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Model Uncertainties of the 2002 Update of California Seismic

Hazard Maps
by Tianging Cao, Mark D. Petersen, and Arthur D. Frankel

Abstract In this article we present and explore the source and ground-motion
model uncertainty and parametric sensitivity for the 2002 update of the California
probabilistic seismic hazard maps. Our approach is to implement a Monte Carlo
simulation that allows for independent sampling from fault to fault in each simula-
tion. The source-distance dependent characteristics of the uncertainty maps of seismic
hazard are explained by the fundamental uncertainty patterns from four basic test
cases, in which the uncertainties from one-fault and two-fault systems are studied in
detail. The California coefficient of variation (COV, ratio of the standard deviation
to the mean) map for peak ground acceleration (10% of exceedance in 50 years)
shows lower values (0.1-0.15) along the San Andreas fault system and other class
A faults than along class B faults (0.2-0.3). High COV values (0.4-0.6) are found
around the Garlock, Anacapa-Dume, and Palos Verdes faults in southern California
and around the Maacama fault and Cascadia subduction zone in northern California.

Introduction

Studying the uncertainty and sensitivity of seismic
source parameters is important to better understand and use
seismic hazard maps. In this article we discuss the uncer-
tainty associated with the California portion of the U.S. Na-
tional Seismic Hazard Maps (Frankel et al., 2002; Petersen
et al., 1996) that are applied in current building codes, in-
surance rate structures, and the public policy decision-
making process. From both scientific and user points of
view, the uncertainty estimates are an inseparable part of the
seismic hazards that are as important as the other hazard
products and should provide valuable insights for applying
the maps. For example, it is useful to provide uncertainty
maps to the hazard map developers and users that describe
our confidence in the mean hazard estimates. In addition, the
uncertainty and sensitivity information can guide the earth
science and engineering communities in determining direc-
tions of research that will reduce hazard uncertainties. These
products have a direct impact on public policy decisions and
it is critical that this uncertainty information is available.

In general, we divide the uncertainties into two types:
(1) model or epistemic, which is the basis of a logic tree
formulation, and (2) random or aleatory, which is included
in the hazard models directly. Model uncertainty (Reiter,
1990; Cao et al., 1996) is the knowledge-based variability
(Cramer, 2001a) of the seismic hazard model. The model
uncertainty is related to how the empirical data are charac-
terized and include, for example, the use of several different
attenuation relations and fault rupture area—magnitude rela-
tions. A logic tree is a methodology for quantifying the

knowledge-based uncertainty by systematically stepping
through the decisions needed for developing a hazard map
and tracking the results. These decisions are represented by
a series of decision points (nodes) where one may choose
from several weighted alternatives (branches). If all the po-
tential branches from each node are selected, the termina-
tions of the logic tree branches represent a suite of viable
weighted hazard models that depict the uncertainty in hazard
from our lack of knowledge regarding the future earthquake
sources and associated ground shaking. Random uncertainty
is also called aleatory uncertainty and is the natural vari-
ability in earthquake sources and ground-shaking parame-
ters. Aleatory uncertainties are considered explicitly in the
hazard calculations (Reiter, 1990; Cao et al., 1996) via nu-
merical integrations.

In this uncertainty analysis, the number and nature of
the nodes and branches make it difficult to sample the entire
logic tree. Therefore, we adopt a Monte Carlo approach of
randomly sampling the California seismic hazard logic tree.
This sampling method only provides the sample, not the
population uncertainty. We can make the inference from
sample to population uncertainty through increasing the
number of iterations. Monte Carlo random sampling has
been shown to yield similar results compared with com-
pletely sampling the logic tree (Coppersmith and Youngs,
1986). This approach was used to evaluate the uncertainties
for the 1996 U.S. Geological Survey (USGS) National Seis-
mic Hazard Maps (Frankel et al., 1997). This approach was
also applied to the uncertainty analysis of the seismic hazard
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assessment of Los Angeles, Ventura, and Orange counties
(tricounty) (Cramer et al., 1996) and to the New Madrid
seismic zone and southern Illinois Basin (Cramer, 2001a,
2001b; Cramer et al., 2002).

This article is organized into six sections after the intro-
duction. In the first section we introduce the logic tree for
the 2002 California hazard model and compare the 2002 and
1996 hazard models. In the second section we discuss fun-
damentals of the Monte Carlo sampling method. In the third
section we outline the results of uncertainty analysis for four
basic test cases. These test cases are for simple one-fault and
two-fault systems, which are designed to explore the fun-
damental patterns of seismic ground-motion uncertainties
and their sensitivities. In the fourth section we present the
ground-motion uncertainty maps for the San Francisco Bay
region in northern California and the tricounty region in
southern California. These are the two most populated and
hazardous regions in California. We compare our uncer-
tainty results with the studies by McGuire and Shedlock
(1981) for the Bay region and Cramer et al. (1996) for the
tricounty region. A detailed sensitivity analysis is performed
to show the relative contributions of uncertainties associated
with each node in the logic tree. In the fifth section we show
the COV (coefficient of variation) of peak ground accelera-
tion (PGA) uncertainty map for the whole state. This uncer-
tainty map is analyzed by using the fundamental uncertainty
patterns obtained in the third section. In the sixth section we
summarize and discuss the results from this study.

2002 California Seismic Hazard Logic Tree

In the 1996 California seismic hazard model, the fault
sources are divided into three classes: (1) class A for active
faults with rupture histories, (2) class B for active faults with
unknown rupture histories, and (3) class C for areas with
seismicity but unknown active faults (Petersen et al., 1996;
Cramer et al., 1996). The class A faults are modeled as pure
characteristic recurrence processes. The class B faults are
modeled as a combination of characteristic and Gutenberg-
Richter (G-R) recurrence processes. These same classifica-
tions are used in the 2002 California model. The 2002
model, however, is more complex than the 1996 model.

Figure 1 is the logic tree for the 2002 California model,
which has evolved from that presented by Cramer et al.
(2001) at a user workshop convened by the Applied Tech-
nology Council (ATC) and the USGS in 2001. The top row
in Figure 1 lists all the node titles. The symbols in paren-
theses indicate the seismic sources for which the node title
above and the branches below apply. The only symbol not
mentioned previously is BG, which refers to the background
seismicity (Cao et al., 1996). The historical seismicity in
California is smoothed with a Gaussian function to obtain
the a-value in the G-R magnitude—frequency relation. The
hazard is produced from this gridded seismicity, which we
refer to as the background seismicity (Frankel, 1995). Three
nodes (fault length, fault width, and shear modulus) in the
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logic tree of Cramer et al. (1996) for the tricounty region,
which together contribute to the magnitude uncertainty, are
not included in Figure 1. These parameters are omitted be-
cause we have implemented a new epistemic magnitude un-
certainty node (Fig. 1), which replaces those three nodes.
The fault slip rate, which is converted to earthquake occur-
rence rate in hazard calculations, is assumed to have a nor-
mal distribution and truncated at * two standard deviations.
As indicated by Petersen et al. (1996), the cumulative fault
slip rates in the 1996 model are consistent with the modern
plate tectonic rate (about 48 mm/yr) in northern California,
whereas there is a small systematic discrepancy in southern
California. We expect that the comparison with the plate
tectonic rate would be similar for the 2002 model because
only minor modifications of slip rates were implemented in
the later model.

Differences exist between the 1996 and 2002 California
hazard models at almost every node in Figure 1. The 1996
model was developed with the following characteristics: the
tectonic settings between eastern and western California
were not distinguished; three attenuation relations (Boore et
al., 1993; Campbell and Bozorgnia, 1994; Geomatrix, 1995)
were used; only the Wells and Coppersmith (1994) fault
area—magnitude relation was used; no epistemic magnitude
uncertainty was included; and the moment release ratio be-
tween characteristic and G-R recurrence processes was one
(same weight). In the 2002 model, there are two branches
under the node “fault area-magnitude relations,” which are
only applied to class B faults. Each of these two branches
uses the Wells and Coppersmith (1994) fault area—magni-
tude relation when rupture areas are smaller than 500 km?.
For rupture areas greater than 500 km?, one branch uses the
Ellsworth formula (2002 Working Group on California
Earthquake Probabilities in the San Francisco Bay region
[WGO02]) and the other uses the Hanks and Bakun (2002)
formula. This node was not in the 1996 California hazard
model and incorporates extra uncertainty to the class B faults
but not to the class A faults. In the 2002 model, we do not
give the same weight to the characteristic and G-R models
as we did for the 1996 model but instead gave two-thirds
weight to the characteristic model and one-third weight to
the G-R model. This modification results in a better com-
parison with the historic seismicity rates observed over the
past 100 years (Petersen et al., 2000).

The 2002 hazard model also introduced aleatory mag-
nitude uncertainty to the class A and class B faults (Frankel
et al., 2002), which is not shown in the logic tree (Fig. 1).
This uncertainty follows a truncated normal distribution with
a standard deviation of 0.12 magnitude units. It is truncated
at +0.15 magnitude units (Frankel et al., 2002). The epi-
stemic magnitude uncertainty is *0.2 for class B faults as
shown in Figure 1 and *0.1 for class A faults, which is not
shown in Figure 1. The epistemic and aleatory magnitude
uncertainties are applied to both class A and class B faults.
In the 2002 model, the standard deviation of magnitude 0.24
(Wells and Coppersmith, 1994) is split equally into episte-
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California Logic Tree
Tectonic Attenuation Fault Area-Magnitude Epistemic Mag | Char vs. G-R Slip Rate
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Figure 1. Partial logic tree for the 2002

0%
cf 100%

update of the California seismic hazard

model. The subduction zone and some other sources (see text) are not included here.
The symbols in parentheses indicate the seismic source types applicable to the nodes
above. They are “A” for class A faults, “B” for class B faults, “C” for area seismic
zones with no known active faults, and “BG” for background seismicity. The abbre-
viated node title “Char vs. G-R” is for characteristic versus Gutenberg-Richter modeling
of the fault recurrence processes. The epistemic magnitude uncertainty for class A faults
is =0.1, or half of the value for class B faults shown in this figure. The references are
Boore et al. (1997), Sadigh et al. (1997), Abrahamson and Silva (1997), Campbell and
Bozorgnia (2003), Spudich et al. (1999), Wells and Coppersmith (1994), Ellsworth

(WG02) and Hanks and Bakun (2002).

mic and aleatory uncertainties. Therefore, we expect lower
model (epistemic) uncertainties from magnitude than Cra-
mer et al. (1996), in which the entire magnitude uncertainty
from Wells and Coppersmith (1994) is counted as model
(epistemic) uncertainty. In addition, some other important
changes also affect the magnitude distribution; these are for
localized areas and are not included in the logic tree of Fig-
ure 1. These changes include the development of multiple-
segment rupture models along the southern San Andreas
fault, the modeling of the creeping section near the middle
of the San Andreas fault, the characterization of the Brawley
seismic zone, the formation of the multiple models for the
Cascadia subduction zone in northwest California, and the
inclusion of the results of the WG02.

Monte Carlo Sampling

Hazard models represented by different combinations
of the branches of a logic tree can be sampled by using a
Monte Carlo method. The weight of each model is deter-

mined by the weights of the selected branches under all ap-
plicable node titles. Let us use five integers, i, j, k, [, and m,
to denote the branches selected from the five nodes in Figure
1. Fault slip rate uncertainty is the only node modeled with
a continuous distribution (truncated normal distribution). In
the following we assume this distribution is discretized into
seven bins. For a class B fault modeled by a combination of
five branches from five nodes, which are specified by those
five integers, it produces a hazard curve for a specific hazard
model at a particular site. The hazard curve represents the
annual frequency of exceedance (AFE) as a function of PGA
or spectral accelerations at a certain period and damping
ratio. Each hazard curve for a specific sampled model can
be expressed as f; ; . ,,.(g), where g is PGA or spectral accel-
eration. The mean hazard curve (it is a population mean) can
be expressed as:

ix, jx, kx, Ix, mx

>

ik Lm=1

fo(®) = wy ey

e d
wi Wi wiwi wy, fi,j,k,z,m(g),
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where a, b, ¢, d, and e denote the five nodes and w{,
w?, wi, wi, and w, denote the branch weights for the se-
lected branches under five nodes. The integers ix, jx, kx, [x,
and mx denote the total number of branches for each of the
five nodes. They are 4 (or 5), 2, 3, 2, and 7, respectively, in
the California logic tree (Fig. 1). If there is more than one
fault source, one more summation to sum up all the fault
sources is needed in (1). Monte Carlo sampling randomly
generates five integers in each Monte Carlo realization. The
probability of each integer being generated is equal to the
weight in (1) for a particular branch. When the number of
simulations is large enough, the sample mean of the sampled
hazard curves will approach the population mean (1).

In each Monte Carlo realization of Cramer et al. (1996),
all the faults share the same set of integers except for three
nodes that have continuous uncertainty distributions: fault
length, fault width, and slip rate (the first two are eliminated
in the current logic tree). This means that if a generated
integer happens to select the characteristic model, then all
the faults will be modeled as characteristic. From a physical
point of view and the 2002 model assumption that each fault
releases moment with both characteristic and G-R recurrence
processes, we think this type of dependence between faults
should be eliminated. The attenuation and fault area—mag-
nitude relations are exceptions because all the attenuation
relations used were developed for the western United States
and the fault area—magnitude relations for the whole of Cali-
fornia. Therefore, in this study we apply a slightly different
Monte Carlo sampling, in which only the selections of at-
tenuation and area—magnitude relations are the same for all
faults in a particular realization. The other three selections
for the branches of epistemic magnitude uncertainty, char-
acteristic or G-R modeling, and slip rate in the logic tree are
independently derived for each fault. We tried two ways of
sampling, one is more fault dependent (Cramer et al., 1996)
and the other is more fault independent, and found that the
difference in PGA (10% of exceedance in 50 years) uncer-
tainty is about 10-15%. In the next section we will show
that the more independent sampling reduces the uncertainties
compared with the more dependent sampling. From the right
side of (1) we can see that if we are studying the uncertainties
from one or any number of nodes (sensitivity studies), the
mean hazard curve is always represented by (1). For exam-
ple, if we want to study the uncertainties from attenuation
relations only, the Monte Carlo sampling is to randomly se-
lect i with a probability w{. But the selected hazard curve
referring to i is expressed by the right side of (1) without the
summation to index i and the factor w{. The Monte Carlo
sampling for i brings back the summation to i and the
factor wy.

The uncertainties from Monte Carlo simulations are
sample uncertainties not population uncertainties. To make
the inference from sample uncertainties to population un-
certainties, such as from sample COV to population COV, we
tested the number of Monte Carlo simulations, or realiza-
tions, needed by plotting the 2nd, 16th, 50th, 84th, and 98th
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percentile values of PGA (10% of exceedance in 50 years)
at a site as a function of the number of simulations. To de-
termine the minimum number of hazard modes needed to
estimate the uncertainty percentiles, we ran a sequence of
models with 50-800 iterations of the logic tree. We con-
firmed the result of Cramer et al. (1996) that a minimum of
100 simulations is needed to obtain estimates of PGA un-
certainty within 5% of the value obtained for simulations
run with a higher number of iterations. The minimum num-
ber of iterations depends also on the unknown population
standard deviation, which is related to the complexity of the
logic tree. In the 2002 California hazard model, all the faults
are modeled independently and, therefore, increasing the
number of faults in a system will not increase the minimum
number of iterations required. We used 150 iterations for all
the regional simulations and 400 for all the test cases in this
study. By increasing the number of iterations from 100 to
150, the 5% difference stated previously is reduced to 4%
(= 5%\/ 100 / V/ 150), assuming that the population standard
deviation does not change.

Ground-Motion Uncertainties of One-Fault
and Two-Fault Systems

To study the fundamental patterns of uncertainty, four
basic test cases are designed, as illustrated in Figure 2. The
purpose of case 1 is to show how ground-motion uncertainty
changes with distance from a fault and what the uncertainty
contribution is from each node in the logic tree. Case 2 ex-

300 L 3 1 1 1 1 i
Fault Width W = 13 km for All Cases
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E A | = B AlC B
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Figure 2. A schematic illustration showing the
fault geometries for the four test cases. The fault is
class B and fault slip rate is 5 = 2 mm/yr in all cases.
The angle between the fault and line AB is 58° in case
3. It looks smaller because the scales are different in
vertical and horizontal axes. The angle between two
faults in case 4 is 116° or two times 58°. The mag-
nitudes in cases 1, 3, and 4 are calculated by using
different area—magnitude relations (see text for de-
tails).
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plores how uncertainty and sensitivity change with fault
magnitude. Case 3 is designed so that the results for a one-
fault system can be compared with the results for a two-fault
system in case 4. Case 4 shows why the COV values of
ground motion at locations near both faults are lower than
the corresponding ones in case 3 for a one-fault system.
Case 1 is a class B fault with moderate to large mag-
nitudes (6.8-7.0) in a nonextensional tectonic region
(Fig. 2). The distance is measured from point A on the fault
along a line AB perpendicular to the fault. The COV of PGA
for a given AFE value of 0.0021 (a return period of 500
years) as a function of distance along line AB is shown in
Figure 3. The COV of PGA due to all uncertainties from five
nodes in the logic tree (Fig. 1) decreases with distance from
the fault to a minimum value at a distance around 45 km and
then starts to increase to higher than the values near the fault.
A sensitivity analysis in Figure 4 shows that this distance-
dependent uncertainty pattern is due to the uncertainty dis-
tribution given in the attenuation relations. In Figure 4 all
the attenuation relations (M 7.0) used in the 2002 California
hazard model for nonextensional tectonic regions are plot-
ted. The strong-motion data used to develop these relations
are better constrained at distances at about 30-50 km where
most of the data are grouped and this is reflected in Figure
4. McGuire and Shedlock (1981) first found this pattern and
also attributed it to the epistemic uncertainties among atten-
uation relations. At a large distance from the fault the COV
value is high, but the mean ground motion and the corre-
sponding standard deviation (S.D.) are all low. If a site is
located near to the first fault and far from the second fault,
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Figure 3. COV of PGA (10% of exceedance in 50

years) as a function of distance for the total model
uncertainty associated with five nodes in the logic tree
(Fig. 1) and for the uncertainties associated with one
node only (sensitivity analysis). This figure is for test
case 1 with moderate magnitudes (M ~7.0). The total
uncertainty is dominated by the attenuation relations,
which have strong distance dependence.
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the relatively large contribution of uncertainty from the sec-
ond fault will be overwhelmed by the larger contribution of
uncertainty from the first fault. This is because the ground
motion and its uncertainty at the site are dominated by the
first fault.

Figure 5 shows a similar analysis as in Figure 3 but for
a much longer return period of 2500 years (AFE = 0.0004),
which is for a 2% probability of exceedance in 50 years.
Every COV curve in Figure 5 (return period of 2500 years)
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Figure 4. Four attenuation relations used in the

2002 update of the California hazard model (Fig. 1).
The strong distance dependence of uncertainties
shown in Figure 3 due to the attenuation relations is
because of the better data constraint in all relations at
distances at about 30-50 km.
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Figure 5. COV of PGA as a function of distance.

It is for test case 1 but with a different AFE (2% of
exceedance in 50 years) from Figure 3. The total un-
certainty, as well as the uncertainties associated with
one node only, is lower than the corresponding ones
in Figure 3 (10% of exceedance in 50 years).
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is lower than the corresponding one in Figure 3 (return pe-
riod of 500 years). Here it is equivalent to say the COV
decreases with decreasing AFE or increasing ground motion.
But this COV decrease is following a descending hazard
curve and is for the same location but increasing return pe-
riod. It is not the same as the COV decrease or increase with
ground motion on a ground-motion uncertainty map that is
for a given return period but varying locations. To avoid any
confusion in the following, we will refer the decrease of COV
to a longer return period instead of to a higher ground motion
when the decrease is for the same location but increasing
return period. The result of COV decreasing with increasing
return period seems contrary to what might be expected. This
surprising result is simple to explain. We know that the mean
ground motion increases with increasing return period be-
cause of the lognormal distribution of ground motion in all
the attenuation relations. But the ground motion differences
among all the hazard models of the logic tree (S.D. of ground
motion) at different return periods or ground motion levels
are determined not only by the model differences in mag-
nitude, occurrence rate, and attenuation relation but also by
the shapes of the hazard curves, which are functions of the
return period or ground motion. It turns out (see Appendix)
that, because of the general shape of hazard curves, which
decreases monotonically with increasing return period, the
ground motion is more sensitive at shorter return periods
than at longer return periods to the model changes in mag-
nitude, occurrence rate, and attenuation relation, which are
all independent of the return period. Therefore, S.D. and
COV of ground-motion decrease with increasing return pe-
riod. Currently there is not enough information to assign
uncertainty parameters in the logic trees to be return-period
dependent. This may limit us in applying the uncertainty
analysis to very-long-return periods because some of the un-
certainties assigned in the logic tree are from short-term ob-
servations.

In the Appendix, we explain why COV decreases with
increasing return period. We show that the differences be-
tween two models in magnitude, occurrence rate, and atten-
uation relation are equivalent to a hazard curve translation
without rotation, which converts the hazard curve of a model
to the hazard curve of another model. This is true in a log-
arithmic AFE versus logarithmic ground motion plot if the
standard deviations of the distributions of logarithmic
ground motion in the attenuation relations are assumed to be
the same. We will show that COV does not change with
increasing return period for a group of hazard curves that
differ only by horizontal translations. However, S.D. and
COV decrease exponentially with increasing return period
for a group of hazard curves that differ by vertical transla-
tions only.

Case 2 includes a longer class B fault than in case 1 that
ruptures in M 7.5 earthquakes (Fig. 2). Every COV curve for
PGA at an AFE value of 0.0021 in this case as shown in
Figure 6 is higher than the corresponding one in case 1
(Fig. 3). Among all the uncertainties associated with the five
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Figure 6.  COV of PGA (10% of exceedance in 50

years) as a function of distance for test case 2 with a
large magnitude (M ~7.5). Among all the nodes, the
uncertainty associated with the node for characteristic
versus G-R modeling increases the most and becomes
dominant compared with case 1. The pattern that COV
decreases with distance from the fault and then in-
creases for faults with moderate magnitudes (M ~7.0)
in case 1 is now changed to decreasing with distance
from the fault and then leveling off. The uncertainties
due to epistemic magnitude uncertainty and fault slip
rate uncertainty also increase from case 1.

nodes in the logic tree, the COV for the uncertainty associ-
ated with the node for attenuation relations increases the
least, and the COV for the uncertainty associated with the
node for the characteristic versus G-R modeling increases
the most and dominates the total uncertainty. The total un-
certainty does not show the typical pattern of distance-
dependent COV as shown in case 1. Instead, the COV for the
total uncertainty decreases with distance from the fault and
then levels off without creating a deep trough. Figure 7
shows the four hazard curves of cases 1 and 2 at site A for
characteristic and G-R models, respectively. A longer fault
with higher magnitude 7.5 (case 2) has a much longer mean
recurrence time or a much lower occurrence rate than a
shorter fault with the same slip rate but lower magnitude 7.0
(case 1). So the longer fault has lower hazards than the
shorter fault at all AFE values. In both cases the G-R model
predicts higher hazards than the characteristic model because
the moderate-size events with high occurrence rates in the
G-R model generate higher hazards than the large and less
frequent characteristic events. Because of this relation, when
the ratio of seismic moments to be released by characteristic
and G-R models was raised from one for the 1996 California
model to two for the 2002 model, the resulting hazard and
its uncertainty decreased.

Figure 7 also shows that for an AFE value of 0.0021,
the difference in PGA hazard between characteristic and G-
R modeling is much larger for the M 7.5 fault than for the
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M 7.0 fault. These results can be explained by the occurrence
rate differences between the large characteristic events and
the moderate events in the G-R model. Such occurrence rate
difference is larger for the M 7.5 case than for the M 7.0
case. This is why the uncertainty due to characteristic versus
G-R modeling in case 2 (Fig. 6) becomes dominant. The
difference in PGA between characteristic and G-R modeling
decreases with decreasing AFE or increasing return period.
This is because, when the AFE value decreases, the hazard
contribution from the characteristic events with low recur-
rence rates becomes increasingly important, but the contri-
bution from G-R model tends to saturate. In the 2002 model,
class A faults are not modeled with different area—magnitude
relations but are modeled with characteristic recurrence
only; therefore, the pattern of decreasing and then leveling
off with distance for the COV in case 2 does not apply for
large-magnitude class A faults. The pattern in case 1 applies
to class A faults.

When two faults are close together, the values of COV
are reduced for nearby sites because of the independent sam-
pling of the branches of the logic tree. We demonstrate this
by comparing cases 3 and 4. Case 3 is not much different
from case 1, except the line AB (Fig. 2) is no longer per-
pendicular to the fault. The angle between line AB and the
fault is 58°. This angle appears to be less than 58° in Figure
2 because the scales for vertical and horizontal axes are not
equal. In case 4 a mirror image of the fault in case 3 is added
so we can study how the hazards and uncertainties are

102 L 1 I

10-3 _

10-4_
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Annual Frequency of Exceedance

Hazard curves at site A in test cases 1

Figure 7.
and 2, assuming the uncertainty from characteristic
versus G-R modeling is the only uncertainty consid-
ered. The difference in PGA between characteristic
model and G-R model is much larger for the large
magnitude (M ~7.5) than for the moderate magnitude
(M ~17.0) at an AFE value of 0.0021. The difference
in PGA between characteristic model and G-R model
decreases with increasing return period for both mag-
nitudes.
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changed from case 3. Figure 8 shows the mean hazard curves
(f9 and £9) at site A for cases 3 and 4, respectively. Ac-
cording to a basic rule of statistics, the mean value of a sum
of random variables equals the sum of the mean values.
Therefore, we should expect the AFE value at a given PGA
on curve f9 to be twice the value on curve f9. This simply
means that the annual frequency of exceedance in case 4 is
doubled compared with case 3 because we have two sym-
metric faults, each contributing hazard to site A. According
to another rule of statistics, the variance (the square of the
standard deviation) of a sum is equal to the sum of the var-
iances for independent variables. So we should also expect
the variance of case 4 to be doubled from case 3 because the
two faults are independent. The COV of ground motion in
case 4 is the COV in case 3 multiplied by a factor of
\/2/ 2 = 0.707, resulting in about a 30% decrease for the
two-fault case.

We tested the preceding conclusions numerically. For
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Figure 8. Mean hazard curves (f{ and f9) at site

A in test cases 3 and 4. P1 and P3 are the cross points
between f and f9 and the line for an AFE value of
0.0021. P2 is the cross point between f5 and the ver-
tical line going through point P1; P4 is the cross point
between f and the vertical line going through P3.
The following relations are shown in the text: (1) AFE
of £9 is twice f9 at any given PGA for both indepen-
dent and dependent sampling; (2) COV of PGA at P2
is the same as at P1 for dependent sampling and 30%
lower than at P1 for independent sampling; (3) the
same relations in (2) for COV apply to points P3 and
P4; (4) COV at P4 is lower than at P1 because of the
lower AFE value or higher PGA value at P4 (see text
for this COV decrease with increasing return period
along a mean hazard curve); (5) the same relations in
(4) for COV apply to points P2 and P3; and (6) COV
at P3 is much lower than at P1 because of the inde-
pendent sampling and the increase of ground motion
from the added independent fault, which requires a
descending from P2 to P3 to have the same AFE and
causes COV to decrease further.
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example, at a PGA value of 0.4g, the mean AFE values are
0.0022 and 0.0043 for cases 3 and 4, respectively; the COV
values for ground motion are 0.59 and 0.43 for cases 3 and
4 (a 30% decrease), respectively (Fig. 8). However, if we
use the dependent sampling, in which two faults share the
same selection of a branch in each node, the COV of ground
motion is not decreased from case 3 to case 4. This is be-
cause the variance for two dependent faults would now be
four times that for one fault (equivalent to a random variable,
which is twice as large as the other). In Figure 8, the line
for an AFE value of 0.0021 crosses the mean hazard curve,
£ for the one-fault system at P1 at a PGA value of 0.45g.
For the same PGA value, the AFE value is doubled at point
P2 on the mean hazard curve, f5. But the COV of ground
motion at P2 decreases by 30% from P1. This decrease of
COV value by adding another independent random variable
is due to basic statistics that show the mean value increases
more than the standard deviation for an increasing number
of random variables in a sum.

We are usually interested in the uncertainty of ground
motion at a given AFE value. The COV value decreases from
point P1 to point P2 (Fig. 8), but this is not the reduction
we will see on an uncertainty map because the AFE value at
P2 is different from at P1. What we calculate is the COV
value at point P3 (Fig. 8) with AFE value unchanged from
point P1. Point P3 is the cross point between the line for an
AFE value of 0.0021 and the mean hazard curve, f9 for the
two-fault system in case 4. We just showed that the COV
value at P3 is 30% lower than at P4 on curve f because of
the independent sampling. We also showed in case 1 (Fig. 5)
that the COV value decreases with increasing return period
following the descending mean hazard curve from point P1
to point P4. Therefore, the COV value reduction from point
P1 to point P3 can be calculated from the two consecutive
reductions from P1 to P4 because of the longer return period
and then from P4 to P3 because of independent sampling.
For example, if the reduction from P1 to P4 is 10% and the
reduction from P4 to P3 is 30%, the reduction from P1 to
P3is37% (= 1—(1—-0.1)(1—-0.3)).

Figure 9 compares the PGA, S.D., and COV of PGA be-
tween cases 4 and 3. We see that the PGA increases from the
one-fault system to the two-fault system, but it is less than
a factor of 2. The COV and S.D. values both decrease be-
cause of independent sampling of the two nearby faults as
discussed previously (Fig. 8). The S.D. for the two-fault sys-
tem is lower than for the one-fault system, assuming the
same AFE value or return period. This is due to the combi-
nation of the increased rate of ground shaking in the two-
fault model (higher hazard curve) and the unchanged AFE
value. This combination leads to a S.D. and the correspond-
ing COV reductions, which can be viewed as the reductions
along the descending hazard curve from point 2 to point 3
in Figure 8. Without this, the S.D. of PGA for a two-fault
system should be higher than for the one-fault system by a
factor of 2. The COV and S.D. reductions discussed pre-
viously for the two-fault system becomes negligible when
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Figure 9.  Curves of COV, S.D., and PGA (10% of

exceedance in 50 years) from test cases 3 and 4 at site
A with independent sampling. The PGA value in-
creases from a one-fault to a two-fault system. But it
is less than the increase of AFE value. The AFE value
is exactly doubled from a one-fault to a two-fault sys-
tem. Values of COV and S.D. of PGA decrease sig-
nificantly from a one-fault to a two-fault system be-
cause of independent sampling of the two nearby
faults.

faults are far apart from each other. In this case the uncer-
tainty is dominated by a single fault.

In this section we have shown several basic test cases
for class B faults with the following results: (1) sources with
M ~7 are characterized by a pattern in which COV of PGA
decreases with distance from a fault and then increases with
distance beyond 50 km (case 1); (2) sources with large
M~"7.5 magnitudes are characterized by a pattern in which
the COV decreases with distance from the fault and then
levels off (case 2); (3) a system containing two or more faults
that are close to each other is characterized by a pattern in
which COV of ground motion at a site near these faults de-
creases compared with the case of a single fault. These are
general and qualitative uncertainty patterns that will help us
to analyze the uncertainty maps in the next sections. The
quantitative estimation of how much COV decreases or in-
creases with distance from a fault and how much the COV
decreases due to adjacent faults depends on the fault ge-
ometries, magnitudes, and slip rates.

Uncertainties for the San Francisco and the Southern
California Tricounty Regions and Sensitivity
Analysis for the Tricounty Region

The San Francisco Bay region and southern California
tricounty region that comprises Ventura, Los Angeles, and
Orange counties are heavily populated and have very high
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seismic hazards. These two regions are also rich in fault
types such as the well-defined class A faults and the poorly
defined blind thrust faults beneath or adjacent to the Los
Angeles and San Francisco basins, the western Transverse
Ranges, and the Santa Barbara Channel. We compute un-
certainties and sensitivities with a 0.05° spacing in these two
regions.

Figure 10 is a fault map for the tricounty region and
Figure 11 is the map of COV for PGA (10% exceedance in
50 years) for the same region. The multisegment rupture
models for the southern San Andreas fault are not included
in the California logic tree (Fig. 1) but are sampled in the
Monte Carlo simulations according to the cascade model
weights described in Appendix A of Frankel ez al. (2002).
To compare with the early study of Cramer et al. (1996), we
first made versions of maps (Figs. 11 and 12) that include
only fault source hazard but do not include the hazard due
to background seismicity. The contour interval is 0.05 in
Figure. 11. The COV values along the San Andreas fault
range from 0.1 to 0.15. The COV values decrease with dis-
tance on both sides of the San Andreas fault to 0.1 and then
increase to about 0.2 to 0.3 near class B faults. This pattern
of decreasing COV with distance from the fault and then
increasing at distance beyond 50 km is typical, as we have
shown in case 1. The COV does not keep increasing to higher
values, like 0.4 to 0.5. There are three particularly high COV
areas, which are centered over the Garlock, Anacapa-Dume,
and Palos Verdes faults. These are the poorly defined faults
characterized by large magnitudes and relatively high long-
term slip rates. They are the same type of faults as in case
2. The high COV values are mostly due to the large magni-
tudes, which lead to very different ground-motion hazards
between characteristic and G-R recurrence models. These
faults are also relatively isolated, with few nearby faults that
would reduce the COV values.

The general patterns of this COV map (Fig. 11) are simi-
lar to Cramer et al. (1996) with one exception, which is that
the uncertainties along class A faults are lower than along
class B faults in this study. From the logic tree (Fig. 1), we
except class A faults to have lower ground-motion uncer-
tainties than class B faults. The class A faults do not have
uncertainty contributions from area—magnitude relations and
characteristic versus G-R modeling (they are 100% charac-
teristic). The epistemic magnitude uncertainty for the San
Andreas fault is =0.1, which is only half of the value for
class B faults (Fig. 1).

The fault slip rate uncertainties (COV) for class A faults
are always much lower than for class B faults. These class
A faults have higher standard deviations and mean ground
motions than class B faults, but the ratio of these two quan-
tities is lower for class A faults than for class B faults. In
addition, the multiple cascading models for the southern San
Andreas fault, which are sampled independently in this
study, also contribute to the lower uncertainties of class A
faults compared with the Cramer et al. (1996) model.

Another observation to be made in Figure 11 is that the
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Figure 10. Fault map for the tricounty region.
Class A faults are labeled with the symbol “A.” The
abbreviations are: SA-M, Mojave segment of San An-
dreas fault; SA-C, Carrizo segment; SA-S, San Ber-
nardino segment; GL, Garlock fault; SJ, San Jacinto
fault; EL, Elsinore fault; NI, Newport-Inglewood
fault; CB, Coronado Bank fault; PV, Palos Verdes
fault; AD, Anacapa-Dume fault; CIT, Channel Islands
Thrust fault.
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Figure 11. COV of PGA (10% of exceedance in
50 years) map for the tricounty region with all the
model uncertainties included except the uncertainty
from background seismicity. COV values range from
0.1 to 0.15 along class A faults and 0.2 to 0.3 along
most of the B faults. High COV values (0.4-0.6) are
observed around the Garlock, Anacapa-Dume, and
Palos Verdes faults. The contours make U-turns at
both ends of the Mojave segment, where multiple
faults or segments are close to each other. These are
typical examples of COV decrease due to independent
sampling of multiple nearby sources. These can be
found at many other places on this map.
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contours along the Garlock fault and the Mojave and Carrizo
segments of the San Andreas fault all make a U-turn where
these faults approach each other. This phenomenon also hap-
pens near the southeast end of Mojave segment, where the
San Jacinto fault and the San Bernardino and Mojave seg-
ments of the San Andreas fault are close to each other. The
low COV areas between those contours are due to the inde-
pendent sampling of the multiple nearby faults as shown in
test case 4. The COV values in the central part of the region
(Figs. 10 and 11), where many faults are close to each other,
are in the range of 0.2 to 0.3 and not 0.4 to 0.5. In general,
the isolated faults mentioned previously have very high COV
values because they are poorly defined. There are no nearby
faults to reduce the uncertainty through independent sam-
pling of these nearby faults. This may also partly explain the
high COV values in eastern and central United States, where
in many cases only one major fault system dominates the
hazards.

Figure 12a—e shows the sensitivity analysis using the
COV of PGA (all at 10% of exceedance in 50 years) for each
node separately. These figures show how each of the five
nodes (Fig. 1) contributes to the total uncertainty shown in
Figure 11. The relative contributions among these figures
are consistent with the results of cases 1 and 2. The attenu-
ation relations (Fig. 12a) contribute most of the uncertainty
as shown in case 1 (Fig. 3), except for regions around the
Garlock, Anacapa-Dume, and Palos Verdes fault areas,
where the uncertainty is primarily due to characteristic ver-
sus G-R modeling (Fig. 12e) as shown in case 2. The uncer-
tainties due to the epistemic magnitude uncertainty (Fig.
12b), fault slip rate uncertainty (Fig. 12c), and area—mag-
nitude relations (Fig. 12d) are all relatively small as shown
in case 1 (Fig. 3). The relatively low uncertainty due to fault
slip rate for the San Andreas fault in southern California
(Fig. 12c) is because of the independent sampling assigned
to these multiple cascading models.

The uncertainty from the background seismicity is due
to the attenuation relations (Fig. 1) and the incompleteness
of seismic catalogs (Cao et al., 1996). The latter is not shown
in the logic tree (Fig. 1) but is counted in this study by
resampling the catalogs with a simple bootstrap method. Fig-
ure 13 shows the map of COV for background seismicity.
The mean hazard used to calculate COV here is different
from Figures 11 and 12. To compare our results with Cramer
et al. (1996), the mean hazard used to normalize the standard
deviation of ground motion in Figures 11 and 12 is from
fault sources only. In Figure 13 the mean hazard is from
both fault and background sources. The mean hazard in Fig-
ure 13 is about the same as the hazard in the 2002 update of
California model within a few percent. Figure 13 shows that
the uncertainty due to background seismicity is insignificant
compared with the uncertainties from fault sources. The con-
tours in Figure 13 show some influence from the major faults
in this region because the background seismicity is mostly
distributed off the faults.

Figure 14 is a fault map for the San Francisco Bay re-
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Figure 13. COV of PGA (10% in 50 years) map
showing the uncertainty from background seismicity
only. The COV is calculated by using the mean hazard
from fault and background seismicity sources. The
uncertainty contribution from background seismicity
is very low compared with the fault sources. The con-
tours still show the distribution of fault traces that the
uncertainty is the lowest along the faults. This is con-
sistent with the fact that the uncertainty from back-
ground seismicity is due to the seismicity off the
faults.
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Figure 14.  Fault map for the San Francisco Bay
region. Class A faults are labeled with the symbol
“A.” Abbreviations for the fault names: SAN, San
Andreas North Coast; SAP, San Andreas Peninsula;
SGN, San Gregorio North; CC, Calaveras Central;
CN, Calaveras North; SH, Hayward South; NH,
Hayward North; RC, Rodgers Creek; MC, Maacama;
GVA, Green Valley; GVI, Greenville; MTD, Mt.
Diablo.
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gion. In the 1996 model (Petersen et al., 1996) only the San
Andreas and Hayward faults were classified as class A faults
and the other faults were class B faults. In the 2002 update
of the California hazards, the results from WG02 were
adopted. We may expect lower uncertainties from these
faults that have been updated to class A faults because of
the studies of WGO02. In our uncertainty analysis we also
adopted the WG02 results that are based on a logic tree anal-
ysis. The attenuation relations used for this region are the
same as in the logic tree for nonextensional tectonics (Fig.
1). Figures 15 is the COV map for PGA at 10% of exceedance
in 50 years. Because this map extends far enough into the
ocean where there are no seismic sources included in the
2002 hazard model, the COV contours show a clear distance-
dependent trend of uncertainty that decreases with distance
from the faults and then increases to the west. The COV
values along the class A faults and those class B faults stud-
ied by WG02 range from 0.1 to 0.15, which are similar to
the COV values calculated for A faults within the tricounty
region of southern California. The very high COV values
over the Maacama fault are mostly due to the characteristic
versus G-R modeling as shown in case 2. The decrease of
COV due to independent sampling of the multiple nearby
faults also can be found between Maacama and Rodgers
Creek faults, in the area where Green Valley, Concord,
Greenville, Calaveras, Mt. Diablo, and Hayward faults are
close to each other. The COV values in this region are about
half of the values obtained by McGuire and Shedlock
(1981). Cramer et al. (1996) attributed the higher COV val-
ues of McGuire and Shedlock (1981) to the use of discrete
distributions of fault parameters with large variances.

California Ground-Motion Uncertainty Map

In creating the California probabilistic ground-motion
(PGA) uncertainty map (COV of PGA), we have included all
the seismic sources that are not included in the logic tree
(Fig. 1). These additional sources include the Cascadia sub-
duction zone, the northern California deep earthquake zone
(depth >35 km), and the shear zones in California and Ne-
vada. In the 2002 California hazard model, four alternative
models are used to characterize the eastern edges of the Cas-
cadia subduction zone. Three of these are based on the work
of Fliick et al. (1997) with weights of 0.1, 0.2, and 0.2 (Fran-
kel et al., 2002). The fourth one is revised from the 1996
model (Frankel er al., 1996; Petersen et al., 1996) with a
weight of 0.5. Floating earthquakes with magnitudes 8.3 and
9.0 are placed on these rupture zones. To evaluate the
ground-motion uncertainties from these floating events, the
magnitude uncertainty is set to =0.1. The variation of a-
value, which is the seismicity rate in the G-R magnitude—
frequency relation, is obtained using the aperiodicity value
of 0.58 obtained by Petersen et al. (2002) based on paleo-
seismic recurrence data. The deep seismicity in northern
California is modeled differently from the background seis-
micity in the rest of California. There are two alternative
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Figure 15. €OV of PGA (10% in 50 years) map
for the San Francisco Bay region with all the model
uncertainties included except the uncertainty from
background seismicity. COV values along class A
faults and those class B faults studied by the WG02
range from 0.1 to 0.15, which are similar to the tri-
county region. COV values range from 0.2 to 0.3
along class B faults in the southeast and north parts
of the region. The pattern of COV decreasing with
distance from the fault and then increasing (case 1) is
very clear in the west from the San Andreas fault far
into the ocean. There are no seismic sources to inter-
rupt this pattern to the west. This pattern is over-
whelmed by local sources and background seismicity
to the east. The decrease of COV due to independent
sampling of multiple nearby sources can be found in
many localized areas like between Maacama and
Rodgers Creek faults and among many faults around
the Mt. Diablo fault area.

attenuation models weighted equally for in-slab earthquakes.
One of them uses two attenuation relations given by Atkin-
son and Boore (2003); the other uses only one attenuation
relation by Youngs et al. (1997). To avoid a sudden drop of
uncertainty that would be caused by including only one at-
tenuation relation in the second model, an artificial variation
of 15% is added to the attenuation relations to account for
this difference. The fault slip rate uncertainties for Nevada
and Oregon faults are not available yet, so the uncertainty
contributions from these faults are calculated without slip
rate uncertainties. However, these uncertainties should have
a small contribution to the hazard uncertainty in California
because of their low slip rates.

Figure 16 is the California COV map for PGA at 10%
of exceedance in 50 years. The uncertainty from background
seismicity is also included so the mean hazard is similar to
the 2002 update of the California mean hazard to within a
few percent. This map is calculated with a grid spacing of
0.1°. Because of the added uncertainty due to background
seismicity, the uncertainties for the San Francisco Bay and
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values along the San Andreas fault system from southern to northern California range
from 0.1 to 0.15. It decreases with distance from faults in both directions east and west
and then increases. COV values along most of the class B faults range from 0.2 to 0.3.
The pattern that COV increases at large distances from faults is not overwhelmed by
local sources to the west into the ocean but is overwhelmed in central and east Cali-
fornia by the local and Nevada sources and the background seismicity. High COV values
are observed around Anacapa-Dume, Palos Verdes, and Garlock faults in southern
California and around Maacama fault and Cascadia subduction zone in northern Cali-
fornia. These are poorly defined faults with large magnitudes.

tricounty regions are not exactly the same as shown in Fig-
ures 11 and 13. However, we find that all the observed pat-
terns of spatial-uncertainty distributions and their relations
to faults in the San Francisco Bay and tricounty regions are
even more clearly seen on the state uncertainty map. The
COV values range from 0.1 to 0.15 along the San Andreas

fault system and other class A faults from southern to north-
ern California. The COV values around class B faults, which
are located adjacent to the northwest-trending class A faults,
are generally higher and range from 0.2 to 0.3. The distance-
dependent pattern of COV that decreases with distance from
a fault and then increases with distance beyond 50 km is also
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shown along every fault with magnitude less than M 7.5.
The principal San Andreas fault system has a northwest—
southeast strike, and this contour pattern continues out into
the Pacific Ocean. The pattern revealed in test case 1 is ob-
served in the contours beyond the coastline where the 2002
hazard model does not include seismic sources. To the east
of the San Andreas fault system, however, such a pattern is
not observed because of the influence of nearby fault sources
in eastern California and Nevada. The decrease of COV val-
ues because of independent sampling of multiple nearby
faults is also observed at many places across California.

Besides those faults highlighted in the preceding sec-
tion, high COV values are also observed at the Cascadia sub-
duction zone in northern California and near the Nevada
border in eastern California. The high COV values around
the Garlock and Maacama faults, partially shown in Figures
11 and 15, are now shown along their entire lengths (Fig.
16). All these faults that have high-hazard uncertainties share
some common features: they produce large-magnitude earth-
quakes with long recurrence times; they are poorly defined;
and they have no nearby faults to reduce uncertainties
through independent sampling.

Summary and Discussions

In this study we proposed to use the independent Monte
Carlo sampling method to determine the epistemic uncer-
tainty in the 2002 California hazard model. The COV values
for PGA obtained by using independent sampling are lower
than the values obtained by using dependent sampling be-
cause of the basic statistical feature of probabilistic hazards.

We evaluated the ground-motion uncertainties (COV)
for four designed test cases. From these test cases we showed
the basic features or patterns of uncertainties for systems
containing one fault and two faults. In case 1 we found that
for faults with M ~7.0, the COV of ground motion decreases
at a short distance from a fault and then increases with a
distance beyond 50 km. The lowest uncertainties are located
at distances at about 30-50 km from the fault, where most
of the strong-motion data are grouped in the development of
attenuation relationships. We also observed that when the
return-period increases (i.e., AFE value is lowered) but mag-
nitude and fault slip rate are unchanged, COV decreases sig-
nificantly (Fig. 5). Case 2 showed that when fault magnitude
is increased but the return period and fault slip rate are un-
changed, the COV increases significantly (Fig. 6). At high
magnitudes (M ~7.5) the COV increase is mostly due to the
characteristic versus G-R modeling. In cases 3 and 4 we com-
pared the uncertainty differences between a one-fault and a
two-fault systems. In the two-fault system the annual fre-
quency of exceedance is doubled compared with the one-
fault system, but the COV decreases because of the indepen-
dent sampling of multiple nearby faults.

The California COV map for PGA at 10% exceedance
in 50 years shows all the features or patterns discussed pre-
viously. In the future, the hazard maps will evolve but these
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general patterns of uncertainty (COV) will remain the same
because they are generic patterns obtained from simple one-
fault and multiple-fault systems. The COV values along the
class A San Andreas fault system range from 0.1 to 0.15,
which are lower than the values of 0.2 to 0.3 along the class
B faults. The COV decreases from class A faults to 0.1 or
less and then increases to 0.3 or more in the direction of the
Pacific Ocean where there are no seismic sources that will
dominate the uncertainty. To the east, this pattern is inter-
rupted by the contribution from local seismic sources in the
Great Valley, eastern California, Nevada, and by back-
ground seismicity. The COV values in the Great Valley and
eastern California are in the range of 0.05 to 0.1. It is low
because of the low fault earthquake magnitudes (<7.0) in
this area. In this case the characteristic versus G-R modeling
is no longer a major contributor to the uncertainty. Much
higher COV values (0.4-0.6) are observed around the Gar-
lock, Anacapa-Dume, and Palos Verdes faults in southern
California and the Maacama fault and Cascadia subduction
zone in northern California, where there are greater uncer-
tainties about the slip rates and magnitudes of the potential
ruptures.

These uncertainty results may be useful to the engineers
for better understanding the safety factor in building and
structural designs. The uncertainty results may also help in
determination of insurance rates, which largely depends on
using the hazard maps and their uncertainties to estimate the
potential losses to a portfolio of properties. One of the fast-
developing applications of hazard maps is in loss estimation,
which will benefit greatly from the uncertainty analysis of
this study (Cao er al., 2000; Wesson and Perkins, 2001).
Most importantly, this study provides a reference point for
comparison with future studies to determine how these un-
certainties may be reduce through better data and research.
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Appendix
COV Decreasing with Increasing Return Period

In the main text we have stated that COV decreases with
increasing return period. We use a single fault source and
its hazard curves at a site from different branches of the logic
tree to show this in three steps. In the first step we show that
the branch differences of all nodes in the logic tree can be
summarized in three types: magnitude, occurrence rate, and
attenuation relation, if we discretize the continuous G-R
magnitude—frequency distribution. In the second step we
show that these three types of differences cause a hazard
curve, which is defined by a set of magnitude, occurrence
rate, and attenuation relation and plotted in a log—log scale,
to translate to another location without rotation. The trans-
lated hazard curve is for another set of magnitude, occur-
rence rate, and attenuation relation in the logic tree if we
temporarily assume all the attenuation relations having the
same standard deviation ¢ value for the lognormal distri-
butions of ground motion. We will show that the S.D. of
ground motion for the horizontally translated curves in-
creases with increasing ground motion (return period) at the
same rate. Therefore, the COV does not change with increas-
ing ground motion (return period). But the S.D. for the ver-
tically translated hazard curves decreases with increasing
ground motion exponentially and, therefore, the COV de-
creases with increasing ground motion (return period). In the
third step we show that the ¢ differences among the atten-
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uation relations cause the hazard curves to diverge from each
other and COV values to increase. But it is too small to alter
the overall decrease of COV with increasing ground motion
(return period).

Step 1. Magnitude, Occurrence Rate, and Attenuation
Relation Defining a Hazard Model (Hazard Curve)

In the California logic tree (Fig. 1), to change from one
branch to another is to change the magnitude, occurrence
rate, and attenuation relation under each node except under
the node for characteristic versus G-R modeling. The earth-
quake occurrence rate here is converted from the fault slip
rate in the logic tree. For the G-R modeling, the magnitude
integration in the hazard calculation can be discretized (see
next step). For each discretized magnitude bin, the differ-
ences from a characteristic modeling are still in magnitude,
occurrence rate, and attenuation relation.

Step 2. Hazard Curve Translations According to the
Differences in Magnitude, Occurrence Rate, and
Attenuation Relation

The AFE at a site from a single-fault source modeled
with a characteristic recurrence process of magnitude m can
be written as (Reiter, 1990; Cao et al., 1996):

AMu = uy) = aP(u = uy | m,r) (A1)
where A(# = 1) is the AFE for ground motion u exceeding
given value 1, a is the mean occurrence rate for character-
istic earthquakes of magnitude m on the fault, P(u = uglm,
r) is the conditional probability that u exceeds u, when an
earthquake of magnitude m occurs on the fault with a dis-
tance r to the site. Because here we are interested in one
fault source and one magnitude only, all the integrations and
summations in the general formula are not needed in (Al).
The conditional probability term in (Al) determines the
shape of the calculated hazard curve.

If the fault is modeled with a G-R recurrence process,
there is an integration to magnitude to be added to (Al),
which can be discretized and becomes a summation to many
magnitude bins. In this case the preceding discussion on the
characteristic modeling is still valid for each magnitude bin.
The hazard curve for the G-R modeling is the sum of hazard
curves from all magnitude bins and is dominated by the
curve from the bin with the lowest magnitude because the
occurrence rate decreases exponentially with increasing
magnitude.

Let us first show that a different attenuation relation or
a different magnitude causes a hazard curve to have a hori-
zontal shift. For all the attenuation relations used in the 2002
California hazard model, the conditional probability is cal-
culated from a lognormal distribution of the ground motion,
u, or a normal distribution of parameter x = In(x) with
Xy = In(uy). We have,
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Px = xy | myr) = j(\/me)*1
Xo

cexp(—((x — x,)/0)*/2)dx, (A2)
where ¢ is the standard deviation of the normal distribution
and x,, is the log of the mean ground motion predicted by
an attenuation relation, or x,, = In(x,,). Both ¢ and x,, depend
on the attenuation relation used and x,, also depends on m,
r, and other parameters such as fault mechanism. Let us do
a substitution:

y = (& — x)/(20).

Then we get:

Py =y, Il mr) = (1/Jn) f exp(—y)dy, (A3)

Yo

where y, = (xo — x,,)/ \/20). This expression can be writ-
ten in the following form using the error function, erf:

Py = yy Il myr) = (erf(—yy) + 1.0)/2. (A4)
This result shows that a change from one attenuation relation
to another, which causes x,, to change, is equivalent to a
ground-motion change or a hazard-curve shift in the ground-
motion (horizontal) direction; however, the shape of the haz-
ard curve is not changed, if assuming ¢ is the same.

In Figure Al, the difference between curves A and B is
the mean ground motion, u,,. Curves A and B have the same
shape and one can be obtained from the other by a horizontal
shift. So we have In(u,) — In(ugz) = const. or u,/uz = const.
for any AFE value, where u, and uy are the ground-motion
values from curves A and B at a given AFE value. Then we
have (u, — ug)lug = us/ug — 1 = const. or the COV does
not change with increasing ground motion (return period)
for a group of hazard curves that are different only by hor-
izontal shifts. If only the magnitude is different we will have
a different x,, and, again, it is equivalent to a ground-motion
change or a hazard curve shift in the horizontal direction. So
far, we have assumed the same o-value for all the attenuation
relations. The case with different g-values is discussed in
step 3.

An occurrence rate change will cause the hazard curve
to have a vertical shift in a log—log plot (Fig. Al). This
becomes clear if we take logarithm on both sides of (Al).
In Figure Al, the difference between curves A and C is the
occurrence rate. We see that curves A and C have the same
shape, and one can be obtained from the other by a vertical
shift. There is an important difference between a vertical
shift and a horizontal shift in ground-motion difference be-
tween two curves for a given AFE value. It is obvious in
Figure A1 that the ground-motion difference between curves
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Figure A1. Three hazard curves with different oc-
currence rates («) or different mean ground motions
(u,,), but the same standard deviation value of ¢ =
0.45. Curves A and C are different only in their oc-
currence rates. They have the same shape and one can
be obtained from the other by a vertical shift. Curves
A and B are different only in their mean ground mo-
tions. They also have the same shape and one can be
obtained from the other by a horizontal shift.

A and C for the same AFE is no longer increasing with in-
creasing ground motion. The numerical calculation shows
that the ground-motion difference between curves A and C
for same AFE decreases exponentially with increasing
ground motion (return period). This is equivalent to saying
that the predicted ground motion is more sensitive to the
occurrence rate change at lower ground-motion levels
(shorter return periods) than at higher ground-motion levels
(longer return periods). This decrease of ground-motion dif-
ference causes the S.D. and COV of ground motion for a
group of hazard curves that are different only by vertical
shifts to decrease. It is similar to the COV decrease from P1
to P4 in Figure 8. This explains why the S.D. decreases by
changing from a one-fault system to a two-fault system in
Figure 9.

Step 3. Different o-Values Causing Hazard Curves
to Diverge from Each Other

In Figure A2 three different hazard curves are from
three different g-values. These values span from the upper
to the lower standard deviations of the attenuation relations
used in the 2002 California hazard model. Now we cannot
get one hazard curve from the other by shifts. From the sub-
stitution y = (x — x,,,)/(V/Za), we know it needs a stretch
or compression in the horizontal direction. The amount
stretch or compression needed depends on the ratio of o-
values for the two curves. For example, to get curve B from
curve A, curve A has to be stretched by a factor of 0.5/0.45
= 1.11. Figure A2 shows that because of the relatively nar-
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Figure A2. Three hazard curves with three dif-

ferent og-values but the same occurrence rate (o =
1.0) and mean ground motion (u,, = 0.4). They have
different shapes. One can be obtained from the other
by a stretch or compression in the horizontal direc-
tion. The amount stretch or compression needed de-
pends on the ratio of g-values. These curves diverge
slightly from each other.

row range of g-values for the attenuation relations used in
the 2002 California model, the hazard curves from the logic
tree diverge from each other slightly if only o differences
are considered. The results in Figure 5 show that this diver-
gence due to the g-value differences is overwhelmed by the
convergence due to occurrence rate differences.

In summary, the hazard curves of the logic tree with
different occurrence rates only are convergent from each
other and cause S.D. and COV to decrease with increasing
return period (ground motion) along a descending mean haz-
ard curve; the hazard curves with different magnitudes only
are neither divergent nor convergent from each other and
cause COV unchanged with increasing ground motion; the
hazard curves with different 6-values only are slightly di-
vergent from each other and cause COV to increase with
increasing return period (ground motion). When the differ-
ences in magnitude, occurrence rate, and attenuation relation
are mixed, the COV of ground motion decreases with in-
creasing return period (ground motion) or decreasing AFE.
In real cases, these three differences always act inseparably
even if we wish to study the uncertainty contribution from
one node only. For example, if we want to study the uncer-
tainty due to attenuation relations only, we average the mod-
els sharing the same attenuation relation, that will suppress
the uncertainty contributions from other nodes but we never
can eliminate them totally. The COV may still decrease with
increasing return period (ground motion) despite the previ-
ous conclusion for attenuation relation difference only. The
2002 model is a moment-balanced model. A magnitude
change is always tied with an occurrence rate change. The
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total effect of the previous three differences causes a net
decrease of COV with increasing return period (ground mo-
tion). This reflects that the ground motion of the current
hazard model is more sensitive to the input parameter un-
certainties at lower ground-motion levels (shorter return pe-
riods) and less sensitive at higher ground-motion levels
(longer return periods).
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