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Objectives

= Due to sparse observations, ground
motion models for Eastern North America

(ENA) relay heavily on simulations.

= Key components of simulation models are
geometrical spreading term [G(R)] and
attenuation [Q(f)] term.

= Use available recorded motions to develop
constraints on G(R) and Q(f) for
subsequent application to simulation
models.
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Potential Issues

Geometrical spreading and attenuation are not
independent parameters; there can be strong
trade-offs between them.

Site response (particularly softer sites) can
strongly affect motions and mask the underlying
effects of G(R) and Q(f).

Earthquake mechanism and radiation pattern also
affect motions, particularly at near source
distances (R<50km).

Vertical motion data are more plentiful than
horizontal. Are vertical motion data an
appropriate surrogate for horizontal motion
characterization?

{t'#
Recent Studies
= Frankel (2012)
Coda normalized S-wave analysis of Riviere du Loup
records to determine G(R)
= Chapman (2012); Chapman and Godbee (2012)
Analyzed Mineral, VA mainshock and aftershocks to
determine G(R), augmented analysis with full waveform
simulations
= Boatwright and Seekins (2011); Boatwright and
MacDonald (2012)
Analyzed events in NE North America to develop Q(f)
and source spectra; assumed G(R)
= Atkinson and Boore (2013)
Analyzed events in NE North America to determine Q(f)
and G(R); examined implications for source spectra
{t'#
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ENA Events and Stations
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ENA rock data (Vs30 > 1000 m/s)
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ENA rock data (Vs30 > 1000 m/s)
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Apparent Anelastic Attenuation (Q)

= Use data between 100km and 600km; dominated
by Lg phase with G(R) = R0-5

= Atkinson and Boore (2013) fit Fourier spectra
observations Y(f) with:

log,oY(f) = ¢;(f) — 0.5 logy4R + g,(f)R

c(f) = event term
R = epicentral distance
gi(f) = anelastic term

g,(f) is inversely proportional to Q;(f)

#.
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Average of event-specific Quality factors from regional data
(assumed b=-0.5; data M>4))
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Near-Source Geometric Attenuation

= Examine residuals for near-source distances
(<150km) to determine form of geometric term

= Atkinson and Boore (2013) compute residuals
with:

Res(f) = log,,Y(f) - ¢(f) + 0.5 1og,4R - g,(f)R

for all distances R

PEER
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residual (log units) for freq: 0.51

residual (log units) for freq: 4.96

05

-05

05

-0.5

Residuals for Attenuation using Event-specific g(i), 150-500km (b=-0.5)
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Residuals for Attenuation using Event-specific g(i), 150-500km (b=-0.5)
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Possible functional
forms:

= Bilinear?
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= Distance/frequency
dependent?
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Frequency Dependence of G(R)

= To model frequency dependence, Atkinson and
Boore (2013) use the following:

G’(R,h,f) = F(R,h,f) G(R)
log,0F(R,h,f) = T(f) C.e(R,h)

C,«(R,h): shaping function dependent on distance R
and hypocentral depth h

T(): linear taper from 1 Hz (=1) to 5 Hz (=0)
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M4.7 Model and Fourier amplitude observations (binlin. R*-1.3 to 50km)
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Comparison with Other Studies

= Frankel (2012)

= Coda normalized S-wave analysis of Riviere du Loup

= Chapman (2012); Chapman and Godbee (2012)

= Mineral, VA mainshock and aftershocks

PEER
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Coda Normalized S-Waves
Frankel (2012)

envelopes of bandpass-filtered seismograms (5-10 Hz)
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= Preliminary analysis suggests steeper attenuation at low frequencies
compared to higher frequencies

= Qualitatively similar to Atkinson and Boore (2013)
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Mineral, VA Aftershock Attenuation

Chapman (2012)
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* Frequency dependent behavior similar to Atkinson and Boore (2013)
* Preliminary analysis-

= No site corrections, no Q adjustment

= Waveform modeling indicates stronger sensitivity for vertical
component compared to horizontal {l‘«*
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Summary

= Atkinson and Boore (2013) parameterization for
Northeastern North America:

G(R) = R'1:3 R < 50km [possibly with F(R,h,f) factor]
G(R) = R0:> R > 50km
Q(f) = 525 045

= Need to examine possible effect of site conditions,
especially for Mineral, VA mainshock/aftershocks.

= Frequency dependence of near-source response could be
due to rupture directivity/radiation pattern effects.

= Theoretical calculations by Chapman and Godbee (2012)
indicate faster decay for vertical component compared to
horizontal in near source region. Need to examine
significance for GMPE development.
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