

Outline
Review of crustal seismic wave propagation
Recent Observations
Quantification of model parameters for the Central U.S. and Gulf Coast Regions

7

$$Ln\left[\frac{A_{ij}(f)}{S_i(f)G_{ij}(r)}\right] = R_j(f) - \frac{\pi r_{ij}f}{QV}$$

A_{ij} (f) = Fourier acceleration amplitude (geometric mean of the two horizontal components), S_i (f) = Earthquake source amplitude spectrum, G_{ij}(r)= Geometrical spreading (independent of frequency f), R_j(f) = Site amplitude term, r_{ij} = hypocentral distance, from ith earthquake to the jth station. $G(r) = r^{-1.3}, \quad r \le 60 \text{ km}$ $G(r) = 60^{-1.3}, 60 \le r \le 120 \text{ km}$ $G(r) = 60^{-1.3} \left(\frac{r}{120}\right)^{-0.5}, r > 120 \text{ km}$

Thank You!