
Asad et al., 1997 subm. to BSSA, Eureka Valley 3-D Inversion

Inversion of travel time data for earthquake locations and three-
dimensional velocity structure in the Eureka Valley area, eastern 
California

A. M. Asad, S. K. Pullammanappallil*, R. Anooshehpoor, and J. N. Louie  
Seismological Laboratory/174, Mackay School of Mines, University of Nevada, Reno, NV 89557, USA  
*Now at Optim LLC, 1664 N. Virginia St, UNR-MS 174,Reno NV 89557 

Published in the Bulletin of Seismological Society of America, 89, pp 796-810, June 1999 

ABSTRACT

We develop an earthquake travel time inversion methodology suitable for determining three-dimensional 
velocity structure and fault plane orientation for an area with little a priori information. Using a cascaded 
combination of a nonlinear simulated annealing optimization and linearized inversion, we investigate local 
three-dimensional compressional velocity structure and estimate the orientation of a fault plane in the Eureka 
Valley area of eastern California by inverting travel time data from a moderate earthquake sequence. We 
inverted travel time picks at a 28 permanent and 8 portable stations from a M6.1 mainshock and a few 
hundred aftershocks for P-wave velocity and hypocentral coordinates. Using the velocity model obtained by 
the nonlinear optimization as an initial model for linearized inversion, we relocated the hypocenters and 
further fine-tuned the model. The relocated hypocenters define a north-northwest trending fault dipping 
steeply westwards. The final crustal velocity model features a low velocity trend along the strike of the 
Eureka Valley and a high velocity block southwest of the valley. Compared with a fully linearized inversion, 
our scheme demonstrates initial model independence and the potential of not being trapped in local minima. 

INTRODUCTION

Like most geophysical problems (Parker, 1994), the task of simultaneous determination of earthquake 
hypocenter locations and velocity structure of the surrounding area from arrival/travel time data is essentially 
a nonlinear inverse problem (Lee and Stewart, 1981; Crosson, 1976). The nonlinearity arises from the fact 
that we need to compute travel times along raypaths from trial hypocentral locations through trial velocity 
models to different stations in order to compare them with observed travel times, but the raypaths themselves 
depend on the location and velocity model which we want to determine. Most of the methods used to tackle 
this problem are based on linearization about a reference model by Taylor series expansion (Roecker, 1982; 
Lay and Wallace, 1995) entailing an unavoidable dependence of the final model on the model one starts with, 
since the Taylor series is valid only for small perturbations about the reference model. This condition for 
small perturbation is a big inconvenience of any linearized inversion because of the accompanying risk of 
entrapment in and inability to escape from local minima. Thus some a priori knowledge about the model 
becomes necessary for the linearized inversion of travel times to render the expected results. But there are 
situations where the area under study virtually offers no significant prior information. Keeping such a 
situation in mind, we propose an inversion methodology composed of a cascaded combination of nonlinear 
simulated annealing optimization and linearized inversion. We test the method by locating an earthquake 
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sequence in the Eureka Valley area of the Western Great Basin and simultaneously estimating local three-
dimensional velocity structure. The occurrence of a magnitude 6.1 earthquake followed by several hundred 
aftershocks, recorded by permanent networks and portable stations, offered an excellent opportunity for the 
test as well as geophysical study of an area that has so far lacked detailed local characterization. A better 
definition of the local structure at the scale of our study is a step forward in understanding local structures of 
the Great Basin, reducing the non-uniqueness of regional models. 

The motivation behind resorting to the inversion scheme to be dealt with in this paper comes from the 
absence of even a one-dimensional local velocity model of the area, and also of enough geologic information 
to make one. Eberhart-Phillips (1993) talks about two possible approaches for setting up an inversion. The 
first approach is to start with a velocity model based on previous geologic interpretations and try to fit the 
data with the model by perturbing the latter as warranted by the data. The second approach is to start with a 
simple 1-D model obtained with the same data and let the inversion solution add complexity wherever needed 
by the data. Both the approaches have the common implicit assumption of the starting model being close to 
the true model as required by any linear or linearized inversion process. Eberhart-Phillips (1990, 1993) 
prefers using a simple minimum 1-D model derived by the program VELEST (Ellsworth 1977; Kissling 
1988; Ellsworth et al., 1990) from the same data set as would be used for 3-D inversion. Kissling et al. (1994) 
prescribe the minimum 1-D model as the ideal initial reference model for local earthquake tomography in 
order to minimize the artifacts caused by an inappropriate initial model. But the "recipe" to calculate the said 
minimum 1-D models includes the establishment of an a prioi 1-D model from information regarding the 
stratification of the area as the first step (Kissling et al., 1994). But in a hitherto little studied place like 
Eureka Valley none of the above approaches seems adequate simply because of the absence of reliable a 
priori geological and geophysical information. Hence, the necessity of a method that does not depend on the 
initial model. Two series of methods satisfy this condition. They are iterative strategies requiring matrix 
manipulations (Spakman, 1993) and global optimization schemes such as simulated annealing (Rothman, 
1985, 1986; Sen and Stoffa, 1991) which do not require any matrix manipulation. The sparse station 
distribution in the Eureka Valley area precludes the effective use of any iterative strategy. Optimization by 
simulated annealing is appealing in this special case because of its independence of the initial model and 
ability to produce solutions with very sparse data. So our method of choice for investigating structure and 
aftershock locations builds on a first step of initial 3-D model estimation using nonlinear optimization by 
simulated annealing (Pullammanappallil and Louie, 1993), followed by a fine-tuning step using 3-D 
linearized inversion (Thurber, 1983; Eberhart-Phillips, 1990). We also run a 3-D linearized inversion using a 
minimum 1-D model calculated by VELEST and compare the two results. 

Fig. 1: Maps showing the location of 
Eureka Valley and the major geological 
structures of the region, permanent and 

portable seismographic stations 
(triangles), and preliminary event 

locations (diamonds). In the bottom, 
smooth curves are Bouguer anomaly 

contours and rough curves are 
topographic contours. G+, G-, T+ and 

T- are gravity high and low, and 
topographic high and low respectively.
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Geology

Eureka Valley is situated in the 
southwestern Great Basin, roughly 
midway between Death Valley and 
Owens Valley (Figure 1). Structurally, 
it is a north-northwest trending valley 
about 30 to 40 km long, with possibly 
shallow sediment depths as reflected by 
moderate (< 10 mGal) gravity 
anomalies. Its topography conforms to 
the regional trend, which is extremely 
rough but gradually rising on average 
westward to the Sierra Nevada. From a 
seismotectonic point of view, it 
belongs to the central portion of the 
Inyo-Mono section of the wide Walker 

Lane belt defined by Stewart (1988) and characterized by a complex system of aligned or subparallel dip-slip 
and strike-slip faults. The Inyo-Mono Section is situated between the Furnace Creek fault zone on the east 
and the Sierra Nevada on the west. Most of the big mapped faults in this section strike north-northwest, but 
many smaller mapped faults, including those in the Eureka Valley, trend slightly east of north. The valley fill 
is mostly Quaternary eolian sand deposits and alluvia flanked on the west by Pliocene volcanics, Mesozoic 
granite and mostly Cambrian metasedimentary outcrops, and on the east by Carboniferous and Cambrian 
metasedimentary rocks (Oliver and Robbins, 1978). Berkstresser, Jr. (1974) reports the occurrence in the 
southern part of Eureka Valley of the tallest sand dune in California rising 208 m above the playa on which it 
stands. 

DATA

More than 500 aftershocks followed the M6.1 Eureka Valley earthquake of May 17, 1993. About 150 
permanent stations belonging to the Southern Great Basin Seismic Network (SGBSN), the Western Great 
Basin Seismic Network (WGBSN), the Southern California Seismic Network (SCSN), and the Northern 
California Seismic Network (NCSN) recorded the main shock. Five portable stations deployed by the 
Seismological Laboratory of the University of Nevada, Reno (UNR) and three deployed by the California 
Institute of Technology (Caltech) seismological laboratory recorded hundreds of aftershocks in a span of 20 
days, of which about 500 were coincident with events catalogued by UNR's permanent networks. 

Figure 1 shows the locations of permanent and temporary stations, along with preliminary UNR catalog 
locations of the events. At first glance it becomes evident that the spatial distribution of the permanent 
stations around the epicentral area offers only limited azimuthal coverage. To locate the aftershocks and find 
the local velocity structure of the epicentral area we used P and S arrivals at 20 permanent stations timed by 
the UNR Seismological Laboratory and at 8 portable stations that we timed ourselves. 

The ratio between the number of S and P observations is several times greater for the portable stations than 
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for the relatively more distant permanent stations. Figure 2 shows a time-distance plot for P and S arrivals 
from 430 events at portable and permanent stations at maximum 100 km epicentral distance, based on the 
preliminary estimates of origin times and hypocentral coordinates obtained at the UNR Seismological 
Laboratory from a one-dimensional regional velocity model and the FASTHYPO program (written by Robert 
Hermann of Saint Louis University). The figure excludes obvious outliers by keeping only those picks that lie 
within a window centered around the average straight line fit to the cloud of data points. The arrival/travel 
times have weights of 0 to 4 assigned depending on quality of pick, 0 being the best and 4 being the least 
reliable. 

Fig. 2: Travel time versus preliminary epicentral 
distance plot of compressional first arrivals (P) and 

S arrivals used in the study. The upper plot has 
about 9000 P and S arrival times from 430 events to 
28 permanent and portable stations. The lower plot 

has 1492 P and 768 S arrivals from the 430 events to 
8 portable stations.

METHOD

Our approach is a combination of nonlinear 
optimization and linearized inversion (Asad et al., 
1994) comprising the following stages: 

1.  Obtaining an initial three-dimensional velocity 
model using optimization by simulated annealing 
(Pullammanappallil and Louie, 1993). 
2.  Simultaneous relocation of hypocenters and 
determination of local velocity structure using 
linearized inversion (Thurber, 1983; Eberhart-
Phillips, 1990). 

For comparison, we also run an exclusively 
linearized inversion, where the stage 1 in the above 

approach is replaced by a step of finding the minimum 1-D model using VELEST (Kissling et al., 1994). A 
brief description of the three techniques involved in the two parallel approaches follows. 

Nonlinear optimization

Our nonlinear approach for simultaneous determination of hypocenters and velocity structure is an outgrowth 
of the simulated annealing optimization scheme of Pullammanappallil and Louie (1993,1994) and 
Pullammanappallil (1994). This scheme in principle does not require any a priori assumptions, and the results 
obtained by it are independent of any initial model. For the forward problem of travel time computation, the 
scheme avoids actual ray tracing and uses a fast finite-difference scheme based on a solution to the eikonal 
equation (Vidale, 1990; Hole et al., 1992), accounting for curved rays through arbitrarily variable velocities, 
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and all types of primary arrivals. S arrivals were used only to increase the number of travel times assuming a 
constant Vp/Vs ratio of 31/2, and no inversion for S velocity model was done. Random perturbation of the 
volume and velocity of a subset of the whole model is done from iteration to iteration. Velocity within this 
subset is constant for each iteration. The perturbed volume can vary from a single cell to the whole model, 
while the velocity is allowed to vary from 1.5 km/s to 8 km/s. Random perturbation of all the three 
coordinates of a randomly chosen hypocenter is done at each iteration. The horizontal hypocentral coordinates 
and the depth are allowed to vary by a maximum of 5 km and 14 km respectively between two iterations. 

We use an iterative Monte-Carlo based optimization process to solve the inverse problem. Each iteration 
comprises the following steps: 1) travel time computation through the current model and determination of the 
least-square error; 2) simultaneous random perturbation of origin time, hypocenter location, and velocity 
structure, and computation of new least square error; 3) acceptance of the new model if the corresponding 
new error is less than that of the previous iteration, plus a provision for probability-based conditional 
acceptance of new models if the new error is larger; 4) repetition of the previous steps until the annealing 
converges, where the difference in the least square error between successive models and probability of 
accepting new models become very small. An important component of this study is the random forcing of 
hypocenter location perturbations at each iteration. As we will show below, this forcing appears to allow the 
optimization of a reliable 3D-velocity model while relegating unacceptable errors in the final, perturbed 
hypocenter coordinates. 

Minimum 1-D model estimation by VELEST

Kissling et al. (1994) defines the minimum 1-D model as the 1-D velocity model that itself represents the 
least squares solution to the coupled hypocenter velocity model relation equation. In this model the layer 
velocities are approximately equal to the average velocity in the 3-D tomographic solution within the same 
depth range. The model is determined by a trial and error process starting with available a priori information 
about the subsurface structure. 

Linearized 3-D inversion

In the linearized approach, we use the program SIMULPS originally developed by Thurber (1983) using 
approximate ray tracing (ART) and pseudo-bending (PB) algorithms and further improved by Eberhart-
Phillips (1990), for forward modeling of P- and S-wave arrival times in an iterative, damped, least-squares 
inversion for hypocenters and three-dimensional velocity structure. The method also employs the parameter 
separation technique (Pavlis and Booker, 1980; Spencer and Gubbins, 1980) which allows to computationally 
split the problem into two, e.g., solving for the hypocenters and velocity model separately, while maintaining 
the mathematically coupled nature of the overall problem. Evans et. al (1994) describe in detail the technique 
and all the parameters involved. Hauksson and Haase's (1997) study of the three-dimensional velocity models 
of Southern California is one of the latest works done using SIMULPS. 

Model parameterization in this method assumes a continuous velocity field. The earth structure is represented 
in three dimensions by velocities defined at discrete points, and velocity at any intervening point is 
determined by linear interpolation among the surrounding eight grid points. Values at the velocity nodes are 
systematically perturbed during inversion. Except the outermost nodes, which are always fixed, every node 
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can either be kept fixed or included in the inversion. Derivative weight sum (DWS) is a useful measure of ray 
density in the neighborhood of a node (Toomey and Foulger, 1989) and is used to determine which of the 
nodes should be included in the inversion. DWS for a node is similar to the ray hit count, but weighted by the 
ray-node separation and raypath length in the vicinity of the node. 

The ART algorithm selects the path with the least travel time from a suite of circular arcs connecting the 
source and receiver. The iterative PB method fine tunes the ray path obtained by ART to approximate better 
the true ray path dictated by local velocity gradients (Um and Thurber, 1987). We adopt Eberhart-
Phillips' (1990) method of adjusting an initial ray path rather than Um and Thurber's (1987) method of 
calculating a new midpoint for each segment because the former allows much easier updating of the raypath 
each time a source-receiver path has to be calculated. 

A circular arc is a poor approximation at large distances and overestimates the path length, because a 
refracted wave is likely to be the first arrival at such distances. For an area like Eureka Valley, where 
alluvium is apparently underlain by rigid rocks, refracted waves can start arriving at even 10 km distance. 
Because of this, and the fact that timing error usually increases with distance, we chose a distance-weighting 
scheme of weight 1 for source-receiver distances of up to 30 km, and 0 for 80 km and beyond, with a linear 
tapering in between. The iterative pseudo-bending scheme (Eberhart-Phillips, 1990) reduces the difference 
between exact and ART raypaths for large source-receiver distances. 

IMPLEMENTATION

We use P and S arrival times recorded at the UNR and Caltech portable stations exclusively to perform 
nonlinear optimization for velocity and hypocenters, and add more picks from nearby permanent stations to 
perform linearized inversion in and near Eureka Valley. We recorded and timed a total of 1492 P wave 
arrivals and 768 S wave arrivals at 8 portable stations from 429 events (Figure 2, lower plot). The maximum 
number of arrival time picks per event is 16, automatically limiting the number of events that could be 
effectively studied, because the linearized inversion required a minimum of four picks per event for location 
only. For simultaneous relocation and velocity estimation, the required minimum number of data points 
increases by the number of velocity model parameters. Therefore, we add distance-weighted arrival times 
from permanent stations up to 80 km epicentral distance increasing the number of observations to 6989 P and 
1879 S arrival times from 430 events (including the main shock) recorded at 28 stations. The nonlinear 
optimization has no theoretical requirement for any minimum number of arrival times. 

Velocity model parameterizations for the linear inversion and nonlinear optimization schemes somewhat 
differed from each other. In the nonlinear optimization, we used a 35 (x) by 35 (y) by 20 (z) grid of 1 km 
blocks. The linearized inversion used a 13 (x) by 15 (y) by 9 (z) grid of nodes with a node spacing of 2 km at 
the center and near surface portion of the model and increasing outwards and in depth. A minimum DWS of 7 
is used as a condition for any node to be included in the inversion. We plot all our results in the central 30 by 
30 by 20 km volume by linearly interpolating wherever necessary. 

We relocated the hypocenters of the 430 events and modeled the velocity structure simultaneously using four 
different processes (see Figure 3): 
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1.  Simultaneous relocation and minimum one-dimensional velocity model estimation using VELEST. 
2.  Simultaneous relocation and three-dimensional velocity estimation by linearized inversion using the 

minimum 1-D model obtained in process 1 as the starting model. 
3.  Simultaneous relocation and three-dimensional velocity estimation by nonlinear optimization by 

simulated annealing. 
4.  Simultaneous relocation and three-dimensional velocity estimation by linearized inversion using initial 

locations from the UNR catalog and the three-dimensional velocity model obtained from process 3 as 
the starting model. 

In view of the widely observed phenomenon that earthquakes in the Basin and Range Province occur almost 
exclusively in the upper 15 km of the crust (Eaton, 1982; Vetter and Ryall, 1983; dePolo et al., 1992), we 
used the constraint of maximum hypocentral depth of 20 km for all four of the above processes. 

Fig. 3: Chart describing the 4 different processes 
of linearized inversion and nonlinear 

optimization for hypocenter relocation and 
velocity model estimation.

RESULTS AND DISCUSSION

We present the relocated hypocenters and 
velocity models in the following two sections. As 
we will see, the locations in the two methods, i.
e., process 1 followed by process 2, and process 
3 followed by process 4, follow roughly the same 
pattern in map view and cross-section, but the 
velocity models differ significantly from each 
other. 

Hypocenter locations

Figures 4 and 5 show maps of the epicentral 
locations obtained by the four processes, and 
Figures 6 and 7 show vertical cross-sections of 
the corresponding hypocenters along the box AB 

defined in Figures 4 and 5. Also plotted on the maps are Bouguer anomaly contours (smooth curves; Oliver 
and Robbins, 1978) and topographic contours (rough curves). The respective relations among gravity, 
topographic features, and epicentral locations are roughly maintained in all four cases. The details, however, 
vary from case to case. 

Fig. 4: Mapview of relocated hypocenters (diamonds). 
Size of the diamonds proportional to the magnitude 

(M=1.0 to M=6.1) (a) obtained simultaneously with the 
minimum 1-D model by VELEST (process 1). (b) 
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obtained by simultaneous relocation and 3-D velocity 
estimation by linearized inversion with minimum 1-D 

model as the starting model (process 2). 

Fig. 5: Mapview of relocated hypocenters (diamonds). (a) obtained by simultaneous relocation and 3-D 
velocity estimation by simulated annealing (process 3) (b) obtained by simultaneous relocation and 3-D 

velocity estimation by linearized inversion with starting model estimated by simulated annealing (process 4).

The most consistent spatial distribution is the north-northwest trend of epicenters, well-defined in both the 
cases of simultaneous relocation and three-dimensional velocity estimation by linearized inversion (Figures 4
(b) and 5(b)). Cross-sections along AB in Figures 6 and 7 reflect the same consistency, though the cross-
section for the nonlinear optimization case (Figure 7(a)) shows the locations much more scattered in 
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comparison with the other three cases. The main event has been located at depths of 11, 11.5 and 10.5 km by 
processes 1, 2 and 4 respectively (Figures 6(a), 6(b) and 7(b)). Process 3, whose input data consisted of 
arrivals to portable stations only, does not have a mainshock relocation. Deducing a unique fault plane 
through the hypocentral scatter in any of the cross sections is not straightforward. Relocated hypocenter 
locations from process 3 are much more scattered than those from the other 3 processes. Average rms 
residuals of location in processes 3 and 4 are 0.10 and 0.12 respectively. The mainshock has an rms residual 
of 0.05 in both the processes. 

Fig. 6: Section of relocated hypocenters 
(diamonds) along AB (see Figure 4) with the 

inferred fault shown as a thick gray line 
through the hypocenters. (a) obtained 

simultaneously with the minimum 1-D model 
by VELEST (process 1). (b) obtained by 
simultaneous relocation and 3-D velocity 
estimation by linearized inversion with 

minimum 1-D model as the starting model 
(process 2). 
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Fig. 7: Section of relocated hypocenters 
(diamonds) along AB (see Figure 5) with the 

inferred fault shown as a thick gray line 
through the hypocenters. (a) obtained by 
simultaneous relocation and 3-D velocity 

estimation by simulated annealing (process 3) 
(b) obtained by simultaneous relocation and 3-
D velocity estimation by linearized inversion 
with starting model estimated by simulated 

annealing (process 4).

We infer two different planes of roughly same 
strike (165 degrees) from the scatter of points 
in the cross sections of Figures 6(a), 6(b) and 7
(b). One plane, which does not contain the 
relocated mainshock, dips steeply (about 75 
degrees) eastwards; and the other, including 
the relocated mainshock, dips slightly less 
steeply (about 60 degrees) westwards. Loper 
et al. (1993) report a normal mechanism for 
the mainshock obtained from regional surface 
wave inversion. By incorporating broadband 
data from several institutions to the data 
recorded by Berkeley Digital Seismic 
Network, they relocated the large aftershocks 

relative to the mainshock using a master event technique and suggest a relatively complex rupture history for 
the event based on examination of mainshock and aftershock records, and identify at least two subevents. 
Massonet and Feigl (1995) model both east and west dips with normal mechanism in their satellite synthetic 
aperture radar (SAR) interferometric work, though they rule out the eastward dip as a local minimum in their 
modeling scheme. Their best-fitting focal mechanism has a north-northwestward strike and westward dip. 
Another SAR study by Peltzer and Rosen (1995) confirms a west-dipping fault with a slightly NNE strike. 
They reconcile the observations of north-northwest alignment of epicenters and north-northeast strike of 
mapped local faults to infer that the earthquake occurred on a west-dipping north-northeast-striking fault 
plane with the rupture propagating diagonally upward and southward. The Caltech TERRAscope moment 
tensor (MT) and Harvard centroid-moment tensor (CMT) solutions give gentler westward dips. Table 1 
summarizes the focal mechanism parameters determined by the different researchers along with those inferred 
in this study (using standard sign convention of strike and dip): 

Table 1

        Method          Strike   Dip     Rake   Reference
                        (deg.)  (deg.)  (deg.)
        ------          ------  ------  ------  ---------
        TERRAscope MT   -173    48 west   -     (Caltech website)
        Harvard CMT      210    30 west  -93    (Dziewonski et al., 1994)
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        SAR No. 1        173    54 west   -     (Massonet and Feigl, 1995)
        SAR No. 2        187    50 west   -     (Peltzer and Rosen, 1995)
        This study       165    60 west   -

We see that the strike and dip obtained in our study match fairly well with the SAR results of Massonet and 
Feigl (1995). It is also not very different from the results of the other SAR study and TERRAscope except 
that their faults strike a little east of the north whereas ours does it north-northwestwards. Our results differ 
considerably from the Harvard CMT solution, the latter giving a 45 degree more eastward strike and dip only 
half as steep. Finally, the rather complicated distribution of hypocenters on the east-west cross-section 
(Figures 6(a), 6(b) and 7(b)), along with the somewhat curved distribution of epicenters (Figures 4(a), 4(b) 
and 5(b)), can be the expression of a concave fault involvement and the wide range of values and directions of 
the strike and dip of the fault found by different methods may also be due to complications brought into play 
by the concave shape of the fault. A complex rupture history and the existence of two subevents as suggested 
by Loper et al. (1993) mentioned above can also be the reason behind the observed spatial configuration of 
the relocated hypocenters. 

Velocity model

Table 2 shows the minimum one-dimensional model we obtained by VELEST after many trial and error 
steps: 

Table 2

        Layer   Velocity (km/s) Starting Depth (km)
        -----   --------------- -------------------
          1        4.79            0.00
          2        5.13            2.00
          3        5.58            4.00
          4        5.84            6.00
          5        5.96            8.00
          6        6.09           12.00
          7        6.21           16.00
          8        6.50           20.00
          9        7.85           30.00

This minimum 1-D model was the starting model for process 2 (Figure 3). The initial velocity model for 
process 4 (Figure 3) was derived by smoothing the output model of the nonlinear optimization (process 3), 
then constraining the low-velocity anomalies and reversals that appear in the regions not well controlled by 
the data, in the manner of Pullammanappallil (1994). 

Fig. 8: Map view in gray scale of the velocity model 
obtained by simultaneous relocation and 3-D velocity 
estimation by linearized inversion with minimum 1-D 
model as the starting model (process 2). (a) at surface 
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(depth = 0km) along with epicenters. (b) at 6km depth. 

Fig. 9: Map view in gray scale of the velocity model obtained by simultaneous relocation and 3-D velocity 
estimation by linearized inversion with starting model estimated by simulated annealing (process 4). (a) at 

surface (depth=0km) along with epicenters. (b)at 6 km depth.

Figures 8(a) and 8(b) show map views at 0 and 6 km depth respectively of the final three-dimensional 
velocity model obtained by simultaneous relocation and 3-D velocity estimation by linearized inversion with 
minimum 1-D model as the starting model (process 2 preceded by process 1 - Figure 3). Figures 9(a) and 9(b) 
show corresponding map views for the model obtained by 3-D linearized inversion with starting model 
estimated by simulated annealing (process 4 preceded by process 3 - Figure 3). In general, the velocity model 
from processes 1+2 has a higher average velocity than that from processes 3+4 (5.97 km/s versus 5.55 km/s). 
Velocity at surface in the first case varies from 3.6 km/s to 6.8 km/s whereas that in the second case varies 
from 2.7 km/s to 6.0 km/s only. There is quite good match in the spatial distribution of low and high velocity 
patches in the northeastern half of the the two maps, though the absolute velocities differ. In the southwestern 
half, whereas the map for processes 1+2 shows a more or less uniform velocity of about 4.8 km/s, that for 
processes 3+4 shows a 10 by 10 km high velocity patch of 5 km/s in a background of 4.4 km/s. In both the 
cases, the north-northwest trending epicenter distribution is underlain by a parallel relatively low velocity area 
flanked by higher velocities. The maps at 6 km depth have fewer features in common. A relatively low 
velocity north-northwest trend is present in the northeastern part of the maps. The trend is much better-
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defined for processes 3+4 than the other case. Also, the high velocity patch featured in the southwestern part 
of the surface map persists at 6 km. Figures 10(a) and 10(b) present standard errors with respect to velocity 
models at 6 km depth obtained by processes 2 and 4 respectively. The northeastern half of the models show 
higher errors than the southwestern half. Treatment of these errors without referring to the distribution of rays 
can be misleading, as we will see. Figures 11(a) and 11(b) show the ray density in terms of derivative weight 
sum (DWS - discussed earlier) and diagonal elements of the resolution matrix at 6 km depth for process 4. 
The northeastern half shows much higher ray density compared with the other half. The highest resolution of 
0.636 is obtained in the northern part of the model. Resolution in the southwestern part of the model is very 
low. If we examine the velocity maps along with the ray density and resolution maps, we can say that even 
though the northeastern part of the model has higher errors its velocities are more reliable than those in the 
southwestern half because both ray density and resolution in the latter is low. It means that the 10 by 10 km 
high velocity block found in the southwestern part of the model by process 4 is not as reliable as the NNE low 
velocity trend found by both processes 2 and 4. 

Fig. 10: Map view in gray scale of the standard error 
at 6 km depth of the velocity models obtained by (a) 
VELEST followed by linearized inversion (process 

2). (b) simulated annealing optimization followed by 
linearized inversion (process 4). 
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Fig. 11: Map view in gray scale of ray density and 
resolution at 6 km depth of the velocity model 

obtained by process 4. (a) ray density in terms of 
derivative weight sum (DWS) (b) resolution. 

Reliability of any part of the model is proportional to 
the magnitudes of resolution and DWS in that part. 
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Fig. 12: Cross-sectional view in gray scale of 
the velocity model obtained by simultaneous 

relocation and 3-D velocity estimation by 
linearized inversion with minimum 1-D 

model as the starting model (process 2). (a) 
along DD' in Figure 8(a). (b) along CC' in 

Figure 8(a). Hypocenters shown on the cross-
sections are those located inside the volume 
limited by vertical planes along the dashed 

lines on either side of CC' and DD'. 

Fig. 13: Cross-sectional view in gray scale of 
the velocity model obtained by simultaneous 

relocation and 3-D velocity estimation by 
linearized inversion with starting model 

estimated by simulated annealing (process 4). 
(a) along DD' in Figure 9(a). (b) along CC' in 
Figure 9(a). Hypocenters shown on the cross-
sections are those located inside the volume 
limited by vertical planes along the dashed 

lines on either side of CC' and DD'.

Figures 12 and 13 show vertical cross-
sections of models obtained by processes 2 
and 4 along CC' and DD' defined in Figures 8
(a) and 9(a). The hypocenters shown in the 
cross-sections are those located inside the 
volume limited by vertical planes along the 
dashed lines on either side of CC' and DD'. 
The low velocity trend observed on the map 
views are found as a basin in cross-section 
DD' of both the processes. The basin is about 
8 km wide and 3-4 km deep. As observed in 

the case of map views, the absolute velocity of the basin in the case of process 4 is 0.8 km/s lower than that in 
the case of process 2. The mainshock is situated at depth under the western flank of the basin. 
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Because most of the hypocenters are shallower than 10 km, ray coverage at greater depths is poor and as such, 
the velocity cross-sections are not quite reliable at depths more than 10 km. The near-surface DWS is quite 
high in the eastern half of both sections CC' and DD' (not shown). Between 5 and 10 km depths the area with 
high DWS extends farther westwards. Therefore, the low velocity basin featuring in both map views and 
cross-sections for processes 2 and 4 is a structure supported by data, whereas the existence of the high 
velocity block found in process 4 is not equally supported by data. But its existence cannot be ruled out 
altogether. A better coverage of local stations in the southwest quadrant of the model would help in 
constraining the existence of the high velocity block (see Figure 1). 

We can see a good correspondence of the gravity and topographic highs and lows with the high and low 
velocity areas in the velocity. The linear north-northwest low velocity trend coincides with the strike of the 
alluvial valley and also with a trend between two gravity lows. The 10 by 10 km high velocity block matches 
with a gravity high of comparable dimension. 

In addition to qualitatively matching between trends in topography, gravity, and computed velocity model, we 
made a quantitative comparison of the fit between gravity anomalies and the two velocity models. Any 
gravity modeling from seismic velocity data first requires the velocities to be converted to densities. This 
conversion is almost always a problematic job because of the widely varying conditions under which different 
researchers have found their empirical relationships. Some of the formulas are derived entirely from studies 
on igneous and metamorphic rocks (Birch, 1961; Bateman and Eaton, 1967), while others are derived from 
exclusively sedimentary rock samples (Nafe and Drake, 1963; Gardner et al., 1974). Not a single one of these 
relationships can be used with perfect relevance to our study area. We used the following empirical formula 
of Gardner et al. (1974) to convert three-dimensional velocity models into three-dimensional density models: 

rho = 0.23 V0.25,
where, rho is density in g/cm3 and V is P wave velocity in ft/s. The 3-D density models have as many blocks 
as the velocity models. Then, using a reference density of 2.67 g/cm3 (this value was used for preparing the 
Bouguer anomaly map of Oliver and Robbins, 1978), we computed gravity values at 1 km grid space at the 
surface by adding the vertical components of the anomalies due to all the density blocks for each grid point 
(Grant and West, 1965). 

Fig. 14: Bouguer gravity anomaly map (smooth contours) 
of the area superimposed on the gravity anomaly (gray 
scale) computed from densities estimated from velocity 
model obtained by (a) process 2; (b) process 4. Plus and 
minus signs indicate relative gravity highs and lows. The 

numbers on the contours indicate the Bouguer gravity 
anomalies according to Oliver and Robbins (1978).

Figures 14(a) and 14(b) show the computed gravity values 
(in gray scale) superimposed on the Bouguer gravity 
anomaly contour map of Oliver and Robbins (1978) for 
processes 2 and 4. Both the computed gravity maps show 
maximum contrasts twice as much as that in the Bouguer 

file:///C|/Optim/papers/earthquake/eureka.html (16 of 20)2/28/2007 9:37:21 AM

file:///C|/Optim/papers/earthquake/fig14.pdf
file:///C|/Optim/papers/earthquake/fig14.pdf


Asad et al., 1997 subm. to BSSA, Eureka Valley 3-D Inversion

anomaly map. Whereas the maximum contrast on the 
Bouguer anomaly map is 25 mGal, those for processes 2 
and 4 are 52 and 56 mGal respectively. Computed gravity 
values for process 4 are mostly negative, while those for 
process 2 are predominantly positive. Evidently this 
difference is due to the lower velocities of the process 4 
model, which is on average 0.8 km/s slower than the 
process 2 model. The shape of the valley is modeled well 
by both the processes. The discrepancy between the 
magnitudes of gravity contrast on the Bouguer map and 
our modeled maps may suggest that even though outlines 
of the major low and high velocity regions have been 

obtained by the inversion, the details of lateral heterogeneity and of vertical variation of velocity have not 
been adequately discerned. Of course, another reason for the discrepancy lies in the inevitable difference 
between the physical conditions under which the empirical relationship was obtained and those prevailing in 
the Eureka Valley (exclusively sedimentary versus both sedimentary and, igneous and metamorphic rocks). 

So far, we have seen that both processes 2 (linearized inversion with initial model obtained by minimum 1-D 
velocity modeling) and process 4 (linearized inversion with initial model obtained by nonlinear optimization 
by simulated annealing) map a few common features. The low velocity basin is mapped well by both the 
processes. But at depth the process 2 performs much more poorly than process 4 (Figures 8(b) and 9(b)). At 
6km depth, the general appearance of the process 4 model is much more coherent and realistic. Also, the 
initial minimum 1-D model used for process 2 has a too high P wave velocity (4.79 km/s) at surface. Even 
though we attempted quite a few trial and error steps for the minimum 1-D modeling the results probably 
correspond to a local minimum. This is the inherent danger in any linearized inversion used for solving a 
nonlinear problem, especially in the absence of prior information. The relatively higher velocity obtained in 
the process 2 is reflection of the high velocity initial 1-D model. 

We see that the simulated annealing optimization provides a velocity model that can be used as an initial 
model in a simultaneous linearized inversion of velocity and hypocenters, to obtain realistic velocity models 
and hypocentral locations. Hypocentral locations as such from the optimization alone are very much 
scattered. This may be an effect of not allowing the right degree of hypocentral perturbation during the 
optimization of successive trial models. Pullammanappallil and Louie (1993), in a similar simultaneous 
optimization of velocities and reflector locations, found that inappropriate constraint of reflector 
"hypocenters" led to poor results. These observations led us to do simultaneous linearized inversion for 
hypocenters and velocity using the velocity results of nonlinear optimization as the initial velocity model, 
producing the successful results above. 

CONCLUSIONS

We proposed and implemented an efficient optimization-cum-inversion algorithm for studying an area with 
few a priori information. P and S wave travel time data from a moderate earthquake sequence in Eureka 
Valley, eastern California, allowed us to delineate the velocity structure of the valley and surrounding areas, 
and define the fault plane associated with the sequence. We find a north-northwest trending normal fault 
dipping steeply westwards. This is in conformity with the dominant type of slip mechanism prevalent in the 
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southwestern part of the Great Basin near the Sierra Nevada Range. Although we have enough confidence in 
the timing of portable station data, their small number per event limited the resolution of the results. On the 
other hand, the possibility of better results using a higher number of arrivals at nearby permanent stations 
from the seismic monitoring networks was compromised by lower confidence in the picks. 

As a result of combining a linearized inversion with a nonlinear optimization in tandem, we were able to 
obtain a realistic velocity model and fault plane definition from hypocenters. The velocity model adequately 
describes broad structural features at the local scale. The nonlinear simulated annealing optimization scheme, 
by virtue of its capability of finding the global error minimum irrespective of any starting model, produced a 
velocity model for an area like Eureka Valley where little is known about the local velocity structure. The 
linearized inversion following the nonlinear optimization could thus start from a fairly valid initial model and 
preliminary hypocentral locations, and fine tune them. 
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