Comments on constraining
attenuation and source parameters

Gail Atkinson

Some new results on attenuation (Q)
and source (SE Canada)
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* thereis a family of ‘
equivalent Q relations T omommeme
of the form Q=Q_f" ’

* Q might depend on
amplitude level
* Small-to-moderate

events are not self-
similar
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Estimation of Q in SE Canada based on spectral shape
(eliminating need to assume geometric spreading)

* Based on stacking velocity |
spectra in 0.1 M unit bins, | a
each spectrum normalized
to amplitude at the peak
(works because velocity
spectra peak at the corner
frequency)

* Compare normalized
spectra to Brune shape to 8
determine required Q
correction
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(Dineva, Mereu and Atkinson,
submitted)

Example of stacked spectrum fit with Brune spectrum (M; 2.5).
All individual spectra are corrected with Q, =500 and n =0.5.
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Max distance 600 km, 1.6 <ME <4.9
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Qo-n pairs show dependence on
magnitude and distance (amplitude?)
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Other Q studies all plot along the Qo-n trade-off line....
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Attenuation and source parameters in

ground-motion modeling

attenuation and source parameters are closely connected in
ground motion model (trade-off)

It is not meaningful to talk about source parameters and
attenuation parameters for a ground-motion simulation
model independently, if matching model to observations

| illustrate this with source spectra inferred from regional
observations (200 to 500 km), by correcting the spectra just
for Q effects (on shape), then shifting the spectra to match
known seismic moment

This eliminates the need to know geometric spreading, so
simplifies the attenuation problem (assuming gsprd is
frequency-independent)

Use M4.7 Riviere du Loup, Quebec earthquake, due to rich
ground motion records at both near and far distances
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Some thoughts

e Stress drop and attenuation are just trading model
parameters in the context of ground motion
simulations

* Talking about “stress drop” is meaningless — we are
interested in ground motion; the same ground
motion is produced by high stress-high attenuation
or low stress — low attenuation, and we really can’t
distinguish clearly between the two (not enough
near-source data)

* Most useful thing NGA-E could do would be to
advocate free-field ground-motion instruments in
the east so that we could gain more insight from the
next significant eastern earthquake (we’ve already
wasted the last one).

Data-based comments on ENA
attenuation

* Based on ENA Fourier amplitude data
(www.seismotoolbox.ca) M 3 to 5.8, to 800km

* Vertical and geomean horizontal component

* Vertical data are more plentiful and show
same trends as horizontal

* Use just rock data (Vs30>1000 km/s, mostly
>2000 km/s) so that site can be neglected




Database distribution

ENA rock data
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Overall observations on attenuation

* We can look at overall attenuation behaviour
by obtaining average log amplitudes in
distance bins (logA in logD bins) for each
event

 This gives us an event-specific attenuation
shape, for well-recorded events (e.g. 2005
M4.7 Riviere du Loup)
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Example of binned
data: Riv.Loup
Vert. mean and
std.dev. (red with
error bars)

(note both vert.
and horiz. data
are shown in
background)

This is by far the
richest event for
dist. coverage.

Need to stack
multiple events to
see overall shape
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Summary on attenuation shapes

Normalized ground motion data can be used to

place constraints on geometric spreading and Q
combinations that are consistent with the data
and their variability

Could be applied to evaluating uncertainty in

attenuation rates from source to regional

distances

Could be applied to evaluating uncertainty on

source parameters derived from regional data via
an attenuation model

Data suggest slope steeper than R1-3
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Other evidence of steep near-source
attenuation

Atkinson and Kraeva (2010 BSSA)
Study of attenuation of shallow Sudbury

events (mining-induced)

Found R13in first 25 to 30 km for H-comp
R11 for V-comp

Event-specific near-source attenuation

Arkansas
earthquake,
M=4.7 (from

Shahram Pezeshk)
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Questions on ground-motion
regionalization of attenuation

* Do ground-motion data from different ENA
regions (eg. SE U.S., New Madrid) have different
attenuation?

* Are attenuation differences well-enough
documented, and sufficiently important, to justify
different attenuation models for different
regions?

» Data-based studies of these questions need to be
conducted (overlaying data for a common
magnitude metric)




