than two-thirds of the way through the TS&L design process. The purpose of this memo is to provide sufficient data for developing TS&L plans and cost estimates and for permitting purposes. The memo is generally provided before the subsurface investigation is completed but may contain some subsurface information, such as preliminary drilling results, performed up to that date. It provides a brief description of the proposed project, the anticipated subsurface conditions (based on existing geologic knowledge of the site, as-built plans and records and other existing information) and presents preliminary foundation design recommendations such as foundation types and preliminary resistances. The rational for selecting the recommended foundation type should be presented. The potential for liquefaction and associated effects should also be discussed as well as any other geologic hazards that may affect design.

The document should be stamped by the geotechnical engineer (POR) and also the project engineering geologist if significant geologic interpretations or other geologic input were used in developing the recommendations. The memo may be distributed in the form of an email message or a full report depending on the size and scope of the project. If the memo is distributed by email a hard copy should also be printed out, sealed and dated by the engineer, and placed in the project file.

Note:

The TS&L memo does not meet the requirements of a final Geotechnical Report, which is required for all bridge projects involving foundation work.

21.4.2. Final Geotechnical Reports

In general, final geotechnical reports are developed based on an office review of existing geotechnical data for the site, a detailed geologic review of the site, and a complete subsurface investigation program, meeting AASHTO and FHWA standards. Design analysis are then conducted based on the results of the field investigation work, combined with any insitu or laboratory test data, and the resulting design recommendations are included in the geotechnical report along with construction recommendations and project special provisions as appropriate.
Geotechnical reports for bridge foundation design projects are used to communicate and document the site and subsurface conditions along with the foundation and construction recommendations to the structural designer, specifications writer, construction personnel and other appropriate parties. The importance of preparing a thorough and complete geotechnical report cannot be overemphasized. The information contained in the report is referred to during the design phase, the pre-bid phase, during construction, and occasionally in post-construction to assist in the resolution of contractor claims.

21.4.2.1 Minimum Information in Final Geotechnical Reports

The following reporting guidelines are provided for use in developing the final Geotechnical Report. Also refer to the Geotechnical Report Review Checklist in Appendix 21-A Geotechnical Report Review Checklist for guidance on the general format and information that should be contained in Geotechnical Reports specific to structure foundations. Include all items below that apply to the project.

- **Description:** A general description of the project scope, project elements, and project background.
- **Surface conditions:** Project site surface conditions and current use.
- **Regional and site geology:** This section should describe the site stress history and depositional/erosional history, bedrock and soil geologic units, etc.
- **Regional and site seismicity:** This section should identify the major seismic sources affecting the site including nearby active faults. This section is generally only included in reports addressing structural elements (e.g., bridges, walls, etc.) and major earthwork projects. For bridges the information listed under Item 16 should be provided. Refer to Chapter 6 for additional seismic design criteria that may be required.
- **Summary of in-house data:** A summary of the in-house data collected on the site (office research), including final construction records for previous construction activity at the site, as-built bridge drawings or other structure layouts, pile records, boring or test pit logs or other subsurface information, geologic maps or previous or current geologic reconnaissance results.
- **Summary of field exploration:** A summary of the field exploration conducted, if applicable. Provide a description of the methods and standards used, as well as a summary of the number and types of explorations and field testing that were conducted. Include a plan map (or data sheet) in the appendix showing the locations of all explorations. Also include a description of any field instrumentation installed and its purpose, data and results. Provide exploration logs in the report appendices along with any other field test data such as cone penetrometer, pressuremeter), vane shear tests or shear wave velocity profiles.
- **Summary of Laboratory testing:** A summary of the laboratory testing conducted, if applicable. Provide a description of the methods and standards used as well as a summary of the number and types of tests that were conducted. Provide the detailed laboratory test results in the report appendices.
- **Soil and rock materials and subsurface conditions:** This section should include not only a description of the soil/rock units encountered, but also how the units are related at the site. The soil and rock units should also be discussed in terms of the relevance and influence the materials and conditions may have on the proposed construction. Groundwater conditions
should be described in this section of the report, including the identification and discussion of any confined aquifers, artesian pressures, perched water tables, potential seasonal variations, if known, any influences on the groundwater levels observed, and direction and gradient of groundwater, if known. The groundwater elevation is a very important item and should be provided in the report. The measured depth of groundwater levels, and dates measured, should be noted on the exploration logs and discussed in the report. It is important to distinguish between the groundwater level and the level of any drilling fluid. Also, groundwater levels encountered during exploration may differ from design groundwater levels. Any artesian or unusual groundwater conditions should be noted as this often has important effects on foundation design and construction.

- **Rock information:** If rock slopes are present, discuss rock structure, including the results of any field structure mapping (use photographs as needed), joint condition, rock strength, potential for seepage, etc.

Subsurface Profiles

These descriptions of soil and rock conditions should always be illustrated with subsurface profiles (i.e., parallel to roadway centerline) and cross-sections (i.e., perpendicular to roadway centerline) of the key project features.

Note:

A subsurface profile or cross-section is defined as a graphical illustration that assists the reader of the geotechnical report to visualize the spatial distribution of the soil and rock units encountered in the borings for a given project feature (e.g., structure, cut, fill, landslide, etc.).

Cross sections and profiles along certain features, such as landslides, may be needed to fully convey the site conditions and subsurface model. These profiles and cross sections help to define a geologic model of the subsurface materials and conditions. As such, the profile or cross-section will contain the existing and proposed ground line, the structure profile or cross-section if one is present, the boring logs (including SPT values, soil/rock units, etc.), and the location of any water table(s). Interpretive information should be provided in these illustrations, as appropriate, to adequately and clearly describe and depict the subsurface geologic model. The potential for variability in any of the stratification shown should also be discussed in the report.

Geotechnical or Foundation Data Sheet

A Geotechnical or Foundation Data sheet should always be provided for bridges, retaining walls, tunnels, and other significant structures. For retaining walls, subsurface data sheets should always be provided for soil nail walls, anchored walls, and non-gravity cantilever walls, and all other walls in which there is more than one boring along the length of the wall. For other wall situations, judgment may be applied to decide whether or not a data sheet is needed. For cuts, fills, and slides, soil profiles should be provided for features of significant length, where multiple borings along the length of the feature are present. Subsurface cross-sections must always be provided for slides, and for cuts and fills that are large enough in cross-section to warrant multiple borings to define the subsurface cross-section.

Provide a summary of geological hazards identified and their impact on the project design (e.g., landslides, rockfall, debris flows, liquefaction, soft ground or otherwise unstable soils, seismic hazards, etc.), if any. Describe the location and extent of the geologic hazard.

For analysis of unstable slopes (including existing settlement areas), cuts and fills, provide the following:
• analysis approach,
• assessment of failure mechanisms,
• determination of design parameters, and
• any agreements within ODOT or with other customers regarding the definition of acceptable level of risk.

Included in this section, would be a description of any back-analyses conducted, the results of those analyses, comparison of those results to any laboratory test data obtained, and the conclusions made regarding the parameters that should be used for final design.

Geotechnical Recommendations for Earthwork

Provide a summary of geotechnical recommendations for earthwork (embankment design, cutslope design, drainage design, use of on-site materials as fill). This section should provide the following recommendations as applicable to the project:

• Embankment design recommendations, such as the maximum embankment slopes, allowed for stability and any measures that need to be taken to provide a stable embankment (e.g., geosynthetic reinforcement, wick drains, staged embankment construction, surcharge, light weight materials, etc.).

• Estimated embankment settlement and settlement rate, along with any recommendations for mitigating excess post construction settlement. Include any recommendations for foundation improvement (subexcavation) such as the need for removal of any unsuitable materials beneath the proposed fills and the extent of these areas.

• Cutslope design recommendations, including the maximum cut slopes allowed to maintain the required stability. Recommendations for control of seepage or piping, erosion control measures and any other special measures (such as horizontal drains) required to provide a stable slope should be provided.

• Regarding the use of on-site materials, on-site soil units should be identified as to their feasibility for use as embankment material, discussing the type of material for which the on-site soils are feasible, the need for aeration, the effect of weather conditions on their usability, and identification of on-site materials that should definitely not be used in embankment construction. The degradation potential of rock materials should be identified and discussed, as appropriate.

Geotechnical Recommendations for Rock Slopes and Rock Excavation

Provide geotechnical recommendations for rock slopes and rock excavation. Such recommendations should include, but are not limited to the following:

• recommended rock slope design and fallout area (if appropriate),
• rock scaling,
• rock bolting/dowelling, and other stabilization requirements (if appropriate), including recommendations to prevent erosion/undermining of intact blocks of rock,
• internal and external slope drainage requirements,
• feasible methods of rock removal such as blasting or ripping.
detailed plans and cross sections as needed to clearly depict the areas requiring rock slope stabilization and the methods and designs recommended.
Geotechnical Recommendations for Stabilization of Unstable Slopes

Provide geotechnical recommendations for stabilization of unstable slopes (e.g., landslides, rockfall areas, debris flows, etc.). This section should provide the following information and recommendations as appropriate:

- a discussion of the mitigation options available,
- detailed recommendations regarding the most feasible options for mitigating the unstable slope,
- a discussion of the advantages, disadvantages, and risks associated with each feasible option,
- cost estimates for each option should also be included, as appropriate.

Geotechnical Recommendations for Bridges, Tunnels and Structures

Provide geotechnical recommendations for bridges, tunnels, hydraulic structures, and other structures. See Section 21.7 for additional information required for bridge foundation designs. This section should provide the following minimum information:

- discussion of foundation options considered,
- recommended foundation options, and the reason(s) for the selection of the recommended option(s),
- foundation design recommendations:
 - for strength limit state – nominal and factored bearing resistance, lateral and uplift resistances,
 - for service limit state - settlement limited bearing, and any special design requirements,
 - for extreme event limit state – nominal bearing, uplift, and lateral resistance, and soil spring values,
Seismic Design Parameters and Recommendations

Provide the following for seismic design parameters and recommendations:

- Peak Horizontal Ground Acceleration (PGA), 0.20 and 1.0 second spectral accelerations for the bridge site from the 2002 USGS seismic hazard maps for the 500 and 1000-year events
- Site Class and Soil Coefficients (F_{pga}, F_a, F_v)
- Design Response Spectrum (from General Procedure or Ground Response Analysis)

Summary of Liquefaction Analysis

Provide a summary of liquefaction analysis. If liquefaction is predicted, provide:

- estimates of embankment deformations including predicted settlement and lateral displacements,
- an assessment of potential bridge damage and approach fill performance for both the 500 and 1000 year events,
- estimates of seismic-induced downdrag loads (if applicable),
- soil properties for both the liquefied and non-liquefied soil conditions, for use in the lateral load analysis of deep foundations,
- reduced foundation resistances,
- liquefaction mitigation design recommendations (if necessary),
- Results of ground response analysis (SHAKE) and site-specific response spectra (if applicable)
- design recommendations for scour, when applicable,
- earth pressures on abutments and walls in buried structures

Geotechnical Recommendations for Retaining Walls and Reinforced Slopes

Provide geotechnical recommendations for retaining walls and reinforced slopes. This section should provide a discussion of:

- wall/reinforced slope options and the reason(s) for the selection of the recommended option(s),
- foundation type and design requirements:
 - for strength limit state - ultimate bearing resistance, lateral and uplift resistance if deep foundations selected,
 - for service limit state - settlement limited bearing, and any special design requirements,
 - seismic design parameters and recommendations (e.g., design acceleration coefficient, extreme event limit state bearing, uplift and lateral resistance if deep foundations selected) for all walls except for ODOT Standard Retaining Walls,
 - design considerations for scour when applicable,
lateral earth pressure parameters (provide full earth pressure diagram for non-gravity cantilever walls and anchored walls).

Non-Proprietary Walls and Reinforced Slopes

For non-proprietary walls/reinforced slopes requiring internal stability design (e.g., geosynthetic walls, soil nail walls, all reinforced slopes), provide the following:

- minimum width for external and overall stability,
- embedment depth,
- bearing resistance,
- settlement estimates,
- soil/rock adhesion values,
- soil reinforcement spacing, strength, and length requirements in addition to dimensions to meet external stability requirements,
- for anchored walls, provide achievable anchor capacity, no load zone dimensions, and design earth pressure distribution.

Proprietary Walls

For proprietary walls, provide the following:

- minimum width for overall stability,
- embedment depth,
- bearing resistance,
- settlement estimates,
- design parameters for determining earth pressures.

Geotechnical Recommendations for Traffic Structures, Soundwalls and Buildings

Provide geotechnical recommendations for traffic structures, soundwalls and buildings. This section should provide the following minimum information:

Provide the following foundation information:

- discussion of foundation options considered
- recommended foundation options, and the reason(s) for the selection of the recommended option(s),
- foundation design recommendations.

For mast arm signal and strain poles provide soils information required for the Broms method. This includes soil type (cohesive or cohesionless), unit weight, soil friction angle or undrained shear strength and groundwater level. Provide the highest groundwater level anticipated at any time during the life of the structure.
Sites Conditions that Do Not Use Broms Method

If site conditions do not allow the use of the Broms method, provide soils information required for the LPile or strain-wedge analysis methods as appropriate,

- For structures that have standard foundation design drawings, provide the site-specific soil designation (i.e. “Good”, “Average” or Type “A” or “B”, etc.) for use with the standard drawing. Also provide recommendations on whether or not the foundation soils and site conditions meet all requirements shown on the standard drawing, such as slope limits and settlement criteria. If soil or site conditions are variable along the length or under the foundation, clearly delineate these areas on a plan map and provide recommendations for each delineated area.

Conditions that Do Not Meet Requirements for Using Standard Drawings

If the foundation materials or site conditions do not meet the requirements for using the standard drawings, such as conditions of hard rock or very soft, “Poor” soils, provide soil unit descriptions, soil properties, groundwater information and other design recommendations as required for design of the foundation to support the proposed structure. This includes the following information as a minimum:

- Description of the soil units using the ODOT Soil & Rock Classification System.
- Ground elevation and elevations of soil/rock unit boundaries.
- Depth to the water table.
- Soil design parameters, including effective unit weight(s), cohesion, φ, K_a, K_p, and/or P-y curve or strain-wedge data as appropriate.
- The allowable bearing capacity for spread footings and estimated wall or footing settlement (and differential settlement) as appropriate.
- Overall stability factor of safety.
- Any foundation constructability issues resulting from the soil/rock or groundwater conditions.

Special Provisions that May Be Required for Non-Standard Foundation Designs

Provide information relating to construction recommendations and any special provisions that may be required for non-standard foundation designs. This may include things such as sub-excavation, backfill and compaction requirements, blasting specifications or the use of temporary casing for drilled shafts. Provide the following information:

For buildings provide the following as appropriate:

- Nominal or ultimate bearing capacities and associated resistance factors or factors of safety as appropriate.
- Settlement calculations and the amount of total allowable and differential settlement described for the structure.

Provide recommendations regarding permanent cut and fill slopes, temporary slopes, stabilization of unstable ground, ground improvement and retaining wall recommendations including:

- Any foundation constructability issues resulting from the soil/rock or groundwater conditions.
• Earthwork recommendations, including recommendations for fill or cut slopes, material requirements, compaction, ground stabilization or improvements and provisions for drainage as applicable.

Long-Term or Construction Monitoring Needs

In this section, provide recommendations on the types of instrumentation needed to evaluate long-term performance or to control construction, the reading schedule required, length of monitoring period, how the data should be used to control construction or to evaluate long-term performance, and the zone of influence for each instrument.

In relation to construction considerations, address issues of construction staging, shoring needs and potential installation difficulties, temporary slopes, potential foundation installation problems, earthwork constructability issues, dewatering, etc.

Appendices

Typical appendices include all exploration logs of borings, test pits and any other subsurface explorations (including older exploration logs), Geotechnical and/or Foundation Data Sheets, design charts for foundation bearing and uplift, P-Y curve input data, design detail figures, layouts showing boring locations relative to the project features and stationing, subsurface profiles and typical cross-sections that illustrate subsurface stratigraphy at key locations, laboratory test results, instrumentation measurement results, and special provisions needed.

Note:

The detail contained in each of these sections will depend on the size and complexity of the project or project elements and the subsurface conditions. In some cases, design memoranda that do not contain all of the elements described above may be developed prior to developing a final geotechnical report for the project.

21.5. **Bridge Foundation Data Sheets**

A Foundation Data Sheet is typically required for each bridge project that involves foundation construction. The Foundation Data Sheet should provide an accurate and detailed presentation of the subsurface conditions at the project site. The data sheet represents a compilation and condensation of the information contained on the project exploration logs and is included in the contract documents, usually as the second sheet in the bridge plans, behind the Plan and Elevation sheet for the structure. All subsurface information that would significantly affect foundation construction should be clearly shown on the data sheet. This may include important subsurface information known to exist at the site but not necessarily encountered or identified in any of the subsurface borings for the project. However, since these are contract documents, the information presented on Foundation Data sheets should remain factual in nature. Interpretive information, assumptions or extrapolation of geologic data should generally not be shown.

Include rock compressive strength test results in the table of rock core for each boring, if available. If pressuremeter or cone penetrometer tests were performed, show the locations of these tests on the data sheet and provide a reference for obtaining the test data. Make a note of any non-standard tests such as oversized SPT samples. A Foundation Data sheet should be provided in the Final Geotechnical Report for all bridges and for retaining walls attached to bridges (bridge abutment walls). Refer to the *Bridge Design and Drafting Manual (Section II)* for drafting guidelines for the data sheet.

The final geotechnical report should also include all applicable special provisions for the project related to the geotechnical work. Coordinate with bridge, roadway and other designers as appropriate to make sure all necessary special provisions related to the geotechnical aspects of the project are supplied. Consult with the “owner” of the special provisions if any major changes are to be made. Supply additional information in the project special provisions as necessary that further describes specific geotechnical conditions that may affect the contractor’s work and bid. Sections typically requiring input from the geotechnical engineer include 00300, 00510, 00512, 00520, and 00596.

Some unique geotechnical special provisions can be obtained (internal to ODOT) at the following location:

 scdata\geosite\G-H Geotech Common\GEO-SPECIFICATIONS

These are project-specific specifications that are not often used but are available for use as templates or examples for developing specifications for unique geo-applications.

21.7. Additional Reporting Requirements for Structure Foundations

The geotechnical designer should provide the following additional information to the structural designer for Load and Resistance Factor Design (LRFD) of structure foundations:

21.7.1. Spread Footings

If spread footings are recommended, provide the following information in the geotechnical report:

- For Footing Elevations, the elevations of the proposed footings should be provided along with a clear description of the foundation materials the footings are to be constructed on and minimum cover requirements.
- Specify whether or not the footings are to be keyed into rock. Check with the bridge designer to see if a “fixity” condition is required in rock. On sloping rock surfaces, work with the structural designer to determine the best “bottom-of-footing” elevations.
- Provide the unfactored nominal bearing resistance available for the strength and extreme event limit states,
- Provide the settlement limited nominal bearing resistance for the specified settlement (typically 1 inch) for various effective footing widths likely to be used for the service limit state, and
- Provide resistance factors for each limit state.

The allowable footing/wall settlement is a function of the structure type and performance criteria and the structural designer should be consulted to establish allowable structure settlement criteria.

Calculations

The calculations should assume that the nominal resistance for the strength and extreme limit state (q_n) and the nominal resistance at the service limit state (q_{serv}) resist uniform loads applied over effective footing dimensions B' and L' (i.e., effective footing width and length $((B' or L') - 2e)$ as determined using the Meyerhof method for soil). For footings on rock, the calculations should assume that q_n and q_{serv} resist the peak footing stress resulting from a triangular or trapezoidal pressure.
distribution rather than uniform distribution. Minimum footing setback on slopes and embedment depths should be provided in the report.

To evaluate sliding stability and eccentricity, the geotechnical designer provides resistance factors for both the strength and extreme event limit states for calculating the shear and passive resistance in sliding. Also the soil parameters ϕ, K_p, γ, K_a, and K_{ae} are provided for calculating the passive and active resistances in front of and behind the footing.

To evaluate soil response and development of forces in foundations for the extreme event limit state, the geotechnical designer provides the foundation soil/rock shear modulus values and Poisson’s ratio (G and μ). These values should typically be determined for shear strain levels of 0.02 to 0.2%, which span the strain levels for typical large magnitude earthquakes.

The geotechnical designer evaluates overall stability and provides the maximum (unfactored) footing load which can be applied to the design slope and still maintain an acceptable safety factor (typically 1.5 for the strength and 1.1 for the extreme event limit states, which is the inverse of the resistance factor). A uniform bearing stress, as calculated by the Meyerhof method, should be assumed for this analysis. Example presentations of the LRFD footing design recommendations to be provided by the geotechnical designer are shown in Table 21-1, Table 21-2, and Table 21-3 and Figure 21-1.

Table 21-1. Example presentation of soil design parameters for sliding and eccentricity calculations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Abutment Piers</th>
<th>Interior Piers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Unit Weight, γ (soil above footing base level)</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Soil Friction Angle, ϕ (soil above footing base level)</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Active Earth Pressure Coefficient, K_a</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Passive Earth Pressure Coefficient, K_p</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Seismic Earth Pressure Coefficient, K_{ae}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Unit Weight, γ (soil above footing base level)</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Table 21-2. Example presentation of resistance factors for footing design

<table>
<thead>
<tr>
<th>Limit State</th>
<th>Resistance Factor, φ</th>
<th>Bearing</th>
<th>Shear Resistance to Sliding</th>
<th>Passive Pressure Resistance to Sliding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Service</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Extreme Event</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
21.7.2. **Pile Foundations**

21.7.2.1 **Bearing Resistance**

The geotechnical designer provides information regarding pile resistance using one of the following two approaches:

A plot of the unfactored nominal bearing resistance \(R_n \) as a function of depth for various pile types and sizes (for strength and extreme event limit states). This design data would be used to determine the feasible ultimate pile resistance and the estimated depth for pile quantity determination. See **Figure 21-2** for an example of this pile data presentation.

Given a required \(R_n \), the estimated depth at which it could be obtained is provided for one or more selected pile types and sizes. See **Table 21-5** for an example.

Resistance factors for bearing resistance for all limit states will also be provided (see **Table 21-4** for an example).

![Figure 21-1. Example presentation of bearing resistance recommendations.](image)

![Table 21-3. Example presentation of bearing resistance recommendations.](table)

<table>
<thead>
<tr>
<th>Bent</th>
<th>Footing Size</th>
<th>Footing Elev.</th>
<th>(R_n)</th>
<th>(\phi)</th>
<th>(\phi R_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 21-4. Example presentation of resistance factors for pile design.

<table>
<thead>
<tr>
<th>Limit State</th>
<th>Bearing Resistance</th>
<th>Uplift</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Service</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Extreme Event</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Figure 21-2. Example presentation of pile bearing resistance and uplift.

Once R_n is known (or the total driving resistance, R_{ndr}, if applicable) and the cutoff elevation of the piles is obtained from the bridge designer, then the “Engineers Estimated Length” can be determined for steel piles. The Engineer’s Estimated Lengths are required in the project special provisions for each bridge bent. The table format below is as example of how this information should be presented. The table should be modified as necessary to account for reduced capacities due to scour, liquefaction, downdrag or other conditions.
Table 21-5. Pile Resistances & Estimated Lengths (Br. 12345)
Pile Type: PP16x0.50”

<table>
<thead>
<tr>
<th>Bent</th>
<th>Rn (kips)</th>
<th>ϕRn (kips)</th>
<th>C.O. Elev. (ft.)</th>
<th>Est. Tip Elev. (ft.)</th>
<th>Engr’s Est. Length, (ft.)</th>
<th>Req’d. Tip Elev. (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>450</td>
<td>180</td>
<td>210</td>
<td>130</td>
<td>80</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>140</td>
<td>210</td>
<td>145</td>
<td>65</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>450</td>
<td>180</td>
<td>170</td>
<td>120</td>
<td>50</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>140</td>
<td>170</td>
<td>130</td>
<td>40</td>
<td>135</td>
</tr>
<tr>
<td>3</td>
<td>450</td>
<td>180</td>
<td>200</td>
<td>125</td>
<td>75</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>140</td>
<td>200</td>
<td>135</td>
<td>65</td>
<td>140</td>
</tr>
</tbody>
</table>

Legend & Table Notes:

R_n = Nominal pile bearing resistance
ϕR_n = Factored pile bearing resistance
C.O. = Pile cutoff elevation

21.7.2.2 Downdrag
If downdrag loads are estimated, the following should be provided:
- ultimate downdrag load, DD,
- depth of the downdrag zone, or thickness of the downdrag layer,
- downdrag load factor,
- cause of the downdrag (settlement due to vertical stress increase, liquefaction, etc.).
- Also the total driving resistance, R_{ndr} (the required nominal resistance), taking into account the downdrag loads should be provided.

21.7.2.3 Scour
If scour is predicted, the depth of scour and the skin friction lost due to scour, R_{scour}, should be provided. The total driving resistance, R_{ndr} (the required nominal resistance), taking the loss of friction due to scour into account, should be provided.

21.7.2.4 Uplift Resistance
For evaluating uplift, the geotechnical designer should provide the following:
- As a function of depth, the nominal (unfactored) uplift resistance, R_n. This should be provided as a function of depth, or as a single value for a given minimum tip elevation, depending on the project needs.
- The skin friction lost due to scour or liquefaction to be applied to the uplift resistance curves should also be provided (separately, in tabular form).
- Resistance factors should also be provided for strength and extreme event limit states.
The geotechnical designer should also provide group reduction factors for bearing resistance and uplift if necessary, as well as the associated resistance factors, but these will be rarely needed.

21.7.2.5 Lateral Resistance

The geotechnical designer should provide the soil parameters necessary to develop p-y curves and perform the lateral load analysis. The p-y curve soil input data should be provided as a function of depth. Resistance factors for lateral load analysis do not need to be provided, as the lateral load resistance factors will typically be 1.0.

The p-y soil/rock parameters provided should be in a format for easy insertion into the LPILE or COM624 programs. The parameters required are typically those required for the LPILE proprietary computer program. The LPILE Manual or the manual titled Laterally Loaded Pile Analysis Program for the Microcomputer; FHWA-SA-91-048 (COM624P) should be referenced for more information. It is important that the geotechnical designer maintain good communication with the structural designer to determine the kind of soil parameters necessary for the lateral load analysis of the structure. If liquefaction of foundation soils is predicted, soil parameters should be provided for both the liquefied and non-liquefied soil conditions. Table 21-6 is an example format for presenting the required data for a non-liquefied soil condition.

Table 21-6. Soil Parameters for Lateral Load Analysis (non-liquefied soil condition).

<table>
<thead>
<tr>
<th>ELEVATION (ft.)</th>
<th>KSOIL*</th>
<th>K (lbs/in³)</th>
<th>SOIL PARAMETERS</th>
<th>SOIL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
<td></td>
<td>γ, (pci)</td>
<td>c,(psi)</td>
</tr>
<tr>
<td>63.5</td>
<td>55.0</td>
<td>3</td>
<td>500</td>
<td>.06</td>
</tr>
<tr>
<td>55.0</td>
<td>30.0</td>
<td>2</td>
<td>1000</td>
<td>.07</td>
</tr>
<tr>
<td>30.0</td>
<td>10.0</td>
<td>2</td>
<td>2000</td>
<td>.072</td>
</tr>
</tbody>
</table>

* KSOIL is a COM624P term referenced to soil types. For the LPILE program provide the appropriate soil type from the default types listed in LPILE or provide custom p-y curves if necessary.

If lateral loads imposed by special soil loading conditions such as landslide forces are present, the ultimate lateral soil force or stress distribution, and the load factors to be applied to that force or stress, should be provided.

21.7.2.6 Required Pile Tip Elevation for Minimum Penetration

Provide a required pile tip elevation for piles at each bent. The required tip elevation represents the highest acceptable tip elevation that will still provide the required resistances and performance under all loading conditions. The required tip elevation (sometimes referred to as “Minimum Tip Elevation”) is typically based on one or more of the following conditions:

- pile tip reaching the required bearing layer or depth,
- providing required uplift resistance,
• providing required embedment for lateral support,
• satisfying settlement and/or downdrag criteria,
• providing sufficient embedment below scour depths or liquefiable layers.

The required pile tip elevations provided in the Geotechnical Report may need to be adjusted depending on the results of the lateral load or uplift load evaluation performed by the structural designer. If adjustments in the required tip elevations are necessary, or if changes in the pile diameter are necessary, the geotechnical designer should be informed so that pile drivability and resistance recommendations can be re-evaluated. The required tip elevation may require driving into, or through, very dense soil layers resulting in potentially high driving stresses. Under these conditions a wave equation driveability analysis is necessary to make sure the piles can be driven to the required embedment depth (tip elevation) without damage.

21.7.2.7 Pile Tip Reinforcement
Specify steel pile tip reinforcement if piles are to be driven through very dense granular soils containing cobbles and boulders or for penetration into weak rock. Pile points (H-piles) or shoes (pipe piles) are typically specified. In pipe pile driving conditions where difficult driving through dense sand and gravel is anticipated before reaching the required tip elevation, inside-fit pipe pile shoes are sometimes used to help retard the formation of a soil plug at the pile tip. Section 02520 of the Standard Special Provisions must be included in the project specifications for specifying the proper steel grade for pile tip reinforcement and other requirements. Also note that outside-fit pile tip reinforcement (points or shoes) can reduce the friction resistance and this effect should be taken into account in design before specifying outside fit tips or shoes.

21.7.2.8 Pile Splices
Provide the number of anticipated pile splices that might be needed due to variability of the subsurface conditions. This number of splices should be included as a bid item in the contract documents. ODOT pays for splices when piles have to be driven a certain length over the Engineer’s Estimated Length. Refer to ODOT Standard Specification 00520.87 and 00520.91 for the criteria used to determine measurement and payment for pile splices.

21.7.2.9 Pile Driving Criteria and Acceptance
The method of construction control and pile acceptance must be specified in the report for each project. All piles should be accepted based on field measured pile driving resistances, established by the FHWA dynamic formula, wave equation analysis, PDA/signal matching methods or static load test criteria.

Note:
ODOT typically uses the dynamic formula or wave equation method for most projects.

The pile driving analyzer (PDA) with signal matching (CAPWAP) is also sometimes used on projects where it is economically justified. Full scale static load tests are rarely performed but are recommended for large projects where there is potential for substantial savings in foundation costs. If necessary, use the following tests:

FHWA Gates Equation: For LRFD design the default dynamic formula used to establish pile driving criteria is the FHWA Gates Equation. When using this equation a resistance factor of 0.40 is applied to the nominal bearing resistance to determine the factored resistance.
Wave Equation Analysis Program (WEAP): Wave Equation driving criteria is generally used for the following situations:

- Nominal pile resistances greater than 600 kips.
- Where driving stresses are a concern (e.g., short end-bearing piles or required penetration through very dense strata).
- Very long friction piles in granular soils

A resistance factor of 0.40 is applied to the nominal bearing resistance to determine the factored resistance. When the wave equation method is specified, the contractor is required to perform a wave equation analysis of the proposed hammer and driving system and submit the analysis as part of the hammer approval process. The soils input criteria necessary for the contractor to perform the WEAP analysis needs to be supplied in a table in Section 00520 of the contract special provisions. An example of a completed table that would be provided in the geotechnical report (and special provisions) is shown below.

Table 21-7. Example of a completed table.

<table>
<thead>
<tr>
<th>Bridge 12345; Bents 1 & 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pile Type</td>
</tr>
<tr>
<td>PP16 x 0.50</td>
</tr>
</tbody>
</table>

Note:

Use a rectangular distribution of skin resistance over the portion of the pile under ground.

IPRCS is the percent skin friction (percent of Rn that is skin friction in the WEAP analysis).

Refer to the **Standard Special Provisions for Section 00520** for additional specification requirements. Provide WEAP input data for the highest (worst-case) driving stress condition, which may not always be for the pile at the estimated tip elevation.

Pile Driving Analyzer (PDA): Large pile driving projects may warrant the use of dynamic pile testing using a pile driving analyzer for additional construction quality control and to save on pile lengths. Generally the most beneficial use of PDA testing is on projects with large numbers of very long, friction piles driven to high resistance. However, there may be other reasons for PDA testing such as high pile driving stress conditions, testing new pile hammers, questionable hammer performance or to better determine the pile skin friction available for uplift resistance. A resistance factor of 0.65 can be applied to the nominal bearing resistance determined by PDA if an adequate number of production piles are tested. **AASHTO Article 10.5.5.2.3** should be referenced for the procedures to use for PDA/CAPWAP pile acceptance. A signal matching (CAPWAP) analysis of the dynamic test data should always be performed to determine the axial capacity and to calibrate the PDA resistance prediction methods. Case methods may be used for determining the nominal bearing resistance providing it is calibrated with the dynamic test signal matching analysis. The piles should be tested after a waiting period if pile setup or relaxation is anticipated.

Special provisions for past PDA/CAPWAP projects are available on the ODOT “GEOSITE” on the scdata2 server (internal to ODOT only) at the following address:

```
scdata2\Geosite\G-H Geotech Common\GEO-SPECIFICATIONS
```
21.7.3. **Drilled Shafts**

To evaluate bearing resistance, the geotechnical designer provides, as a function of depth and for various shaft diameters, the unfactored nominal (ultimate) bearing resistance for end bearing, R_p, and side friction, R_s, used to calculate R_n, for strength and extreme event limit state calculations (see example figures below). For the service limit state, the unfactored bearing resistance at a specified settlement, typically 0.5 or 1.0 inch (mobilized end bearing and mobilized side friction) should be provided as a function of depth and shaft diameter. See Figure 21-3 for an example of the shaft bearing resistance information that should be provided. Resistance factors for bearing resistance for all limit states should also be provided.

Downdrag

If downdrag loads are estimated, the following should be provided:

- the depth of the downdrag zone, or thickness of the downdrag layer,
- the ultimate downdrag load, DD, as a function of shaft diameter,
- the downdrag load factor,
- the loss of skin friction due to downdrag,
- the cause of the downdrag (settlement due to vertical stress increase, liquefaction, etc.).

21.7.3.1 Scour

If scour is predicted, the depth of scour and the skin friction lost due to scour, R_{scour}, should be provided.

21.7.3.2 Uplift Resistance

For evaluating uplift, the geotechnical designer provides, as a function of depth, the nominal uplift resistance. The skin friction lost due to scour or liquefaction to be applied to the uplift resistance curves should be provided (separately, in tabular form). Resistance factors should also be provided. The geotechnical designer also provides group reduction factors for bearing resistance and uplift if necessary, as well as the associated resistance factors.

21.7.3.3 Lateral Resistance

Provide soil input values for the LPILE or COM624P program as described in Section 21.7.2.5. Resistance factors for lateral load analysis generally do not need to be provided, as the lateral load resistance factors will typically be 1.0.
21.7.3.4 Crosshole Sonic Log Testing

Access tubes for crosshole sonic log (CSL) testing are typically provided in all drilled shafts unless otherwise recommended by the geotechnical designer. Typically, one tube is provided per foot of shaft diameter with a minimum of 3 tubes provided per shaft.

The amount of CSL testing needs to be determined for each project and should be provided in the special provisions (Section 00512.42). Specify the minimum number of CSL tests to be conducted and the location of these tests. The actual number of tests can be increased, if necessary, during construction depending on the contractor’s work performance. The amount of testing that should be performed depends on the subsurface conditions, the redundancy of the foundation system and the contractor’s work performance. The first shaft constructed is always tested to confirm the contractor’s construction procedures and workmanship. Subsequent tests should be based on the following guidelines and good engineering judgment:

- Test every single-shaft bent
- Minimum of 1 CSL test per bent (or shaft group) or 1/10 shafts

Also consider:
- Redundancy in the substructure/foundation
- Soil conditions (potential construction difficulties like caving soils, ground swelling, and boulders)
- Groundwater conditions (wet holes, artesian conditions)
21.7.3.5 Shaft Reinforcement Lengths in Rock Socket Applications

As described in Chapter 8, provide the following in the Geotechnical Report:

- The additional length(s) of shaft reinforcement needed to account for the uncertainty in the top of the bearing layer for rock socket applications.
- Also, include these additional reinforcement lengths in Section 00512 of the project Special Provisions.
- Drilled shaft equipment must also be provided that is capable of drilling the full extra shaft length. This requirement must also be included in the project Special Provisions. Refer to the ODOT Standard Special Provisions for Section 00512 for further guidance and details.

21.7.4. Geotechnical Report Checklist for Bridge Foundations

The Geotechnical Report Review Checklist in Appendix 21-A Geotechnical Report Review Checklist should be used to check the content and completeness of geotechnical reports prepared for bridge foundation projects. The checklist should be completed by the Professional-of-Record for the project. The checklist questions should be completed by referring to the contents of the geotechnical report. For each question, a yes, no, or not applicable (N/A) response should be provided. A response of "I don't know" to any applicable section on the checklist is not to be shown with a check in the "Not Applicable" (N/A) column. All checklist questions answered with "NO" should be fully explained.

A copy of the completed checklist, and all comments and explanations, should be included with the geotechnical report when submitted for review to ODOT.

21.7.5. Geotechnical Report Distribution

Geotechnical reports for bridges or other structure foundations should be distributed to the following personnel:

- Structure Designer
- Roadway Designer
- Specification Writer
- Project Leader
- Project Manager (more copies if requested for contractors)
- Hydraulic Engineer (if appropriate)
- Project Geologist
- HQ Bridge Engineering Section
21.7.6. Retaining Walls

To evaluate bearing resistance for footing-supported gravity walls, the geotechnical designer provides q_n, the unfactored nominal (ultimate) bearing resistance available, and q_{serv}, the settlement limited bearing resistance for the specified settlement for various effective footing widths (i.e., reinforcement length plus facing width for MSE walls) likely to be used (see Figure 21-4). Resistance factors for each limit state are also provided. The amount of settlement on which q_{serv} is based shall be stated. The calculations should assume that q_n and q_{serv} will resist uniform loads applied over effective footing dimension B' (i.e., effective footing width $(B - 2e)$) as determined using the Meyerhof method for soil). For footings on rock, the calculations should assume that q_n and q_{serv} will resist peak loads and that the stress distribution is triangular or trapezoidal rather than uniform. The geotechnical designer also provides wall base embedment depth requirements or footing elevations to obtain the recommended bearing resistance.

To evaluate sliding stability, bearing, and eccentricity of gravity walls, the geotechnical designer provides:

- resistance factors for both the strength and extreme event limit states for calculating the shear and passive resistance in sliding,
- soil parameters ϕ, K_p, γ and depth of soil in front of footing to ignore when calculating passive resistance,
- soil parameters ϕ, K_a, and γ used to calculate active force behind the wall,
- coefficient of sliding, $\tan \phi$,
- seismic earth pressure coefficient K_{ae} and the peak ground acceleration (PGA) used to calculate seismic earth pressures and,
- separate earth pressure diagrams for strength and extreme event (seismic) limit state calculations that include all applicable earth pressures, with the exception of traffic barrier impact loads (traffic barrier impact loads are developed by the structural designer).

The geotechnical designer should evaluate overall stability. If overall stability controls the required wall width, the designer should provide the minimum footing or reinforcement length required to maintain an acceptable safety factor (typically 1.5 for the strength and 1.1 for the extreme event limit states, which is the inverse of the resistance factor, i.e., 0.65 and 0.9, respectively). A uniform bearing stress as calculated by the Meyerhof method should be assumed for this analysis.
Figure 21-4. Example of bearing resistance recommendations for gravity walls

(a) Strength Limit State Earth Pressure

(b) Extreme Event Limit State Earth Pressures
Figure 21-5. Example of lateral earth pressures for gravity wall design

For non-proprietary MSE walls, the spacing, strength, and length of soil reinforcement should also be provided, as well as the applicable resistance factors. MSE reinforcement properties should be specified in the special provisions for Section 02320. Spacing and length requirements may also be best illustrated using typical cross sections.

For non-gravity cantilever walls and anchored walls, the following should be provided:

- ultimate bearing resistance of the soldier piles or drilled shafts as a function of depth (see Figure 21-3),
- lateral earth pressure distribution (active and passive),
- minimum embedment depth required for overall stability,
- no load zone dimensions,
- ultimate anchor resistance for anchored walls, and the associated resistance factors.

Table 21-8 and Figure 21-6 provide an example presentation of soil design parameters and earth pressure diagrams for non-gravity cantilever and anchored walls to be provided by the geotechnical designer.

Table 21-8. Example presentation of soil design parameters for design of non-gravity cantilever walls and anchored walls.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Unit Weight, γ (all applicable strata)</td>
<td>x</td>
</tr>
<tr>
<td>Soil Friction Angle, Φ (all applicable strata)</td>
<td>x</td>
</tr>
<tr>
<td>Active Earth Pressure Coefficient, KA</td>
<td>x</td>
</tr>
<tr>
<td>Passive Earth Pressure Coefficient, KP</td>
<td>x</td>
</tr>
<tr>
<td>Seismic Earth Pressure Coefficient, KE</td>
<td>x</td>
</tr>
<tr>
<td>Averaged γ used to determine KE</td>
<td>x</td>
</tr>
<tr>
<td>Averaged Φ used to determine KE</td>
<td>x</td>
</tr>
</tbody>
</table>

21.8. Geotechnical Design File Information

Documentation that provides details of the basis of recommendations made in the geotechnical report or memorandum is critical not only for review by senior staff, but also for addressing future questions that may come up regarding the basis of the design, to address changes that may occur after the design is completed, to address questions regarding the design during construction, to address problems or claims, and for important information for developing future projects in the same location, such as bridge or fill widenings. Since the engineer who does the original design may not necessarily be the one who deals with any of these future activities, the documentation must be clear and concise, and easy and logical to follow. Anyone who must look at the calculations and related documentation should not have to go to the original designer to understand what was done.
Figure 21-6. Example presentation of lateral earth pressures for non-gravity cantilever and anchored wall design.

The project documentation should be consistent with FHWA guidelines and as set forth in this chapter. Details regarding what this project documentation should contain are provided in the following sections.
21.8.1. Documentation for Preliminary Geotechnical Design

Document sources of information (including the date) used for the preliminary evaluation. Typical sources include as-built bridge or other structure drawings, as-constructed roadway drawings, existing test hole logs, geologic maps, previous or current geologic reconnaissance results or previous site investigation work and instrumentation data. Also document the following:

- If a geologic reconnaissance was conducted, the details of that site visit, including any photos taken, should be included in this documentation.
- For structures, provide a description of the foundation support used for the existing structure, including design bearing capacity, if known, and any foundation capacity records such as pile driving logs, load test results, etc.
- From the contract or maintenance records, summarize any known construction or maintenance problems encountered during construction or throughout the life of the structure. Examples from the construction records include over-excavation depth and extent, and why it was needed, seepage observed in cuts and excavations, dewatering problems, difficult digging, including obstructions encountered during excavation, obstructions encountered during foundation installation (e.g., for piles or shafts), slope instability during construction, changed conditions or change orders involving the geotechnical features of the project, and anything else that would affect the geotechnical aspects of the project.
- For any geotechnical recommendations made, summarize the logic and justification for those recommendations. If the recommendations are based on geotechnical engineering experience and judgment, describe what specific information led to the recommendation(s) made.

21.8.2. Documentation for Final Geotechnical Design

In addition to the information described above in Section 21.7.1, the following information should be documented in the project geotechnical file:

1. List or describe all given information and assumptions used, as well as the source of that information. For all calculations, an idealized design cross-section that shows the design element (e.g., wall, footing, pile foundation, buttress, rock slope, etc.) located in context to the existing and proposed ground lines, and the foundation soil/rock should be provided. This idealized cross-section should show the soil/rock properties used for design, the soil/rock layer descriptions and thicknesses, the water table location, the existing and proposed ground line, and any other pertinent information. For slope stability, the soil/rock properties used for the design should be shown (neatly handwritten, if necessary) on the computer generated output cross-section.

2. Additional information and/or a narrative should also be provided which describes the basis for the design soil/rock properties used. If the properties are from laboratory tests, state where the test results, and the analysis of those test results, can be found. If using correlations to SPT or cone data, state which correlations were used and any corrections to the data made.

3. Identify what is to be determined from these calculations (i.e. what is the objective?). For example, objectives could include foundation bearing resistance, foundation or fill settlement (differential and total), time rate of settlement, the maximum cut or fill slope allowed, the size of a stabilizing buttress or berm required, etc.
4. The design method(s) used must also be clearly identified for each set of calculations, including any assumptions used to simplify the calculations, if that was done, or to determine input values for variables in the design equation. Write down equation(s) used and the meaning of the terms used in equation(s), or reference where equation(s) used and/or meaning of terms were obtained. Attach a copy of all curves or tables used in making the calculations and their source, or appropriately reference those tables or figures. Write down or summarize all steps needed to solve the equations and to obtain the desired solution.

5. If using computer spreadsheets, provide detailed calculations for one example to demonstrate the basis of the spreadsheet and that the spreadsheet is providing accurate results. Hand calculations are not required for well proven, well documented programs such as XSTABL, SLOPE/W, SHAKE2000 or GRLWEAP. Detailed example calculations that illustrate the basis of the spreadsheet are important for engineering review purposes and for future reference if someone needs to get into the calculations at some time in the future. A computer spreadsheet in itself is not a substitute for that information.

6. Highlight the solutions that form the basis of the engineering recommendations to be found in the project geotechnical report so that they are easy to find. Be sure to write down which locations or piers where the calculations and their results are applicable.

7. Provide a results summary, including a sketch of the final design, if appropriate.

Each set of calculations (for each structure) should be sealed and dated by the professional-of-record. If the designer is not registered, the reviewer should seal and date the calculations. Consecutive page numbers should be provided for each set of calculations and each page should be initialed by the reviewer.

A copy of the appropriate portion of the FHWA checklist for geotechnical reports (i.e., appropriate to the project) should be included with the calculations and filled out as appropriate. This checklist will aid the reviewer regarding what was considered in the design and to help demonstrate consistency with the FHWA guidelines.

21.8.3. Geotechnical File Contents

The geotechnical project file(s) should contain the information necessary for future users of the file to understand the historical geotechnical data available and all the geotechnical work that was performed as part of this project. This would include the scope of the project, the dimensions and locations of the project features, the geotechnical investigation plan, field and laboratory testing and results, the geotechnical design work performed and design recommendations.

Two types of project files should be maintained: 1) the geotechnical design file(s), and 2) the construction support file(s).

The geotechnical design file should specifically contain the following information:

- Historical project geotechnical,
- As-built data and historical geotechnical information related to, the project,
- Geotechnical investigation plan development documents,
- Geologic reconnaissance results,
• Cross-sections, structure layouts, etc., that demonstrate the scope of the project and project feature geometry as understood at the time of the final design, if such data is not contained in the geotechnical report,
• Information that illustrates design constraints, such as right-of-way location, location of critical utilities, wetlands and location and type of adjacent facilities that could be affected by the design,
• Boring log field notes,
• Boring logs,
• Field test results, (CPT, pressuremeter, vane shear, shear wave measurements),
• Laboratory test results, including rock core photos and records,
• Field instrumentation measurements,
• Final calculations only, unless preliminary calculations are needed to show design development,
• Final wave equation runs for pile foundation constructability evaluation,
• Key photos (must be identified as to the subject and locations), including CD with photo files,
• Key correspondence (including e-mail) that tracks the development of the project and contains information regarding design changes or geotechnical recommendations. This does not include general correspondence that is focused on project coordination activities.

The geotechnical construction file should contain the following information (as applicable):
• Pile hammer approval letter with driving criteria including wave equation analysis,
• Construction submittal reviews (retain temporarily only, until it is clear that there will be no construction claims),
• PDA/CAPWAP results,
• Embankment or other instrumentation monitoring data,
• Change order correspondence and calculations,
• Documentation of any changes to the original geotechnical design or specifications,
• Claims-related correspondence and data,
• Photos (must be identified as to the subject and locations), including CD with photo files,
• CSL reports and any correspondence concerning shaft defects, repair work and the approval of drilled shafts.

21.8.3.1 Consultant Geotechnical Reports and Documents Produced For ODOT

Geotechnical reports and documents produced by geotechnical consultants shall be subject to the same reporting and documentation requirements as those produced by ODOT staff, as described in Sections 21.3 and Section 21.7. The detailed analyses and/or calculations produced by the consultant in support of the geotechnical report development shall be provided to ODOT.
21.9. References
Section intentionally blank.

Appendix 21-A Geotechnical Report Review Checklist

(Structure Foundations Supplement)

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title/Cover Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Heading “Geotechnical Report” in larger letters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 Bridge Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 Bridge Number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4 Section Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 Highway & Milepoint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6 County</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7 Key Number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8 Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detailed Vicinity Map</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table of Contents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body of Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.1 Is project scope and purpose summarized?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.2 Is a concise description given for the general geologic setting and topography of the area?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2 Office Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.1 Summary of all pertinent records and other information that relate to foundation design and construction.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3 Subsurface Explorations and Conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3.1 Is a summary of the field explorations, locations, and testing given?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3.2 Is a description of general subsurface soil and rock conditions given?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3.3 Is the groundwater condition given?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4 Laboratory Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4.1 Are laboratory test results (e.g., natural moisture, Atterberg Limits, consolidation, shear strengths, etc.) discussed and summarized in the report?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5 Summarize Hydraulics Information that affects foundation recommendations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.1 Bridge options providing required waterway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.2 100 and 500-year scour depths and elevations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.3 Riprap protection; class, depth, and extent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6 Seismic Analysis and Evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.1 Bedrock acceleration coefficients (500 & 1000-yr) and AASHTO soil profile type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.2 Liquefaction analysis and bridge access & performance assessment (settlement, stability, lateral deformation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.3 Liquefaction Mitigation recommended?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.3.1 Mitigation design, specifications and cost estimates supplied?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7 Foundation Analyses and Design Recommendations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.1 Foundation Options and Discussion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.2 Pile Foundations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.2.1 Type (steel pipe, H-pile, concrete, displacement/friction or end-bearing)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.2.2 Material specification (e.g., ASTM & steel grade), size (e.g., O.D. and thickness)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.2.3 Tip treatment; open or closed-ended, tip protection required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.2.4 Ultimate nominal resistance, estimated cutoff elevation, estimated tip elevation, “estimated” or “order” length and minimum required tip elevation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.2.5 Axial factored resistance and resistance factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.2.6 Nominal and factored uplift resistances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.2.7 Lateral resistance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.2.8.1 Soil parameters for LPILE or COM624P analysis (e.g., p-y data, liquefied & nonliquefied soil conditions)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.2.8 Pile group settlement addressed?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.2.9 Downdrag potential addressed?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.2.10 Provide downdrag loads, load factors and discussion of how downdrag loads are accounted for or mitigated?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.2.11 Reduced pile resistances (axial, uplift, lateral, etc) as a result of liquefaction, scour or downdrag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.2.11.1 Driving Criteria and Driveability Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.2.11.2 Dynamic equation where driveability or driving stress problems are not expected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.2.11.2.1 Wave Equation for nominal resistances greater than 540 kips or expected driving stress problems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.2.11.2.2 Static or dynamic load testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.3.1 Shaft type (i.e., end-bearing, friction or combination)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.3.2 Nominal axial resistance provided for various diameters and lengths (depths or tip elevs.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.3.3 Rock socket lengths specified (and/or shaft tip elevations)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.3.4 Estimates of shaft settlement with depth under unfactored (service) load conditions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.3.5 Resistance factors and factored resistances.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.3.6 Shaft group effects addressed?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.3.7 Lateral capacity addressed?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.3.8 Soil parameters for COM624P or LPILE analysis provided (e.g., p-y data, liquefied & nonliquefied soil conditions)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.3.8.1 Are specifications provided describing the tests are conducted and clearly defining all responsibilities?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.4 Spread Footings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.4.1 Description and properties of the anticipated foundation soil or rock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.4.2 Nominal bearing resistance as function of effective footing width</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.4.3 Nominal bearing resistance for a given set of service (strength) conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.4.4 Resistance factors and factored bearing resistance for strength and extreme limit states</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.4.5 Recommended maximum elevation for base of footing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.4.6 Soil parameters for sliding and eccentricity provided?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.4.7 Overall stability checked?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.7.5 Retaining Walls
4.7.5.1 Description and properties of the anticipated foundation soil
4.7.5.2 Nominal bearing resistance as function of effective footing width
4.7.5.3 Nominal bearing resistance for a given settlement (service limit state)
4.7.5.4 Resistance factors and factored bearing resistance for strength and extreme limit states
4.7.5.5 Recommended maximum elevation for base of footing
4.7.5.6 Overall stability, sliding, overturning
4.7.5.7 Earth pressure recommendations and diagrams
4.7.5.8 Wall type options

4.7.6 Engineered Fills
4.7.6.1 Are materials, gradation, placement and compaction requirements provided for the engineered fill?
4.7.6.2 Are the dimensions of the Engineered Fill clearly shown (in plan & cross section)

4.7.7 Are foundation recommendations provided for Temporary and/or Detour Structures?

4.8 Construction Issues and Recommendations
4.8.1 Pile Foundations
4.8.1.1 Have potential obstructions (e.g., boulders, riprap, existing foundations, utilities, etc.) been identified?
4.8.1.2 Any limited head room or other clearance issues?
4.8.1.3 Have the effects of pile driving vibrations on adjacent structures been evaluated?
4.8.1.3.1 Is a preconstruction survey recommended to document existing conditions?

4.8.2 Drilled Shafts
4.8.2.1 Shaft stabilization issues discussed and evaluated (e.g., temporary or permanent casing, slurry)
4.8.2.2 Adequate description of any boulders, obstructions or other difficult conditions expected to be encountered provided?
4.8.2.3 Discussion of expected groundwater conditions

4.8.3 Spread Footings
4.8.3.1 Anticipated foundation material adequately described
4.8.3.2 Shoring required?

4.8.4 Retaining Walls
4.8.4.1 Anticipated foundation material adequately described
4.8.4.2 Shoring required?
4.8.4.3 Backfill and drainage requirements identified

4.8.5 Temporary Excavations
4.8.5.1 Discussion of any shoring and bracing
4.8.5.2 Cofferdams
4.8.5.3 Groundwater mitigation method

4.9 Special Provisions
4.9.1 Pile Foundations
4.9.1.1 Soil input parameters for Wave Equation Analysis
4.9.1.2 Set period and redriving (freeze) addressed?
4.9.1.3 Preboring required?
4.9.1.4 Jetting permitted?
4.9.1.5 Is tip protection required?
4.9.1.6 Number of pile splices provided
4.9.1.7 Specs for PDA, CAPWAP or other load testing provided?

4.9.2 Drilled Shafts
4.9.2.1 Crosshole Sonic Log Tests described? (number, locations, etc.); Section 00512.42.

4.9.3 Spread Footings
4.9.3.1 Any special excavation or foundation preparation specs required? (Section 00510)

4.9.4 Retaining Walls
4.9.4.1 Bearing resistance equation provided for MSE walls.
4.9.4.2 Geotextile/geogrid material properties required? (Section 02320)

4.9.5 Are unique special provisions provided (e.g. liquefaction mitigation)?
4.9.6 Are special notes to the Contractor regarding subsurface materials or conditions required and if so, are they provided?

4.10 Limitations
4.11 General
4.11.1 Has the report been independently reviewed by a qualified geotechnical engineer?
4.11.2 Is the report stamped, dated, and signed by a registered PE licensed to practice in Oregon?

5 Appendices
5.1 Foundation Data Sheet (see example)
5.1.1 Plan View
5.1.1.1 Are the locations of the proposed, existing, detour structure (if applicable) and other important features shown?
5.1.1.2 Are the locations of all explorations clearly shown (by station and offset)?

5.1.2 Profile View
5.1.2.1 Is the groundline profile(s) shown (centerline and/or 3 line profile)?
5.1.2.2 Are the explorations plotted on the profile at the correct elevation and location?
5.1.2.3 Is an identification number and the completion date shown for each exploration?
5.1.2.4 Are the subsurface materials and conditions depicted with soil and rock descriptions in conformance with the ODOT Soil and Rock Classification Manual? Are the appropriate graphic symbols (see attached) used?
5.1.2.5 Are the in-situ tests and sample types (typically SPT or undisturbed samples) shown on the boring profile at the correct depth?
5.1.2.6 Are the SPT results (uncorrected “N” values) shown on the profile?
5.1.2.7 Are the highest measured groundwater levels, and the date measured, shown on the profile?
5.1.2.8 Are percent rock core recovery, rock hardness, RQD and unconfined compressive strength (if available) values shown in a summary table?

5.1.3 General
5.1.3.1 Is the presentation of the subsurface information adequately shown on the Foundation Data Sheet (i.e. proper scaling and font size)?
5.1.3.2 Has the Foundation Data Sheet been independently reviewed?
5.1.3.3 Is the Foundation Data Sheet stamped, dated, and signed by a registered PE or CEG licensed to practice in Oregon?

5.2 Exploration Logs
5.3 Plan and Elevation of existing structure (if applicable)
5.4 In situ test data and results
5.5 Laboratory test data and results
5.6 Photographs
5.7 Other references as needed

6 Foundation Analyses and Design Calculations Attached

May, 2006

Volume 3 ODOT Geotechnical Design Manual
21-33
April 2010
22. Noise Barriers

22.1. General

The primary purpose of noise barriers is to mitigate the effects of highway noise on people. Design of noise barriers includes acoustic design, structural design, and geotechnical design. This chapter contains design standards for noise barriers. The terms “noise barrier” and “sound wall” are interchangeable in this manual.

Load and Resistance Factor Design (LRFD) methods are not currently available in AASHTO Guide Specifications for Structural Design of Sound Barriers. Existing ODOT Standard Drawings were also developed using Load Factor Design (LFD) and Allowable Stress Design (ASD), rather than LRFD. Until LRFD ODOT Standard Drawings and LRFD AASHTO Guide Specifications are available, use LFD for structural design of sound barriers, and use ASD for geotechnical design of sound barriers.

Where a sound barrier is required, use the following ODOT Standard Drawings wherever possible:

- BR730 – Standard Reinforced Concrete Masonry Soundwall
- BR740 - Standard Precast Concrete Panel Soundwall
- BR750, BR751 - Standard Masonry Soundwall on Pile Footing

Construct noise barriers according to the Oregon Standard Specifications for Construction.

22.2. Acoustic Design of Noise Barriers

Guidance regarding acoustic design of noise barriers is located in the ODOT Noise Manual, which is available online at the Air Quality, Acoustics & Energy Program web site:

http://www.oregon.gov/ODOT/HWY/GEOENVIRONMENTAL/air_noise.shtml
22.3. Structural Design of Noise Barriers

Perform structural design of noise barriers according to the following publications:

- ODOT BDDM (Section 1.4.2)
- AASHTO Guide Specifications for Structural Design of Sound Barriers
- AASHTO Standard Specifications for Highway Bridges

In the case of conflict or discrepancy between manuals, the following hierarchy shall be used: Those manuals listed first shall supercede those listed below in the list.

22.4. Foundations for Noise Barriers

Perform foundation design of noise barriers according to the following publications:

- ODOT Geotechnical Design Manual (GDM), Chapter 16
- ODOT Bridge Design and Drafting Manual (BDDM) Section 1.4.2.
- AASHTO Guide Specifications for Structural Design of Sound Barriers
- AASHTO Standard Specifications for Highway Bridges

In the case of conflict or discrepancy between manuals, the following hierarchy shall be used: Those manuals listed first shall supercede those listed below in the list.

22.5. References

Bridge Design and Drafting Manual, Section 1; Oregon Department of Transportation Bridge Section; 2003.

Oregon Standard Drawings