Summary of EPRI (2013) Update to EPRI (2004, 2006) Ground Motion Characterization

R. Youngs, Acting as Resource Expert

NGA-East Workshop 2 July 16, 2014

Questions from TI Team

- Summarize the existing CENA GMPEs as they have been assessed by the EPRI (2004-2006) review project, including their technical basis.
- What is the distribution of magnitude, distance, site conditions, style of faulting, period range for which the EPRI review project GMPEs are well constrained?
- How was the extrapolation beyond these well-constrained ranges defined?
- What is the range of applicability of the GMPEs (distance, region, magnitude, depth, site, etc.)?
- What are the limitations of the GMPEs?
- What was the basis for the range of GMPEs defining the epistemic uncertainty used in the EPRI review project?

EPRI (2004) SSHAC Level 3 Study (1 of 3)

- · Built from consideration of available GMPEs
- Developed a weighting scheme involving two steps
 - Group models into clusters based on modeling approach – Single corner stochastic, double corner stochastic, hybrid, and finite fault simulation
 - Weigh models within clusters primarily on the fit with available data
 - Weigh clusters more on basis of "scientific principals"

7/16/2014

NGA East WS2 Summary EPRI 2013

3

EPRI (2004) SSHAC Level 3 Study (2 of 3)

- For each cluster, fit the weighted median predictions of the member GMPEs with a single form (i.e. backbone model)
- Develop epistemic models for each cluster
 - Combined model to model variability with estimates of additional uncertainty to compute $\sigma_{\mu}(M,R,F)$
 - Represent uncertainty at 5^{th} and 95^{th} percentiles, $\pm 1.65\sigma_{\mu}(M,R,F)$. Fit common form to obtain the 5^{th} and 95^{th} percentile GMPEs for each cluster

7/16/2014

NGA East WS2 Summary EPRI 2013

EPRI (2004) SSHAC Level 3 Study (3 of 3)

- Aleatory model was built from the range of aleatory models for CEUS associated with the sample of GMPEs
- EPRI (2006) was a SSHAC Level 2 study use to evaluate the EPRI (2004) aleatory variability models
 - Concluded that no compelling reason for their to be a major difference from empirical aleatory variability observed for active tectonic regions
 - Developed aleatory model making minor adjustments to preliminary aleatory variability from NGA

7/16/2014

NGA East WS2 Summary EPRI 2013

5

EPRI 2004/2006 Review Project (EPRI, 2013)

- Significant time had passed since the development of the GMPEs used by EPRI (2004)
 - Many models used by EPRI (2004) had been updated/ replaced by newer models and/or were no longer supported by their developers
 - More empirical CENA data were available
- Need to consider this newer information in developing responses to NRC requests in the short term (before completion of NGA East)

7/16/2014

NGA East WS2 Summary EPRI 2013

EPRI 2004/2006 Review Project

- SSHAC Level 2 Project with workshops and a PPRP
 - TI Team (Gabriel Toro (lead), Martin Chapman, and Bob Youngs) with active participation by a large PPRP
- Project followed the evaluation framework of EPRI (2004, 2006)
 - Use available GMPEs
 - Group GMPEs into clusters, use empirical data to weight models within clusters, represent each cluster weighted median and epistemic uncertainty by fitted GMPE
 - Use finalized aleatory from NGA and initial values from NGA-West 2

7/16/2014

NGA East WS2 Summary EPRI 2013

7

Questions from TI Team

 Summarize the existing CENA GMPEs as they have been assessed by the EPRI (2004-2006) review project, including their technical basis.

7/16/2014

NGA East WS2 Summary EPRI 2013

Updating of EPRI (2004) Clusters

Cluster	Model Type	Models
1	Single Corner	Hwang and Huo (1997)
	Stochastic	Silva et al (2002) - SC-CS
	(0.275/0.351)	Silva et al (2002) - SC-CS-Sat
		Silva et al (2002) - SC-VS
		Toro et al (1997)
		Frankel et al (1996)
2	Double Corner	Atkinson and Boore (1995)
	Stochastic (0.312/0.399)	Silva et al (2002) DC
		Silva et al (2002) DC - Sat
3	Hybrid	Abrahamon & Silva (2002)
	(0.196/0.250)	Atkinson (2001) & Sadigh et al (1997)
		-Campbell (2003)
4	Finite Source	Somerville et al. (2001)
	/Greens Function	
	(0.217/0.000)	

←AB06′?

←PZT11? ←A08'?

7/16/2014

NGA East WS2 Summary EPRI 2013

0

New GMPEs

- Atkinson (2008 with 2011 revisions: A08')
 - Referenced Empirical fit adjustment factors to misfit of CEUS data by WUS GMPE (empirical adjustment rather than developing WUS->CENA scaling based on modeling)
- Atkinson-Boore (2006 with 2011 revisions: AB06')
 - Based on stochastic finite fault simulations rather than point source double corner simulations
 - Treated as a replacement of Atkinson and Boore (1995)

7/16/2014

NGA East WS2 Summary EPRI 2013

New GMPEs

- Pezeshk et al. (2011)
 - Hybrid ground motion model build on NGA (West1)
 - Considered a replacement of Campbell (2003) and Tavakali and Pezeshk (2005) used better set of WUS GMPEs
- Silva et al. (2003)
 - Minor updates to Silva et al. (2002)
 - Based on point source (1 and 2 corner) stochastic simulations

7/16/2014

NGA East WS2 Summary EPRI 2013

11

Re-Definition of Clusters 2 and 3

- EPRI-04 clusters 2 and 3 were based on approach (2-corner stochastic vs. hybrid), but some new models did not fit very well (i.e., AB06' spectrum does not have 2 specific corners; A08' perhaps is not a hybrid model in the traditional sense)
- **Practical Motivation**: very large within-cluster differences at ~50-100 km
 - -due to different geometric spreading
 - –difficult in in generating high and low GMPEs (±1.64 $\sigma_{\rm epistemic})$ for clusters

7/16/2014

NGA East WS2 Summary EPRI 2013

New GMPE Clusters

Cluster	Model Type	Models
1	Single Corner Brune Source	Silva et al (2002) - SC-CS-Sat* Silva et al (2002) - SC-VS* Toro et al (1997) Frankel et al (1996) * Treated as one model for calculation of weights
2	Complex/Empirical Source ~R-1 Geometrical spreading < 70 km	Silva et al (2002) DC – Sat A08'
3	Complex/Empirical Source ~R-1.3 Geometrical spreading < 70 km	AB06' PZT11
4	Finite Source /Green's Function	Somerville et al. (2001); slightly different models for rifted and non-rifted

7/16/2014

NGA East WS2 Summary EPRI 2013

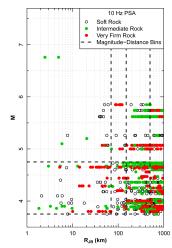
13

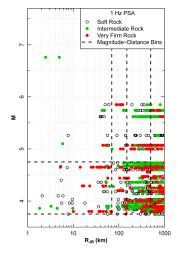
How Well are GMPEs Constrained?

- Simulation based models are constrained by simulations and their calibration against empirical data – principally from active regions
- Hybrid models build on well constrained empirical models and assumption of correct modeling of WUS→CENA differences
- Referenced empirical based on well constrained empirical model and fit to empirical CENA data generally not in the range of primary interest

7/16/2014

Empirical Data Used for Weighting

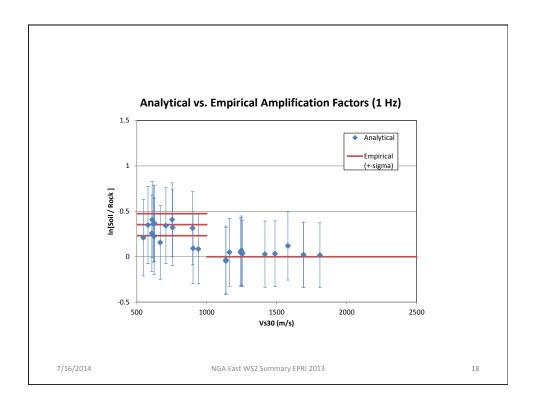

- Used Initial NGA East database (August 2012)
- Classified sites based on geology and measured/ inferred V_{S30}
 - Soft rock (younger rocks and/or 500≤V_{S30}<1000 m/s
 - Intermediate rock (older rocks and/or 1000≤V_{S30}<1890 m/s
 - V_{s30}≥1980 m/s
- V_s measurements at a number of important recording sites

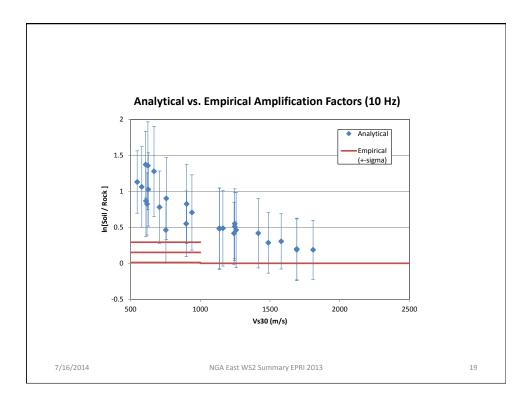

7/16/2014

NGA East WS2 Summary EPRI 2013

15

Empirical Data Used for Intra-cluster Weighting


7/16/2014 NGA East WS2 Summary EPRI 2013


Adjustment of Data to Reference Site Conditions

- Step not performed in EPRI (2004)
- Analytical adjustment for sites with velocity profiles
 - Quarter wavelength approach combined with delta kappa adjustment
 - Incorporated uncertainty in Vs and κ
- · Empirical adjustment
 - Calculated adjustment terms for gross site classes
 - Could only distinguish statistically between soft rock and a combined intermediate-hard rock groupings

7/16/2014

NGA East WS2 Summary EPRI 2013

Within Cluster Weights

Account for:

- Inter-event correlation
- Uncertainty in the soil correction (correlated)
- Weights that depend on magnitude and distance, to account for the engineering importance and diagnostic power of data in the various M-R ranges.
- Sensitivity to sample size

7/16/2014

NGA East WS2 Summary EPRI 2013

Approach for Within-Cluster Weights

- Based on approach developed by Scherbaum and coworkers, but includes correlations and weights
- Use covariance matrix takes into account correlation (similar to random-effects formulation)

$$w_i = \frac{L(\mathbf{\epsilon}_i)}{\sum L(\mathbf{\epsilon}_i)} \qquad L(\mathbf{\epsilon}_i) = \exp\left(-\frac{1}{2}\mathbf{\epsilon}_i^T \mathbf{\Sigma}_{\mathbf{\epsilon}}^{-1} \mathbf{\epsilon}_i\right)$$

 More flexible and less ad-hoc than EPRI (2004) approach, but similar in spirit

7/16/2014

NGA East WS2 Summary EPRI 2013

21

Building the Covariance Matrix

$$Cov\left[\varepsilon_{ijk},\varepsilon_{ij'k'}\right] = \tau^2\delta_{jj'} + \phi^2\delta_{jj'}\delta_{kk'} + \sigma_{C,jk}\sigma_{C,j'k'}\delta_{kk'}$$

- First term: τ^2 if both residuals are associated with the same earthquake and zero otherwise
- Second term: ϕ^2 between a residual and itself (same earthquake, same station)
- Third term: $\sigma_{C,jk}\sigma_{C,j'k'}$ if both residuals are associated with recordings at the same station and zero otherwise (site correction uncertainty).

Note: tau and phi taken from aleatory variability model described later

7/16/2014

NGA East WS2 Summary EPRI 2013

Importance Factors (Weights) for Magnitude-Distance Bins

	M 3.75 to 4.75*	M 4.75 and greater
Rjb 0 to 70 km	1/4 (1/4)	1 (1)
Rjb 70 to 150 km	1/12 (1/4)	1/3 (1)
Rjb 150 to 500 km	1/24 (1/4)	1/6 (1)

Importance Factor for High Frequencies
Importance Factor for Low Frequencies

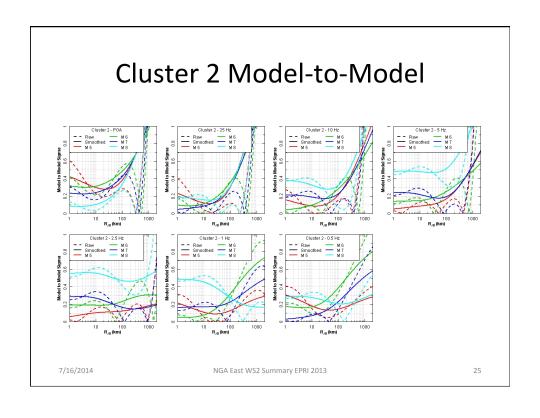
7/16/2014

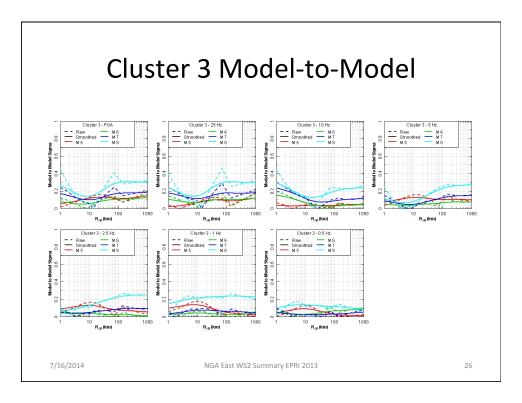
NGA East WS2 Summary EPRI 2013

22

Within Cluster Epistemic Uncertainty

 Use envelope of cluster model-to-model uncertainty and cluster independent data/ modeling uncertainty variances


$$\sigma(m,r,f)_{\text{cluster median}} = \max \left\{ \sigma(m,r,f)_{\text{cluster model-to-model}}, \sigma(m,r,f)_{\text{cluster independent data/modeling uncertainty}} \right\}$$


 These are considered to be different manifestations of the same underlying uncertainty

7/16/2014

NGA East WS2 Summary EPRI 2013

^{*} Using 0 weight for M 3.75 to 4.75 causes small changes in results

Cluster Independent Within Cluster Epistemic Uncertainty

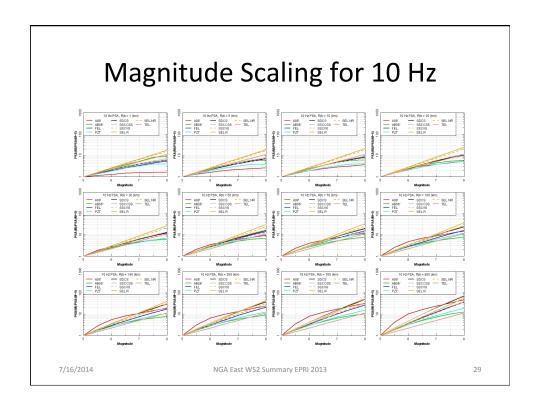
- NGA East strong motion database provides data-based constraint on median estimates for M ~ 5
- Incorporate uncertainty in magnitude scaling to provide estimate of epistemic uncertainty at larger magnitudes

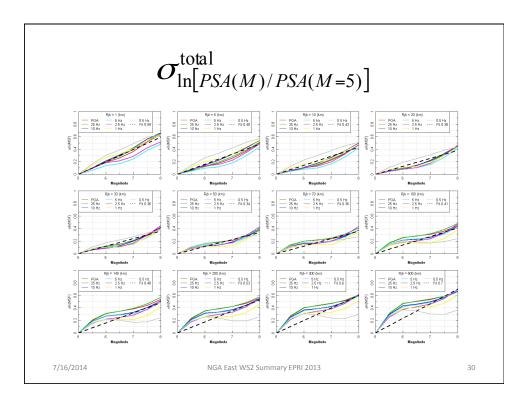
$$\sigma_{\text{cluster independent}} = \sqrt{\sigma_{\text{data-based at M 5}}^2 + \sigma_{\ln[PSA(M)/PSA(M=5)]}^2}$$

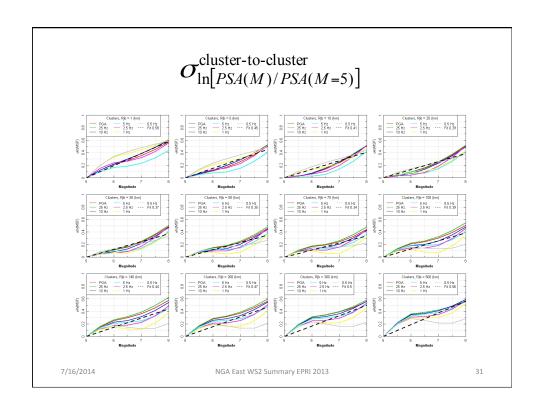
7/16/2014

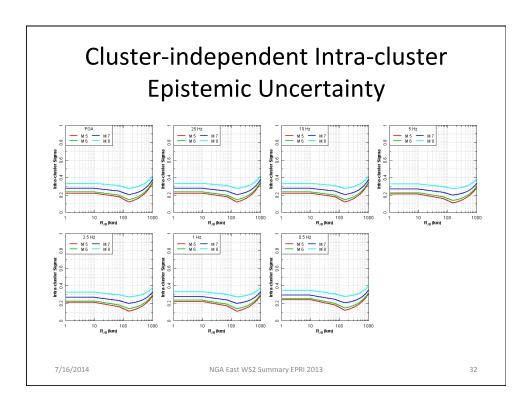
NGA East WS2 Summary EPRI 2013

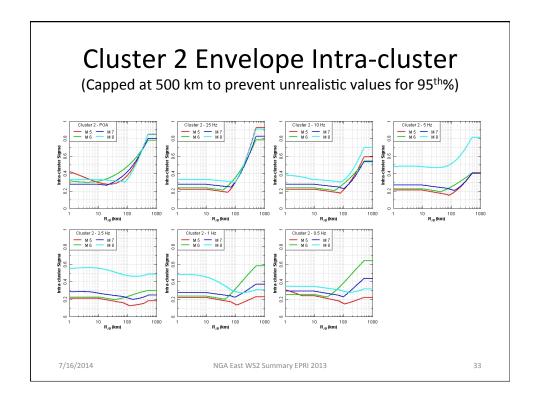
27

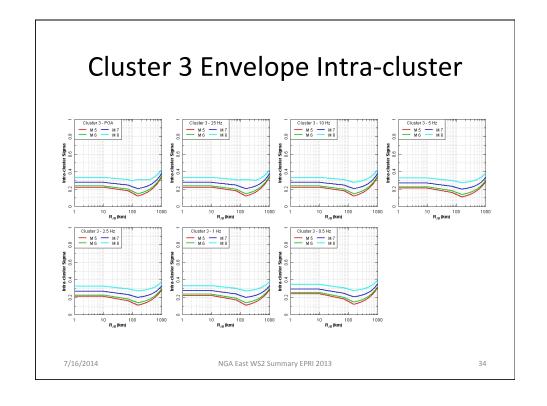

Incorporation of Variability in Magnitude Scaling

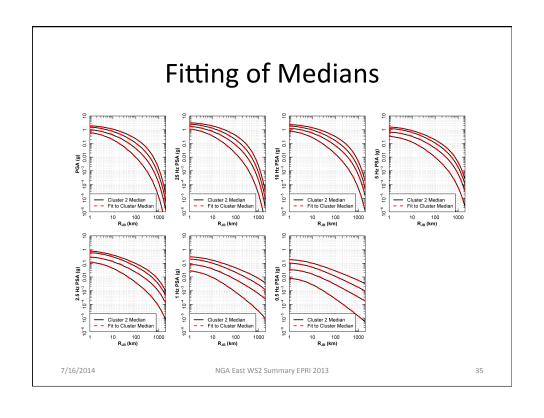

- Compute PSA(M)/PSA(M=5) for all candidate models and $\sigma_{\ln[PSA(M)/PSA(M=5)]}^{\rm total}$
- Compute PSA(M)/PSA(M=5) for cluster median models and $\sigma_{\ln[PSA(M)/PSA(M=5)]}^{\text{cluster-to-cluster}}$
- Within cluster uncertainty in magnitude scaling

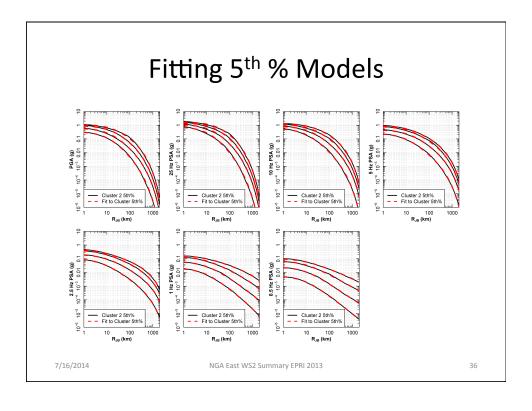

$$\sigma_{\ln\left[PSA(M)/PSA(M=5)\right]}^{\text{within cluster}} \approx \sqrt{\sigma_{\ln\left[PSA(M)/PSA(M=5)\right]}^{2 \text{ total}} - \sigma_{\ln\left[PSA(M)/PSA(M=5)\right]}^{2 \text{ cluster-to-cluster}}}$$

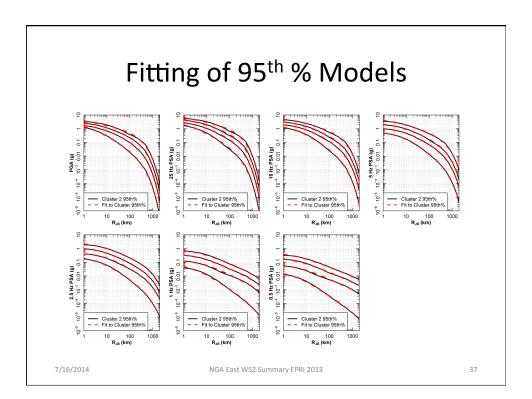

7/16/2014


NGA East WS2 Summary EPRI 2013









Questions from TI Team

- · What are the limitations of the GMPEs?
 - Have we captured the model space using the available published
 GMPEs (expanded using a model to model sigma and selecting)?
 - Somewhat limited frequencies
- What was the basis for the range of GMPEs defining the epistemic uncertainty used in the EPRI review project?
 - Within cluster variation based on envelop of model-to-model variability and data constraints at $M \,{}^\sim\, 5$ plus additional magnitude scaling

7/16/2014

Questions from TI Team

- What is the distribution of magnitude, distance, site conditions, style of faulting, period range for which the EPRI review project GMPEs are well constrained?
 - To the extent the underlying GMPEs are well constrained, primary data used are for distances up to 300 km M > 4 with emphasis on M > 5. Underlying GMPEs are for hard rock (Vs > 2 k/s to 2.7 km/s)
- How was the extrapolation beyond these well-constrained ranges defined?
 - Using fitted models
- What is the range of applicability of the GMPEs (distance, region, magnitude, depth, site, etc.)?
 - GMPEs are for M 4 to 8.2, 0 to 1000 km, hard rock, mixture of SS and Rev (no style of faulting), PGA and frequencies of 25, 10, 5, 2.5, 1, and 0.5 Hz.

7/16/2014

NGA East WS2 Summary EPRI 2013

39

Questions from TI Team

- What is the distribution of magnitude, distance, site conditions, style of faulting, period range for which the EPRI review project GMPEs are well constrained?
 - To the extent the underlying GMPEs are well constrained, primary data used are for distances up to 300 km M > 4 with emphasis on M > 5. Underlying GMPEs are for hard rock (Vs > 2 k/s to 2.7 km/s)
- How was the extrapolation beyond these well-constrained ranges defined?
 - Using fitted models
- What is the range of applicability of the GMPEs (distance, region, magnitude, depth, site, etc.)?
 - GMPEs are for M 4 to 8.2, 0 to 1000 km, hard rock, mixture of SS and Rev (no style of faulting), PGA and frequencies of 25, 10, 5, 2.5, 1, and 0.5 Hz.

7/16/2014

NGA East WS2 Summary EPRI 2013

References

EPRI , 2013, EPRI (2004, 2006) Ground-Motion Model (GMM) Review Project, Elec. Power Research Institute, Palo Alto, CA, Rept. 3002000717, June, 2 volumes.

7/16/2014

NGA East WS2 Summary EPRI 2013