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Estimation of Mixed Model-Based Ground 
Motion Prediction Equation through a Hybrid 
Genetic Algorithm 

 

Behrooz Tavakolia) M.EERI and Shahram Pezeshk, a)  M. EERI  

A derivative-free approach based on a hybrid genetic algorithm (HGA) is 

proposed to estimate a mixed model-based ground-motion prediction equation 

(attenuation relationship) with several variance components.  First, a simplex 

search algorithm (SSA) is used to reduce the search domain to improve the 

convergence speed. Then, a genetic algorithm (GA) is employed to obtain the 

regression coefficients and the uncertainties of a predictive equation in a unified 

framework using one-stage maximum-likelihood estimation.  The proposed HGA 

results in a predictive equation that best fits a given ground-motion dataset.  The 

proposed HGA is able to handle changes in the functional form of the equation. 

To demonstrate the solution quality of the proposed HGA, the regression 

coefficients and the uncertainties of a test function, which is based on a simulated 

ground-motion dataset, are obtained.  Then, the proposed HGA is applied to fit 

two functional attenuation forms to an actual dataset of ground-motion. For 

illustration, the results of the HGA are compared with those used by previous 

conventional methods. The results indicate that the HGA is an appropriate 

algorithm to overcome the shortcoming of the previous methods and to provide 

reliable and stable solutions.   
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Introduction 

 
Derivation of ground-motion prediction equation and estimation of its coefficients and 

uncertainties are significant components of seismic hazard analysis for seismically active 

regions. The predictive equations in such regions may be reliably estimated from statistical 

calculations based on extensive ground-motion data recorded in a region. There are several 

nonlinear mathematical functions that relate a given ground-motion parameter (e.g., peak 

ground acceleration, PGA) to seismological parameters of a seismic event in a dataset, such 

as earthquake magnitude, source-to-site distance, style of faulting, and local site conditions.  

A statistical regression procedure is performed to estimate the residual error (the 

difference between an observation and an estimated value) and the regression coefficients in 

a given predictive equation. An extensive verification is required to investigate whether a 

proposed predictive equation provides a good description of the ground-motion data. It is 

common in probabilistic seismic hazard studies to distinguish between various uncertainties 

to better understand ground motions at a given site. The discussion of the partitioning of 

uncertainty is ambiguous. The probability seismic hazard analysis (PSHA) generally 

distinguishes between epistemic uncertainty (due to lack of data and knowledge) and aleatory 

uncertainty (random or apparently random variability) – see Toro et al. (1997) for more 

details. The residual error or the sigma (σ ) term in predictive equations, which may be made 

up of several variance components, is treated as aleatory variability. The decomposition of 

residual error into two variance components dates back to Brillinger and Preisler (1984).  

They partitioned the residual error into two parts, namely intra- (within) event and inter- 

(between) event terms. Joyner and Boore (1993) incorporated three variance components into 
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a ground-motion prediction equation, namely earthquake-to-earthquake component, site-to-

site component, and record-to-record component. The site-to-site component and the record-

to-record component are generally lumped into the intra-event variability term due to the 

limited number of recordings available from different earthquakes for a given site. The 

partitioning between inter-event and intra-event variability is key to the understanding of the 

nature of the scatter, but has not been formally incorporated into PSHA yet. In general, a 

ground-motion prediction equation is defined as a nonlinear mixed model incorporating both 

regression coefficients (fixed effects) and uncertainties with several variance components 

(random effects). 

There are four conventional methods to perform a statistical regression analysis to 

develop a ground-motion prediction equation (attenuation relationship) and to estimate the 

associated uncertainties. These four methods are (1) one-stage weighted least-squares 

regression (Campbell, 1989), (2) two-stage weighted least-squares regression (Joyner and 

Boore, 1993), (3) one-stage maximum-likelihood regression which was first introduced by 

Brillinger and Preisler (1984; 1985) then improved by Abrahamson and Youngs (1992) and 

later reexamined by Joyner and Boore (1993) , and (4) Bayesian expectation-maximization 

regression (Chen and Tsai, 2002). The aim of all these regression methods is to provide the 

most accurate estimates of the regression coefficients and variance components.  These 

methods provide explicit statistical regression procedures for estimating the variance 

components.  The one-stage maximum likelihood methods (all parameters are determined 

simultaneously) are used to give a more accurate partitioning of the variance components 

than the least-squares methods. In the one-stage methods, an expectation-maximization (EM) 

algorithm (Brillinger and Preisler, 1985; Chen and Tsai, 2002) or a certain search algorithm 
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(Abrahamson and Youngs, 1992; Joyner and Boore, 1993) is applied to obtain the maximum 

likelihood estimates of the variance components.  Some of these methods (e.g., Brillinger and 

Preisler, 1985; Chen and Tsai, 2002) which are based on the EM algorithm do not necessarily 

work in the absence of good initial estimates that appear to guarantee convergence of the 

algorithm employed. Unreasonable initial estimates might lead to biased estimates of the 

variance components. Abrahamson and Youngs (1992) suggested an alternative algorithm to 

maximize the likelihood of the set of observations without EM, which is considered to give 

more stability. Although, the 1992 Abrahamson and Youngs algorithm provides explicit 

formula for the variance component estimates, but an additional regression procedure is 

required to estimate the regression coefficients.  

To estimate a general ground-motion prediction equation, there is a need for a flexible 

search algorithm to obtain statistically the best regression coefficients and variance of 

components under a unified framework. The search algorithm must be capable of handling 

changes in the functional form in the attenuation curves with no additional regression 

analyses. This would imply that all model parameters and the uncertainties are estimated 

simultaneously (one-stage method) and there is no need to construct derivatives of the 

predictive equation. Genetic algorithm (GA) is a directed stochastic search method (Holland, 

1975; Goldberg, 1989) based on the principles of natural selection. A hybrid genetic 

algorithm (HGA) is a combination of the GA with a simulated stochastic method to reduce 

the search domain and find the suitable sequence of initial guesses for learning and 

estimating the best regression coefficients and uncertainties in a ground-motion prediction 

equation. 
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In this study, we develop an alternative approach based on a hybrid genetic algorithm 

(HGA) for one-stage maximum-likelihood estimation of mixed models. To demonstrate the 

solution quality of the proposed HGA, the regression coefficients and the uncertainties of a 

test function, which is based on a simulated ground-motion dataset, are obtained.  Then, the 

proposed HGA is applied to fit two functional attenuation forms to an actual dataset of 

ground-motion recordings in Taiwan using data provided in Chen and Tsai (2002). To 

illustrate the strengths and limitations of the proposed algorithm, the model parameters and 

the residual error in the predictive equation are estimated using the previous conventional 

algorithms, and then compared with those determined by the proposed algorithm. Finally, as 

another example of the HGA application, we define a complex functional attenuation form 

and determine the best estimate of the regression coefficients and the variance components 

from the actual ground-motion data.  

 
General Mixed Model-Based Predictive Equation 

 

The following nonlinear regression model is used to denote a mixed-based ground-

motion prediction equation 

 
1

( , )
c

ij ij ijY f ϕ ϕ
ϕ

ε
=

= + +∑θx X b   (1) 

where ijY  is the j th ground-motion parameter (e.g., PGA) from the i th event  ( i  = 1,…, n , 

and j  =  1,…, in ), n  is the number of events, and in  is the number of recording for the i th 

event. An event represents a group of recordings (cluster) that are stochastically dependent 

such as the set of strong-motion recordings collected during a single earthquake. The 

predictive equation consists of three terms to reflect the clustered nature of the ground-
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motion data and the involvement of random effects. The first term of equation (1), ( , )ijf x θ , 

is a known nonlinear functional form. The vector ijx  is a vector of independent variables 

including the earthquake magnitude ( iM ) and the source-to-site distance ( ijR ), and θ  is a 

vector of fixed effects for regression coefficients. The second term of equation (1) is used to 

model the inter-event variations among clusters. The vector ϕb  denotes a specific vector of 

random effects for the ϕ -factor, and c  is the number of factors to be included in the analysis, 

such as earthquake-specific, site-specific, and path-specific factors. The matrix ϕX  is the 

incidence matrix for random effects. The last term ijε  represent intra-event variations within 

the clusters, which is the residual error for the j th recording from the i th event. The random 

effects and the random error ( ijε ) are normally distributed with zero means and variances 2
ϕσ  

and 2
rσ , respectively. The variance 2

ϕσ  is independent of the variance 2
rσ ; therefore, the 

variance of a ground-motion parameter is estimated to be 2 2 2
Y rϕσ σ σ= + . The variance 2

ϕσ  

may be partitioned into three type of variance components 2
eσ , 2

sσ  and 2
pσ . The variance 2

eσ  

represents the earthquake-specific deviation obtained for each earthquake magnitude, the 

variance 2
sσ  represents the site-specific deviation obtained for each site at the different 

magnitudes, and the variance 2
pσ  represents the path-specific deviation obtained for each 

record at the different sites.  

Figures 1a-b show how the vector of deviations about overall ground-motion mean may 

be partitioned into two components of variance. Suppose that the ground-motion data consist 

of two earthquakes with the same magnitude, as shown in Figure 1a-b, and each of which is 

representing a group of recording from a random location in a given seismic region. When 
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two groups are being compared, the ground-motion recordings from all the groups are 

involved in computing a total ground-motion mean (YDD ). The total deviation ( Yσ ) is based 

on how far each recording in each group differs from this total mean. The total deviation is 

decomposed into two error terms. The inter-event term ( eσ ) represents the deviation of each 

group mean from the overall mean, while the intra-event term ( rσ ) represents the deviation 

of each individual recording from the relevant group mean.   

  The ground-motion data ( ijY ) represented as a Gaussian random variable with the 

overall mean, ( )ijYE , and variance-covariance matrices (V ) obtained by the following 

equations (Searle, 1971): 

 ( ) ( , )ij ijY f= θE x   (2) 

and 

 2 2

1
var( )

c
t

ij r NY ϕ ϕ ϕ
ϕ

σ σ
=

= = +∑V X X I   (3) 

where N is the total number of ground-motion data points, NI  denotes the N N×  identity 

matrix, ϕX  is the incidence matrix for random effects, and the superscript t  denotes matrix 

transposition. Assuming the ground-motion data has a multivariate normal distribution with 

mean ( )ijYE  and the variance-covariance matrix V , a multi-dimensional normal probability 

density function can be used as a likelihood-based estimate of the parameter values. The log-

likelihood of ( , | )ijYVθ  under the Gaussian model is 

{ }11log ( , | ) log(2 ) log | | [ ( , )] [ ( , )]
2

t
ij ij ij ij ijY N Y f Y fπ −= − + + − −A θ θ θV V x V x  (4) 

where | |V  is the determinant of the variance-covariance matrix and the superscript t  denotes 

matrix transposition. Equation (4) is considered as the objective function of HGA and has to 
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be solved for the elements of θ  and the variance components inherent in V.  The maximum 

likelihood estimates of ( , )Vθ  are obtained by maximizing the right-hand side of the 

equation. Maximizing log ( , | )ijYA θ V  in equation (4) or equivalently minimizing 

2 log ( , | )ijY− A θ V  is often an expensive and ill-conditioned problem.  For instance, it is more 

difficult to construct the partial derivatives of equation (4) to find the maximum likelihood 

estimators for a given nonlinear predictive equation with more random factors (ϕ ). The 

methods based on derivation require calculating the inverse of a matrix with a size equal to 

the number of the random effects in each iteration, and the linearization of a given nonlinear 

regression function with a Taylor’s-series expansion about the regression coefficients. 

Finding the best search defined by the conventional optimization procedure often involves 

solving an inflexible-large scale maximization problem, in particular for a complex nonlinear 

predictive equation. Thus, the derivative-free methods provide a flexible alternative to the 

algorithms used currently for the regression analysis of strong-motion data.  

In this study, we propose an alternative search method based on a hybrid genetic 

algorithm (HGA) to find the best value of parameters ( , )Vθ  that minimize the objective 

function. The objective function directly sets up the basis for selection of parameters, each of 

which represents a candidate solution to do the best curve fitting. When the total number of 

ground-motion data points and random effects are large, finding the best estimate according 

to a HGA is more appropriate. The variance estimates of the variance components can be 

obtained directly after finding the variance components (e.g., 2 2 2, ande s rσ σ σ ) based on the 

HGA. Details of the variance estimates following Searle (1970) are given in the Appendix. 
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Optimization Using a HGA 

 

The HGA is a directed stochastic search technique (a derivative-free approach) that is 

able to provide an optimal solution to compute the vector of the model parameter values (θ ) 

and the variance components (V) defined in equation (4). The basic idea is to maintain a 

population of possible solutions that evolves and improves over time through a process of 

competition and controlled variation. The HGA is different from conventional random 

algorithms since it combines the elements of directed and stochastic search by using the 

process of natural selection.  The HGA uses first a simplex search algorithm (Lagarias et al., 

1998) to reduce the search domains for each parameter, and then a genetic algorithm (GA) to 

randomly generate an initial population within the reduced search space.  The search domains 

are estimated for the model parameter values based on a fixed effects regression (no 

assumption is made about the random effects). This assumption involves choosing the model 

parameters which minimize the sum of squares of deviations of the observations from their 

expected values defined in equation (4). The reduced search domains are only considered to 

improve the convergence speed of the HGA. Therefore, unreasonable initial values of 

variance components do not cause a problem.  

The HGA is used to estimate simultaneously the new model parameters and the variance 

components in equation (4). A HGA consists of initialization, evaluation, reproduction, 

crossover, and mutation. An initial population of possible solutions to equation (4) is first 

constructed in a random way and represented in a vector form. These vectors are of the same 

length and are called strings (S) or chromosomes. The length of each string (L) is determined 

by the number of model parameters (regression coefficients) and variance components 
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(uncertainties) used in the ground-motion prediction equation.  A string vector form may be 

expressed as  

 2 2( , , ) 1, , 1, ,r i M j Lϕσ σ= = =… …i, jS θ   (5)  

where M is a population size, and is usually chosen to be more than twice the string length. 

Each value of this population array is encoded into a binary string with a known number of 

bits (Nb) assigned for the representation of the level of accuracy or range of each variable. 

Each row of the population array is a string represented by a binary string of all encoded 

solutions.  

To examine the practical performance of various aspects of the proposed HGA, we 

considered the following test function:  

2 1
1 2 3 4 5exp( ) [( ) ]Y X X − −= − + − + +θ θ θ θ θ ε  (6) 

where 1θ through 5θ are the regression coefficients and ε  is the uncertainty.  To simulate a 

dataset, we used θ  = [107, 0.629, 20, 1.9, 0.75]. Then, a random number of the form 

8 [ ( ,1) 0.5]rand n× −  is utilized to the n data points to simulate ε . The HGA goal is to 

maximize equation (4) to estimate the vector θ  and ε  using the simulated dataset. The error 

term is assumed to be sampled from a normal distribution with mean zero and unknown 

variance, 2σ . Following the HGA, we obtained the search domain for the regression 

coefficients 1 [0,110]θ ∈ , 2 [0,1]θ ∈ , 3 [0,110]θ ∈ , 4 [0,10]θ ∈ , and 5 [0,1]θ ∈ .   As a sample 

for the illustration of string vector, a population array for the first three regression 

coefficients 1 2,θ θ  and 3θ  are listed in Table 1.   The decoding from a binary string into a 

decimal number is calculated by the following relationship: 



 

 
11

1

0
( 2 ) 1, ,

2 1

b

b

N
j k k

k j kN
j

u lD l k Nα
−

=

−
= × + =

−∑ "  (7) 

where kD  in a certain population assigned for the decimal representation of the kth parameter 

bounded by [ kl , ku ], and jα  is a binary representation of kD  with bN  bits. For example, if 

the search domain for the parameter 1θ  is [0, 110], then the binary string (01011110) with 

length of 8bN =  is decoded into a corresponding decimal number (40.549) as shown in 

Table 1.   

Through three operation rules based on Darwin’s natural selection, the HGA performs a 

directed search for the best solution by maximizing equation (4). The first rule is 

reproduction/selection.  During reproduction the phase, each string is assigned a fitness value 

derived from its raw performance measure given by the objective function. This value is used 

in the selection to bias towards more fit strings. The strings are descended according to their 

fitness values. Highly fit strings, relative to the whole population, have a high probability of 

being selected for the next population whereas less fit strings have a correspondingly low 

probability. Once the strings have been assigned a fitness value, they can be chosen from the 

population, with a probability according to their relative fitness, and recombined to produce 

the next generation.  

The second rule is crossover. Crossover or mating allows pairs of strings from the 

population to combine their better features to create improved strings for the next population. 

All strings are paired at random in such a way that each string belongs to only one pair. Each 

of the pairs in the population undergoes crossover rule with a probability cp . Any pair not 

selected for crossover is placed directly into a new population array. As shown in Table 1, 
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consider 1,1 1,1 1,( , , ) (00101111)
bNα α= =…S  and 2,1 2,1 2,( , , ) (11101001)

bNα α= =…S  be two 

binary strings of 1θ  with the size of 8bN =  from the current population that have been 

selected for crossover. A position { }1, 2, , 1bk N∈ −…  as a crossover point is randomly 

chosen and two new strings are produced. If the crossover point is 5, for example, then the 

new solutions are 

1,1 1,1 1, 2, 1 2,( , , , , , ) (00101 )
bk k Nα α α α+′ = = 001… …S   (8) 

2,1 2,1 2, 1, 1 1,( , , , , , ) (11101 )
bk k Nα α α α+′ = = 111… …S   (9) 

1,1′S  and  2,1′S are placed in new binary string and 1,1S  and 2,1S  would be removed from the 

current population. 

The last rule is mutation. Mutation gives the algorithm an opportunity to branch into 

previously unexplored regions of the domain space by arbitrarily altering one or more bits of 

a selected string. Each bit of every string undergoes mutation with the probability mp . In the 

simple case, for each bit in new population a random number is generated between [0, 1]. If 

the random number is greater then the probability mp , the bit is unchanged. Otherwise, the bit 

is placed by a reverse random bit of each number represented by strings to make a new 

population array.  

The population is now relabeled as a new population array and the cycle of operations are 

repeated. This process of natural selection continues until some termination criterion (e.g., 

number of generations) is met at which time the best string achieved is generally taken as the 

optimized solution.  

Comparison of the best parameter estimation of test function together with the true 

function and the corresponding simulated data are plotted in Figure 2. The bias of each 
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regression coefficient is listed in Table 2, where the bias is the difference between the 

estimated and the true values. The maximum error is 2.92% and is associated with regression 

coefficient 4θ . The error can be reduced by increasing the population size or the number of 

generations. This would imply that the HGA has a small bias overall, and is an appropriate 

method to fit complex nonlinear functions to a given dataset.   

Figure 3 gives an overview of the proposed HGA to determine the best estimate of the 

model parameters and variance components in a certain ground-motion prediction equation. 

The proposed HGA used to compute the vectors θ  and V  in a given predictive equation is 

summarized as follows: 

1. Construct the search domains for the vectors θ  and V  using the SSA to improve the 

convergence speed.  

2. Generate a random population of M strings within the search domains (candidate 

solutions for the problem). 

3. Evaluate the fitness of each string in the population and find an optimum solution. 

4. Generate a new population by repeating the following steps until the new population 

reaches population size M: 

I. Select two strings from the current population, giving preference to highly fit 

strings (high fitness values). Automatically copy the fittest string to the next 

generation. 

II. With a given crossover probability cp , cross over the strings to form two new 

strings. If no crossover was performed, a new string is an exact copy of a string 

in the current population. 
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III. With a given mutation probability mp , randomly swap two bits of each number 

represented by strings to make a new string.  

IV. Copy the new string into a new population.  

5. Copy the newly generated population over the existing population. 

6. If the loop termination condition is satisfied, then stop and return the best solution in 

current population. 

7. Otherwise, go to Step 3. 

The choice of cp  and mp  depend on the nature of the objective function. Despite this fact, a 

value of cp  between 0.6 and 0.9 (Herrera et al., 1998) and a value of mp  between 1
bN  and 

0.5 (Back, 1993) are often recommended to promote exploration and population diversity.  

 
Two Examples of the HGA Application 

 

As the first example, we employed the proposed HGA to fit a typical strong-ground 

motion dataset to the following general predictive equation  

72
10 1 2 3 4 5 10 6log log ( 10 )iM

ij i i ij ij ijy M M R R θθ θ θ θ θ θ ε= + + + + + +   (10) 

where the ijy  value is the geometric mean of two horizontal peak ground accelerations for 

the j th recording from the i th event in cm/sec2, iM  is the local magnitude, ijR  is the 

hypocentral distance (km), ijε  is a total residual (random effects and random error), and 1θ  

through 7θ  are the regression coefficients to be determined.  In this study, we used the same 

ground-motion dataset and the general ground-motion perdition equation considered by Chen 

and Tsai (2002). 
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Figure 4 shows the distributions of 48 earthquakes used in this study in terms of 

magnitude and distance. There are 424 recordings from 48 earthquakes with magnitudes 

greater than 4.0 in the ground-motion dataset. As shown in Figure 4, large earthquakes are 

recorded at greater distances than small earthquakes.  

The HGA parameters used in this study are listed in Table 3. The proposed HGA is 

performed to obtain the optimal values of vectors θ  and V given in equation (10).  The 

evolution of the objective function is plotted in Figure 5. There are some ups and downs in 

the convergence of the objective function since the best solution is not retained at each 

generation and the algorithm is allowed to explore the entire search domain.   

The optimum solution with minimizing the objective function is obtained in 25 

generations.  However, the proposed algorithm continued to iterate pending the termination 

criterion in order to search for a better solution.  

The final HGA results obtained in this study for the best-fit shape of the predictive 

equation are provided in Table 4. The attenuation shape for local magnitude 5.5 is illustrated 

in Figure 6, which plots the observed PGA for a subset of the data with magnitudes 5.0-6.0, 

in comparison to the predictive equation. The regression analysis for the fit of the data to the 

predictive equation is also performed by using the algorithms of Brillinger and Preisler 

(1985), Joyner and Boore (1993), and Chen and Tsai (2002). The results are listed in Table 4 

for comparison. The proposed HGA produces a solution which is in good agreement with the 

previous studies with a slightly better fit (smaller error term). 

The log residual is defined as the difference between the log of the observed ground-

motion amplitude and the log of the predicted ground-motion amplitude according to 

equation (10). Figure 7 illustrates the total residuals (random effects and random error) as a 
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function of hypocentral distance and magnitude.  There are no apparent trends in the 

residuals. The total residuals have been partitioned into two variance components ( 2 2,e rσ σ ). 

When we mix the vector of fixed effects (θ ) with the vector of random effect for the 

earthquake-specific component ( 2
eσ ), the residual error can be plotted against the hypocentral 

distance as shown in Figure 8. Comparison of the total residuals with the residual error shows 

that the prediction errors can be reduced when the random effects are corrected.   

The total standard deviation of 10log ijy  in the regression is estimated to be 0.299. In 

Table 4, the variances of the two variance components represented by ( 2 2,e rσ σ ) can be 

estimated by the variance-covariance matrix defined in the Appendix. In this case, we ignore 

the effect of site-specific deviation ( sσ ) hence the variance-covariance matrix reduces to the 

following inverse matrix: 

12 2 2

2 2 2

( ) cov( , )
2

cov( , ) ( )
ee ere e r

er rre r r

v
v

τ τσ σ σ
τ τσ σ σ

−
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

                                     (11) 

In this study, the variance estimates are evaluated based on the estimated variance 

components and the number of recordings from an earthquake. Following the equations 

provided in the Appendix and the ground motion catalog used in this study, the equation (11) 

is determined to be: 

2 2 2

2 2 2

9.77 05 1.82 06( ) cov( , )
1.82 06 1.25 05cov( , ) ( )

e e r

e r r

E Ev
E Ev

σ σ σ
σ σ σ

⎛ ⎞ − − −⎛ ⎞
=⎜ ⎟ ⎜ ⎟− − −⎝ ⎠⎝ ⎠

             (12) 

The log residuals demonstrate that the attenuation model of equation (10) provides a 

satisfactory description of the ground-motion data at distances of up to 100 km.  The 

geometric spreading of body waves does not have a spherical shape beyond 100 km, since the 
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direct shear waves are superimposed by waves reflected from the Moho discontinuity at 

distances of the order of 100 km (typically, of the order of twice the Moho depth).  As shown 

in Figure 6, the trend of PGA versus distance changes beyond 100 km because of the effect 

of geometric spreading. 

The variation of focal depth would affect the shape of the attenuation curves at near-

source distances. Thus, the effect of amplitude saturation (a constant amplitude value as 

distance is decreased) should be considered in the plot of a given ground-motion prediction 

equation. In this case, a complex predictive equation is required to explain both the geometric 

attenuation of seismic waves at distances of beyond 100 km, and the saturation effect at near-

source distances. One approach involves fitting several attenuation curves to the data and 

restricting the use of each curve to specified intervals of distance. This approach is 

particularly appropriate when no well-defined simple curve can be found to summarize the 

ground-motion data. Piece-wise fitted curves are rarely used in ground-motion prediction 

equation based on empirical data, where near-source saturation effects and the change in 

attenuation rate at large distances is usually handled by the inclusion of a pseudo-depth 

coefficient and a combination of logarithmic and linear distance terms. 

As the second example of the HGA application, the following complex functional form 

(Tavakoli and Pezeshk, 2005) is utilized to fit the ground-motion equation to the dataset. 

2.5
1 2 3 9

4 13 8 12

ln( ) (8.5 ) ln( 4.5)

 ( ) ln ( ) 70   
ij i i rup

i ij i ij ij rup
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θ θ θ θ

θ θ θ θ ε

= + + − + +

+ + + + + ≤
  (13a) 

2.5
1 2 3 9

10 4 13

8 12

ln( ) (8.5 ) ln( 4.5)

ln( ) ( ) ln
70

( ) 70 130

ij i i rup

rup
i ij

i ij ij rup

Y M M r

r
M R

M R r km

θ θ θ θ

θ θ θ

θ θ ε

= + + − + +

+ + +

+ + + < ≤                        (13b) 



 

 
18

2.5
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10 11 4 13

8 12

ln( ) (8.5 ) ln( 4.5)

ln( ) ln( ) ( ) ln
70 130

( )  130

ij i i rup

rup rup
i ij

i ij ij rup

Y M M r

r r
M R

M R r km

θ θ θ θ

θ θ θ θ

θ θ ε

= + + − + +

+ + + +

+ + + ≥  (13c) 

In these terms, rupr  (km) is a rupture distance and defined as the closest distance to the 

fault rupture, and iM  is moment magnitude for i th event .  The finite-fault geometry causes 

the average distance from the observation point to the fault to introduce extended-source 

effects, since at any point we cannot be close to the entire fault plane. This implies that there 

is a pseudo-depth (effective focal depth), which will appear to be the source of radiation if it 

is treated as a point-source model.  Thus, the distance measure Rij includes a magnitude-

dependence to illustrate the effect of the extended-source on the shape of the attenuation 

curve based on a pseudo-depth which is given by (Campbell and Bozorgnia, 2003) 

 ( )22 2.5
5 6 7exp (8.5 )ij rup i iR r M M⎡ ⎤= + + −⎣ ⎦θ θ θ      (14) 

Seismogenic depth of 3 km is also used to measure rupture distance from hypocentral 

distance. Finding the best fitting curve with changing regression functional forms by using 

the previous algorithms, (e.g., Joyner and Boore, 1993; Chen and Tsai, 2002) often involves 

solving a complicated and large scale minimization problem. Constructing derivatives of 

equation (13) with respect to regression coefficients and using more random factors are the 

main problems in these algorithms. The HGA is used directly to determine the unknown 

regression coefficients in equation (13). In this way transition points are incorporated in a 

fitted curve simply as the boundary points between adjacent predictive equations. The HGA 

parameters are the same as those that used in the first example (Table 3). The final result is 

the best estimate of the coefficients that fits the predicted model to the ground-motion 
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dataset. The regression coefficients are estimated as 4.2298, 0.7699, -0.0252, -1.501, -0.5571, 

0.3495, -0.0069, -0.0032, 0.0094, 1.2125, -0.7826, 0.0003, and 0.0001 for 1θ  through 13θ , 

respectively. The standard deviations are estimated to be 0.1995eσ =  and 0.1875rσ = . The 

result of the ground-motion values for an earthquake of magnitude 5.5 is compared with the 

previously mentioned methods as shown in Figure 9.  The average focal depth of 10 km is 

used to convert various distances to the horizontal distance.  The discrepancy in ground 

motions between equations (13) and (10) is significant at short distances and at distances 

above 100 km. Therefore, the selection of predictive equation is a crucial factor in the 

magnitude-distance ranges that are significant to seismic hazard analysis. 

 

Discussion and Conclusions 

 

We have proposed a search algorithm for the estimation of ground-motion prediction 

equations and the associated components of variance. The algorithm combines the elements 

of directed and stochastic search to reduce the search domain of parameters, and in turn the 

time of process. The HGA can be applied to complex predictive equations with several 

variance components. The proposed algorithm can easily cope with a larger number of 

variance components compared with existing algorithms, although it takes more time to reach 

an optimized result.  

The HGA process starts with a population of solutions to find a theoretical attenuation 

curve then continues by optimizing and fitting the theoretical curve to the ground-motion 

data. The HGA focuses on a population of attenuation coefficients and variance components, 

which are generated randomly within a certain search domain obtained using SSA. 

Coefficients and variance components are grouped in variable sets; each of which composed 



 

 
20

of a series of strings to define a possible solution for the problem. The performance of the 

variables, as described by the objective function and the constraints, is represented by the 

fitness of each variable. A mathematical expression calculates a fitness value for each 

solution of the objective function.  

Comparison of the numerical results with those obtained in the previous studies cited 

herein shows that the HGA performs successfully in estimating the parameters in mixed 

model-based ground-motion prediction equation with several variance components. The 

algorithm maintains a population of potential solutions, whereas all other methods process a 

single point of the search space. The HGA, unlike most existing models, is independent of 

some supplementary information such as derivatives to solve a complex problem. The 

algorithm only uses an objective function and several quite simple genetic operations for the 

potential solution to the problem. The flexibility of the algorithm allows solving problems 

with a series of changing regression functional forms which partition the attenuation 

function’s domain. The transition points can be incorporated in a fitted attenuation curve 

simply as the boundary points between adjacent curves.   
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Appendix: Variances of Large Sample Maximum Likelihood Estimators 

 

Suppose that the ground-motion data consist of N  records coming from M earthquakes 

and S  sites. Using the results of Searle (1970), the estimated variance-covariance matrix of 

( 2 2 2, ande s rσ σ σ ) is given by the following relationship: 

12 2 2 2 2

2 2 2 2 2

2 2 2 2 2
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in which M  is the number of events, and ijn  is the number of recording for the i th event and 

the j th site. Thus, the total number of records can be obtained by
1 1

iSM

ij
i j

N n
= =

=∑∑ . 
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     Table 1. The Population Array for Three Regression Coefficients of the Test Function as a Sample    

      to Illustrate the Process of Encoding, Decoding, and Crossover (bold numbers) in an Iteration of the       

      HGA. 

 

String (j) Binary string length 

1 2 3 1 2 3 Population 

size (i) 
1θ  2θ  3θ  1θ  2θ  3θ  

1 20.274 0.1333 19.843 00101111 00100010 00101110 

2 100.51 0.6667 40.549 11101001 10101010 01011110 

3 40.549 0.5294 13.372 01011110 10000111 00011111 

4 59.961 0.7804 65.137 10001011 11000111 10010111 

5 80.235 0.4275 28.039 10111010 01101101 01000001 

6 37.529 0.2314 18.981 01010111 00111011 00101100 

 "  "  "  

 

 

 

 

Decode 
. 

 

 

Encode  
, 

 "  "  "  

 

 

 

 

    Table 2.  Simulation Results for the Population Size of 40 Based on 100 Generations 

Parameter values 
HGA 

1θ  2θ  3θ  4θ  5θ  

True 107.0 0.629 20.0 1.90 0.75 

Estimated 106.7417 0.612 19.7522 1.9554 0.7646 

Bias -0.2583 -0.017 -0.2478 0.0554 0.0146 

Error -0.24% -2.72% -1.24% 2.92% 1.95% 
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Table 3.  The HGA Parameters used to Estimate the Best Fitting Attenuation Relationship 

 

HGA Parameters Values used 

Population size ( )M  200 

Maximum number of generation 100 

Probability of crossover ( )cp  0.6 

Probability of mutation ( )mp  0.04-0.1 

Length of strings 25 bits for each parameter 

Search domain for the vector of θ  [-5 5] 

Search domain for the vector of V  [0.1 0.5] 

Termination criterion 100 

 

 

 
Table 4. Results of the Example Application to Parameter Estimates and Standards Errors  

 

Parameters HGA* B&P** J&B***  C&T**** 

1θ  -3.4712 -3.507 -3.767 -4.366 

2θ  2.2639 2.221 2.507 2.540 

3θ  -0.1546 -0.144 -0.177 -0.172 

4θ  0.0021 0.0017 0.0019 0.0017 

5θ  -1.8011 -1.833 -2.025 -1.845 

6θ  0.0490 0.0875 0.016 0.0746 

7θ  0.2295 0.203 0.386 0.221 

rσ  0.2203 0.2349 0.2358 0.2358 

eσ  0.2028 0.2057 0.2075 0.2128 

    
*   HGA = The algorithm used in this study 

   ** B&P = Brillinger and Preisler algorithm (1985) 

  *** J&B  = Joyner and Boore algorithm (1993) 

  *** C&T = Chen and Tsai algorithm (2002) 
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Figure Captions 

 
Figure 1: Total deviations is partitioned into two type of errors, namely inter and intra-event terms. The 

inter-event term is a vector of specific random effect such as earthquake-specific components and the 

intra-event term is the residual error. The inter-event (random effect) and the intra-event (random error) 

terms are normally distributed with means zero and variances 2
eσ  and 2

rσ , respectively.    

 

Figure 2: Comparison of the true value of the parameters with those values estimated by the HGA for the 

test function discussed in this study. 

 

Figure 3: A flowchart for an alternative search fitting method based on a hybrid genetic algorithm (HGA) 

to find the best value of parameters ( , )Vθ   

 

Figure 4: The distribution of 424 recordings in the PGA dataset of Chen and Tsai (2002) plotted as a 

function of magnitude and hypocentral distance. 

 

Figure 5: Maximum number of generation used to estimate the best result of parameters and uncertainties 

in the ground-motion prediction equation for a dataset of ground-motion recordings in Taiwan. 

 

Figure 6: The geometric mean of two horizontal peak ground accelerations in cm/sec2 for events of M 

5.0-6.0 (circles) compared to the predictive model (Model #1) developed from the HGA (line) and the 

previous search algorithms . 

 

Figure 7: Log residuals (= log observed – log predicted PGA) for the regression of the ground-motion data 

versus hypocentral distance and magnitude. 

 

Figure 8: Corrected ground-motion residuals for the regression of the ground-motion data versus 

hypocentral distance. 

 

Figure 9: Comparison of peak ground accelerations (Model #2) for an event of M5.5 developed in this 

study (thick solid lines) with the predictive equation (Model #1) developed from the HGA (line) and the 

previous search algorithms.  
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